d
A
&
15,

Universiteit

*dlied) Leiden
'M% The Netherlands

E
3
H oo
B
=
=)
@\
-3

o

Information diffusion analysis in online social networks based on deep

representation learning
Chen, X.

Citation
Chen, X. (2022, October 25). Information diffusion analysis in online social networks based
on deep representation learning. Retrieved from https://hdl.handle.net/1887/3484562

Version: Publisher's Version

Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3484562

License:

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3484562

Part 1

Information Cascades Modeling

27

Chapter 4

Learning Structural-temporal
Features for Cascades Modeling

4.1 Chapter Overview

As described in Chapter 2, the plethora of approaches proposed to tackle the cascade
prediction problem fall into three main categories:

1. handcrafted feature-based approaches — mostly focusing on identifying and in-
corporating complicated hand-crafted features, e.g., structural [27, 37, 54],
content [22, 38, 51, 52|, temporal [28, 55|, etc. Their performance strongly
depends on extracted features requiring extensive domain knowledge, which is
hard to be generalized to new domains;

2. point process-based approaches — typically relying on Hawkes point process |9,
30, 49], which models the intensity function of the arrival process for each
message independently, enabling knowledge regarding the popularity dynamics
of information — but with less desirable predictive power; and

3. deep learning-based methods, especially Recurrent Neural Networks (RNN)
based approaches [8, 9, 35, 36] — which automatically learn temporal char-
acteristics but fall short in the intrinsic structural information of cascades,
essential for cascade prediction [1].

Challenges and Our Approach: Effective and efficient prediction of the size of
cascades has several challenges: (1) lack of knowledge of complete network structure
through which the cascades propagate [114]. This impedes many global structure
based approaches since obtaining a complete graph or further embedding into it is
hard, if not impossible. (2) efficient representation of cascades — difficult due to their
varying size (from very few to millions [1]), making the random walk based cascade
sampling methods biased and ill-suited. (3) modeling diffusion dynamics of infor-
mation cascades not only requires locally structural characteristics (e.g., community
size and activity degree of users) but also needs some temporal characteristics — e.g.,

29

4. LEARNING STRUCTURAL-TEMPORAL FEATURES FOR CASCADES
MODELING

information within the first few hours plays crucial role in determining the cascades’
size.

To address above challenges, we propose a novel framework called CasCN (Recur-
rent Cascades Convolutional Networks) which, while relying on existing paradigms,
incorporates both structural and temporal characteristics for predicting the future
size of a given cascade. Specifically, CasCN samples sub-cascade graphs rather than
a set of random-walk sequences from a cascade, and learns the local structures of
each sub-cascades by graph convolutional operations. The convoluted spatial struc-
tures are then fed into a recurrent neural network for training and capturing the
evolving process of a cascade structure. Our main contributions and advantages of

CasCN are:

e Use of less information: We rely solely on the structural and temporal information
of cascades, avoiding massive and complex feature engineering, and our model is
more generalizable to new domains. In addition, CasCN leverages deep learning to
learn latent semantics of cascades in an end-to-end manner.

e Representation of a cascade graph: We sample a cascade graph as a sequence of sub-
cascade graphs and use an adjacency matrix to represent each sub-cascade graph.
This fully preserves the structural dynamics of cascades as well as the topological
structure at each diffusion time, while eliminating the intensive computational cost
when working with large graphs.

e Additional impacting factors: CasCN takes into account two additional crucial
factors for estimating cascade size — the directionality of cascade graphs and the
time of re-tweeting (e.g., decay effects).

e Multi-cascade convolutional networks: We propose a holistic approach, with vari-
ants capturing temporal, structural, and directional patterns in multiple sub-graphs,
aware of temporal evolution of dynamic graphs — making our methodology readily
applicable to other spatio-temporal data prediction tasks.

e Fualuations on real-world datasets: We conduct extensive evaluations on several
publicly available benchmark datasets, demonstrating that CasCN significantly out-
performs the state-of-the-art baselines.

This chapter is based on the following publication[10]:

e Chen, X., Zhou, F., Zhang, K., Trajcevski, G., Zhong, T., Zhang, F.: Infor-
mation diffusion prediction via recurrent cascades convolution. In: 2019 IEEE
35th International Conference on Data Engineering. ICDE ’19 (2019) 770-781

4.2 Problem Statement

Recall (see Definition 4 in chapter 3) that the observed cascade graph of a post m; be-
fore time ¢, is denoted as Cy(t,). In this chapter, we use g’ = (U;?, E}’ ;) as a short-

30

4.2 Problem Statement

SN O Original post
‘ Observed retweets

l'—~\‘
_ _+ Future retweets

: : Vo Time line
ti L ottt ts

Figure 4.1: The observed cascade graph of a post m;. Node wug initiates the original
message m;.

hand for the snapshot of C;(t,) reflecting the diffusion status of a post m; at time
t; (t; <t,). For example: a node u, € U’ represents a user who (for the first time)
re-tweets the post m; from some other users in Twitter (or a paper in a citation net-
work). An edge (ug,uy) € E}’ represents a re-tweet (or a citation) of u, from w, ; and
t; is the time-instant when the last re-tweeting (or the citation) behavior occurs in

the current snapshot. Figure 4.1 illustrates how the cascade graph can be represented

as gfl = ((U1)7®,t1),' o 79'?6 - ((ulau27' o 7u57u6) ’ [(u17u2)) (u17u3)7' o 7(u4au6)]7t6)-

As depicted above, from observed cascade graph C;(t,), we can get different snap-
shots gfj, so that C;(t,) can be further represented as a sequence of sub-cascade
g7 lt; < to}
size AS; regarding the post m; for a fixed time interval At (At = t, —
AS; = [Uf+5 — |Ufe

graphs Gl° = { In this chapter, our task is to predict the increment

to), i€,

Definition 8 The cascade size predictor is a function f() that is to be learned,
mapping Gi° = {gfl, e ,gfj, et < to} to AS; for the time interval At.

Table 4.1: Main notations used throughout this chapter.

Symbol | Description
t _t A sub-cascade graph of C;(t,) at diffusion time ¢; and it’s

9i'> & adjacency matrix.

Glo Alo A sequence of sub-cascade graphs of C;(t,) and the corre-
¢ 777 | sponding adjacency matrices.

At The fixed time interval.

AS; The increment size of m; after At.

P. Transition matrix of a cascade.

o, P Stationary transition distribution and diagonalized ¢

JAW Laplacian of a cascade.

Amaz The largest eigenvalue of Laplacian.

% Maximum steps from the central node, i.e., K-order

neighborhood or Chebyshev coefficients.

31

4. LEARNING STRUCTURAL-TEMPORAL FEATURES FOR CASCADES
MODELING

4.3 CasCN: Information diffusion prediction via re-
current cascades convolution

[
Sum i increment
Pooling oo size

Wt LT MLP 1 AS
@ ® © @

Figure 4.2: Overview of CasCN: (a) The input is a cascade graph C;(t,) for a given
time window t, of a certain post m;. (b) We obtain a sequence of sub-cascade graphs
from Cj(t,), and use an adjacency matrix aﬁj to represent an instance gfj of the sub-
cascade graph. We refer to Al> = {al',a’ ...} as signals. (c) We feed the signals

17)

and the Laplacian matrix A, of cascade C;(t,) into CasCN. The output h; of CasCN
is transformed to a new representation h; by multiplying it by a time decay factor.
All h; ’s will be assembled via a sum pooling to form the final C;(t,) representation:
h' (Ci(t,)). (d) Finally, we use a MLP to predict the increment size of cascade (AS;)
for a fixed time interval At.

Our deep learning framework CasCN takes the observed cascade graph C;(t,) as
an input and predicts the increment size AS; regarding certain information (e.g., a
post) m;. CasCN leverages LSTM and GCN to fully extract temporal and structural
information from the cascade graph. After an overview of CasCN, we focus on the
details in the respective sub-sections.

CasCN is an end-to-end type of framework consisting of three basic components,
depicted in Figure 4.2: (1) Cascade graph sampling: it dynamically samples a se-
quence of sub-cascade graphs from the original cascade graph, and then represents
sub-cascade graphs as a sequence of adjacency matrices; (2) Structural and temporal
modeling: it feeds the adjacency matrix sequences and the structural information
of cascade graphs (i.e., the Laplacian matrices of cascade graphs) within an obser-
vation window into a neural network. It combines recurrent neural networks and
graph convolutional networks with a time decay function to learn the representa-
tion of cascades; (3) Prediction network: a Multi-Layer Perceptron (MLP) is used
to predict the increment cascade size based on the representation learned from the
previous steps.

4.3.1 Cascade Graph as Sub-cascade Graph Sequences

Given a post m;, the first step in CasCN is to initialize the representation of its
corresponding cascading graph C;(t,). Existing methods typically treat the graph
in two ways: either sampling the graph as a bag of nodes, which ignores both local
and global structural information, or denoting the graph as a set of paths. For
example, DeepCas [8] samples a set of paths from each cascade. The sampling

32

4.3 CasCN: Information diffusion prediction via recurrent cascades

convolution

t1 to t3 ta t5

t1 to ts ta ts
9; 9; g; g; g;
000 O 11000 %0 11100 1110 1
000 0] IO 000 O] \U 000 0] \O 000 0] ID 000 0]
0000 0000O0 00000 00010 00010
0000 0000O0O0 00000 0000O0TO0 000©O0O0
0 0 0 0lsys 0 0 0 0 0y 00 0 0 0sys 0 0 0 0 0dsys 00 0 0 0lsys

ty to t3 t4 s
a,; a; a, a; a;

@) 3 C)) Q)

Figure 4.3: Illustration of sampling and representation of sub-cascade graph se-
quence.

process could be generalized as performing a random walk over a cascade graph
similar to DeepWalk which, however, fails to consider the dynamics of cascades — one
of the most important factor in information diffusion. DeepHawkes [9] transforms
the cascade graph into a set of diffusion paths according to the diffusion time, each
of which depicts the process of information propagation between users within the
observation time; however, this method ignores the structural information of cascade
graphs.

Our approach samples the cascade graph C;(t) to obtain a sequence of sub-cascade
graphs G which is used to represent cascades within the observation time t,. G

is denoted as:
Gﬁoz{gfla"'7g§j7"'}7t1§t0' (4'1>

The sampling process is illustrated in Figure 4.3, where each sub-cascade graph is
represented by an adjacency matrix: the rows correspond to the alphabetical order
of nodes’ labels (top to bottom) and the columns correspond to edges, as illustrated
above each instance of the adjacency matrix. The first sub-cascade graph in G only
contains one single node because it is the generator of the post m;, so we add a self-
connection for this initiator. Thus, G is represented with a sequence of adjacency

. t
matrices Aﬁ“:{atl cee L al }

7 y Ag

4.3.2 Laplacian Transformation of Cascades

Classical GCN methods cannot be applied for cascades modeling since they focus on
fized and undirected graphs which, in turn, cannot consider the temporal informa-
tion of cascade evolution. In contrast, cascade graphs in our problem are dynamic
directed trees (DATSs, which belong to dynamic directed graphs). As mentioned
above, the graph Laplacian for an undirected graph is a symmetric difference oper-
ator L =D — W, where D is the degree matrix and W is the weight matrix of the
graph, which cannot be adapted in DAGs.

33

4. LEARNING STRUCTURAL-TEMPORAL FEATURES FOR CASCADES
MODELING

Recently, Li et al. [115] propose DCRNN to model the traffic flow as a diffusion
process on a fired DAG (a directed sensor graph), and define a diffusion convolution

as:
K

y=gyp*xGr= Z <9k,1 (D51W)K + 0.2 (D;1WT)K> X
k=0
where D™'W is the random walk matrix used to replace Laplacian L in Eq. (3.13)
This operation is actually a diffusion process convolution proposed by Atwood and
Towsley [116] where the diffusion process is modeled as Markov process and may
converge to a stationary distribution P € R™ " after many steps, and the i*" row
P;.. € R™ represents the likelihood of diffusion from node v;.

In our settings, various cascades are different DATs, all of which require incorporat-
ing special structure and direction information rather than a single and fized sensor
network in [115]. To overcome this challenge, we introduce Laplacian of cascade A,
called CasLaplacian, for modeling the convolution operation over a single cascade
signal X as:

K
y=go*xGX = Z 0Ty (ANC> X (4.2)
k=0

where EC = ﬁAC — I is a scaled Laplacian.

Now we introduce the way of computing Laplacian of cascade A., which can capture
special structural and directional characteristics of different cascades. For a directed
graph, we define the normalized directed Laplacian as:

- P:PDz + & :PTd3 (4.3)

L=1
2)

(cf. [117]) where P is a transition probability matrix, ® is a diagonal matrix with
entries ® (v,v) = ¢ (v), and ¢ = [@],,, is the column vector of the stationary
probabilities distribution of P.

However, such a symmetrical £ can not capture the unique characteristic of the ran-
dom walk on the different cascades. For example, given a cascade with transition
probability matrix P,., there exist cascades which have the same stationary distri-
bution matrix P., such that all these cascades have the same Laplacian matrix. To
solve this problem, we relied on Diplacian [118] which computes Laplacian of DAGs
as:

=¢:(I-P)d: (4.4)

where the transition probability matrix P is defined as P = D™'W with the hy-
pothesis that the graph is strongly connected (SCGs) [118]. In contrast, our cascade
graphs are not SCGs. Thus, we define a transition probability matrix P, of given
cascade graph as:

P.=(1—-a) % +a(D7'W), (4.5)

34

4.3 CasCN: Information diffusion prediction via recurrent cascades
convolution

where E € R"*" is an all-one matrix and a € (0,1) is an initial probability, used
to restrict the state transition matrix D 'W to be a strongly connected matrix
without 0 anywhere. Then the transition matrix P, is irreducible, and has a unique
stationary probability distribution {¢;|¢; > 0,1 < i < n}. The stationary distribu-
tion vector {¢;} can be obtained by solving an eigenvalue problem ¢’P, = ¢T
subject to a normalized equation ¢?e = 1, where e € R" is an all-one vector.

Finally, we can compute CasLaplacian as:

A =02 (I-P,)d 2. (4.6)

Relationship with GCN: We now explain the relationship between our directed
CasLaplacian and the normalized one in GCN, as well as the rationale behind
CasLaplacian.

A random walk on undirected graph G is a Markov chain defined on G with the
transition probability matrix P = D™'A, and there exists a unique stationary dis-
tribution {¢1, ¢2,...,¢n}. Let ¢ = [¢5], ..., be the column vector of the stationary
probabilities, where ¢’ P = ¢”. Note th_at_, as for undirected graph, the normalized
Laplacian L can be transformed as:

L=D:D-A)D:=D:(I-P)D 2. (4.7)

Also, the stationary probabilities ¢ of an undirected graph can be calculated as

__d
Sedi d

and @2 = diag(¢), where ¢ = [¢1, Pa, - - - ,gbn]T, which can be used to approximate

i

i=1,2,-,n, (4.8)

the degree matrix D:

L=D:(I-P)D =~ &2 (I-P)d 2. (4.9)
Algorithm 1 formalizes the process of constructing the Laplacian of cascades.

4.3.3 Structural and Temporal Modeling

We represent and model the cascade graph in a structural-temporal way. After
obtaining the adjacency representation of sub-cascade graph sequence Al and the
Laplacian matrix A, for each cascade graph, CasCN turns to learn the structural
and temporal patterns via the combination of classical LSTM and GCN.

We leverage the RNNs to model the temporal dependence of diffusion — in particular,
using the Long Short-Term Memory (LSTM) [40], which is a stable and powerful
variant of RNNs. We replace the multiplications by dense matrices W with graph

35

4. LEARNING STRUCTURAL-TEMPORAL FEATURES FOR CASCADES
MODELING

Algorithm 1: Laplacian of cascade.

Input: A cascade graph C, initial probability a.
Output: CasLaplacian—Laplacian of cascade A..
1: Compute degree matrix D and weighted adjacency matrix W of a cascade
graph C.
2: Compute transition probability matrix P, of cascade graph according to
Eq. (4.5) .
3: Solve the eigenvalue problem ¢’ P, = ¢* subject to a normalized equation
¢Te =1 to get {¢;}.
4: ® = diag (¢).
5: Compute CasLaplacian A, according to Eq. (4.6).

convolutions to incorporate the structural information:

i =0(W;xGX;+U,;*Gh,_; +V,®ci.1 +b;)
ft :O'(Wf*gXt+Uf*ght_1+Vf®Ct_1+bf) (410)
0, =0(W,*xGX;+U,*Gh, 1+ V,®c,+b,)

where %G denotes the graph convolution defined in Eq.(4.2), signal X; is the cascade
graph sequences Al € R4 d.. denotes the number of diffusion time steps of
post m;. We leverage W, x GX; to mean a graph convolution of signal X, with
d; x n filters which are functions of the cascade Laplacian A. parametrized by
K Chebyshev coefficients. o () is the logistic sigmoid function and i, f;, o, b, are
respectively the input gate, forget gate, output gate and bias vector. The matrices
W ¢ RfExxdn g ¢ REXdxdn and V € R™ % are the different gate parameters,
and n denotes the number of nodes in a cascade graph, and dj, is the size of cell
states.

In particular, the memory cell c; is updated by replacing the existing memory unit
with a new cell c; as:

C; = ft ®ci_1+ it ® tanh (WC * gXt + Uc * ght_l + bc) (411)
The hidden state is then updated by
h; = o; ® tanh (¢;) (4.12)

where tanh (-) refer to the hyperbolic tangent function, and ® is the entry-wise
product.

4.3.4 Cascades Size Prediction

Previous works [30, 49] have shown the existence of time decay effect — i.e., that
the influence of a node on other nodes will decrease over time. Various time de-
cay functions have been defined: (1) power-low functions ¢ (1) = (7 +¢)~; (2)

36

4.3 CasCN: Information diffusion prediction via recurrent cascades
convolution

exponential functions ¢¢ (1) = e~7; (3) Rayleigh functions ¢" (1) = e~2%7

, where
T =1t; —t; and t; < t;. In practice, the choice of such function varies for different
scenarios, e.g., exponential functions are suitable for financial data while Rayleigh
functions perform better for epidemiology and power law functions are more appli-

cable in geophysics and social networks [119, 120].

However, all the above time-decay functions have the limitation of parametric as-
sumption which is greatly influenced by assumed prior distribution (and intuition).
In this chapter, we employ a non-parametric way to define the time decay function.
More specifically, we assume that the time window of the observed cascade is [t1,t,],
and then split the time window into [disjoint time intervals {[t1,%2), [t2,t3), - ,
[ti—1,t; = t,]} to approximate the continuous time window by discrete time intervals.
It not only allocates each diffusion time a corresponding interval, but also allows
us to learn the discrete variable of time decay effect A\ = {\,,,m € (1,2,--- 1)}
Therefore, we define a function to compute the corresponding time interval m of
time decay effect for a re-tweet at time ¢;:

ot —t)
m= 2] (4.13)

Where ¢, is the time of original post, [is the number of time intervals, |- | and |-]
are the floor and ceiling operations.

For a cascade graph C;(t,) regarding post m; within the observation time window
[t1,1,], we get the hidden states {hy,--- ,h, -+, hy, } and we multiply a time decay
effect \,, for each hidden state to obtain {hll, e ,h;, e ,hIdT} by:

h, = \,h, (4.14)

summed up to get the representation vector for the cascade graph C;(t):

b (Cit,) = by (415)

The last component of CasCN is a multi-layer perceptron (MLP) with one final
output unit. Given the representation h' (Cj(t,)), we calculate the increment size
AS; as:

AS; = [(Cilts)) = MLP (W (Ci(1,))) (4.16)

Our ultimate task is to predict the increment size for a fixed time interval, which

can be done by minimizing the following loss function:

0 (ASi, A§i> - %i (1og AS; — log A§Z~>2 (4.17)

1=

37

4. LEARNING STRUCTURAL-TEMPORAL FEATURES FOR CASCADES
MODELING

where P is the number of posts, AS; is the predicted incremental size for post m;,
and AS; is the ground truth.

The process of training CasCN is shown in Algorithm 2.

Algorithm 2: Learning with CasCN.

Input: sequences of adjacency matrices of cascade graphs A = {Al°, AL ...}
within an observation time %,; Laplacian sequence for cascade graphs
A={ALl A% ---}, batch size b.

Output: Increment sizes AS = {AS;, ASs, -} of cascades.

1: repeat
2: b=1,2, ..
3. for adjacency matrix sequence Al and corespoding Laplacian A in batch b
do
4: Compute the Structural and Temporal information h, of cascade C;(t,)
according to Eq. (4.10) - Eq. (4.12).
5: Multiply each hidden state h; with time decay effect \,, to get h;,

according to Eq. (4.14).
6: h' (Ci(t,)) « Aggregate({h;,t € [1,dT]}>

7 Feed h' (Cj(t,)) into MLP to compute increment size AS; of cascade,
according to Eq. (4.16)
8: Use Adaptive moment estimation (Adam) to optimize the objective

function in Eq. (4.17) and update parameters in Eq. (4.10), (4.11), (4.13)
9: end for
10: until convergence;

4.4 FEvaluation

In this section, we compare the performance of our proposed model CasCN with
several state-of-the-art approaches that we use as baselines, and a few variants of
CasCN itself, for cascade size prediction using two real-world datasets. For re-
producability of our results, supplemental materials, implementation details and
instructions are available online at https://github.com/ChenNed/CasCN.

4.4.1 Datasets

We evaluate the effectiveness and generalizability of CasCN on two scenarios of
information cascade prediction, and compare with previous works such as DeepCas
and DeepHawkes — using publicly available datasets. The first one is to forecast the
size of re-tweet cascades on Sina Weibo and the second one is to predict the citation
count of papers in Citation dataset HEP-PH. The statistics of the datasets as shown
in Table 4.2.

38

4.4 Evaluation

Table 4.2: Statistics of datasets

Data sets Sina Weibo HEP-PH
posts-papers All 119,313 34,546
edges All 8,466,858 421,578
t, lhour | 2hours | 3hours | 3years | byears | Tyears
train 25,145 | 29,515 | 31,780 | 3,458 | 3,467 | 3,478
cascades val 5,386 | 6,324 | 6,810 837 839 848

test 9,386 | 6,324 | 6,810 837 839 848
train 28.58 | 29.30 | 29.48 5.27 0.27 0.27

Avg. val 98.71 | 2947 | 29.69 | 4.32 | 4.93 | 4.27
nodes test 29.11 | 29.77 | 30.21 | 491 | 427 | 4.28

train | 27.78 | 2854 | 28.74 | 427 | 427 | 427
Avg. val 27.91 | 28.70 | 2894 | 3.31 | 3.93 | 3.95
edges test 928.32 | 29.01 | 2948 | 391 | 327 | 3.28

e Sina Weibo!: The first dataset is Sina Weibo, a popular Chinese microblog
platform 2, provided in [9] — which collects all original posts generated on June 1%,
2016, and tracks all re-tweets of each post within the next 24 hours. It includes
119, 313 posts in total. Figure 4.5a shows that the popularity of cascades saturates
after 24 hours since publishing. Figure 4.4a shows the distribution of cascade size
(the number of re-tweets of each post). We follow similar experimental setup as in
DeepHawkes [9] — i.e., the length ¢, of the observation time window being ¢, = 1
hour, 2 hours and 3 hours, and the cascades with the publication time before 8 am
and after 6 pm being filtered out. Finally, we sort the cascades in terms of their
publication time after preprocessing and choose the first 70% of cascades for training
and the rest for validation and testing via even split.

e HEP-PH?: HEP-PH dataset is from the e-print arXiv and covers papers in the
period from January 1993 to April 2003 (124 months). If a paper i cites paper 7,
the graph contains a directed edge from 7 to 7. The data was originally released as a
part of 2003 KDD Cup [121]. For the observation window, we choose t, = 3, 4 and
5 years corresponding to the year that the popularity reaches about 50%, 60% and
70% of the final size, as shown in Figure 4.5b. Then, we pick up 70% of cascades
for training and the rest for validation and testing via even split.

4.4.2 Baselines

We have already seen that existing relevant methods for information cascade pre-
diction are mainly falling into three categories: (1) Handcrafted feature-based ap-
proaches, (2) Point process-based approaches, and (3) Deep learning-based ap-
proaches. Therefore, we select several methods in each group as baselines. As

Thttps://github.com/CaoQi92/DeepHawkes
http:/ /www.weibo.com
3http://snap.stanford.edu/data/cit-HepPh.html

39

4. LEARNING STRUCTURAL-TEMPORAL FEATURES FOR CASCADES
MODELING

LY
2

Number of cascades
Number of cascades

.
LL XY
AY
- e o)
o ——TD oo me oo

10° @ T T O o @ 0o | 1000 o om 000 mo

10t 10? 10° 10* 10° 10" 10%
Sizes of cascades Sizes of cascades

(a) Weibo dataset (b) HEP-PH

Figure 4.4: Distribution of cascades size, the X axis is the size of cascades, and the
Y axis is the number of cascades corresponding to the different sizes.

1.0

10 3
S = 0.8}
- 3
v 0.8 °
? S 0.6}
% @
S 0.6 s

. Y
5 S 0.4
— [}
(% Q
Q
g 0.4 g 0.2
> =2

0.2
0'00 2 4 6 8 10 12
0 5 10 15 20 Time (years)
Time (hours)
(a) Weibo dataset (b) HEP-PH

Figure 4.5: Percentage distribution between time and the number of cascades

deep learning methods, we select three representative methods: DeepCas [8], Deep-
Hawkes [9] and Topo-LSTM [35]. Note that DeepHawkes is also regarded as a
successful implementation of Hawkes process — i.e., point process-based approaches.
Furthermore, we include a network representation method to enrich our experiment
— Node2Vec. We also introduce a baseline named LIS [13] from diffusion model-
based approaches, which used to model cascades dynamics. The baselines and their
implementation details are as follows:

Feature-based: Recent studies [1, 39, 49, 56] show that structural features, tem-
poral features, and other features (e.g., content features and user features) are infor-
mative for information cascade prediction. In our implementations, we include all
features mentioned above that could be generalized across datasets. These features
include:

Structural features: We count the number of leaf nodes, the average degree (both

in-degree and out-degree), average and max length of retweet path of cascades as
measures of structural features.

40

4.4 Evaluation

Temporal features: We extract the time elapsed since the initial post for each retweet,
the cumulative growth and incremental growth every 10 minutes for Sina Weibo
and every 31 days for HEP-PH, for the reason that the time in Sina Weibo can be
accurate to minutes, and the unit in HEP-PH is a day.

Other features: We use node ids as node identity feature.

After extracting all the cascade features, we use two models, i.e., Feature-linear
and Feature-deep, to perform information cascade prediction. The label (incre-
mental size of cascade) has been logarithmically transformed before feeding into
models, so that the baseline of feature-based methods optimizes the same loss func-
tion as CasCN.

e Feature-linear: We feed the features into a linear regression model with
L, regularization. The details of the Ls-coefficient setting can be found in
Section 4.4.5.

e Feature-deep: For fairness of comparison of the performance of the feature-
based approaches with CasCN, we propose a strong baseline denoted as Feature-
deep, which also uses a MLP model to predict the incremental size of cascade
with hand-craft feature vectors.

LIS [13]: LIS is a diffusion model-based approach. This method models the cascade
dynamics by learning two low-dimensional latent vectors for messages from observed
cascades to capture their influence and susceptibility, respectively.

Node2Vec [122|: Node2Vec is selected as a representative of node embedding meth-
ods, and can be replaced with any other embedding methods, e.g., DeepWalk [123]
and LINE [124]. We conduct random walks from cascade graphs and generate em-
bedding vectors for each node. Next, the embeddings of all nodes in a cascade graph
are fed into MLP to make predictions.

DeepCas [8]: The first deep learning architecture for information cascades predic-
tion, which represents a cascade graph as a set of random walk paths and piped
through bi-directional GRU neural network with an attention mechanism to predict
the size of the cascade. It mainly utilizes the information of structure and node
identities for prediction.

DeepHawkes [9]: DeepHawkes model integrates the high prediction power of end-
to-end deep learning into interpretable factors of Hawkes process for popularity
prediction. The marriage between deep learning technique and a well-established
interpretable process for modeling cascade dynamics bridges the gap between pre-
diction and understanding of information cascades. This method belongs to both
point process-based approaches and deep learning-based approaches.

Topo-LSTM [35]: A novel topological recurrent neural network which is a directed
acyclic graph-structured (DAG-structured) RNN takes dynamic DAGs as inputs and

41

4. LEARNING STRUCTURAL-TEMPORAL FEATURES FOR CASCADES
MODELING

generates a topology-aware embedding for each node in the DAGs as outputs. The
original application of Topo-LSTM is to predict node activations. We replace the
logistic classifier in Topo-LSTM with a diffusion size regressor to predict the size of
cascades.

4.4.3 Variants of CasCN

In addition to the comparison with existing baselines, we also derive a few variants

of CasCN:

CasCN-GL: CasCN-GL replaces the structural-temporal modeling component of
CasCN with the combination of GCN and LSTM for modeling structural and tem-
poral patterns, respectively.

CasCN-GRU: This method replaces the LSTM of CasCN with GRU. Similar to
LSTM, CasCN with GRU models structural-temporal information using extra gating
units, but without separated memory cells. Formally, we update the state of h; by

a linear interpolation between the last state h;_; and the candidate state Et.

CasCN-Path: In CasCN-Path, we use random walks to represent a cascade graph
(shown in Figure 4.6) rather than sub-cascade graphs used in CasCN. Therefore, we
first embed users into a 50-dimensional space to represent the latent (re-tweeting)
relationships among users in a cascade graph. Next, we use random walks to sample
sufficient number of sequences for all cascade graphs. Finally, we feed them to

CasCN and predict the size of information cascades.

CasCN-Undierected: In CasCN-Undierected, we regard the cascade graphs as
undirected graphs and calculate the normalized Laplacian according to L = I —
D WDz,

N

CasCN-Time: In CasCN-Time, we do not consider the time decay effect of re-

tweeting.

1
L ——» Tnodes < --—

T @@
\j

s }

B0 S
TR e e— NG CEOTS

Time

Figure 4.6: Sampling the cascade graph as random walks.

42

4.4 Evaluation

4.4.4 FEvaluation Metric

Following the existing works, we choose standard evaluation metrics — MSLE (mean
square log-transformed error) in our experiments [8, 9, 35|. Note that the smaller
MSLE, the better the prediction performance. Specifically, MSLFE is the metric for
evaluating the linking accuracy, defined as:

P
MSLE = % Z (log AS; —log Agz) (4.18)

=1

where P is the total number of posts, AS; is the predicted incremental size for post
m;, and AS; is the ground truth.

4.4.5 Hyper-parameters

Models mentioned above involve several hyper-parameters. For example, Lo coeffi-
cient in Feature-linear are chosen from {1,0.5,0.1,0.05,...,107%}. For Feature-
deep, parameters are similar to deep learning-based approaches.

For LIS, we follow the work in [13], the maximum number of epochs M is 1 x 10°.
We use random values to initialize regularization parameters v; and ~g.

For Node2Vec, we follow the work in [122], i.e., parameters p and ¢ are selected
from {0.25,0.50,1,2,4}, the length of walk is chosen from {10, 25,50, 75,100}, and
the number of walks per node varies from {5, 10, 15,20}.

For DeepCas, DeepHawkes and Topo-LSTM, we follow the setting of Deep-
Cas [8], where the embedding dimensionality of users is 50, the hidden layer of each
GRU has 32 units and the hidden dimensions of the two-layer MLP are 32 and 16,
respectively. The learning rate for user embeddings is 5 x 10~* and the learning rate
for other variables is 5 x 1072, The batch size for each iteration is 32 and the training
process will stop when the loss of validation set does not decline for 10 consecutive
iterations. The time interval of DeepHawkes is set to 10 minutes for Sina Weibo
and 2 months for HEP-PH. For CasCN, the basic parameters (e.g., learning rate
and batch size, etc.) are the same as above deep learning-based approaches, except
that we choose the support K = 2 of GCN and calculate the max eigenvalue \,,q.
of the cascade Laplacian.

4.4.6 Overall performance

Table 4.3 summarizes the performance comparison among CasCN and baselines on
both Sina Weibo dataset and HEP-PH dataset. In general, the proposed CasCN
model performs relatively well on information cascade prediction for both datasets
(post re-tweeting and paper citing). It outperforms traditional approaches, e.g.,

43

4. LEARNING STRUCTURAL-TEMPORAL FEATURES FOR CASCADES
MODELING

Table 4.3: Overall performance comparison of information cascades prediction among
different approaches. M: model; ,: observation time.

Datasets Weibo Dataset ‘ HEP-PH

Metric MSLE
to

M 1 hour | 2 hours | 3 hours | 3 years | 5 years | 7 years

Features-deep 3.680 3.361 3.296 1.893 1.623 1.619
Features-linear 3.501 3.435 3.324 1.715 1.522 1.471

LIS 3.731 3.621 3.457 2.144 1.798 1.787
Node2Vec 3.795 3.523 3.513 2.479 2.157 2.096
DeepCas 2.958 2.689 2.647 1.765 1.538 1.462

Topo-LSTM 2.772 2.643 2.423 1.684 1.653 1.573
Deep-Hawkes 2.441 2.287 2.252 1.581 1.470 1.233
CasCN 2.242 | 2.036 | 1.910 | 1.353 | 1.164 | 0.851

Table 4.4: Performance comparison between CasCN and its variants. M: model; ¢,:
observation time.

Datasets Weibo Dataset ‘ HEP-PH
Metric MSLE
M o 1 hour | 2 hours | 3 hours | 3 years | 5 years | 7 years
CasCN 2.242 | 2.036 1.916 1.35 1.164 | 0.851
CasCN-GRU 2.288 2.052 1.965 1.347 1.166 0.874
CasCN-Path 2.557 2.483 2.404 1.664 1.437 1.332
CasCN-GL 2.312 2.028 1.942 1.364 1.357 1.302
CasCN-Undierected | 2.309 2.132 1.978 1.562 1.425 1.118
CasCN-Time 2.652 2.547 2.363 1.732 1.512 1.451

feature-based and point process-based approaches, and it is superior to the state-of-
the-art deep learning methods, with a statistically significant drop of MSLE.

The performance gap between these Feature-deep and Feature-linear is quite small
meaning that if we have a set of representative features of information cascades,
deep learning does not always perform better than traditional predicting methods.
However, as discussed earlier, the performance of such methods heavily depends
on hand-crafted features which are difficult to select for different scenarios in prac-
tice.

For embedding methods, Node2Vec [122| does not perform well. Through the com-
parison with DeepCas [8], it proves that only taking the node embeddings as the
graph representation is not enough and is not comparable with representing the
graph as a set of random paths.

DeepCas, as the first proposed end-to-end deep learning method for cascade size
prediction, exhibits better performance than feature-based approaches and diffusion

44

4.4 Evaluation

model-based approaches. But it still way worse than other deep learning based
approaches, because of failing to consider temporal information and the topological
structure of cascade graphs. The latest method, Topo-LSTM, also lacks time feature,
so that it performs a little bit worse than DeepHawkes and our model. DeepHawkes,
while successful in modeling cascades in a deep generative way, it does not perform
the best due to its weak ability to learn structural information.

Finally, our proposed CasCN model, which purely relies on and fully explores struc-
tural and temporal information, significantly outperforms all baselines. For exam-
ple, it achieves excellent prediction results with MSLE = 1.916 when observing for
3 hours in Sina Weibo and MSLE = 0.851 when observing for 7 years in HEP-PH,
respectively. It reduces the prediction error by 15.2% and 30.9% comparing to the
second best DeepHawkes.

When comparing methods with different observation time ¢,, we clearly see a general
pattern that the larger the t,, the easier to make a good prediction. It is mainly
because of the fact that longer ¢, reveals more information for prediction.

4.4.7 Ablation study

To investigate and demonstrate the effectiveness of each component of our model
(e.g., to understand the effect of the sampling part of CasCN), we present five
variants of CasCN, where all are built upon the original CasCN model with some
components changed. Their details can be found in Section 4.4.3.

The experimental results are shown in Table 4.4, from which we can see that our
original CasCN leads to a certain reduction of prediction error when compared with
other variants. From the comparison to CasCN-Undierected and CasCN-Time, we
find that directionality and time decay effect are proved to be indispensable for
cascade size prediction. Similarly, CasCN-Path brings a remarkable decrease of the
prediction performance, which tells the necessity and effectiveness of sampling in
CasCN. This indicates that the way to sample cascade graph as sub-cascade graph
sequence can better reflect the dynamics of the cascade structure and the topological
structure of each diffusion time.

In summary, sub-graphs sampling and structural-temporal modeling are critical
components in CasCN, both of which essentially improve the performance of in-
formation cascade prediction as presented in the results.

4.4.8 Parameter analysis in CasCN

We now turn to investigating whether the parameters of CasCN have impact on the
performance of cascade size prediction. The results are summarized in Table 4.5.
We consider two vital parameters of graph convolutional kernel, i.e., the Chebyshev
coefficient K and the largest eigenvalue)\, of the Laplacian matrix A.. For the

45

4. LEARNING STRUCTURAL-TEMPORAL FEATURES FOR CASCADES

MODELING
Table 4.5: Analysis of parameter impact on performance.
Dataset Weibo Dataset
Metric MSLE
o 1 hour | 2 hours | 3 hours
Parameter
K=1 2.284 2.061 1.932
K=2 2.242 | 2.036 1.910
K=3 2.312 2.078 1.939
Mgz = 2 2.418 2.217 2.046
Amaz = real 2.242 | 2.036 1.910
24F
g
c 8f
g 6F
T 4f
g 3
2, -
é 1‘0 1‘5 éo 2‘5 éo 3‘5 46 45
Epochs

Figure 4.7: Loss of CasCN on the validation set with varying K

[=2])
o

6.0
5.5

w
o

Eay
o

W 4.51

N
o

Avg. size of cascades
w
o

=
o

5.0 -

k- Size < 10, MSLE* = 2.871
<+ Size < 20, MSLE* = 2.744
@ Size < 30, MSLE* = 2.602
«%:- Size < 40, MSLE* = 2.413
< Size < 50, MSLE* = 2.331

0,
5 10 15 20 25 30 35 40 45 50 55 60
Observation time (minutes)

(a) Avg. cascade size distribution.

10

15 20

25 30 35 40
Epochs

(b) Results.

Figure 4.8: Impact of smaller-size observations.

Chebyshev coefficients K we selected from {1,2,3}. To obtain A, we have two
ways: the first is to approximate it as A\, =~ 2, and the second is to compute
the exact value of)4, for each cascade graph. Table 4.5 shows that CasCN with
K = 2 can achieve better performance than K=1 and 3. And in Figure 4.7, the
validation loss in each epoch steadily declines. There is no evidence showing that
a larger or smaller K is better than a median one. Further, bigger K will increase
the computational cost. For the value of A,,.., precise values can lead to better
prediction results at a higher computational cost.

46

4.4 Evaluation

We also investigated the performance of CasCN when the observed cascades are
small — e.g., the size of the cascades is within 10, 20. Figure 4.8a gives the statistics
of Weibo dataset illustrating the average cascade size increasing with time. Fig-
ure 4.8b shows that the MSLE results for various size decrease with training epochs.
Apparently, the larger the size of the observed cascade, the lower the MSLE value
CasCN achieves.

4.4.9 Discussions on feature learning

Cascades size
Cascades size

Cascade vector dimension Cascade vector dimension

(a) Heatmap of Weibo (b) Heatmap of HEP-PH

Figure 4.9: Feature visualization. Figure (a) and (b) are learned representations by
CasCN.

Finally, we discuss and demonstrate the capability of CasCN on feature learning in a
visual way. We use the latent representation of each cascade graph Ci(t,) : h' (C;i(t,))
to plot a heatmap (as shown in Figure 4.9). The value in each dimension corresponds
to some implicit or explicit features related to predicting the cascade size. Figure 4.9
tells us that the latent representation varies with cascade size. And surprisingly,
there exists a clear pattern separation between outbreak (larger cascades) and non-
outbreak (smaller) cascades, which indicates that CasCN is able to learn a good
latent representation of cascades with different sizes and thus can be applied for
outbreaking prediction.

Next, we try to understand /interpret the importance of some hand-crafted features
in cascade size prediction. First, we use t-SNE [125] to project the vector represen-
tation summarized in h' (C;(t,)) for the cascade graph Cy(t,) to one data point in a
2-D space. Note that cascade graphs with similar vector representations are placed
closely. Second, we color each data point (transformed from a cascade graph) using
different strategies, such as based on the value of a certain feature f (e.g., number
of leaf nodes, mean time, etc.), or the true increment size (the ground-truth label).
The distribution of colors suggests a connection between the learned representations
and network properties. That is, if a colored plot based on a certain feature f is
well correlated with that of the true increment size, this feature is positively useful

47

4. LEARNING STRUCTURAL-TEMPORAL FEATURES FOR CASCADES
MODELING

(e) Increment size plot for Weibo (f) Increment size plot for HEP-PH

Figure 4.10: Feature visualization. In Figure (a) - (f), we layout the cascade graphs
as data points in the test set to a 2-D space using t-SNE. Every layout is colored using
hand-crafted network properties or the ground-truth (captioned “f: feature”).

48

4.5 Summary

for cascade size prediction. Take the Weibo dataset as an example: Figure4.10a
and 4.10c have similar color distributions with the true increment size 4.10e — we
believe that leaf nodes and mean time are two important features for cascade size
prediction.

4.5 Summary

In this chapter we proposed a novel deep learning based framework — CasCN. It is
an end-to-end modeling framework for cascade growth prediction that does not rely
heavily on feature engineering and can be easily generalized; enabling the informa-
tion cascade prediction by exploiting both structural and temporal information. The
CasCN model can learn a better latent representation for cascade graph with less
information, using structural and temporal information of cascades within a deep
learning framework. Incorporating the directionality of cascades and time decay
effect further improves the prediction performance. Our experiments conducted on
two scenarios, i.e., forecasting the size of re-tweeting cascades in Sina Weibo and
predicting the citation of papers in HEP-PH, demonstrate that CasCN outperforms
various state-of-the-art methods.

49

