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Chapter 5

Extracting Multi-scale Information
for Cascades Modeling

5.1 Chapter Overview

Following the successes of deep learning methods in many fields, recently researchers
have developed various neural network-based models to extract diverse features from
the cascade graph that can be used for cascade prediction. For example, researchers
have leveraged RNNs and attention mechanisms to automatically learn the cascade’s
temporal characteristics in a sequential learning manner by sampling the cascades
as random walks or diffusion paths [8, 9, 35, 36]. These approaches, however, fail
to capture topological structure features and the dynamic changes of information
diffusion. Later studies [10, 69] introduce graph embedding methods to handle
the structural diffusion learning problem, and have achieved promising results in
cascade prediction. Despite the significant progress made by recent deep learning-
based approaches, currently they are still confronted with several limitations:

(L1) Lack of efficient ways to sample cascade graphs. Most of the existing
studies try to decompose a cascade graph into a bag of nodes [8] or denote it as a set
of diffusion paths [9]. These methods either ignore the structural information or fail
to capture the time-evolving structure of the cascade. CasCN [10] breaks down the
original cascade graph into a sequence of sub-graphs based on timestamps, which
may introduce bias and increase computation cost because there is a large number
of timestamps in the diffusion process.

(L2) Incomplete structural feature extraction. Structural features are demon-
strated as one of the most powerful features in information cascade prediction |10,
69]. Existing works not only capture nodes’ first-order information but also take the
edges’ directional information into consideration. However, they still fail to capture
long-distance message passing between nodes and nodes’ position information in the
cascade graph.
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(L3) Absence of feature-level fusion. After obtaining different features from the
cascade graph, e.g., temporal and structural features, most of the current works try
to directly concatenate them and then fed them into a fully connected layer to make
predictions [8, 9, 10]. However, different features play different roles in information
cascades prediction, which necessitates a more fine-grained feature fusion that would
facilitate predictions.

To overcome the limitations mentioned above, we first define multi-scale informa-
tion for cascade graph, including (1) direction-scale, representing the propagating
direction of the information between nodes; (2) high-order-scale, which is the higher-
order interactions between the nodes; (3) position-scale, which means the sequen-
tial /position information of each node (i.e., the emerging time of each node in the
diffusion); and (4) dynamic-scale, which is the dynamic information captured from
the evolving sub-graph sequence. Then, we propose MUIti-scale Cascades model
(MUCas) — a novel framework for modeling the information cascades and predicting
the increment size of information items. MUCas first employs time interval-aware
sub-cascade graph sampling method, which decomposes the observed cascade graph
into a sequence of sub-cascade graphs based on disjoint time intervals. And then it
uses a multi-scale graph capsule network and an influence attention to learn and fuse
the multi-scale information to form a unique cascade representation for popularity

prediction.
We make the following contributions:

e Efficient sampling method (L1). We propose a novel cascade sampling
method to sample sub-cascade graphs based on disjoint time-intervals. This
method can significantly decrease the number of required sub-cascade graphs

and eliminate the bias in processing the dynamic-scale in cascade modeling.

e Multi-scale information learning (L2). We design a multi-scale graph
network for modeling sub-cascade graphs that can capture direction-scale,
high-order-scale, and position-scale features of information diffusion jointly.
Simultaneously, we design a neural function to learn the influence-attention
between dynamic-scale sub-cascade graphs.

e Hybrid feature aggregation (L3). We propose a capsule-based hybrid
aggregation layer, which selectively aggregates the learned multi-scale features

in a more fine-grained way, i.e., from order-level and node-level to graph-level.

e Comprehensive evaluations. We conducted extensive experiments on two
benchmark datasets. The results demonstrate that MUCas can significantly
improve the prediction accuracy on cascade size prediction compared to the
state-of-the-art baselines.

This chapter is based on the following publication:
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Figure 5.1: A Toy example of cascade graph.

e Chen, X., Zhang, F., Zhou, F., Bonsangue, M.: Multi-scale graph capsule
with influence attention for information cascades prediction. International
Journal of Intelligent Systems 37 (2022) 2584-2611

5.2 Preliminaries

As illustrated in Figure 5.1, we can find that (1) the cascade graph is dynamic, in
other words, cascade graph is evolving over time, i.e., new nodes will join in the
diffusion process with time elapsed that leads the cascade size growth. For example,
at ty, uy joins in the diffusion process, and make the cascade size increase to 7,
(2) the message between two nodes, e.g., u; and ug, can be only passed from u; to
ug, i.e., the message passing in cascade graph is directed; (3) nodes are infected in
chronological order, and the sequential information can be regarded as the position
of each node in the cascade graph; (4) nodes with high influence will indirectly
infect the long-distance nodes, and the long-distance dependency is the higher-order

information of each node in a cascade graph, e.g., u; to ug.

In this work, we define the aforementioned aspects as the multi-scale information,
including (1) dynamic-scale, (2) direction-scale, (3) position-scale, and (4)
high-order-scale of cascades.

Definition 9 Cascade Size Prediction — Given the observed cascade graph Ci(t,)
of post m;, the goal of cascade size prediction is predicting m;’s incremental size AS;,
which is defined as AS; = |U'| — |U'|, where t, and t, are the prediction time and

the observation time, respectively; and |U*| denotes the number of nodes, in terms
of the size of cascade graph at time t.

5.3 MUCas: Multi-Scale Graph Capsule with Influ-
ence Attention for Information Cascades Pre-
diction

In this section, we present the proposed MUCas model, as well as its implementation
details and computational complexity.
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Table 5.1: Main notations used throughout this chapter.
Symbol | Description

T AT A sub-cascade graph of C;(t,) at time interval 7} and it’s
Gio i adjacency matrix.
T ATw A sequence of time interval-aware sub-cascade graphs of

C;(t,) and the corresponding adjacency matrices.
PE(u) Positional encoding.
A set of node embedding matrix, and a node embedding

S, H, .
martrix.
h,, Order-level capsule.
n,, Node-level capsule.
g, Graph-level capsule.
Aj, Time decay effect, influence attention.

Overview. Figure 5.2 illustrates the overall framework and the main components
of MUCas, which consists of four major parts: (1) a time interval-aware sampling
layer to generate sub-cascade graphs from observed cascade graph; (2) MUG-Caps
to learn the direction-scale, position-scale and high-order-scale information from
sub-cascade graphs; (3) influence attention for dynamic-scale learning; and (4) a
prediction layer for cascade size prediction.

5.3.1 Time interval-aware Sub-cascade Sampling

Taking the observed cascade graph C;(t,) of a given post m; as input, the existing
works try to decompose the observed cascade graph into a bag of nodes [8| or denote
it as a set of diffusion paths [9]. Such methods either ignore both local and global
structural information or fail to consider the dynamic information. Recently, some
works such as CasCN [10] and VaCas [69] use a Time-aware sampling method to
decompose C;(t,) into a sequence of consecutive sub-cascade graphs based on the
diffusion timestamp, which has been proved to be an efficient way to treat the
observed cascade graph. However, the Time-aware sampling method still faces
some challenges: 1) the difference between the fine-grained sub-graphs is trivial,
which will introduce biases in dynamic modeling; and 2) too many sub-graphs would
significantly increase computation cost. Figure 5.3a shows a toy example of Time-
aware sampling method. Compared with the previous time step, each sub-graph
only contains one more node (e.g., t; vs. t3). Finally, it would generate z sub-
graphs in total, where z is the number of varying time-stamps in the propagation
process, resulting a huge number of sub-graphs within a short time. However, the
difference between consecutive graphs are too trivial to be distinguished, which may
confuse the model to learn discriminative features of information propagation.

In order to address the aforementioned challenges, we propose a new Time interval-
aware sampling method, as shown in Figure 5.3b. This sampling method breaks

T7/ v prm—
i

down the observed cascade graph C;(t,) into [ discrete sub-cascade graphs G
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Figure 5.2: Overview of MUCas: (a) A time interval-aware sub-cascade graphs sam-
pling layer; (b) MUG-Caps layer; (c¢) Influence attention layer; and (d) The prediction
layer.

{giTl, e ,giTj, gl e, l]} Specifically, we first split the observation time
window t, into [ disjoint time intervals. Then, we sample sub-cascade graphs based
on these intervals. Each sub-cascade graph in GT# is represented by an adjacency

matrix. Thus, GiTi” is further represented as a sequence of adjacency matrices AiT“’ =

{ATl AT ... A.Tl}.

Since the proposed sampling rule transforms the observed cascade graph into a fixed
number of sub-graphs, it is possible that no new retweet/citation occurs in one of
the intervals. To address this issue, we use the sub-graph of the interval before the
empty one as padding to ensure that the final length of GT* equals [. Algorithm 3
formalizes the process of the Time interval-aware sampling method.

5.3.2 Multi-scale Cascade Representation Learning

After generating [ discrete sub-cascade graphs, MUCas turns to learn high-level
representation of these sub-cascade graphs, which contains the multi-scale infor-
mation of cascade graphs. Inspired by the recent success of graph neural net-
works [41, 61, 126] and capsule network [127] in handling graph structured data,
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(b) Time interval-aware Sampling

Figure 5.3: Illustration of sampling sub-cascade graph sequence: time-aware sam-
pling vs. time interval-aware sampling. z is the number of timestamps; [ is the number
of time intervals, and [ is fixed and set manually.

we propose a MUIti-scale Graph Capsule Network (MUG-Caps) to learn the latent

representation for cascade graph from G%i*. MUG-Caps is composed of two main
parts, i.e., (1) the node embedding layer and (2) the capsule-based hybrid aggregation

layer.

Node Embedding Layer: We propose a Multi-scale Graph Network (MGN) as
the node embedding module, which learns node representations at the sub-graph
level simultaneously from direction-scale, position-scale, and high-order-scale. The
implementation of MGN is based on the graph convolutional networks (GCN) [61].
Original GCN proposes graph convolution approximations in the spectral domain
based on graph Fourier transform, which is computationally efficient and achieves
competitive performance in many tasks [128, 129]. However, it still faces some

limitations in cascade modeling;:

(1) GCN focuses on static and undirected graphs, whereas cascade graphs are

dynamic and directed graphs.

(2) GCN updates a node’s representation by aggregating its first-order neighbors
and itself, failing to capture each node’s infected order, i.e., the node’s position

information.

(3) GOCN aggregates the high-order information for a node through stacking mul-
tiply graph convolutional layers. As demonstrated by many later improved
works [126, 130], deeper GCN could not improve the performance and even

performs worse in graph representation learning.

Our MGN addresses these limitations through revising the convolution kernel of
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Algorithm 3: The algorithm for transforming cascade graph into a fixed-length
sub-graph sequence: Time interval-aware sampling.

Input: Observed cascade graph C;(t,), time window ¢,, and time interval number
l.

Output: A fixed-length sub-graph sequence GiTi” = { giTl, cee ngl}

1: forn=12,..1do

2:  for Set of nodes U;(t;), set of edges E;(t;) and corresponding timestamp t;

in Ci(t,) do

3 Compute the time interval index m = L(%{,—/%)J + 1.

4 if m <n then
5 Add U;(t;) and FE;(t;) into gj.
6: end if
7
8

end for
. end for

GCN, which is defined as:

A (K)
H=g+«X=0[|, | (A,XW{) PWy] (5.1)
k€O ¢e{in,out}
where || and | represent the order-level concatenation and direction-level
keO oe{in,out}

concatenation, respectively; [-] is a tiling concatenate operation; o is an element-wise
activation such as ReLU; A;k) denotes the normalized adjacency matrix Ay € RV*N
multiplied by itself £ times; N is the number of nodes in current sub-cascade graph;
X € RV*F is the input graph signal — F is the dimension number; and O is a set
of integer adjacency powers — the value of O is from 0 to the max-order K of the
current sub-cascade graph. ¢ € {in, out} represents the in- and out-directions of the
adjacency matrix, respectively. A = A;, = (Ay)T. The asymmetric normalized

adjacency matrix fl¢ of each direction can be calculated as:

Ay = (Dy) Ay,

- (5.2)
Ay =A,+1y,

where Iy is the identity matrix, and (Dgy); = Zj(A¢)ij is the diagonal degree

matrix.

In MGN, initially X = A. Further, P € RY*#? is a position embedding matrix
for current sub-cascade graph, and F), is an adjustable dimension. Specifically,
we initialize the position embedding matrix P = {py,---,p,, - ,py} through
positional encoding PE(u) [131] as:

PE(u)yq = sin(u/10000%%%),

5.3
PE(u)2a11 = cos(u/l()oo()?d/dp), (5.3)
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where 1 < d < F,/2 denotes the dimension index in p,. The details of this formula
are referred to [131].

In Eq.(5.1), W((f) € RI*Fa is the weight matrix for each direction on different order,
and Wp € R%*Fr is another weight matrix used to transform position embed-
dings. The output node embedding matrix is denoted as H € RN*Kx2FatF) and
H = {h;,--- h,,,--- ,hy}, respectively. When implementing MGN, there is no
need to calculate AZ for each order. Instead, we calculate AZX via right-to-left

multiplication. For example, when k = 2, AiX is calculated as A¢(A¢(IX)), where
I is the identity matrix. MGN can be regarded as a single layer using multiple times
during actual training. The calculation of MGN is outlined in Algorithm 4.

The rationale behind MGN: MGN handles the direction-scale of cascade
~ (k

through modeling the incoming and outgoing relations of the cascades, i.e. A; )XW;’C)

in Eq. (5.1). Moreover, because the directed graph is asymmetric, we use the

asymmetric normalization Ay = (Dy)'Ag4 to replace the symmetric normaliza-
1

tion ]A)_%A]AD_2 used in vanilla GCN. MGN utilizes the adjacency matrix’s multiple
powers to mix the feature representations of higher-order neighbors in one graph
convolutional layer via transitive closure, which is used to handle the high-order-
scale. In our implementation, the sub-cascade graph is an acyclic directed graph,
and the value of Ag-“) can be either 0 or 1. When Agf) = 1, there is a path between v;
to v;. For arbitrary power p and g, AZ-A;]J. = 0 will always be held, which eliminates
the problem of layer output — imposing the lower-order information on higher-order
relations and increase the feature correlations [132]. As for the position-scale,
MGN adds position embeddings to the convolution kernel, which enriches each node

feature with its corresponding position information.

Capsule-based Hybrid Aggregation Layer From the node embedding layer,
we obtain a set of node embedding matrix for each sub-cascade graph, denoted
as S = {H;,Hy, - ,H;}, where S € RXNxEx@FatIb)  [pspired by the work of
capsule networks [127, 133], we design a capsule-based hybrid aggregation layer to
aggregate the learned node features from order-level, node-level, and graph-level

through dynamic routing, respectively.

The general procedure of dynamic routing is shown in Algorithm 5: (1) Lower-
level capsules U € RIUXfU are linearly transformed through shared matrix W €
RIVIXISxFuxFs - where |U| and Fy are the number of lower-level capsules and the
dimensions, respectively. Here we introduce W that not only guarantees the feature
representation ability of the center vector after clustering, but also being able to
identify the order of input features. The result of this step is a set of votes V €
RIVIXISIXFs (cf. line 1 in Algorithm 5), where |S| and Fs are the number of upper-
level capsule and the dimensions, respectively. (2) Upper-level capsules S € RISI*F’s

are computed based on the votes via line 3-7 in Algorithm 5, where ¢;; € RIUIXIS|x1
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Algorithm 4: Calculation of multi-scale graph network.

Input: Feature matrix X, normalized adjacency matrix A¢ for both in- and
out-directions, a set of order powers O and its max-value K = max(Q), and
positional embedding matrix P.

Parameters: {W((bk)}ke(’) and Wp.

: lAD = PWP

: Bin, Bowr i =X

: for £ in O do

if £ =0 then

B, :=1B;,
Bouw: = IBou
else

(¢ B,, == A;,Bi,

Bout == AoutBout

=

8 end if .
9: H(k) = CONCAT(B”LWZ(?, Boutwgi)tv P)
10: end for

11: H:= CONCATHO ... H® ... HX)
12: return o(H)

Algorithm 5: Dynamic routing mechanism in MUCas.

Input: Lower-level capsules U, iteration number 7.
Output: Upper-level capsules S

1: for all lower-level capsules i: v;; = Wj;u;

2: bij — 0

3: for 7 iterations do

4:  for all lower-level capsules i: ¢;; < softmax(b;;)

5. for all upper-level capsules j: s; <= >, ¢;;Vjii + b,

6:  for all upper-level capsules j: s; - Squash(s;)

7. for all lower-level capsules ¢ to all upper-level capsules j:
bij < bij + Vjji - §;

8: end for
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is the coupling co-efficiency that helps weight the votes, and the non-linear “squash"

2
function is denoted as Squash(z) = ; 5“1”2”2 Tel

We add biases to the calculation of s; at line 5, which can solve a critical problem in
capsule networks — indistinguishableness between the positive inputs and negative
inputs [134].

In this layer, we defined three levels of capsules, i.e., order-level capsule, node-level
capsule, and graph-level capsule, whose specific definitions are as follows:

Order-level capsule is represented as h,, € REXFatF) focusing on specific node
embedding in the sub-cascade graph. It aims to aggregate the higher-order infor-
mation for each node into one node-level capsule n,, € R where F, is the
dimension of node-level capsule.

Node-level capsule: As for a specific sub-cascade graph ¢%7, it has a set of node-
level capsules N; = {nj, -+ ,n,, - ,ny}, N; € RV used N; to generate the
graph-level capsule g; € R'™*s via dynamic routing, where F} is the dimension of
graph-level capsule.

Graph-level capsule: We have a set of graph-level capsules G, each of which
corresponds to a specific sub-cascade graph, i.e., G = {gl, By ,gl}, G e
R™>Fs Note that each graph-level capsule contains the properties of the cascade
from different time intervals.

How does MUG-Caps work? Above we presented the details of the two components
of MUG-Caps, i.e., MGN and the capsule-based hybrid aggregation layer. Now
we turn to explain how the two components collaborate. MUG-Caps, as shown in
Figure 5.2, takes a subgraph as input, which is first fed into an MGN layer to learn
the embedding for each node that contains node direction-scale information, higher-
order-scale information, and position-scale information as detailed in Section 5.2.
After this layer, each node is represented as K vectors, with each vector matched
to a different order level, referred to as the order-level capsules. Next, these order-
level capsules are fed into the hybrid aggregation layer. Then dynamic routing is
employed to aggregate order-level capsules to form a node-level capsule for each
node. Finally, the dynamic routing aggregates these node-level capsules to build
a graph-level capsule for the subgraph. The concrete calculation of MUG-Caps is
shown in steps 3 to 11 in Algorithm 6.

5.3.3 Sub-graph Level Influence Attention

Previous works have demonstrated that user influence will decay significantly with
time [9, 10]. In our work, we aim to learn such influence changes (dynamic-scale) at
the sub-graph level, i.e., we assume that the sub-cascade graph’s influence decays as
the interval index increases. Inspired by self-attention mechanism [135], we employ a
neural function to learn the influence attention. First, we represent the time-interval
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as a one-hot vector t/ € R!, and then map t/ to A; through a fully-connected layer
with sigmoid function. Here the A; is used to describe the time decay effect.

A; = sigmoid(W,t’ + by), (5.4)

where W, € Rf*! and b, € Rfs. According to the time decay effect vector A; and
graph-level capsules G, we define the influence attention as:

eXp(<W, Aj© gj>)
22:1 exp((w, A © g;))

where w € Rfs. Given the influence attention a;, we calculate the graph-level

(5.5)

j =

capsule as:
gj = ;8 (5.6)

5.3.4 Information Cascade Prediction

Though our work focus on information popularity prediction, unlike existing works,
we add an auxiliary task — an extra classification task i.e., whether a cascade would
go viral, as a supplementary for the cascade size prediction. That is, we predict
whether a cascade can break out a certain threshold value. This step is also imple-
mented using dynamic routing over G = {&;17 € [1,1]} to generate class capsules
C € R¥*Fe where () is the number of class, and F, is the dimension of class cap-
sules. The norm of class capsule ||c,|| represents the probability belonging to class
q. And, we use a margin loss to calculate the classification loss:

0= {pgmax(0,m* — Jlegl)? + £(1 — pg)max(0, [, || — m™)?} (5.7)

where m* = 0.9, m~ = 0.1, and p, = 1 iff the cascade belongs to class q. Here ¢ is
used to stop initial learning from reducing the length of all class capsules, especially

when () is large.

Subsequently, we use a weighted sum operation on C to obtain the representation
for a cascade C. The weight is calculated through ||c,||:

el
" Y exp(e]) 53)

C= E WqCy
q

We use a fully-connected layer to predict the increment size AS = FC (C) The

loss function is: )
0y = <10g AS — log As) (5.9)
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where AS is the ground truth. Finally, the overall loss function for a batch is

b

1 i i
£=32 (B +(1-p)b) (5.10)

i=1

where b is the number of cascades in a batch, and J is used to balance the ¢; and

£y losses.

Algorithm 6: Learning with MUCas.

Input: Time-interval aware sub-cascade graphs for n cascade graphs
AT = {ATw . AT oo (AT 1 Max order K; Batch size b.

Output: Incremental size AS = {ASy,---} of cascades.

1: repeat
2: b=1,2, ..
3:  for adjacency matrix sequence A7 in batch b do
4 for A € AT do
5: Compute the node embeddings H; for j sub-cascade graph according
to Eq. (5.1).
for node embedding h,, € H; do
7 Use h,, to compute the node-level capsule n,, according to
Algorithm 5.
8: end for
: N; < {n;,--- ,ny}
10: Use N to generate the graph-level capsule g; according to Algorithm 5.
11: end for
12: G« {g, ,g}
13: Compute influence attention «; according to Eq. (5.4), (5.5).
14: Compute newly graph-level capsules G; according to Eq. (5.6).
15: /*Extra classification task™/
16: Use G, to compute class capsules C; according to Algorithm 5.
17: /*Popularity prediction task*/
18: Calculate cascade representation C; according to Eq. (5.8).
19: Feed C; into fully-connected layer to compute incremental size AS; of
cascade.
20: Use Adaptive moment estimation (Adam) to optimize the objective

function in Eq.(5.10) and update all the parameters.
21:  end for
22: until convergence;

5.3.5 Complexity Analysis

We finish this section with a discussion of the computational complexity of the
main components in MUCas, i.e., the cost of (1) node embedding layer, and (2)

capsule-based hybrid aggregation layer.
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5.4 Evaluation

Node embedding layer: We use MGN to learn node embeddings from the sub-
cascade graph, whose calculation is shown in Eq. (5.1). As for direction-scale,
MGN models both the incoming and outgoing relations of the cascades via A((:)Xwg).
Recall that the dimensions of X, W((f), and W, are F', F;, and I}, respectively.
Besides, the max-order is K, and the normalized adjacency matrix Ay in our imple-
mentation is a sparse matrix with |€| nonzero elements — |£| is the number of edges
in current graph. In addition, the number of nodes is denoted as N. According to
existing works [61, 126], for a single direction at each order, the calculation is con-
ducted via sparse-dense matrix multiplications, and the computational complexity is
O(|€| x F x Fy). Taking the high-order-scale into consideration, the computational
complexity is then O(K x |E] x F x F;). As for positional-scale, the calculation
of W,P is completed via matrix multiplication, which requires O(N X d, x F})
computations. Therefore, the total computational time cost of evaluating Eq. (5.1)

is then O(2 x K x |E] X F x Fy+ N x d, X F},).

Capsule-based hybrid aggregation layer: This layer is implemented by exe-
cuting dynamic routing between different levels capsules. Specifically, we adopt
a dynamic routing mechanism for 7 iterations over |U| lower-level capsules and
generate |S| upper-level capsules. This learning process requires O(7 x |U| x
|S|) computations [136]. From the MGN, we get the order-level capsule H =
{hy, -+ hy, - hylh, € REX@FtF)1 - For each node m, it generates the node-
level capsule from order-level capsules, whose computational complexity is O(7 X
K x 1). Because there are N nodes, the total time of generating node-level capsules
for all nodes is O(N x 7 x K x 1). Similarly, generating the graph-level capsule from
node-level capsules can be done within O(7x N x 1) time. The overall computational
time is therefore O(N x 7 x K X 1+ 7 x N x 1).

5.4 Evaluation

In this section, we compare the performance of our proposed model MUCas with
the state-of-the-art approaches, and several variants of M UCas, on information pop-
ularity prediction. In particular, we provide the quantitative results to answer the

following research questions:

e Q1: How does MUCas perform on cascade size prediction compared with the

state-of-the-art baselines?

e Q2: How do different scales of information modeled in MUCas contribute to

the overall performance?

e Q3: How do the key hyper-parameters affect the performance of MUCas?
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Table 5.2: Statistics of datasets

Dataset Weibo APS
# Ori. Cascades 119,313 636,294
# Nodes 5918473 636,294
# Edges 12,204,245 3,425,508
Avg. popularity 173 13
Train (0.5 Hour/ 3 Years) 19,472 24,636
Val (0.5 Hour/ 3 Years) 4,173 5,279
Test (0.5 Hour/ 3 Years) 4,172 5,278
Train (1 Hour/ 5 Years) 19,124 33,408
Val (1 Hour/ 5 Years) 4,098 7,159
Test (1 Hour/ 5 Years) 4,097 7,158

5.4.1 Datasets

We evaluate the effectiveness and generalizability of MUCas on two scenarios. The
first one is to predict the size of retweet cascades in Sina Weibo and the second one
is to forecast the citation count of papers in citation dataset APS. The statistics of
the datasets used in this work has shown in Table 5.2.

Sina Weibo: The description of the Weibo dataset is given in Section 4.4.1. Fig-
ure 5.4a plots the distribution of the cascade size (the number of re-tweets of each
post), which, obviously, follows an power-law distribution and reflects the Pareto
principle (80/20 rule). Figure 5.5a shows the distribution of depth over all cascades,
which roughly follows an exponential distribution, indicating that the majority of
cascades have a shallow depth, i.e., most of them are less than 5. The depth of a
cascade is the length of the longest path, which also equals to the max-order of the
cascade. Due to the effect of diurnal rhythm in Weibo [9], in our experiments, the
cascades with the publication time before 8 am and after 6 pm were filtered out,
leaving each post at least 6 hours to obtain retweets. As shown in Figure 5.6a, on

average, a message receives about 70% retweets within 5 hours.

APS: APS ! is provided by American Physical Society (APS), which consists of
pairs of APS articles that cite each other for the corpus of Physical Review Letters,
Physical Review, and Reviews of Modern Physics from 1893 to 2018. The papers
from 1893 to 1997 are selected as observations so that each of the papers is allowed
to develop for at least 20 years. In the citation scenario, the size of a cascade is
the citation count. Figure 5.4b shows the distribution of cascade size in the APS
dataset, which exhibits a power-law distribution. Figure 5.5b shows the distribution
of the depth over all cascades in APS, which has a similar trend with Weibo. As
shown in Figure 5.6b, on average, the citation reaches around 50% of the final size
within 5 years.

thttp://journals.aps.org
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Settings: In our experiments, we use the same dataset settings as in previous
works [9, 69]. The observation time window in Weibo data is set to ¢, = 0.5 and
t, = 1 hour. For the observation window of the APS dataset, we choose t, = 3 and
5 years. For both Weibo and APS datasets, we filter out cascades whose observed
size Sops < 10. And for those cascades whose S, > 100, we only track the first 100
retweets. In addition, we randomly split each dataset into a training set (70%), a
validation set (15%), and a testing set (15%) following existing works [9, 69].

..-
2

N,

1\

102 4

Number of cascades
Number of cascades

Ry

161 162 163 164 10 1‘00 161 162 103 164
Size of cascades Size of cascades

(a) Weibo dataset (b) APS dataset

Figure 5.4: Cascade size distributions of Weibo (left), and APS (right) in log-log
scales.
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Figure 5.5: Distribution of depth (max-order) of cascades.

5.4.2 Baselines

To validate MUCas’s performance in cascade prediction, we select following state-
of-the-art baselines for comparison:

e Feature-Linear, Feature-Deep, DeepCas [8] and DeepHawkes [9] are
already introduced in Section 4.4.2, for brevity, we will not repeat them here.
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Figure 5.6: Normalized popularity distribution of cascades: retweets (citations) vs.
time.

e CasCN: CasCN (in Chapter 4) is the first graph convolution network (GCN)-
based framework exploiting both temporal and structural information for cas-
cade size prediction. It decomposes a cascade graph into a sequence of sub-
cascade graphs based on propagation time, while learning the local structure
and its evolving process of cascade structure through the combination of graph

convolutions and LSTM.

e VaCas [69]: VaCas is the first Bayesian learning-based approach that uses
pre-trained node embeddings of the cascade as input and leverages a hierar-
chical variational information diffusion model to learn the posterior of cascade

distribution with variational inference.

e Cascade2vec [62|: Cascade2vec is an improvement of CasCN, which proposes
a new graph convolutional kernal — graph perception network (GPN) to replace
the original GCN in CasCN. It also introduces the attention mechanism to

learn different importance of each sub-graph.

5.4.3 Evaluation Metric

Following previous studies [8, 9, 35|, we use mean square logarithmic error (MSLE)
and symmetric mean absolute percentage error (SMAPE) for prediction performance

evaluation. In addition, we also report the coefficient of determination (R?) of
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different models. The formulation of all evaluation metric is defined as:
MSLE — i(l AS; -1 A§>2
- n — og 4 0og 1
1~ |logAS; —log AS;
SMAPE = - 3~ | log A5; — log A5
n i ([log ASi| 4 [log AS;[) /2
R?_ 1 2ia(logAS —log AS)>
S (log AS; — L3  log AS;)?
where n is the total number of posts, AS; is the predicted incremental size for post

m;, and AS; is the ground truth. Note that, the value of MSLE and SMAPE the
smaller the better, in contrast, the value of R? the bigger the better.

(5.11)

5.4.4 Experimental Settings and Parameter Tuning

Parameter settings: Models mentioned above are optimized to the best perfor-
mance which involves several key hyper-parameters. The L, coefficient of Feature-
Linear is chosen from 10{%~1=2-=8}  The node embedding size for DeepCas, Deep-
Hawkes, CasCN, and Cascade2vec is set to 50. The hidden layer of each GRU has
32 units, and the hidden dimensions of the two-layer fully-connected layers for all
deep learning-based methods are 32 and 16, respectively. The learning rate for node
embeddings in DeepCas and DeepHawkes is 5 x 10~* and the learning rate for other
methods are 5 x 1073, The batch size is set as 64. All other hyper-parameters are
set to the same values as used in the original papers.

As for our MUCas, the basic parameters (e.g., the learning rate is 5 x 10~* and batch
size is 64, etc.) are the same as above deep learning-based approaches, except that
the max-order K and iteration number 7 are chosen from 1 to 5. The embedding
size of positional embedding is chosen from {30, 50,100, 150,200}, the hidden size
for MGN is 60, and the hidden size for node-level capsule, graph-level capsule and
the class capsule is 30, 8 and 16, respectively. In addition, the number of time
intervals is set to 6. For the auxiliary classification task, the number of classes @) is
equal to 2. Specifically, we label a cascade as 1 if its increased size is twice or more
than its observed size, 0 otherwise. All methods, including ours, are tuned to the
best performance with early stopping when validation errors has not declined for 10
consecutive epochs.

Experimental environment: The experiments are conducted on a sever with Intel
E5-2680 v4 2.40GHz, one NVIDIA GeForce GTX 3090, and 256GB memory.

5.4.5 Performance Comparison (Q1)

The overall performance of MUCas as well as the state-of-the-art baselines are shown
in Table 5.3 and Table 5.4, from which we have the following important observa-
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Table 5.3: Performance comparison between baselines and MUCas on Weibo datasets.
A paired t-test is performed and * indicates a statistical significance p < 0.001 as
compared to the best baseline method.

Weibo
Model 0.5 Hour 1 Hour
MSLE SMAPE R? MSLE SMAPE R?
Feature-Linear 2.959 0.331 0.351 2.710 0.356 0.461
Feature-Deep 2.815 0.311 0.379 2.646 0.353 0.465

DeepCas 2.914 0.330 0.352 2.747 0.358 0.459
DeepHawkes 2.891 0.321 0.379 2.632 0.352 0.468
CasCN 2.804 0.311 0.381 2.601 0.350 0.468
Cascade2vec 2.752 0.308 0.384 2.589 0.348 0.479
VaCas 2.586 0.291 0.504 2.359 0.333 0.518
MUCas 2.081* 0.271* 0.621* 1.882* 0.308* 0.647*

(Improvements) 19.53%  6.87%  23.21% 20.22% 7.51%  24.90%

Table 5.4: Performance comparison between baselines and MUCas on APS datasets.
A paired t-test is performed and * indicates a statistical significance p < 0.01 as
compared to the best baseline method.

APS
Model 3 Years 5 Years
MSLE SMAPE R? MSLE SMAPE R?
Feature-Linear 2.100 0.289 0.126 2.087 0.358 0.311
Feature-Deep 1.996 0.358 0.221 1.874 0.352 0.322

DeepCas 2.033 0.361 0.213 1.944 0.365 0.318
DeepHawkes 1.831 0.344 0.241 1.588 0.337 0.363
CasCN 1.818 0.274 0.244 1.574 0.337 0.367
Cascade2vec 1.783 0.272 0.258 1.560 0.336 0.373
VaCas 1.723 0.268 0.283 1.507 0.335 0.394
MUCas 1.557* 0.263* 0.355* 1.439* 0.333* 0.426*

(Improvements)  9.63% 1.87%  25.44% 4.51%  0.59%  8.12%

tions.

(O1) MUCas outperforms the baselines by a large margin, e.g., as for the MSLE, it
reduces the prediction error up to 19.53%, 20.22% on the Weibo dataset and 9.63%
and 4.51% on the ASP dataset when compared to the best baseline — VaCas, when
t, is set to 0.5, 1 hour and 3, 5 years on Weibo and APS, respectively. We plot the
training process of MUCas on the Weibo and APS dataset and show the results in
Figure 5.7. Clearly, the training loss of MUCas consistently decreases and converges
to a lower value.

(O2) The gap between handcrafted feature-based methods and most deep learning-
based baselines are quite small. In some cases the handcrafted feature-based meth-
ods even beat some deep learning-based methods. Comparing the Feature-Deep
with DeepCas, for example, we can observe that a fully connected layer is enough
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Figure 5.7: Convergence of MUCas on Weibo and APS datasets.

to achieve competitive results than complicated neural networks (DeepCas) if we
have a set of well-designed hand crafted features. However, obtaining such fea-
tures requiring extensive domain knowledge, which is hard to be generalized to new

domains.

(O3) DeepCas — the first deep-learning based approach for cascade size prediction —
performs the worst among the deep learning baselines, because it simply learns the
cascade representation based on sampled random walks but ignores temporal and
topological information. DeepHawkes, while being successful in modeling temporal
information for cascades in a generative learning manner, does not perform well due

to its weak ability to learn structural information.

(O4) The rest of the baselines, i.e., CasCN, Cascade2vec and VaCas, generate com-
petitive results because they explore structural and temporal information at the
same time. When comparing CasCN with Cascade2vec, the performance of Cas-
cade2vec is slightly better, due to the modified convolutional kernel in Cascade2vec,
which indeed improves the ability of learning structural features. Besides, VaCas
employed VAE [70] to solve the uncertainty problem in structural representation
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learning and therefore achieves higher accuracy compared to other baselines. Our
MUCas not only combines the advantages of CasCN and VaCas, but also takes
into account the high-order-scale and position-scale of a cascade graph, leading to a
significant improvement in prediction performance.

(O5) When examining the methods with different observation window ¢,, we can
observe a general trend, i.e., the larger the ¢,, the accurate the predictions. This
is intuitive because longer observation time reveals more temporal and structural
knowledge regarding information diffusion that helps cascade size prediction.

5.4.6 Ablation Study (Q2)

To better investigate the contribution of each scale of information modeled in MU-
Cas, we derive the following variants of MUCas:

-Direction: In “-Direction", we do not consider the directional relation in cascades,

i.e., regarding the cascade graphs as undirected graphs. We replace the MGN to

a vanilla GCN [61] and calculate the normalized adjacency matrix according to
1 1

A=DPAD Y.

-Order: In “-Order", we only focus on 1%-order neighbors in the cascade graphs,
i.e., setting the max-order number K to 1.

-Position: In “-Position", we ignore the node’s relative position in cascade graph,
i.e., removing the computation of position information PW, in MGN.

-Dynamic: In “-Dynamic", we remove the sub-graph level influence attention com-
ponent, and use G directly.

Figure 5.8 shows the performance comparisons among MUCas and its variants, which
illustrates that: (i) the original MUCas achieves the best performance compared
with other variants, demonstrating the motivation of our work, i.e., considering the
four different scale information for cascade modeling. (ii) From the comparison be-
tween “-Direction" and “-Position", we find that effectively modeling the directional
relation and node’s relative position in the cascade graph will improve the prediction
performance. (iii) Removing “-Order" and “-Dynamic" bring a remarkable decrease
of the prediction performance, which implies that: (a) nodes with different orders
play different importance in prediction task, and (b) the influence decreases as the
cascade graph evolves.

In order to quantify the effectiveness of different levels of capsules, i.e., order-level,
node-level, and graph-level capsule, we test the model performance by designing
several single capsule-based variants of MUCas, including;:

Order-level: In “Order-level", we apply sum-pooling to aggregate the order-level
capsules h, for each node and form node-level capsule n,. Finally, the sum-pooling
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Figure 5.8: Ablation study of MUCas on two datasets.

operation is employed again to aggregate node-level capsules to form the graph-level
capsule g, .

Node-level: In “Node-level", we apply dynamic routing to aggregate order-level
capsules h, to form node-level capsule n,. Subsequently, sum-pooling is used to

aggregate node-level capsules to form the graph-level features g,.

Graph-level: In “Graph-level", we apply sum-pooling to generate node-level cap-
sule n, from h,, and then employ dynamic routing to aggregate node-level capsules
to form the graph-level capsule g, .

Figure 5.9 illustrates the differences between three single capsule-based variants and
MUCas. The experimental results are shown in Figure 5.10, where we can find that:
(i) Compared to all single capsule-based variants, the original MUCas performs
the best; (ii) Even keeping only one single-level capsule, the model performance is
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Figure 5.9: Illustration of single capsule-based variants of MUCas.

still superior to all the baselines in Table 5.3 and Table 5.4; and (iii) Compared to
original MUCas, the “order-level" variant performs the worst, while the performance
of the other two variants (i.e., node-level and graph-level) do not drop a lot. This
result demonstrates that (1) the three-level capsules are indispensable, and (2) the
dynamic routing is efficient in aggregating features.

5.4.7 Hyper-parameter Sensitivity (Q3)

We study several important hyper-parameters that may influence the prediction
performance of our model. Here we select the Weibo data set for the experiments
and omit APS as the results are expected to be similar. The impact of the choice

of hyper-parameters is shown in Figure 5.11.

o Impact of max-order K: we try different values of max-order K from 1 to
5, and the prediction results of MUCas are shown in Figure 5.11a and Fig-
ure 5.11b. When the observation time is 0.5 hour, our MUCas achieves the
best performance if K = 3. But for 1 hour observation, the optimal value of K
is 4. The reason is that with the increase of observation time, the information

are more likely to propagated to more nodes with deeper depth.

o Impact of embedding size of positional embedding F,: we change the dimensions
F, of positional embedding P within {30, 50,100, 150,200}. Compare the re-
sults on 0.5 hour with the results on 1 hour (Figure 5.11c and Figure 5.11d), we
can see that larger embedding size sometimes may degrade the performance,
and the proper embedding size should fall into the scope of [50, 150]. We hy-
pothesize the reason is that most cascade graphs are small, though a few of
them may diffuse to a large number of nodes, i.e., the 80/20 rule as shown in
Figure 5.4a and 5.4b. Therefore, a larger embedding dimensions would incur
overfitting issue for those smaller cascade graphs.
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Figure 5.10: Capsule study of MUCas on two datasets.

e Impact of iteration number T: we try different values of the iteration number 7
in dynamic routing, specifically, by increasing the value from 1 to 5. The results
are shown in Figure 5.11e and Figure 5.11f, which suggests that increasing the
number of iterations would improve the performance first, but deteriorate the
model soon. This result raises an open issue in capsule network learning. That
is, the appropriate iterations requires careful tuning that makes the capsule
network unstable. This issue should be addressed for robust representation
learning, which is beyond the scope of this work and left as future work.

e Impact of the length of observed retweets |U'|: we track the first 50, 80, 100,
150, and 200 retweets and report the performance of MUCas based on these
observed retweets. The experimental results show in Figure 5.11g and Fig-
ure 5.11h, where we can observe the improved performance with the increase
of observation retweets, which is a natural result of including more training
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Figure 5.11: Impact of the important hyper-parameters on MUCas. Vertical lines
are settings we used in previous experiments. Orange solid lines represent the results
of MSLE, and the purple dashed lines denote the results of SMAPE.

data.

e Impact of the number of time intervals [: when sampling sub-cascade graphs
from the observed cascade, we set different numbers of time interval, i.e.,
[ = 1[3,6,9,12,15]. The results are shown in Figure 5.11i and 5.11j, which
reveal that: (1) the fine-grained sampling does not always perform better. For
example, when the observation time is 0.5 hour, the performance of MUCas at
[ = 6 is much better than the results when [ = 9,12 and 15. This finding also
proves our hypothesis in Section 5.3.1 that the differences between fine-grained
sub-graphs become trivial as [ grows, which will introduce biases in dynamic
modeling. Besides, increasing the number of sub-graphs would significantly
increase the computation cost. (2) The choice of the number of time interval
heavily depends on the distribution of dataset. When the observation window

is 0.5 hour and 1 hour, the model performance achieves the best at [ = 6 and

=9, respectively.

e Impact of the balance value [: we change the hyper-parameter 3 in loss func-
tion (Eq. (5.10)) from 0 to 0.9, and report the results in Figure 5.11k and

74



5.4 Evaluation

Figure 5.111. We can see that a smaller value of g always achieves better per-
formance. Furthermore, 5 = 0.5 can be regarded as a watershed, with a value
less than 0.5 being far more suitable for model selection than a value greater
than 0.5. Setting 8 = 0, which can be regarded as removing the auxiliary
task from the original model. And from the results of § = 0, we can find that
adding an auxiliary task indeed helps us to improve the model performance.

e In order to further support the finding (O5) in Section 5.4.5, we conduct an
extra experiment to assess the model sensitivity varied with the observation
time. Specifically, we consider the propagation in the first 15 hours because
most of the messages in the Weibo dataset will decay after this time [11]. The
results are shown in Figure 5.12, where we can clearly see that the longer the
observations, the better the performance of the model.
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Figure 5.12: The influence of time window in Weibo dataset.

5.4.8 Model Parameters and Computation Cost

Table 5.5: Model parameters and computation time measured by seconds when ¢, =
0.5 hour and 3 years for Weibo and APS, respectively. “~" means “approximatively".

Time cost per epoch (in seconds
Methods | Parameers Weibo (t, = 0.5phourI)) AP(’S (to =3 ifears)

DeepCas ~250M ~150s ~170s
DeepHawkes ~250M ~128s ~158s
CasCN ~278K ~320s ~400s
Cascade2Vec ~368K ~5H0s ~'758
VaCas ~2M ~83s ~98s
MUCas ~495K ~104s ~105s

We compute the time cost of training MUCas and the baselines, as well as the re-
quired parameters. The results are reported in Table 5.5. First, the memory required
for DeepCas and DeepHawkes is much higher because they need the embeddings of
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all users in the social network, which required |U| x F,, parameters — |U| represents
the total number of users and F, denotes the embedding size. Besides, the training
time for each epoch of MUCas is around 104s and 105s in Weibo and APS dataset
when ¢, = 0.5 hour and ¢, = 3 years, respectively. In contrast, Cascade2Vec is the
fastest model that only needs 50s and 70s for Weibo and APS datasets, respectively,
but the quality of the model is much lower.

5.5 Summary

In this chapter, we proposed a novel cascade prediction model — MUCas, which
capture the multi-scale features regarding information diffusion comprehensively
and make good predictions. Specifically, MUCas consists of four components: (1)
a time interval-aware sampling layer used to generate sub-cascade graphs from the
observed cascade graph, (2) MUG-Caps extracts the direction-scale, position-scale,
and high-order-scale information from sub-cascade graphs, (3) an attention layer
applied to learn dynamic-scale, and (4) a prediction layer to make predictions. We
conducted extensive experiments based on two real-world datasets, i.e., Weibo and
APS. The experimental results demonstrate that our method achieves state-of-the-
art performance on information cascade size prediction of tweet propagation in social
networks and scientific papers’ impact.
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