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Chapter 1

Introduction

1.1 Background

According to Pew Research1, as of 2017 approximately 88% of American adults have
either free or paid Internet access at home, and about 81% obtain news from online
platforms (e.g., news websites/apps, social media, or both). We can see that with
the rapid development of Internet technology, the way people share information has
gradually democratized. Especially, the rise of large online social network (OSN)
platforms, such as Twitter2, Sina Weibo3, Facebook4, etc., have provided an envi-
ronment for free information creation and distribution while substantially changing
how people acquire and share information. In a nutshell, everyone can generate and
share various contents and communicate on topics of mutual interest on these plat-
forms without hindrance. Such activities facilitate the fast diffusion of information
(both true and false) in various contexts, for example, the spread of rumors in News,
the propagation of marketing campaigns, the diffusion of innovative technological
achievements, and so on, which spur the phenomenon of information cascades. In-
formation cascade is formed as information or innovative ideas propagated among
users [1], which is ubiquitous and has been identified in various settings: e.g., paper
citations [2], blogging space [3, 4], email forwarding [5, 6], as well as in social medias
(e.g., Twitter [7, 8] and Sina Weibo[9]). Figure 1.1 shows the example for citation
cascade and retweet cascade, respectively.

Understanding how information spreads through OSNs, as well as what elements
drive the success of information diffusion, and making forecasts about the popula-
tion size that information can affect, has significant implications for a wide range
of real-world applications [11], such as marketing viral discrimination [12], user be-
havior prediction [13], media advertising [14], social recommendation [15], and fake

1https://www.journalism.org/2016/07/07/pathways-to-news/
2https://twitter.com/
3https://weibo.com/
4https://www.facebook.com/
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1. INTRODUCTION

(a) Citation cascade (b) Retweet cascade

Figure 1.1: Examples of cascade for paper citation and tweet retweet. (a) A ci-
tation cascade for CasCN [10], a screenshot from the website – Connected Paper (
https://www.connectedpapers.com/). (b) A retweet casdcade from Weibo.

news detection [16], etc. Therefore, analyzing the diffusion of a given piece of infor-
mation is urgently expected by academia and industry. Among various information
diffusion analysis tasks, modeling and predicting the information cascade turns out
to be of utmost importance since it enables controlling (or accelerating) information
spreading in various scenarios, which is the first research problem we try to tackle
in this thesis.

Furthermore, OSNs are a double-edged sword. On the one hand, OSNs brought
enormous convenience to people’s daily life. On the other, the proliferation of fake
news, rumors and false information has had strong and negative societal and eco-
nomic consequences. The explosive spread of false information can pose a threat to
the credibility of legitimate online platforms and resources and has a serious neg-
ative impact on both individuals and society [17], with the potential consequences
to destabilize nations, affect the fairness of competition [18], and shock the stock
market [19]. Take the more recent event as an example. In the global effort to
contain the COVID-19 pandemic, misinformation abounds and flourishes on the In-
ternet [20, 21], and people have been led to believe that COVID-19 can be cured by
ingesting fish tank cleaning products or that 5G networks generate radiation that
triggers the virus. Such misinformation not only causes panic among citizens but
could potentially undercut collective efforts to control the pandemic. Thus, detect-
ing rumors on OSNs as early as possible is a necessary, urgent and socially beneficial
task, which is the second research problem studied in this thesis.

In the past decade, researchers made enormous efforts and remarkable progress in
trying to find effective solutions to the above two problems, i.e., information cas-
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1.2 Research Questions and Contributions

cade modeling and rumor detection. Specifically, prior works tried to solve these two
tasks by extracting various hand-crafted features (e.g., content features [22, 23, 24],
user features [25, 26], and social context features [27, 28, 29], etc.) and incorpo-
rating the power of machine learning models (e.g., random forest, naive Bayes, and
support vector machines). However, these well-designed features required extensive
domain knowledge and thus are hard to be generalized to new domains. Besides
that, researchers also proposed point process-based approaches [2, 30] to do infor-
mation cascade modeling, focusing on modeling the intensity function of the arrival
process for each message independently. These methods demonstrate an enhanced
interpretability but are still unable to fully leverage the information encoded in the
cascade for a satisfactory prediction. And as for rumor detection, some researchers
leveraged the inter-entity relations and constructed the so-called credibility net-
work [31, 32] to find the truth against conflicting information, but the performance
of these models heavily relies on the quality of the credibility network used.

Inspired by the recent success of deep representation learning in computer vision and
natural language processing, recently, researchers began to employ deep learning
techniques to develop models for information cascade modeling [8, 9] and rumor
detection [33, 34]. These models aim to learn more powerful high-level feature
representations directly from raw data via various deep learning techniques, which
improve model performance and alleviate the heavy manual effort in conventional
methods at the same time. However, the existing deep learning-based approaches in
information cascade modeling and rumor detection still face some limitations, such
as incomplete feature extraction, inefficient feature fusion, absence of fine-grained
feature learning, and so on. The core work of this thesis is to eliminate these
problems, focusing on the development of deep learning-based models to solve
the problem of information cascade modeling and rumor detection.

1.2 Research Questions and Contributions

This thesis is structured in two parts: Part I will introduce deep learning-based
models for information cascade modeling task. And Part II will focus on the topic
of rumor detection.

Information cascades modeling is accomplished via specific prediction tasks, which
are categorized into two levels: Micro-level and Macro-level. (1) At micro-level, local
patterns of social influence are studied – e.g., inferring the action status of a user [35,
36]. The methods predict the likelihood of a user propagating a particular piece of
information, or forecast when the next propagation might occur given a certain
information cascade [36]. (2) At macro-level, typical studies include cascade size
prediction [8, 9, 35, 37, 38] and outbreak prediction (above a certain threshold) [1, 7,
37, 39], both cascade size (popularity) prediction and outbreak prediction are aiming

3



1. INTRODUCTION

to estimate the future size (popularity) of the diffusion cascade. Because micro-
level tasks requires the complete diffusion network/social network, we need to know
the historical interactions (retweet/social relationship (follower/following)) among
all users, which is extremely large and hard to acquire. Therefore, in this thesis,
we focus on macro-level information cascade prediction, and the research
questions and corresponding contributions of Part I are listed as follows:

Research Question 1 (RQ 1) Can we develop an effective deep learning-based
model to capture structural and temporal features from the observed cascade graph
for macro-level information cascade prediction?

Earlier deep learning-based approaches either only extracted temporal features from
the diffusion paths [9] but ignored the structural features or learned structural fea-
tures from the global graph [8]. The key challenge of RQ 1 is how to learn struc-
tural and temporal features at the same time when only given the observed cascade
graph. Our key contribution to address this research question is the design of a
novel graph-based neural network called Recurrent Cascades Convolutional
Network (CasCN). CasCN is introduced in Chapter 4 and based on the following
publication[10], that to the best of our knowledge, is the first work to study this
problem :

• Chen, X., Zhou, F., Zhang, K., Trajcevski, G., Zhong, T., Zhang, F.: Infor-
mation diffusion prediction via recurrent cascades convolution. In: 2019 IEEE
35th International Conference on Data Engineering. ICDE ’19 (2019) 770–781

CasCN is designed based on the long short-term memory network [40] and the
graph convolutional network [41], which captures structural-temporal features from
a sequence of subgraphs – sampled from the observed cascade graph. CasCN also
introduces a new way to calculate the Laplacian, allowing it to handle directed
graphs. We demonstrate significant advantages of using CasCN compared with
earlier state-of-the-art methods both in terms of feature learning and predictive
accuracy.

Research Question 2 (RQ 2) How can we improve upon earlier deep learning-
based models that learn the latent representation for the observed cascade graph from
a multi-scale perspective to predict the future size of this cascade?

Existing works demonstrate the effectiveness to extract structural-temporal features
for macro-level information cascade prediction. However, they still fail to take the
higher-order and position information for each node into consideration in model-
ing the structure of information diffusion, which carries out our second research
question RQ 2. To address RQ 2, we introduce a novel graph-based model –
Multi-scale Cascades model (MUCas) in Chapter 5 based on the following
publication [42]:

4



1.2 Research Questions and Contributions

• Chen, X., Zhang, F., Zhou, F., Bonsangue, M.: Multi-scale graph capsule
with influence attention for information cascades prediction. International
Journal of Intelligent Systems 37 (2022) 2584–2611

MUCas makes full use of the direction-scale, high-order-scale, position-scale, and
dynamic-scale of cascades via a newly designed multi-scale graph capsule network
(MUG-Caps) and the influence-attention mechanism. And the experiments on two
real-worlds datasets demonstrate the superiority of the proposed model on macro-
level information cascades prediction.

Having introduced deep learning-based models for macro-level information cascade
prediction task in Part I of this thesis (Chapter 4 and 5). In Part II, we will
explore the possibility to detect rumors by extracting various diffusion patterns.
Besides that, we also investigate the importance of users in the diffusion of rumors
by developing participant-level rumor detection models.

Research Question 3 (RQ 3) Can we detect rumors at an early stage by learning
various diffusion patterns from the information diffusion?

Rumors are created by mimicking the real news, which aims to mislead the public,
making it difficult to be detected by using textual and visual features. A recent
empirical study [43] demonstrated that rumors and non-rumors show different dif-
fusion patterns. The key challenge of RQ 3 is how to develop an effective deep
learning-based model to explore the full-scale diffusion patterns of rumors, i.e., from
both macroscopic and microscopic perspectives. In Chapter 6, we design a novel
diffusion-based rumor detection model to solve RQ 3, called Macroscopic and
Microscopic-aware Rumor Detection model (MMRD), this chapter is based
on the following publication[44]:

• Chen, X., Zhou, F., Zhang, F., Bonsangue, M.: Modeling microscopic and
macroscopic information diffusion for rumor detection. International Journal
of Intelligent Systems 36 (2021) 5449–5471

MMRD leverages graph neural networks to learn the macroscopic diffusion of rumor
propagation and capture microscopic diffusion patterns using bidirectional recurrent
neural networks while taking into account the user-time series. Moreover, it leverages
knowledge distillation technique to create a more informative student model and
further improve the model performance. Experiments conducted on two real-world
data sets demonstrate that our method achieves significant accuracy improvements
over the state-of-the-art baseline models on rumor detection.

Research Question 4 (RQ 4) Can we improve the model performance by devel-
oping effective rumor detection models at the participant level?

Users are the main contributor to rumor spreading in online social networks, model-
ing the rumor spreading at a more fine-grained participant-level rather than event-
level. This hypothesis improve detection accuracy and is at the core of research

5



1. INTRODUCTION

question RQ 4. To answer RQ 4, we proposed two participant-level models in
Chapter 7, i.e., Participant-level Rumor Detection model (PLRD) andUser-
aspect Multi-view Learning with Attention for Rumor Detection model
(UMLARD). This chapter is based on the following publications [45, 46]:

• Chen, X., Zhou, F., Zhang, F., Bonsangue, M.: Catch me if you can: A
participant-level rumor detection framework via fine-grained user representa-
tion learning. Information Processing & Management 58 (2021) 102678

• Chen, X., Zhou, F., Trajcevski, G., Bonsangue, M.: Multi-view Learning
with Distinguishable Feature Fusion for Rumor Detection. Knowledge-Based
Systems 240 (2022) 108085

PLRD aims to learn the users’ social homophily, social influence, susceptibility, and
temporal features for rumor detection, while UMLARD exploits different embedding
methods to learn the view-specific high-level representations of a given post from
the hierarchical diffusion process and user profiles. Both models are designed at
participant-level, and experimental results show their superiority over state-of-the-
art methods.

1.3 Thesis Outline

The overall organization of this thesis is as follows. In Chapter 1, we give a brief
introduction to the thesis’ background and its motivation, the main research ques-
tions and contributions, and the overview of this thesis. Chapter 2 provides a com-
prehensive literature review for existing methods in information cascade modeling
and rumor detection, and focuses more on deep learning-based methods. In Chap-
ter 3 presents some general definitions, which are throughout the whole dissertation
and problem definitions of macro-level information cascades prediction and rumor
detection. Besides that, Chapter 3 also briefly introduces some related technical
supports.

The main content of this thesis related to the research questions is divided into
two parts. Part I (Chapter 4 and Chapter 5) introduces two deep learning-based
models for macro-level information cascades prediction. And Part II (Chapter 6 and
Chapter 7) focuses on the task of rumor detection.

Specifically, in Chapter 4, we target RQ 1 and propose the first graph-based neu-
ral network, which extracts structural-temporal features from a sequence of sub-
graphs and makes a prediction of the incremental size of the cascade. Chapter 5
address RQ 2 and introduces a multi-scale graph capsule network to fully explore
the direction-scale, high-order-scale, position-scale, and dynamic-scale information
from the observed cascade graph.

Chapter 6 is related to RQ 3 and introduces a novel deep learning model for ru-
mor detection by exploring the microscopic and macroscopic diffusion patterns. In
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Chapter 7, we target RQ 4 and propose two participant-level model for rumor
detection.

At last, Chapter 8 concludes the contributions of the thesis and discusses possible
future work.
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Chapter 2

Literature Review

In this chapter, we provide a brief review of the studies that are relevant to this
thesis. We focus on summarizing the existing methods for two specific tasks: in-
formation cascade modeling and rumor detection. Existing methods for both tasks
can be divided into two groups, i.e., conventional and deep learning-based meth-
ods. Since this thesis is inspired by deep learning, our literature review concentrate
more on deep learning-based methods and only briefly describe conventional meth-
ods.

2.1 Information Cascades Modeling

As we mentioned in Section 1.2, in this thesis, we focus on modeling the information
cascade through macro-level information cascade prediction tasks. The macro-level
information cascade prediction tasks aim at modeling the cascade scale via estimat-
ing the future popularity of the diffusion cascade. The information cascade is a
phenomenon caused by information transmission from one user to another based on
social interactions (e.g., follower/following) in OSNs, which always used to describe
the information diffusion and consists of the trajectories and structures of informa-
tion diffusion, as well as the participants in information spreading [11].

2.1.1 Conventional methods

Conventional methods in macro-level information cascade prediction mainly fall into
two categories: (1) point process-based methods, and (2) handcrafted feature-based
methods.

Point process-based methods: Most individual activities in the social system
can be described as a point process [47]. The point process-based methods regard
message diffusion as the arrival process of users’ retweet behavior. Specifically, these
methods focus on modeling the intensity function in the arrival process for each mes-
sage independently, it observes each event within the observation window and learns
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the parameters through maximizing the probability of events occurring during a pe-
riod of time. Typical point process methods include Poisson process [2, 30, 48] and
Hawkes process [49, 50]. Both of these point processes are committed to describing
the key factors in message diffusion: (1) self-influence–i.e., each retweet user will
influence the trend of future retweets, (2) time-decay effect–i.e., the influence of a
retweet user decays with the time elapsed, and (3) rich-get-richer phenomenon–i.e.,
a message shared by influential users will get more retweets. Shen et al. [2] up-
graded the Poisson process to reinforced Poisson processes (RPP) to model stochas-
tic popularity dynamics and then incorporate it into the Bayesian framework for
external factors inference and parameter estimation. PETM [30] improved RPP by
introducing a power-law temporal relaxation function, an exponential reinforcement
function and time mapping process. Gao et al. [48] split the complete diffusion pro-
cess into many subprocesses and used RPP to model the subprocesses, which makes
the proposed model efficient when trained on a single tweet. Mishra et. al. [49]
present a hybrid predictor which combines Hawkes self-exciting point process for
modeling each cascade and leverages feature-driven method for estimating the con-
tent virality, memory decay, and user influence. Later work HIP (Hawkes Intensity
Process) [50] extended the original Hawkes process, which can explain the complex
popularity history of each video according to its type of content, diffusion network,
and sensitivity to promotion. As previously stated, the point process-based meth-
ods learn the intensity function for each event within the observation window, and
learn the parameters by maximizing the occurrence probability, which can capture
the dynamic process of the message re-sharing behavior, hence, have good compre-
hensibility. However, these methods hold the hypothesis that historical events will
always excite future events, which is obviously not true in real life. Furthermore,
these methods are not directly supervised by popularity, so there is a gap between
modeling and prediction, which has hampered model performance in information
cascade prediction.

Handcrafted feature-based methods: Theses methods extracted various hand-
crafted features from raw data. They typically include content features [22, 38,
51, 52], user features [25, 39, 53], structural features [27, 37, 54] and temporal
features [28, 55], and then feed these features to discriminative machine learning
algorithms to perform the cascades prediction tasks. Tsur et al. [38] demonstrated
that combining content features with other types of features, e.g., temporal and
structural features will reduce the prediction error. Bakshy et al. [25] studied the
features related to early adopters and found that user features are informative pre-
dictors. Recently, in spite of exploring informative features, Shulman et al. [56]
compared the predictive power of models using different sets of features and found
that temporal features are the most predictive, almost as accurate as using content
and user features. Cheng et al. [1] cast the information cascade size prediction as a
classification task and concluded both temporal and structural features are almost
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equally useful in predicting cascade size with an accuracy of 0.622 and 0.620, respec-
tively. Summarizing, the performance of feature-based methods heavily depends on
the hand-craft features, but there is not a standard and systematic way to design
these features.

2.1.2 Deep learning-based methods

With the rapid advancement of deep learning in computer vision and natural lan-
guage processing, researchers have developed a number of deep models to solve the
problem of macro-level information cascades modeling and prediction. The key idea
of such deep learning-based models is to automatically extract various diffusion fea-
tures from the input cascades by leveraging different kinds of neural networks.

DeepCas [8] first demonstrated the effectiveness of deep neural networks in model-
ing information cascades. It first transformed the cascade graph as a set of node
sequences by random walk and then automatically learned the structural features of
individual graphs using GRU [40] and the attention mechanism. Li et al. extended
DeepCas to DCGT [57] by incorporating content features. DeepHawkes [9] extracted
temporal features by modeling diffusion paths via GRU rather than the random
walks in DeepCas, and proposed the non-parametric time-decay effect to further
improve the prediction performance, which bridged the gap between deep repre-
sentation learning and the conventional Hawkes process. Gou et al. [58] proposed
LSTMIC, which first converted the retweeting time series into several viewpoints,
and then employed a long short-term memory (LSTM) architecture and pooling
mechanism to extract sequential temporal features for information outbreak predic-
tion. NT-GP [59] extracted node sequences from the user’s activity log using the
time decay sampling method, and then uses gated recurrent units (GRUs) to learn
the temporal features from the sampling sequences and predict the target event’s
future diffusion range. The latest work TempCas [60] introduced a heuristic method
for sampling full critical paths and it was shown to be more powerful than random
walks and diffusion paths. It uses BiGRU with attention pooling for path embedding
while modeling the short-term outbreaks and the impact of historical short-term
outbreaks with an attention convolutional neural network (CNN) and an LSTM.
Chen et al. [10] proposed the first graph neural networks (GNNs) based model
called CasCN. It learned the structural and temporal information from sub-cascade
graphs via a combination of graph convolutional network (GCN) [61] and LSTM,
which also took into account the diffusion direction and time-decay effect. Later,
some works [62, 63, 64] were built upon the CasCN through changing the graph ker-
nel or using different sampling methods. For example, Cascade2Vec [62] improved
the convolutional kernel of CasCN with the idea from graph Isomorphism network
(GIN) [65] and residual networks [66]. Xu et al. proposed CasGCN [63], which first
represented cascade graph as an in-coming graph and an out-coming graph, and then
applied GCN to learn the structural features from both in-coming and out-coming
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cascade graphs. The temporal features are learned through the normalization of
diffusion time. CasSeqGCN [64] assumed that each sampled sub-cascade graph has
the same topology but with a different state vector. Huang et al. proposed a graph
sequence attention network – GSAN [67], which captured bi-directional and long
dependencies between sub-cascade graphs via a collaboration of graph transformer
block and a sequence transformer block. Another work [68]–CoupledGNN learned
the cascading effect in information diffusion via coupled GNNs, towards captur-
ing the interpersonal influence and individual user behavior based on the global
graph. VaCas [69] first used the unsupervised graph wavelet to learn the structural
information for cascade graphs, and employed variational autoencoder (VAE) [70]
to enhance the cascade representation learning. And MUCas [42] tried to learn
complete structural features from a multi-scale perspective.

Furthermore, some existing works attempt to extract temporal and structural in-
formation by performing both micro-level and macro-level tasks concurrently us-
ing multi-task learning [71] or reinforcement learning [72]. Also, some works have
emerged to solve the general problem inherent in deep cascade learning, such as
catastrophic forgetting [73], long-tail data distribution [74], and model generaliza-
tion [75, 76].

2.2 Rumor Detection

The problem of rumor (or fake news/information, misinformation) detection is an
important research topic in recent social media studies and receives increased at-
tention in various disciplines including politics [18], finance [19], marketing [12],
healthcare [77], etc. “Rumor" is usually defined as a misleading story or misin-
terpretation of information, circulating among communities and pertaining to an
object, event, or issue in public concern [43].

2.2.1 Conventional methods

Handcrafted feature-based methods: Most of earlier works extracted various
hand-crafted features from raw data, which can be typically summarized as two
types: (1) content features extracted from both text (e.g. characters, words, sen-
tences and documents) and visual elements (e.g. images and videos), which can be
further partitioned as lexical features [23, 29, 78], syntactic features [23, 79, 80], topic
features [81], visual statistical features [24, 77], and visual content features [82]; and
(2) social context features extracted from the user behavior and the diffusion net-
work, which reflect the relationship among users and describe the diffusion process
of a rumor, including user features [23, 26, 83], propagation features [29, 81, 84], and
temporal features [29, 85]. After feature engineering, the selected features are used
in discriminative machine learning algorithms (e.g., random forest, naive Bayes, and
support vector machines) to classify the news or tweets.
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Rumors aim to arouse much attention and stimulate the public mood. Therefore,
their texts/images/videos tend to have certain patterns in contrast to truth. Zhao
et al. [78] discovered two types of language patterns in rumors, i.e., inquiry and
correction patterns, and detected the patterns of rumor messages through super-
vised feature selection on a set of labeled messages. Wu et al. [81] defined a set
of topic features to summarize semantics and trained a Latent Dirichlet Allocation
(LDA) model for detecting rumors on Weibo. Towards a more comprehensive un-
derstanding of the text on social media, existing works also come up with textual
features derived from social media platforms, apart from general textual features,
such as source links [77] and emotions [23]. As for visual content features, Jin et
al. [82] found that images in rumors and non-rumors are visually distinctive on their
distributions and propose five visual features to measure the rumors, i.e., visual
clarity score, visual coherence score, visual similarity distribution histogram, visual
diversity score, and visual clustering score. Social context features are derived from
the social connection characteristics of social media. Rumors are usually created
by a few users and spread by a large number of users. Therefore, user profiles are
commonly used to measure the user’s characteristics and credibility. For example,
Castillo et al. [23] first identified the credibility of tweets on Twitter based on user
features. Diffusion patterns, i.e., structural patterns and temporal patterns, are
also shown to be effective for detecting rumors. Kwon et al. [29] extended the work
of [23] by proposing 15 structural features extracted from the diffusion network and
the user friendship network. In the work [85], the authors proposed a method for
discretizing time and capturing the variation of temporal features associated with
rumors.

However, the performance of feature-based methods heavily depends on the hand-
craft features, which lacks a standard and systematic way to design general features
across platforms and to deal with different types of rumors. In fact, the conclusions
of existing works usually contradict each other, primarily due to the differences
between different types of datasets. For example, Yang et al. [86] designed a set
of features (e.g., client-based features and location-based features) based on Weibo,
whose users are mainly restricted to China. It is therefore difficult to use these
features for detecting rumors spread on Twitter and Facebook due to the differences
in languages, clients’ and users’ geographic distributions, etc.

Credibility Propagation-based methods: Inspired by the work of truth discov-
ery that aims to find truth with conflicting information, this line of methods consists
of two main steps, i.e., (1) credibility network construction and (2) credibility prop-
agation. The underlying assumption of these methods is that the credibility of news
is highly related to the reliability of relevant social media posts, and both homo-
geneous and heterogeneous credibility networks can be built for the propagation
process. Homogeneous credibility networks consist of a single type of entity, such as
posts and events. In contrast, heterogeneous credibility networks involve different
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types of entities, such as posts, sub-events, and events. Gupta et al. [24] first intro-
duced a PageRank-like credibility propagation algorithm by encoding users’ credi-
bility and tweets’ implications on a user-tweet-event information network. Inspired
by the idea of linking entities altogether and leveraging inter-entity connections for
credibility propagation, Jin et al. [31] proposed a three-layer hierarchical credibility
network, which includes news aspects and utilizes a graph optimization framework
to infer event credibility. The work in [32] found that relations between messages
on microblogs (i.e. support and oppose) are crucial for evaluating the truthfulness
of news events, and built a homogeneous credibility network among tweets to guide
the process of credibility evaluation. While comparing with direct classification on
the individual entity, credibility propagation-based methods may leverage the inter-
entity relations for robust detection results. However, the performance of these
methods strongly relies on the constructed credibility network.

2.2.2 Deep learning-based methods

The deep learning-based models have shown improved performance over traditional
methods due to their enhanced ability to automatically representation learning.
Most existing deep learning-based methods are content-aware that mainly focused
on extracting textual features [33, 87, 88, 89, 90] and visual features [91, 92] from
news content, user comments, and images, etc. Ma et al. [33] proposed the first
deep learning-based rumor detection model, which applies recurrent neural networks
(RNN) to model rumors as varied length time series aimed to learn both textual and
temporal features from raw data and thus detect rumors. Shu et al. [87] proposed
a co-attention network to exploit both news content and user comments for rumor
detection while discovering explainable sentences. Jin et al. [91] presented a model
to extract the visual, textual, and social context features, which are fused by the
attention mechanism. Moreover, researchers also employed other deep learning tech-
niques, such as multi-task learning [93], transformer [94, 95, 96, 97], and knowledge
enhancement [98], to learn more robust content-aware features for rumor detection.
However, rumors are intentionally written by mimicking real news [99], which makes
content-aware methods hard to further improve detection performance due to the
lack of necessary domain knowledge.

Recently, a few works have tried to exploit diffusion patterns in news spreading for
rumor detection, e.g., temporal features [44, 100, 101] and structural features [16,
34, 44, 102]. For example, Liu et al. [100] presented a time series classifier with RNN
and CNN to predict whether a given news story is fake at an early stage, taking
common user characteristics and propagation paths into consideration. Song et
al. [101] proposed a temporal propagation-based model that can distinguish rumors
from true news through modeling dynamic evolution patterns of news. As for the
structural features, Ma et al. [34] presented a tree-structured RNN to catch the
hidden representations from both propagation structures and text contents. Inspired
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by the success of graph neural networks in information cascades modeling [10, 71],
Bian et al. [16] proposed a graph convolutional network [61]-based model that can
learn global structural relationships of rumor dispersion. He et al. [103] improved
the work [16] by using event augmentation and contrastive learning. Similarly, Lu
et al. [102] improved the work of [100] by calculating the similarity between users
and used a graph-aware attention network for rumor detection.

Furthermore, researchers began to consider both structural and temporal features
for rumor detection. We [44] introduced a hierarchical diffusion modeling model by
extracting both temporal features and propagation structures from the microscopic
diffusion and macroscopic diffusion jointly. In addition, some researchers realized
that users play significant roles in rumor spreading. For example, we proposed
PLRD [45], which extracted social homophily, influence, and susceptibility of users
from the user interaction network for rumor detection. UMLARD [46] improved
PLRD by considering the disentangled feature learning and introducing textual fea-
tures. Dou et al. [104] proposed a user preference-aware rumor detection model to
learn user endogenous preference and exogenous context from users’ historical posts
and reply network, respectively.

15





Chapter 3

Preliminaries

In this chapter, we introduce general definitions about information cascades, the
basic formal problem statements forming the core of our research, and few technical
concepts needed in the rest of the thesis. Table 3.1 summarizes the main notations
used in this chapter.

Table 3.1: Main notations used throughout this chapter.

Symbol Description
m An information item, e.g., a tweet or a paper.
Cm Information cascade graph regarding m.
Gm Diffusion graph regarding m.
Pm Diffusion path regarding m.
Um Nodes set.
Em Edges set
Tm Time mapping function.
to Observation time.
tp Prediction time.
Cm(to) Observed cascade graph regarding m.
Gm(to) Observed diffusion graph regarding m.
Pm(to) Observed diffusion path regarding m.
u User vector.
Um User characteristic matrix.
duser Dimension of user vector u.
S(tp) Popularity label.

3.1 General Definitions

To begin with, we present some general definitions, which are used throughout the
whole thesis. The chapter-specific definitions are presented in the corresponding
chapter.
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Figure 3.1: An example of information cascade.

Online social platforms, such as Twitter and Weibo, allow users to post and re-share
various contents and communicate on topics of mutual interest. Such activities
facilitate fast diffusion of information to reach a large number of users and spur
the phenomenon of information cascades. Given an information item, such as a
messagem we denote byN the number of its corresponding adopters, i.e. those users
who post or re-share the information in the online social platform, each associated
with a user-specific adoption timestamp. According to the user interaction (e.g.,
retweet, citation, etc.), we can construct the information cascade graph for m.

Definition 1 Information Cascade Graph. An evolving cascade graph for
m is defined as a dynamic tree Cm =

{
Um, Em, Tm

}
, where Um is a finite set of

nodes, Em ⊆ Um × Um is a set of edges such that (Um, Em) forms a tree, and Tm is
function associating to each node in u ∈ Um a timestamp tu.

In the example of Twitter, a node u ∈ Um can represent a user who tweets or re-
tweets the post m from some sources (e.g., other users) in the social networks. A
directed edge (u1, u2) ∈ Em denotes the retweet relationship between the users u1

and u2. The timestamp tu = T (u) represents the time when the retweeting behavior
occurs for u, that we tacitly assume to be temporally after the time of u’s parent.
Clearly, time ordering forbids having loops in the graphs. Note that in real life, the
same user can be involved in multiple adoptions of the same message, but at different
times. This would imply that the number N of users adopting the message m is
typically larger than |Um|. However, in this thesis, we only keep track of the earliest
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adoption of an information item by a user even if the same user adopt it multiple
times. This way we have that the size of Um is exactly N , i.e., |Um| = N .

In order to describe the diffusion process of information item m in a more fine-
grained way, we further break down the information cascade into a diffusion graph
and diffusion path.

Definition 2 Diffusion Graph. The information cascade graph of m is denoted
as Cm =

{
Um, Em, Tm

}
, we define the diffusion graph for the message m with as its

underlying tree Gm = {Um, Em}.

In a diffusion graph Gm thus, nodes denote users are involved in the diffusion process
of the messagem, and the edges represent the adoption (e.g., re-tweet) from the user
at the target of the edge of the message published by the user on the source of the
edge.

Definition 3 Diffusion Path. A diffusion path of message m is defined as a
multivariate time series Pm =

{
(u1, t1), · · · , (uN , tN)

}
, where t1 ≤ t2 ≤ . . . ≤ tN .

Here each pair (uj, tj) indicates that the user uj adopts the message m at time tj.
We assume that the diffusion path Pi can be totally ordered, implying that when
two timestamps for different user are the same, i.e. when ti = tj for some i 6= j,
then the order in the sequence is determined by the order of the nodes (for example
based on the ordering of the user IDs which are assumed to be unique). The first
user u1 denotes the source user (i.e., the one who initially posted the message m at
time t1), whereas the rest of the users ui for 2 ≤ i ≤ N , are those participating in
spreading the information.

From every information cascade graph Cm we can derive its diffusion path by taking
the sets of all pairs (u, tu) with u a node in Cm and tu its associated timestamp.

The diffusion graph and the diffusion path derived by the information cascade graph
at the top of Figure 3.1 are illustrated at bottom. Even though both the diffusion
graph and the diffusion path are abstracted from the diffusion thread of messages,
they are independent and different. Specifically, the diffusion graph reflects the
direction of message passing between users, while the diffusion path reflects the
time and sequential information of user engagement.

In this thesis, we only focus on a part of a information cascade graph, i.e., a partial
cascade graph extracted before a specific observation time. The formal definition of
observed cascade graph is given as follows:

Definition 4 Observed Cascade Graph. Given an information cascade graph
Cm = {Um, Em, Tm} for a message m, and an observation time to, we define the
observed cascade graph for m until time to to be the sub-graph Cm(to) determined by
all nodes u with time stamp T (u) ≤ to.

Similarly, the diffusion graph and diffusion path observed until time to are repre-
sented as Gm(to) and Pm(to), respectively.
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Users are the main participant in information spreading. From the online social
platforms, each user is associated with a number of profiles such as the user id, the
number of followers, whether a user is verified or not, etc.. In other words, user can
be considered as a vector of different user profiles and all users of an information
cascade graph can be assembled into a matrix.

Definition 5 User data. Given an information cascade graph Cm = {Um, Em, Tm}
for a message m, assume that every node u ∈ Um is a vector u ∈ Rduser, for some
fixed number of user profiles duser. We define the user characteristic matrix Um

for Cm to be a matrix N × duser, where each row is a user vector ordered as in the
corresponding diffusion path.

3.2 Problem Definition

Next we give a brief description of the problem of information cascades modeling
and rumor detection.

3.2.1 Information Cascades Modeling

In this thesis, we do cascade modeling via a macro-level prediction task, i.e., cascade
size prediction and outbreak prediction. Macro-level information cascades prediction
is defined as follows:

Definition 6 Macro-level Information Cascades Prediction. Given an ob-
served cascade graph Cm(to) of a message m before an observation time to, macro-
level prediction task aims at learning a predictive function f(·) that can predict the
popularity label S(tp) for m at a future prediction time tp, i.e., f(Cm(to), tp) is the
prediction of S(tp) for every tp > to.

In existing works, the macro-level prediction task can be defined as either a classifi-
cation problem or a regression problem. And in this thesis, we cast the macro-level
prediction task as a regression problem, estimating the cascade size (popularity) at
a specific time. The popularity label S(tp) in Definition 6, is the exact popularity
value (i.e., the number of retweets or citations) that message m will achieve in the
future, so that the prediction will be fully correct when f(Cm(to), tp) = S(tp).

3.2.2 Rumor Detection

Rumor is a type of misinformation. Specifically, a rumor is a message with a false
statement, which is posted by users on an online social platform, and circulating
from user to user, aiming to mislead them [105]. The task of rumor detection aims
to learn a classifier to allocate different labels for given messages, which is formally
defined as follows:
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Definition 7 Rumor Detection. Given a message m, the goal of rumor detection
is to learn a classification function f(·) to classify m as a rumor or non-rumor.

f(m) =

{
1, if m is rumor

0, otherwise
(3.1)

3.3 A Brief Recall of Neural Networks

In this thesis, we mainly focused on extracting structural and temporal information
from the graph-structure data and time-series data. Therefore, in this section, we
will briefly recall two specialized neural networks we use: recurrent neural network
and graph neural network.

3.3.1 Recurrent Neural Networks

Recurrent neural network (RNN) [106] is a popular technique in modeling temporal
dependencies for sequential data, such as sentences and multivariate time series.
We assume given an input sequence of vectors, such as (x1, . . . ,xt, . . . ,xn), with the
subscript t representing the time steps in sequence. At time step t, a RNN takes
input xt, and updates the hidden state ht. This update in an ordinary RNN is
defined as follows:

ht = tanh (Wxt + Uht−1 + b) , (3.2)

where W and U are weight matrices, b is the bias vectors, and tanh(·) is the hyper-
bolic tangent non-linearity function. However, ordinary RNNs faced the limitation
in modeling long-distance dependencies due to the problem of gradient vanishing
and exploding with the increasing of the input sequence length [107]. To alleviate
this problem, researchers introduced memory blocks into RNNs, and proposed the
Long Short-Term Memory (LSTM) [40] and Gated Recurrent Units (GRU) [108].
The memory block in LSTM is composed of one memory cell and three different
gates, i.e., input gate, forget gate, and output gate, which are responsible for writ-
ing, reading, and resetting on the memory cell, respectively. The cell remembers
values over arbitrary time steps. The mathematical expressions defining a general
LSTM cell update are as follows:

ft = σ (Wfxt + Ufht−1 + bf ) ,

it = σ (Wixt + Uiht−1 + bi) ,

ot = σ (Woxt + Uoht−1 + bo) ,

c̃t = tanh (Wcxt + Ucht−1 + bc)

ct = ft � ct−1 + it � c̃t,

ht = ot � tanh (ct) ,

(3.3)
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where ft, it and ot are the forget gate, the input gate, and the output gate, respec-
tively. Specifically, the input gate it controls the degree of the new memory c̃t that
is added to the memory cell. The forget gate ft determines how much of the existing
memory can be forgotten. By forgetting part of the memory ct−1 from the last step
and adding the new memory c̃t, the memory ct is updated. Also, the output gate
ot is filtered ct to generate the hidden state ht for the next step. W∗ and U∗ are
the weight matrices and b∗ are the biases for ∗ being f, i, o or c, respectively. Here
σ(·) is the logistic sigmoid function and � is the element-wise vector product.

The GRU architecture simplifies the computations and parameters of a LSTM by
reducing the type of gate and removing the cell state. The GRU cell updates can
be mathematically expressed as follows:

rt = σ (Wrxt + Urht−1 + br)

zt = σ (Wzxt + Uzht−1 + bz)

h̃t = tanh (Whxt + Uh(rt � ht−1) + bh)

ht = (1− zt)� ht−1 + zt � h̃t

(3.4)

where rt and zt are reset gate and update gate, respectively. The reset gate rt decides
how the input xt and previous memory ht−1 are combined, and the update gate zt
controls how much information from the previous memory and candidate hidden
state should be forgotten and added in the current step, respectively. Figure 3.2a
shows the general framework of RNNs, and the unit’s structure for different types of
RNN, i.e., ordinary RNN unit, LSTM unit, and GRU unit, are shown in Figure 3.2b–
3.2d.

3.3.2 Graph Neural Networks

As we depicted in Definition 1, information cascade is represented as a graph struc-
ture. To effectively model this non-Euclidean graph structure data, we use graph
neural networks (GNNs). GNNs are meant to learn better structural representa-
tions on graphs by combining node feature information with graph structure via
feature propagation and aggregation. The core idea of GNNs is the neighborhood
aggregation strategy, also called the message passing strategy. GNNs iteratively up-
date a node’s representation by aggregating its neighbors’ representations. After k
iterations1 of aggregation, the representation of a node contains the structural infor-
mation within its k–hop neighborhood. Formally, the abstract general formulation
of k–th iteration/layer of a GNN is defined as follows:

m(k)
v = AGGREGATE({hk−1

u ,∀u ∈ N(v)}),
h(k)
v = UPDATE(h(k−1)

v ,m(k)
v ),

(3.5)

1Also known as “layers” in GNNs.
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(d) GRU

Figure 3.2: (a) General framework of RNNs; (b) Ordinary RNN unit; (c) LSTM
unit, ft, it and ot are the forget, input and output gates, respectively, ct and c̃t denote
the memory cell and the new memory cell content; (d) GRU unit, rt and zt are the
reset and update gates, and ht and h̃t are the activation and the candidate activation.

where h(k)
v is the learned feature vector of node v at the k–th iteration/layer. We

initiate the h(0)
v = xv, where xv is the vector of features of node v. N(v) is a set

of nodes adjacent to v, i.e. the immediate neighborhoods of node v. The choice of
the “AGGREGATE” and “UPDATE” functions is various [61, 65, 109]. Assuming
the final iteration is K, and its corresponding node representation is h(K)

v , we can
calculate the representation for the entire graph G as:

hG = READOUT({h(K)
v ,∀v ∈ G}). (3.6)

where “READOUT” can be a summation or a more complicated graph-level pooling
function [110, 111, 112].

By far, we abstracted the GNNs as a series of message-passing iterations utilizing
“AGGREGATE” and “UPDATE” functions. As a concrete example, let us recall the
original GNN model proposed by Scarselli et al. [113]. The original GNN message
passing is defined as:

m(k)
v =

∑

u∈N(v)

hk−1
u ,

h(k)
v = σ(W(k)

1 h(k−1)
v + W(k)

2 m(k)
v ),

(3.7)
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where “AGGREGATE” is just a summation and “UPDATE” is defined in terms of
the trainable parameter matrices W(k)

1 and W(k)
2 and an activation function σ , such

as tanh(·) or ReLU(·). Note that, this definition is at node-level. We can also write
it at graph-level as:

H(k) = σ(H(k−1)W1 + AH(k−1)W2), (3.8)

where H(k) = {hkv|v ∈ G} is the matrix of node representations at layer k, and
each row of H(k) corresponding to a node, A is the adjacency matrix, H(0) = X
(X = {xv|v ∈ G} is the initial node feature matrix).

Most of the existing GNNs always add self-loops to the input graph and omit the up-
date step to simplify the neural message-passing strategy, which simplifies as:

h(k)
v = AGGREGATE({hk−1

u ,∀u ∈ N(v) ∪ v}), (3.9)

where “AGGREGATE” is applied to the set N(v) ∪ v, i.e., v’s neighbors as well
as itself. Adding self-loops is equivalent to sharing parameters between the two
trainable matrices W1 and W2, so that the Eq. (3.8) can be further simplified
to:

H(k) = σ((A + I)H(k−1)W), (3.10)

where W = W1 = W2, and I is the identity matrix.

3.3.2.1 Graph Convolutional Networks

Next we turn to a brief description of a specific type of GNNs: Graph Convolutional
Networks. In particular we concentrate on the Chebyshev spectral graph convolu-
tional (ChebConv) [41] and vanilla graph convolutional network (GCN) [61] becuase
they will be used throughout this thesis.

Chebyshev spectral graph convolutional: ChebConv [41] defines a spectral
formulation in the Fourier domain for the convolution operator on graphs ∗G. More
specifically, let X ∈ Rn×d be a graph signal, A ∈ Rn×n the corresponding adjacency
matrix and D ∈ Rn×n the diagonal degree matrix with Dii =

∑
jAij. The spectral

convolutions on graphs are defined as:

gθ ∗ GX = gθ (L)X = gθ
(
UΛUT

)
X = Ugθ (Λ)UTX (3.11)

where gθ = diag (θ) is a filter parameterized by θ ∈ Rn in the Fourier domain, and
can be regarded as a function the eigenvalues of the Laplacian matrix L, i.e., gθ(Λ).
U = [u0, · · · ,un−1] ∈ Rn×n and Λ = [λ0, · · · , λn−1] ∈ Rn×n are the matrix of eigen-
vectors and the diagonal matrix of eigenvalues of the normalized graph Laplacian
L = I − D−

1
2AD−

1
2 = UΛUT ∈ Rn×n, respectively. UTX is the graph Fourier

transform of graph signal X. However, computing the eigen-decomposition of L
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in the first place might be prohibitively expensive for large graphs and the com-
plexity of multiplication with U is O (n2). Defferrard et al. [41] approximate gθ (Λ)

with a truncated expansion in terms of Chebyshev polynomials Tk (x) up to K–th
order:

gθ
′ (Λ) ≈

K∑

k=0

θ
′

kTk

(
Λ̃
)

(3.12)

with Λ̃ = 2
λmax

Λ − I ( λmax denotes the largest eigenvalue of L), identity matrix
I ∈ Rn×n and a vector of Chebyshev coefficients θ′

k. The Chebyshev polynomials of
order K are recursively defined as Tk (x) = 2xTk−1 (x) − Tk−2 (x), with T0 (x) = 1

and T1 (x) = x. The graph filtering operation can now be written as:

gθ
′ ∗ GX ≈

K∑

k=0

θ
′

kTk

(
L̃
)
X (3.13)

where L̃ = 2
λmax

L− I. Note that as Eq.(3.13) is now an order K polynomial of the
Laplacian, the complexity is reduced to O(K|E|). We refer the readers to [41] for
details and an in-depth discussion.

Graph convolutional network: GCN [61] can be regarded as a simplification of
ChebConv [41]. Specifically, GCN assumes k = 1 and λmax = 2 in ChebConv, so
that the calculation of Eq. (3.13) simplifies to:

gθ
′ ∗ GX ≈ θ

′

0X + θ
′

1(L− I)X = θ
′

0X− θ
′

1D
− 1

2AD−
1
2X (3.14)

where the two parameters θ′
0 and θ′

1 can be shared over the whole graph. Eq. (3.14)
can be further simplified as:

gθ
′ ∗ GX ≈ θ

′
(I + D−

1
2AD−

1
2 )X (3.15)

in the case when θ′
= θ

′
0 = θ

′
1. Due to the range of eigenvalues of I + D−

1
2AD−

1
2

falling into [0, 2], Eq. (3.15) can be numerical instable by exploding gradients and
vanishing gradients. To overcome these problems, GCN applies a renormalization
trick to rescale the range of the eigenvalues to [0, 1]. More concretely, GCN uses

D̃
− 1

2 ÃD̃
− 1

2 to approximate I + D−
1
2AD−

1
2 , where Ã = A + I and D̃ii =

∑
j Ãij.

Finally, the GCN layer is defined as:

H = ÂXW (3.16)

where Â = D̃
− 1

2 ÃD̃
− 1

2 can be calculated at the pre-processing step, W ∈ Rd×f

is the weight matrix (i.e., the parameters θ′ in Eq. (3.15)), and f is the number
of filters or the dimension of the learned representation H. The complexity of a
GCN layer is O(|E|fd). In the GCN-based model, it captures the information of the
kth-order neighborhood of a node through successively employing the GCN layers
with an activation function.
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Consider a two-layer GCN model as an example. The final output H is calculated
as:

H = σ2(Â(σ1(ÂXW(0)))W(1)) (3.17)

where σ1 and σ2 are the activation functions. In a semi-supervised node classification
task, the functions σ1 and σ2 can be ReLU(·) and softmax(·), respectively. For more
details on GCN, we refer the readers to [61].
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Part I

Information Cascades Modeling
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Chapter 4

Learning Structural-temporal
Features for Cascades Modeling

4.1 Chapter Overview

As described in Chapter 2, the plethora of approaches proposed to tackle the cascade
prediction problem fall into three main categories:

1. handcrafted feature-based approaches – mostly focusing on identifying and in-
corporating complicated hand-crafted features, e.g., structural [27, 37, 54],
content [22, 38, 51, 52], temporal [28, 55], etc. Their performance strongly
depends on extracted features requiring extensive domain knowledge, which is
hard to be generalized to new domains;

2. point process-based approaches – typically relying on Hawkes point process [9,
30, 49], which models the intensity function of the arrival process for each
message independently, enabling knowledge regarding the popularity dynamics
of information – but with less desirable predictive power; and

3. deep learning-based methods, especially Recurrent Neural Networks (RNN)
based approaches [8, 9, 35, 36] – which automatically learn temporal char-
acteristics but fall short in the intrinsic structural information of cascades,
essential for cascade prediction [1].

Challenges and Our Approach: Effective and efficient prediction of the size of
cascades has several challenges: (1) lack of knowledge of complete network structure
through which the cascades propagate [114]. This impedes many global structure
based approaches since obtaining a complete graph or further embedding into it is
hard, if not impossible. (2) efficient representation of cascades – difficult due to their
varying size (from very few to millions [1]), making the random walk based cascade
sampling methods biased and ill-suited. (3) modeling diffusion dynamics of infor-
mation cascades not only requires locally structural characteristics (e.g., community
size and activity degree of users) but also needs some temporal characteristics – e.g.,
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information within the first few hours plays crucial role in determining the cascades’
size.

To address above challenges, we propose a novel framework called CasCN (Recur-
rent Cascades ConvolutionalNetworks) which, while relying on existing paradigms,
incorporates both structural and temporal characteristics for predicting the future
size of a given cascade. Specifically, CasCN samples sub-cascade graphs rather than
a set of random-walk sequences from a cascade, and learns the local structures of
each sub-cascades by graph convolutional operations. The convoluted spatial struc-
tures are then fed into a recurrent neural network for training and capturing the
evolving process of a cascade structure. Our main contributions and advantages of
CasCN are:

• Use of less information: We rely solely on the structural and temporal information
of cascades, avoiding massive and complex feature engineering, and our model is
more generalizable to new domains. In addition, CasCN leverages deep learning to
learn latent semantics of cascades in an end-to-end manner.

• Representation of a cascade graph: We sample a cascade graph as a sequence of sub-
cascade graphs and use an adjacency matrix to represent each sub-cascade graph.
This fully preserves the structural dynamics of cascades as well as the topological
structure at each diffusion time, while eliminating the intensive computational cost
when working with large graphs.

• Additional impacting factors: CasCN takes into account two additional crucial
factors for estimating cascade size – the directionality of cascade graphs and the
time of re-tweeting (e.g., decay effects).

• Multi-cascade convolutional networks: We propose a holistic approach, with vari-
ants capturing temporal, structural, and directional patterns in multiple sub-graphs,
aware of temporal evolution of dynamic graphs – making our methodology readily
applicable to other spatio-temporal data prediction tasks.

• Evaluations on real-world datasets: We conduct extensive evaluations on several
publicly available benchmark datasets, demonstrating that CasCN significantly out-
performs the state-of-the-art baselines.

This chapter is based on the following publication[10]:

• Chen, X., Zhou, F., Zhang, K., Trajcevski, G., Zhong, T., Zhang, F.: Infor-
mation diffusion prediction via recurrent cascades convolution. In: 2019 IEEE
35th International Conference on Data Engineering. ICDE ’19 (2019) 770–781

4.2 Problem Statement

Recall (see Definition 4 in chapter 3) that the observed cascade graph of a postmi be-
fore time to is denoted as Ci(to). In this chapter, we use gtji = (U

tj
i , E

tj
i , tj) as a short-
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u6

u4

u2

u3
u1

u5

t1 t2 t3 t4 t5 t6
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Observed retweets

Future retweets

Figure 4.1: The observed cascade graph of a post mi. Node u0 initiates the original
message mi.

hand for the snapshot of Ci(to) reflecting the diffusion status of a post mi at time
tj (tj ≤ to). For example: a node ux ∈ U tj

i represents a user who (for the first time)
re-tweets the post mi from some other users in Twitter (or a paper in a citation net-
work). An edge

(
ux, uy

)
∈ Etj

i represents a re-tweet (or a citation) of ux from uy ; and
tj is the time-instant when the last re-tweeting (or the citation) behavior occurs in
the current snapshot. Figure 4.1 illustrates how the cascade graph can be represented
as gt1i = ((u1) ,∅, t1), · · · , gt6i = ((u1, u2, · · · , u5, u6) , [(u1, u2) , (u1, u3) , · · · , (u4, u6)], t6).

As depicted above, from observed cascade graph Ci(to), we can get different snap-
shots gtji , so that Ci(to) can be further represented as a sequence of sub-cascade
graphs Gto

i =
{
g
tj
i |tj ≤ to

}
. In this chapter, our task is to predict the increment

size ∆Si regarding the post mi for a fixed time interval ∆t (∆t = tp − to), i.e.,
∆Si =

∣∣U to+∆t
i

∣∣−
∣∣U to

i

∣∣.

Definition 8 The cascade size predictor is a function f
(
·
)
that is to be learned,

mapping Gto
i =

{
gt1i , · · · , g

tj
i , · · · ; tj ≤ to

}
to ∆Si for the time interval ∆t.

Table 4.1: Main notations used throughout this chapter.
Symbol Description

g
tj
i , a

tj
i

A sub-cascade graph of Ci(to) at diffusion time tj and it’s
adjacency matrix.

Gto
i ,A

to
i

A sequence of sub-cascade graphs of Ci(to) and the corre-
sponding adjacency matrices.

∆t The fixed time interval.
∆Si The increment size of mi after ∆t.
Pc Transition matrix of a cascade.
φ,Φ Stationary transition distribution and diagonalized φ
∆c Laplacian of a cascade.
λmax The largest eigenvalue of Laplacian.

K
Maximum steps from the central node, i.e., Kth-order
neighborhood or Chebyshev coefficients.
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4.3 CasCN: Information diffusion prediction via re-
current cascades convolution
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x3
<latexit sha1_base64="WfMbWnfdeWCvjC4vZxD0qZz0A/E=">AAAB83icbVBNS8NAEN3Ur1q/qh69BIvgqSStoMeiF48V7Ac0oWy2k3bpZhN2J9IS+je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8IBFco+N8W4WNza3tneJuaW//4PCofHzS1nGqGLRYLGLVDagGwSW0kKOAbqKARoGATjC+m/udJ1Cax/IRpwn4ER1KHnJG0UiehzDBIMwms369X644VWcBe524OamQHM1++csbxCyNQCITVOue6yToZ1QhZwJmJS/VkFA2pkPoGSppBNrPFjfP7AujDOwwVqYk2gv190RGI62nUWA6I4ojverNxf+8XorhjZ9xmaQIki0XhamwMbbnAdgDroChmBpCmeLmVpuNqKIMTUwlE4K7+vI6adeqbr1ae7iqNG7zOIrkjJyTS+KSa9Ig96RJWoSRhDyTV/JmpdaL9W59LFsLVj5zSv7A+vwBWICR4Q==</latexit>

x6
<latexit sha1_base64="C3Bhw3CZskNLNKH7yz8SerDLU3c=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSRV1GPRi8cK9gOaUDbbTbt0swm7E2kJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekAiu0XG+rcLa+sbmVnG7tLO7t39QPjxq6ThVlDVpLGLVCYhmgkvWRI6CdRLFSBQI1g5GdzO//cSU5rF8xEnC/IgMJA85JWgkz0M2xiDMxtPeVa9ccarOHPYqcXNSgRyNXvnL68c0jZhEKojWXddJ0M+IQk4Fm5a8VLOE0BEZsK6hkkRM+9n85ql9ZpS+HcbKlER7rv6eyEik9SQKTGdEcKiXvZn4n9dNMbzxMy6TFJmki0VhKmyM7VkAdp8rRlFMDCFUcXOrTYdEEYomppIJwV1+eZW0alX3olp7uKzUb/M4inACp3AOLlxDHe6hAU2gkMAzvMKblVov1rv1sWgtWPnMMfyB9fkDXQyR5A==</latexit>

h6
<latexit sha1_base64="VYZAYNb4SJ6PgCAD30dP88J2LG4=">AAAB83icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Vj04rGC/YCmlM120y7dbMLuRCyhf8OLB0W8+me8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXJtRKwecJzwbkQHSoSCUbSS7yN/wiDMhpPeZa9UdivuDGSZeDkpQ456r/Tl92OWRlwhk9SYjucm2M2oRsEknxT91PCEshEd8I6likbcdLPZzRNyapU+CWNtSyGZqb8nMhoZM44C2xlRHJpFbyr+53VSDK+7mVBJilyx+aIwlQRjMg2A9IXmDOXYEsq0sLcSNqSaMrQxFW0I3uLLy6RZrXjnler9Rbl2k8dRgGM4gTPw4ApqcAd1aACDBJ7hFd6c1Hlx3p2PeeuKk88cwR84nz9EnJHU</latexit>

h3
<latexit sha1_base64="nu2K4kQMvAu/VEpBzLyWLqZlxYI=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0laQY9FLx4r2FZoStlsN+3SzSbsTsQS+je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMb6IaCGS6F4CwVK/pBoTqNA8k4wvpn5nUeujYjVPU4S3ovoUIlQMIpW8n3kTxiE2Wjar/fLFbfqzkFWiZeTCuRo9stf/iBmacQVMkmN6Xpugr2MahRM8mnJTw1PKBvTIe9aqmjETS+b3zwlZ1YZkDDWthSSufp7IqORMZMosJ0RxZFZ9mbif143xfCqlwmVpMgVWywKU0kwJrMAyEBozlBOLKFMC3srYSOqKUMbU8mG4C2/vEratapXr9buLiqN6zyOIpzAKZyDB5fQgFtoQgsYJPAMr/DmpM6L8+58LFoLTj5zDH/gfP4AQBCR0Q==</latexit>

h1
<latexit sha1_base64="ZAZ6d51rekwLZvSB3Qka4iQNgSE=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ac0pWy2m3bpZhN2J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//ci1EbF6wEnCexEdKhEKRtFKvo/8CYMwG037Xr9ccavuHGSVeDmpQI5Gv/zlD2KWRlwhk9SYrucm2MuoRsEkn5b81PCEsjEd8q6likbc9LL5zVNyZpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK97mVBJilyxxaIwlQRjMguADITmDOXEEsq0sLcSNqKaMrQxlWwI3vLLq6RVq3oX1dr9ZaV+k8dRhBM4hXPw4ArqcAcNaAKDBJ7hFd6c1Hlx3p2PRWvByWeO4Q+czx89CJHP</latexit>
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<latexit sha1_base64="omUv/86ITJ/G2hjNxrI09jqj3oA=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyip5JUQY9FLx4r2A9oY9lsN+3SzSbsTqQl5K948aCIV/+IN/+N2zYHbX0w8Hhvhpl5fiy4Bsf5tgpr6xubW8Xt0s7u3v6BfVhu6ShRlDVpJCLV8YlmgkvWBA6CdWLFSOgL1vbHtzO//cSU5pF8gGnMvJAMJQ84JWCkvl3uAZuAH6SjrJ+62WN6lvXtilN15sCrxM1JBeVo9O2v3iCiScgkUEG07rpODF5KFHAqWFbqJZrFhI7JkHUNlSRk2kvnt2f41CgDHETKlAQ8V39PpCTUehr6pjMkMNLL3kz8z+smEFx7KZdxAkzSxaIgERgiPAsCD7hiFMTUEEIVN7diOiKKUDBxlUwI7vLLq6RVq7oX1dr9ZaV+k8dRRMfoBJ0jF12hOrpDDdREFE3QM3pFb1ZmvVjv1seitWDlM0foD6zPH3CllLE=</latexit>
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<latexit sha1_base64="EYSuXQc0wuexHOpsJruFkcSrQRY=">AAAB+3icbVBNS8NAEN34WetXrEcvi0X0VJJW0GPRi8cK9gPaWDbbTbt0swm7E2kJ+StePCji1T/izX/jts1BWx8MPN6bYWaeHwuuwXG+rbX1jc2t7cJOcXdv/+DQPiq1dJQoypo0EpHq+EQzwSVrAgfBOrFiJPQFa/vj25nffmJK80g+wDRmXkiGkgecEjBS3y71gE3AD9JR1k9r2WN6nvXtslNx5sCrxM1JGeVo9O2v3iCiScgkUEG07rpODF5KFHAqWFbsJZrFhI7JkHUNlSRk2kvnt2f4zCgDHETKlAQ8V39PpCTUehr6pjMkMNLL3kz8z+smEFx7KZdxAkzSxaIgERgiPAsCD7hiFMTUEEIVN7diOiKKUDBxFU0I7vLLq6RVrbi1SvX+sly/yeMooBN0ii6Qi65QHd2hBmoiiiboGb2iNyuzXqx362PRumblM8foD6zPH3O3lLM=</latexit>
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<latexit sha1_base64="eC9Mf/Ci+K3gfDotlGEO4np7KX0=">AAAB+3icbVBNS8NAEN34WetXrEcvi0X0VJIq6rHoxWMF+wFtLJvtpl262YTdibSE/BUvHhTx6h/x5r9x2+agrQ8GHu/NMDPPjwXX4Djf1srq2vrGZmGruL2zu7dvH5SaOkoUZQ0aiUi1faKZ4JI1gINg7VgxEvqCtfzR7dRvPTGleSQfYBIzLyQDyQNOCRipZ5e6wMbgB+kw66WX2WN6mvXsslNxZsDLxM1JGeWo9+yvbj+iScgkUEG07rhODF5KFHAqWFbsJprFhI7IgHUMlSRk2ktnt2f4xCh9HETKlAQ8U39PpCTUehL6pjMkMNSL3lT8z+skEFx7KZdxAkzS+aIgERgiPA0C97liFMTEEEIVN7diOiSKUDBxFU0I7uLLy6RZrbjnler9Rbl2k8dRQEfoGJ0hF12hGrpDddRAFI3RM3pFb1ZmvVjv1se8dcXKZw7RH1ifP3hSlLY=</latexit>
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<latexit sha1_base64="4BybPpdDPsa1lr66Y2MYzbP+J+Y=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BPXiMaB6YLGF20kmGzM4uM7NCWPIXXjwo4tW/8ebfOEn2oIkFDUVVN91dQSy4Nq777eRWVtfWN/Kbha3tnd294v5BQ0eJYlhnkYhUK6AaBZdYN9wIbMUKaRgIbAaj66nffEKleSQfzDhGP6QDyfucUWOlx84NCkPJfZd3iyW37M5AlomXkRJkqHWLX51exJIQpWGCat323Nj4KVWGM4GTQifRGFM2ogNsWyppiNpPZxdPyIlVeqQfKVvSkJn6eyKlodbjMLCdITVDvehNxf+8dmL6l37KZZwYlGy+qJ8IYiIyfZ/0uEJmxNgSyhS3txI2pIoyY0Mq2BC8xZeXSaNS9s7KlbvzUvUqiyMPR3AMp+DBBVThFmpQBwYSnuEV3hztvDjvzse8NedkM4fwB87nD92lkGM=</latexit>

Figure 4.2: Overview of CasCN : (a) The input is a cascade graph Ci(to) for a given
time window to of a certain post mi. (b) We obtain a sequence of sub-cascade graphs
from Ci(to), and use an adjacency matrix atji to represent an instance gtji of the sub-
cascade graph. We refer to Ato

i = {at1i , at2i , · · · } as signals. (c) We feed the signals
and the Laplacian matrix ∆c of cascade Ci(to) into CasCN. The output ht of CasCN
is transformed to a new representation h

′
t by multiplying it by a time decay factor.

All h
′
t ’s will be assembled via a sum pooling to form the final Ci(to) representation:

h
′
(Ci(to)). (d) Finally, we use a MLP to predict the increment size of cascade (∆Si)

for a fixed time interval ∆t.

Our deep learning framework CasCN takes the observed cascade graph Ci(to) as
an input and predicts the increment size ∆Si regarding certain information (e.g., a
post)mi. CasCN leverages LSTM and GCN to fully extract temporal and structural
information from the cascade graph. After an overview of CasCN, we focus on the
details in the respective sub-sections.

CasCN is an end-to-end type of framework consisting of three basic components,
depicted in Figure 4.2: (1) Cascade graph sampling: it dynamically samples a se-
quence of sub-cascade graphs from the original cascade graph, and then represents
sub-cascade graphs as a sequence of adjacency matrices; (2) Structural and temporal
modeling: it feeds the adjacency matrix sequences and the structural information
of cascade graphs (i.e., the Laplacian matrices of cascade graphs) within an obser-
vation window into a neural network. It combines recurrent neural networks and
graph convolutional networks with a time decay function to learn the representa-
tion of cascades; (3) Prediction network: a Multi-Layer Perceptron (MLP) is used
to predict the increment cascade size based on the representation learned from the
previous steps.

4.3.1 Cascade Graph as Sub-cascade Graph Sequences

Given a post mi, the first step in CasCN is to initialize the representation of its
corresponding cascading graph Ci(to). Existing methods typically treat the graph
in two ways: either sampling the graph as a bag of nodes, which ignores both local
and global structural information, or denoting the graph as a set of paths. For
example, DeepCas [8] samples a set of paths from each cascade. The sampling
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4.3 CasCN: Information diffusion prediction via recurrent cascades
convolution

(1) (2) (3) (4) (5)

1 1 1 0 0
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0 0 0 0 0
0 0 0 0 0 #×#
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<latexit sha1_base64="/4uzKQdepvYVYKJWY0esTzuAi1o=">AAAB73icbVBNTwIxEJ3FL8Qv1KOXRmKCF7KLJnokcvGIiSAJbDbd0oWGbru2XROy4U948aAxXv073vw3FtiDgi+Z5OW9mczMCxPOtHHdb6ewtr6xuVXcLu3s7u0flA+POlqmitA2kVyqbog15UzQtmGG026iKI5DTh/CcXPmPzxRpZkU92aSUD/GQ8EiRrCxUrcZsKoJ5HlQrrg1dw60SrycVCBHKyh/9QeSpDEVhnCsdc9zE+NnWBlGOJ2W+qmmCSZjPKQ9SwWOqfaz+b1TdGaVAYqksiUMmqu/JzIcaz2JQ9sZYzPSy95M/M/rpSa69jMmktRQQRaLopQjI9HseTRgihLDJ5Zgopi9FZERVpgYG1HJhuAtv7xKOvWad1Gr311WGjd5HEU4gVOoggdX0IBbaEEbCHB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8ATUVj2w=</latexit>

Gto
i

<latexit sha1_base64="ka+cIZAzn1Q8GsCs5OWrVNdrgVI=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BIvgqexWQY9FD3qsYD+kXZdsmm1Dk+ySzApl6a/w4kERr/4cb/4b03YP2vpg4PHeDDPzwkRwA6777RRWVtfWN4qbpa3tnd298v5By8SppqxJYxHrTkgME1yxJnAQrJNoRmQoWDscXU/99hPThsfqHsYJ8yUZKB5xSsBKDzcBf8wgiCdBueJW3RnwMvFyUkE5GkH5q9ePaSqZAiqIMV3PTcDPiAZOBZuUeqlhCaEjMmBdSxWRzPjZ7OAJPrFKH0extqUAz9TfExmRxoxlaDslgaFZ9Kbif143hejSz7hKUmCKzhdFqcAQ4+n3uM81oyDGlhCqub0V0yHRhILNqGRD8BZfXiatWtU7q9buziv1qzyOIjpCx+gUeegC1dEtaqAmokiiZ/SK3hztvDjvzse8teDkM4foD5zPH/AHkH8=</latexit>

Ato
i

<latexit sha1_base64="9HNA2T4414KlWEmGdeFtfa7e0Vk=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BIvgqexWQY9VLx4r2A9p1yWbZtvQJLsks0JZ+iu8eFDEqz/Hm//GtN2Dtj4YeLw3w8y8MBHcgOt+O4WV1bX1jeJmaWt7Z3evvH/QMnGqKWvSWMS6ExLDBFesCRwE6ySaERkK1g5HN1O//cS04bG6h3HCfEkGikecErDSw1XAHzMI4klQrrhVdwa8TLycVFCORlD+6vVjmkqmgApiTNdzE/AzooFTwSalXmpYQuiIDFjXUkUkM342O3iCT6zSx1GsbSnAM/X3REakMWMZ2k5JYGgWvan4n9dNIbr0M66SFJii80VRKjDEePo97nPNKIixJYRqbm/FdEg0oWAzKtkQvMWXl0mrVvXOqrW780r9Oo+jiI7QMTpFHrpAdXSLGqiJKJLoGb2iN0c7L8678zFvLTj5zCH6A+fzB+a/kHk=</latexit>

gt5
i

<latexit sha1_base64="MBb1p3WUwPt+Uii4otCJDDnLRK4=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9mtih6LXjxWsB/Srks2zbahSXZJskJZ+iu8eFDEqz/Hm//GtN2Dtj4YeLw3w8y8MOFMG9f9dgorq2vrG8XN0tb2zu5eef+gpeNUEdokMY9VJ8SaciZp0zDDaSdRFIuQ03Y4upn67SeqNIvlvRkn1Bd4IFnECDZWehgE7DEzwcUkKFfcqjsDWiZeTiqQoxGUv3r9mKSCSkM41rrruYnxM6wMI5xOSr1U0wSTER7QrqUSC6r9bHbwBJ1YpY+iWNmSBs3U3xMZFlqPRWg7BTZDvehNxf+8bmqiKz9jMkkNlWS+KEo5MjGafo/6TFFi+NgSTBSztyIyxAoTYzMq2RC8xZeXSatW9c6qtbvzSv06j6MIR3AMp+DBJdThFhrQBAICnuEV3hzlvDjvzse8teDkM4fwB87nD8llkGU=</latexit>

gt1
i

<latexit sha1_base64="bZv82Zh3slK+6RGNcJOgpJjZZVY=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/ZA2hs122y7dbMLuRCihv8KLB0W8+nO8+W/ctjlo64OBx3szzMwLEykMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3Q2q4FIo3UKDk7URzGoWSt8LRzdRvPXFtRKzucZxwP6IDJfqCUbTSwyAQjxkG3iQold2KOwNZJl5OypCjHpS+ur2YpRFXyCQ1puO5CfoZ1SiY5JNiNzU8oWxEB7xjqaIRN342O3hCTq3SI/1Y21JIZurviYxGxoyj0HZGFIdm0ZuK/3mdFPtXfiZUkiJXbL6on0qCMZl+T3pCc4ZybAllWthbCRtSTRnajIo2BG/x5WXSrFa880r17qJcu87jKMAxnMAZeHAJNbiFOjSAQQTP8ApvjnZenHfnY9664uQzR/AHzucPw1GQYQ==</latexit>

gt2
i

<latexit sha1_base64="cKtyLE9waXeuCVTEOPlWDjRKSJ8=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/ZA2hs122y7dbMLuRCihv8KLB0W8+nO8+W/ctjlo64OBx3szzMwLEykMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3Q2q4FIo3UKDk7URzGoWSt8LRzdRvPXFtRKzucZxwP6IDJfqCUbTSwyAQjxkG1UlQKrsVdwayTLyclCFHPSh9dXsxSyOukElqTMdzE/QzqlEwySfFbmp4QtmIDnjHUkUjbvxsdvCEnFqlR/qxtqWQzNTfExmNjBlHoe2MKA7NojcV//M6Kfav/EyoJEWu2HxRP5UEYzL9nvSE5gzl2BLKtLC3EjakmjK0GRVtCN7iy8ukWa1455Xq3UW5dp3HUYBjOIEz8OASanALdWgAgwie4RXeHO28OO/Ox7x1xclnjuAPnM8fxNaQYg==</latexit>

gt3
i

<latexit sha1_base64="9vH9Xo5l0bFKSHW4rnUSqI5m0ZI=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9ltBT0WvXisYD+kXZdsmm1Dk+ySZIWy9Fd48aCIV3+ON/+NabsHbX0w8Hhvhpl5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRW8epIrRFYh6rbog15UzSlmGG026iKBYhp51wfDPzO09UaRbLezNJqC/wULKIEWys9DAM2GNmgvo0KFfcqjsHWiVeTiqQoxmUv/qDmKSCSkM41rrnuYnxM6wMI5xOS/1U0wSTMR7SnqUSC6r9bH7wFJ1ZZYCiWNmSBs3V3xMZFlpPRGg7BTYjvezNxP+8XmqiKz9jMkkNlWSxKEo5MjGafY8GTFFi+MQSTBSztyIywgoTYzMq2RC85ZdXSbtW9erV2t1FpXGdx1GEEziFc/DgEhpwC01oAQEBz/AKb45yXpx352PRWnDymWP4A+fzB8ZbkGM=</latexit>

gt4
i

<latexit sha1_base64="+SCQAjs0gsXmbOY9LXu+9tyxVrg=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BIvgqezWgh6LXjxWsB/Srks2zbahSXZJZoWy9Fd48aCIV3+ON/+NabsHbX0w8Hhvhpl5YSK4Adf9dgpr6xubW8Xt0s7u3v5B+fCobeJUU9aisYh1NySGCa5YCzgI1k00IzIUrBOOb2Z+54lpw2N1D5OE+ZIMFY84JWClh2HAHzMI6tOgXHGr7hx4lXg5qaAczaD81R/ENJVMARXEmJ7nJuBnRAOngk1L/dSwhNAxGbKepYpIZvxsfvAUn1llgKNY21KA5+rviYxIYyYytJ2SwMgsezPxP6+XQnTlZ1wlKTBFF4uiVGCI8ex7POCaURATSwjV3N6K6YhoQsFmVLIheMsvr5J2repdVGt39UrjOo+jiE7QKTpHHrpEDXSLmqiFKJLoGb2iN0c7L86787FoLTj5zDH6A+fzB8fgkGQ=</latexit>

at4
i

<latexit sha1_base64="0mtZHmU4zOpJtr2ypJSpwsW5hos=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BIvgqezWgh6LXjxWsB/Srks2zbahSXZJZoWy9Fd48aCIV3+ON/+NabsHbX0w8Hhvhpl5YSK4Adf9dgpr6xubW8Xt0s7u3v5B+fCobeJUU9aisYh1NySGCa5YCzgI1k00IzIUrBOOb2Z+54lpw2N1D5OE+ZIMFY84JWClBxLwxwyC+jQoV9yqOwdeJV5OKihHMyh/9QcxTSVTQAUxpue5CfgZ0cCpYNNSPzUsIXRMhqxnqSKSGT+bHzzFZ1YZ4CjWthTgufp7IiPSmIkMbackMDLL3kz8z+ulEF35GVdJCkzRxaIoFRhiPPseD7hmFMTEEkI1t7diOiKaULAZlWwI3vLLq6Rdq3oX1dpdvdK4zuMoohN0is6Rhy5RA92iJmohiiR6Rq/ozdHOi/PufCxaC04+c4z+wPn8Ab6YkF4=</latexit>

at3
i

<latexit sha1_base64="bsXv/Oc/Hnh0d4XW7U1PVggeIEw=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BIvgqey2gh6LXjxWsB/Srks2zbahSXZJZoWy9Fd48aCIV3+ON/+NabsHbX0w8Hhvhpl5YSK4Adf9dgpr6xubW8Xt0s7u3v5B+fCobeJUU9aisYh1NySGCa5YCzgI1k00IzIUrBOOb2Z+54lpw2N1D5OE+ZIMFY84JWClBxLwxwyC+jQoV9yqOwdeJV5OKihHMyh/9QcxTSVTQAUxpue5CfgZ0cCpYNNSPzUsIXRMhqxnqSKSGT+bHzzFZ1YZ4CjWthTgufp7IiPSmIkMbackMDLL3kz8z+ulEF35GVdJCkzRxaIoFRhiPPseD7hmFMTEEkI1t7diOiKaULAZlWwI3vLLq6Rdq3r1au3uotK4zuMoohN0is6Rhy5RA92iJmohiiR6Rq/ozdHOi/PufCxaC04+c4z+wPn8Ab0TkF0=</latexit>

at2
i

<latexit sha1_base64="cGCKsmsSZvOLnybKylkNdvcLL6s=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/ZA2hs122y7dbMLuRCihv8KLB0W8+nO8+W/ctjlo64OBx3szzMwLEykMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3Q2q4FIo3UKDk7URzGoWSt8LRzdRvPXFtRKzucZxwP6IDJfqCUbTSAw3EY4ZBdRKUym7FnYEsEy8nZchRD0pf3V7M0ogrZJIa0/HcBP2MahRM8kmxmxqeUDaiA96xVNGIGz+bHTwhp1bpkX6sbSkkM/X3REYjY8ZRaDsjikOz6E3F/7xOiv0rPxMqSZErNl/UTyXBmEy/Jz2hOUM5toQyLeythA2ppgxtRkUbgrf48jJpViveeaV6d1GuXedxFOAYTuAMPLiEGtxCHRrAIIJneIU3RzsvzrvzMW9dcfKZI/gD5/MHu46QXA==</latexit>

at1
i

<latexit sha1_base64="EbcY3tSATMU8ocRp2tEs2aPSn8A=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/ZA2hs122y7dbMLuRCihv8KLB0W8+nO8+W/ctjlo64OBx3szzMwLEykMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3Q2q4FIo3UKDk7URzGoWSt8LRzdRvPXFtRKzucZxwP6IDJfqCUbTSAw3EY4aBNwlKZbfizkCWiZeTMuSoB6Wvbi9macQVMkmN6Xhugn5GNQom+aTYTQ1PKBvRAe9YqmjEjZ/NDp6QU6v0SD/WthSSmfp7IqORMeMotJ0RxaFZ9Kbif14nxf6VnwmVpMgVmy/qp5JgTKbfk57QnKEcW0KZFvZWwoZUU4Y2o6INwVt8eZk0qxXvvFK9uyjXrvM4CnAMJ3AGHlxCDW6hDg1gEMEzvMKbo50X5935mLeuOPnMEfyB8/kDugmQWw==</latexit>

at5
i

<latexit sha1_base64="vUMzIyHUZJxrptdnw1dgYwum9fw=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BIvgqexWRY9FLx4r2A9p1yWbZtvQJLsks0JZ+iu8eFDEqz/Hm//GtN2Dtj4YeLw3w8y8MBHcgOt+O4WV1bX1jeJmaWt7Z3evvH/QMnGqKWvSWMS6ExLDBFesCRwE6ySaERkK1g5HN1O//cS04bG6h3HCfEkGikecErDSAwn4YwbBxSQoV9yqOwNeJl5OKihHIyh/9foxTSVTQAUxpuu5CfgZ0cCpYJNSLzUsIXREBqxrqSKSGT+bHTzBJ1bp4yjWthTgmfp7IiPSmLEMbackMDSL3lT8z+umEF35GVdJCkzR+aIoFRhiPP0e97lmFMTYEkI1t7diOiSaULAZlWwI3uLLy6RVq3pn1drdeaV+ncdRREfoGJ0iD12iOrpFDdREFEn0jF7Rm6OdF+fd+Zi3Fpx85hD9gfP5A8AdkF8=</latexit>

t1
<latexit sha1_base64="Ynqb8X5/kiOyHX7xonGGLyOZ6hM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB+x7/XLFrbpzkFXi5aQCORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+anTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPYzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2RC85ZdXSatW9S6qtfvLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifPwbmjaA=</latexit>

t2
<latexit sha1_base64="QkhZeJ8/5ytPGp7NPNhyJyw1LQM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB+zX+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn81PnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTsiF4yy+vklat6l1Ua/eXlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwAIao2h</latexit>

t5
<latexit sha1_base64="mgXLGzl1DEpB4E7EEWkAFoGOnoQ=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklV9Fj04rGi/YA2lM120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpAXuXvVLZrbgzkGXi5aQMOeq90le3H7M04gqZpMZ0PDdBP6MaBZN8UuymhieUjeiAdyxVNOLGz2anTsipVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPYzoZIUuWLzRWEqCcZk+jfpC80ZyrEllGlhbyVsSDVlaNMp2hC8xZeXSbNa8c4r1fuLcu0mj6MAx3ACZ+DBFdTgDurQAAYDeIZXeHOk8+K8Ox/z1hUnnzmCP3A+fwAM9o2k</latexit>

t3
<latexit sha1_base64="YA629ranIPUmZ/dNXTUQvIjXXco=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0laQY9FLx4r2lpoQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/DEY38z8xyeujYjVA04S7kd0qEQoGEUr3WO/3i9X3Ko7B1klXk4qkKPZL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwys/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbRrVa9erd1dVBrXeRxFOIFTOAcPLqEBt9CEFjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEJ7o2i</latexit>

t4
<latexit sha1_base64="kvzirz6aNm1jEPuCbgidbQ+gP1A=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt6LHoxWNF+wFtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj25nffuLaiFg94iThfkSHSoSCUbTSA/Zr/VLZrbhzkFXi5aQMORr90ldvELM04gqZpMZ0PTdBP6MaBZN8WuylhieUjemQdy1VNOLGz+anTsm5VQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPYzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2hC85ZdXSata8S4r1ftauX6Tx1GAUziDC/DgCupwBw1oAoMhPMMrvDnSeXHenY9F65qTz5zAHzifPwtyjaM=</latexit>

t5
<latexit sha1_base64="mgXLGzl1DEpB4E7EEWkAFoGOnoQ=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklV9Fj04rGi/YA2lM120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpAXuXvVLZrbgzkGXi5aQMOeq90le3H7M04gqZpMZ0PDdBP6MaBZN8UuymhieUjeiAdyxVNOLGz2anTsipVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPYzoZIUuWLzRWEqCcZk+jfpC80ZyrEllGlhbyVsSDVlaNMp2hC8xZeXSbNa8c4r1fuLcu0mj6MAx3ACZ+DBFdTgDurQAAYDeIZXeHOk8+K8Ox/z1hUnnzmCP3A+fwAM9o2k</latexit>

t4
<latexit sha1_base64="kvzirz6aNm1jEPuCbgidbQ+gP1A=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt6LHoxWNF+wFtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj25nffuLaiFg94iThfkSHSoSCUbTSA/Zr/VLZrbhzkFXi5aQMORr90ldvELM04gqZpMZ0PTdBP6MaBZN8WuylhieUjemQdy1VNOLGz+anTsm5VQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPYzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2hC85ZdXSata8S4r1ftauX6Tx1GAUziDC/DgCupwBw1oAoMhPMMrvDnSeXHenY9F65qTz5zAHzifPwtyjaM=</latexit>

t3
<latexit sha1_base64="YA629ranIPUmZ/dNXTUQvIjXXco=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0laQY9FLx4r2lpoQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/DEY38z8xyeujYjVA04S7kd0qEQoGEUr3WO/3i9X3Ko7B1klXk4qkKPZL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwys/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbRrVa9erd1dVBrXeRxFOIFTOAcPLqEBt9CEFjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEJ7o2i</latexit>

t2
<latexit sha1_base64="QkhZeJ8/5ytPGp7NPNhyJyw1LQM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB+zX+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn81PnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTsiF4yy+vklat6l1Ua/eXlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwAIao2h</latexit>

t1
<latexit sha1_base64="Ynqb8X5/kiOyHX7xonGGLyOZ6hM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB+x7/XLFrbpzkFXi5aQCORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+anTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPYzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2RC85ZdXSatW9S6qtfvLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifPwbmjaA=</latexit>

u1
<latexit sha1_base64="owU612ss0kt/beWsTZ0WWxk+PTU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPa9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1buo1u4vK/WbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAIbI2h</latexit>

u2
<latexit sha1_base64="3KK009f1vFrlgPwst9msQx+MaaY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh7Rf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEJ8I2i</latexit>

u3
<latexit sha1_base64="DDWbuH+aNlcNaNhpX9SwMVfPK7s=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0laQY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+7Rf75crbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKuVb16tXZ3UWlc53EU4QRO4Rw8uIQG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcLdI2j</latexit>

u4
<latexit sha1_base64="fPwldOuaqJ8R+kDAtXk0VN3U1EA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt6LHoxWNF+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/PbT6g0j+WjmSToR3QoecgZNVZ6SPu1fqnsVtw5yCrxclKGHI1+6as3iFkaoTRMUK27npsYP6PKcCZwWuylGhPKxnSIXUsljVD72fzUKTm3yoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2naEPwll9eJa1qxbusVO9r5fpNHkcBTuEMLsCDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gAM+I2k</latexit>

u5
<latexit sha1_base64="fmU73P7UnDsm7fbbbJI0EE9pnb8=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklV9Fj04rGi/YA2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9pL3LXqnsVtwZyDLxclKGHPVe6avbj1kaoTRMUK07npsYP6PKcCZwUuymGhPKRnSAHUsljVD72ezUCTm1Sp+EsbIlDZmpvycyGmk9jgLbGVEz1IveVPzP66QmvPYzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2naEPwFl9eJs1qxTuvVO8vyrWbPI4CHMMJnIEHV1CDO6hDAxgM4Ble4c0Rzovz7nzMW1ecfOYI/sD5/AEOfI2l</latexit>

u1
<latexit sha1_base64="owU612ss0kt/beWsTZ0WWxk+PTU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPa9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1buo1u4vK/WbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAIbI2h</latexit>u1

<latexit sha1_base64="owU612ss0kt/beWsTZ0WWxk+PTU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPa9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1buo1u4vK/WbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAIbI2h</latexit>

u1
<latexit sha1_base64="owU612ss0kt/beWsTZ0WWxk+PTU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPa9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1buo1u4vK/WbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAIbI2h</latexit>

u1
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Figure 4.3: Illustration of sampling and representation of sub-cascade graph se-
quence.

process could be generalized as performing a random walk over a cascade graph
similar to DeepWalk which, however, fails to consider the dynamics of cascades – one
of the most important factor in information diffusion. DeepHawkes [9] transforms
the cascade graph into a set of diffusion paths according to the diffusion time, each
of which depicts the process of information propagation between users within the
observation time; however, this method ignores the structural information of cascade
graphs.

Our approach samples the cascade graph Ci(t) to obtain a sequence of sub-cascade
graphs Gto

i which is used to represent cascades within the observation time to. Gto
i

is denoted as:
Gto
i =

{
gt1i , · · · , g

tj
i , · · ·

}
, tj ≤ to. (4.1)

The sampling process is illustrated in Figure 4.3, where each sub-cascade graph is
represented by an adjacency matrix: the rows correspond to the alphabetical order
of nodes’ labels (top to bottom) and the columns correspond to edges, as illustrated
above each instance of the adjacency matrix. The first sub-cascade graph in Gto

i only
contains one single node because it is the generator of the post mi, so we add a self-
connection for this initiator. Thus, Gto

i is represented with a sequence of adjacency
matrices Ato

i =
{
at1i , · · · , a

tj
i , · · ·

}
.

4.3.2 Laplacian Transformation of Cascades

Classical GCN methods cannot be applied for cascades modeling since they focus on
fixed and undirected graphs which, in turn, cannot consider the temporal informa-
tion of cascade evolution. In contrast, cascade graphs in our problem are dynamic
directed trees (DATs, which belong to dynamic directed graphs). As mentioned
above, the graph Laplacian for an undirected graph is a symmetric difference oper-
ator L = D−W, where D is the degree matrix and W is the weight matrix of the
graph, which cannot be adapted in DAGs.

33



4. LEARNING STRUCTURAL-TEMPORAL FEATURES FOR CASCADES
MODELING

Recently, Li et al. [115] propose DCRNN to model the traffic flow as a diffusion
process on a fixed DAG (a directed sensor graph), and define a diffusion convolution
as:

y = gθ ∗ Gx =
K∑

k=0

(
θk,1

(
D−1
O W

)K
+ θk,2

(
D−1
I WT

)K)X

where D−1W is the random walk matrix used to replace Laplacian L̃ in Eq. (3.13)
This operation is actually a diffusion process convolution proposed by Atwood and
Towsley [116] where the diffusion process is modeled as Markov process and may
converge to a stationary distribution P ∈ Rn×n after many steps, and the ith row
Pi;: ∈ Rn represents the likelihood of diffusion from node vi.

In our settings, various cascades are different DATs, all of which require incorporat-
ing special structure and direction information rather than a single and fixed sensor
network in [115]. To overcome this challenge, we introduce Laplacian of cascade ∆c,
called CasLaplacian, for modeling the convolution operation over a single cascade
signal X as:

y = gθ ∗ GX =
K∑

k=0

θkTk

(
∆̃c

)
X (4.2)

where ∆̃c = 2
λmax

∆c − I is a scaled Laplacian.

Now we introduce the way of computing Laplacian of cascade ∆c, which can capture
special structural and directional characteristics of different cascades. For a directed
graph, we define the normalized directed Laplacian as:

L = I− Φ
1
2PΦ−

1
2 + Φ−

1
2PTΦ

1
2

2
, (4.3)

(cf. [117]) where P is a transition probability matrix, Φ is a diagonal matrix with
entries Φ (v, v) = φ (v), and φ = [φi]1≤i≤n is the column vector of the stationary
probabilities distribution of P.

However, such a symmetrical L can not capture the unique characteristic of the ran-
dom walk on the different cascades. For example, given a cascade with transition
probability matrix Pc, there exist cascades which have the same stationary distri-
bution matrix Pc, such that all these cascades have the same Laplacian matrix. To
solve this problem, we relied on Diplacian [118] which computes Laplacian of DAGs
as:

Γ = Φ
1
2 (I−P) Φ−

1
2 (4.4)

where the transition probability matrix P is defined as P = D−1W with the hy-
pothesis that the graph is strongly connected (SCGs) [118]. In contrast, our cascade
graphs are not SCGs. Thus, we define a transition probability matrix Pc of given
cascade graph as:

Pc = (1− α)
E
n

+ α
(
D−1W

)
, (4.5)
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where E ∈ Rn×n is an all–one matrix and α ∈ (0, 1) is an initial probability, used
to restrict the state transition matrix D−1W to be a strongly connected matrix
without 0 anywhere. Then the transition matrix Pc is irreducible, and has a unique
stationary probability distribution {φi|φi > 0, 1 ≤ i ≤ n}. The stationary distribu-
tion vector {φi} can be obtained by solving an eigenvalue problem φTPc = φT

subject to a normalized equation φT e = 1, where e ∈ Rn is an all-one vector.

Finally, we can compute CasLaplacian as:

∆c = Φ
1
2 (I−Pc) Φ−

1
2 . (4.6)

Relationship with GCN: We now explain the relationship between our directed
CasLaplacian and the normalized one in GCN, as well as the rationale behind
CasLaplacian.

A random walk on undirected graph G is a Markov chain defined on G with the
transition probability matrix P = D−1A, and there exists a unique stationary dis-
tribution {φ1, φ2, . . . , φn}. Let φ = [φi]1≤i≤n be the column vector of the stationary
probabilities, where φTP = φT . Note that, as for undirected graph, the normalized
Laplacian L can be transformed as:

L = D−
1
2 (D−A)D−

1
2 = D

1
2 (I−P)D−

1
2 . (4.7)

Also, the stationary probabilities φ of an undirected graph can be calculated as

φi =
di∑
k dk

=
di
d
, i = 1, 2, · · · , n, (4.8)

and Φ
1
2 =

√
diag(φ), where φ = [φ1, φ2, · · · , φn]T , which can be used to approximate

the degree matrix D:

L = D
1
2 (I−P)D−

1
2 ≈ Φ

1
2 (I−P) Φ−

1
2 . (4.9)

Algorithm 1 formalizes the process of constructing the Laplacian of cascades.

4.3.3 Structural and Temporal Modeling

We represent and model the cascade graph in a structural-temporal way. After
obtaining the adjacency representation of sub-cascade graph sequence Ato

i and the
Laplacian matrix ∆c for each cascade graph, CasCN turns to learn the structural
and temporal patterns via the combination of classical LSTM and GCN.

We leverage the RNNs to model the temporal dependence of diffusion – in particular,
using the Long Short-Term Memory (LSTM) [40], which is a stable and powerful
variant of RNNs. We replace the multiplications by dense matrices W with graph
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Algorithm 1: Laplacian of cascade.
Input: A cascade graph C, initial probability α.
Output: CasLaplacian–Laplacian of cascade ∆c.
1: Compute degree matrix D and weighted adjacency matrix W of a cascade

graph C.
2: Compute transition probability matrix Pc of cascade graph according to

Eq. (4.5) .
3: Solve the eigenvalue problem φTPc = φT subject to a normalized equation
φT e = 1 to get {φi}.

4: Φ = diag (φ).
5: Compute CasLaplacian ∆c according to Eq. (4.6).

convolutions to incorporate the structural information:

it = σ (Wi ∗ GXt + Ui ∗ Ght−1 + Vi � ct−1 + bi)

ft = σ (Wf ∗ GXt + Uf ∗ Ght−1 + Vf � ct−1 + bf )

ot = σ (Wo ∗ GXt + Uo ∗ Ght−1 + Vo � ct + bo)

(4.10)

where ∗G denotes the graph convolution defined in Eq.(4.2), signal Xt is the cascade
graph sequences Ato

i ∈ RdT×n×n, dT denotes the number of diffusion time steps of
post mi. We leverage Wi ∗ GXt to mean a graph convolution of signal Xt with
dh × n filters which are functions of the cascade Laplacian ∆c parametrized by
K Chebyshev coefficients. σ (·) is the logistic sigmoid function and it, ft,ot,b∗ are
respectively the input gate, forget gate, output gate and bias vector. The matrices
W ∈ RK×n×dh , U ∈ RK×dh×dh and V ∈ Rn×dh are the different gate parameters,
and n denotes the number of nodes in a cascade graph, and dh is the size of cell
states.

In particular, the memory cell ct is updated by replacing the existing memory unit
with a new cell ct as:

ct = ft � ct−1 + it � tanh (Wc ∗ GXt + Uc ∗ Ght−1 + bc) (4.11)

The hidden state is then updated by

ht = ot � tanh (ct) (4.12)

where tanh (·) refer to the hyperbolic tangent function, and � is the entry-wise
product.

4.3.4 Cascades Size Prediction

Previous works [30, 49] have shown the existence of time decay effect – i.e., that
the influence of a node on other nodes will decrease over time. Various time de-
cay functions have been defined: (1) power-low functions φp (τ) = (τ + c)−(1+θ); (2)

36



4.3 CasCN: Information diffusion prediction via recurrent cascades
convolution

exponential functions φe (τ) = e−θτ ; (3) Rayleigh functions φr (τ) = e−
1
2
θτ2 , where

τ = tj − ti and ti ≤ tj. In practice, the choice of such function varies for different
scenarios, e.g., exponential functions are suitable for financial data while Rayleigh
functions perform better for epidemiology and power law functions are more appli-
cable in geophysics and social networks [119, 120].

However, all the above time-decay functions have the limitation of parametric as-
sumption which is greatly influenced by assumed prior distribution (and intuition).
In this chapter, we employ a non-parametric way to define the time decay function.
More specifically, we assume that the time window of the observed cascade is [t1, to],
and then split the time window into l disjoint time intervals {[t1, t2), [t2, t3), · · · ,
[tl−1, tl = to]} to approximate the continuous time window by discrete time intervals.
It not only allocates each diffusion time a corresponding interval, but also allows
us to learn the discrete variable of time decay effect λ = {λm,m ∈ (1, 2, · · · , l)}.
Therefore, we define a function to compute the corresponding time interval m of
time decay effect for a re-tweet at time tj:

m = b(tj − t1)

dto/le
c (4.13)

Where t0 is the time of original post, l is the number of time intervals, b· c and d· e
are the floor and ceiling operations.

For a cascade graph Ci(to) regarding post mi within the observation time window
[t1, to], we get the hidden states {h1, · · · ,ht, · · · ,hdT } and we multiply a time decay
effect λm for each hidden state to obtain

{
h

′

1, · · · ,h
′

t, · · · ,h
′

dT

}
by:

h
′

t = λmht (4.14)

summed up to get the representation vector for the cascade graph Ci(t):

h
′
(Ci(to)) =

dT∑

t=1

h
′

t (4.15)

The last component of CasCN is a multi-layer perceptron (MLP) with one final
output unit. Given the representation h

′
(Ci(to)), we calculate the increment size

∆Si as:
∆Si = f (Ci(to)) = MLP

(
h

′
(Ci(to))

)
(4.16)

Our ultimate task is to predict the increment size for a fixed time interval, which
can be done by minimizing the following loss function:

`
(

∆Si,∆S̃i

)
=

1

P

P∑

i=1

(
log ∆Si − log ∆S̃i

)2

(4.17)
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where P is the number of posts, ∆Si is the predicted incremental size for post mi,
and ∆S̃i is the ground truth.

The process of training CasCN is shown in Algorithm 2.

Algorithm 2: Learning with CasCN.
Input: sequences of adjacency matrices of cascade graphs A = {Ato

1 ,A
to
2 , · · · }

within an observation time to; Laplacian sequence for cascade graphs
∆ = {∆1

c , ∆
2
c , · · · }, batch size b.

Output: Increment sizes ∆S = {∆S1,∆S2, · · · } of cascades.
1: repeat
2: b = 1, 2, ...
3: for adjacency matrix sequence Ato

i and corespoding Laplacian ∆i
c in batch b

do
4: Compute the Structural and Temporal information ht of cascade Ci(to)

according to Eq. (4.10) - Eq. (4.12).
5: Multiply each hidden state ht with time decay effect λm to get h

′

t,
according to Eq. (4.14).

6: h
′
(Ci(to))← Aggregate

({
h

′

t, t ∈ [1, dT ]
})

7: Feed h
′
(Ci(to)) into MLP to compute increment size ∆Si of cascade,

according to Eq. (4.16)
8: Use Adaptive moment estimation (Adam) to optimize the objective

function in Eq. (4.17) and update parameters in Eq. (4.10), (4.11), (4.13)
9: end for
10: until convergence;

4.4 Evaluation

In this section, we compare the performance of our proposed model CasCN with
several state-of-the-art approaches that we use as baselines, and a few variants of
CasCN itself, for cascade size prediction using two real-world datasets. For re-
producability of our results, supplemental materials, implementation details and
instructions are available online at https://github.com/ChenNed/CasCN.

4.4.1 Datasets

We evaluate the effectiveness and generalizability of CasCN on two scenarios of
information cascade prediction, and compare with previous works such as DeepCas
and DeepHawkes – using publicly available datasets. The first one is to forecast the
size of re-tweet cascades on Sina Weibo and the second one is to predict the citation
count of papers in Citation dataset HEP-PH. The statistics of the datasets as shown
in Table 4.2.
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Table 4.2: Statistics of datasets

Data sets Sina Weibo HEP-PH
posts-papers All 119,313 34,546

edges All 8,466,858 421,578
to 1hour 2hours 3hours 3years 5years 7years

cascades
train 25,145 29,515 31,780 3,458 3,467 3,478
val 5,386 6,324 6,810 837 839 848
test 5,386 6,324 6,810 837 839 848

Avg.
nodes

train 28.58 29.30 29.48 5.27 5.27 5.27
val 28.71 29.47 29.69 4.32 4.93 4.27
test 29.11 29.77 30.21 4.91 4.27 4.28

Avg.
edges

train 27.78 28.54 28.74 4.27 4.27 4.27
val 27.91 28.70 28.94 3.31 3.93 3.95
test 28.32 29.01 29.48 3.91 3.27 3.28

• Sina Weibo1: The first dataset is Sina Weibo, a popular Chinese microblog
platform 2, provided in [9] – which collects all original posts generated on June 1st,
2016, and tracks all re-tweets of each post within the next 24 hours. It includes
119, 313 posts in total. Figure 4.5a shows that the popularity of cascades saturates
after 24 hours since publishing. Figure 4.4a shows the distribution of cascade size
(the number of re-tweets of each post). We follow similar experimental setup as in
DeepHawkes [9] – i.e., the length to of the observation time window being to = 1

hour, 2 hours and 3 hours, and the cascades with the publication time before 8 am
and after 6 pm being filtered out. Finally, we sort the cascades in terms of their
publication time after preprocessing and choose the first 70% of cascades for training
and the rest for validation and testing via even split.

• HEP-PH3: HEP-PH dataset is from the e-print arXiv and covers papers in the
period from January 1993 to April 2003 (124 months). If a paper i cites paper j,
the graph contains a directed edge from i to j. The data was originally released as a
part of 2003 KDD Cup [121]. For the observation window, we choose to = 3, 4 and
5 years corresponding to the year that the popularity reaches about 50%, 60% and
70% of the final size, as shown in Figure 4.5b. Then, we pick up 70% of cascades
for training and the rest for validation and testing via even split.

4.4.2 Baselines

We have already seen that existing relevant methods for information cascade pre-
diction are mainly falling into three categories: (1) Handcrafted feature-based ap-
proaches, (2) Point process-based approaches, and (3) Deep learning-based ap-
proaches. Therefore, we select several methods in each group as baselines. As

1https://github.com/CaoQi92/DeepHawkes
2http://www.weibo.com
3http://snap.stanford.edu/data/cit-HepPh.html
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Figure 4.4: Distribution of cascades size, the X axis is the size of cascades, and the
Y axis is the number of cascades corresponding to the different sizes.
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Figure 4.5: Percentage distribution between time and the number of cascades

deep learning methods, we select three representative methods: DeepCas [8], Deep-
Hawkes [9] and Topo-LSTM [35]. Note that DeepHawkes is also regarded as a
successful implementation of Hawkes process – i.e., point process-based approaches.
Furthermore, we include a network representation method to enrich our experiment
– Node2Vec. We also introduce a baseline named LIS [13] from diffusion model-
based approaches, which used to model cascades dynamics. The baselines and their
implementation details are as follows:

Feature-based: Recent studies [1, 39, 49, 56] show that structural features, tem-
poral features, and other features (e.g., content features and user features) are infor-
mative for information cascade prediction. In our implementations, we include all
features mentioned above that could be generalized across datasets. These features
include:

Structural features : We count the number of leaf nodes, the average degree (both
in-degree and out-degree), average and max length of retweet path of cascades as
measures of structural features.
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Temporal features : We extract the time elapsed since the initial post for each retweet,
the cumulative growth and incremental growth every 10 minutes for Sina Weibo
and every 31 days for HEP-PH, for the reason that the time in Sina Weibo can be
accurate to minutes, and the unit in HEP-PH is a day.

Other features : We use node ids as node identity feature.

After extracting all the cascade features, we use two models, i.e., Feature-linear
and Feature-deep, to perform information cascade prediction. The label (incre-
mental size of cascade) has been logarithmically transformed before feeding into
models, so that the baseline of feature-based methods optimizes the same loss func-
tion as CasCN.

• Feature-linear: We feed the features into a linear regression model with
L2 regularization. The details of the L2-coefficient setting can be found in
Section 4.4.5.

• Feature-deep: For fairness of comparison of the performance of the feature-
based approaches with CasCN, we propose a strong baseline denoted as Feature-
deep, which also uses a MLP model to predict the incremental size of cascade
with hand-craft feature vectors.

LIS [13]: LIS is a diffusion model-based approach. This method models the cascade
dynamics by learning two low-dimensional latent vectors for messages from observed
cascades to capture their influence and susceptibility, respectively.

Node2Vec [122]: Node2Vec is selected as a representative of node embedding meth-
ods, and can be replaced with any other embedding methods, e.g., DeepWalk [123]
and LINE [124]. We conduct random walks from cascade graphs and generate em-
bedding vectors for each node. Next, the embeddings of all nodes in a cascade graph
are fed into MLP to make predictions.

DeepCas [8]: The first deep learning architecture for information cascades predic-
tion, which represents a cascade graph as a set of random walk paths and piped
through bi-directional GRU neural network with an attention mechanism to predict
the size of the cascade. It mainly utilizes the information of structure and node
identities for prediction.

DeepHawkes [9]: DeepHawkes model integrates the high prediction power of end-
to-end deep learning into interpretable factors of Hawkes process for popularity
prediction. The marriage between deep learning technique and a well-established
interpretable process for modeling cascade dynamics bridges the gap between pre-
diction and understanding of information cascades. This method belongs to both
point process-based approaches and deep learning-based approaches.

Topo-LSTM [35]: A novel topological recurrent neural network which is a directed
acyclic graph-structured (DAG-structured) RNN takes dynamic DAGs as inputs and
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generates a topology-aware embedding for each node in the DAGs as outputs. The
original application of Topo-LSTM is to predict node activations. We replace the
logistic classifier in Topo-LSTM with a diffusion size regressor to predict the size of
cascades.

4.4.3 Variants of CasCN

In addition to the comparison with existing baselines, we also derive a few variants
of CasCN:

CasCN-GL: CasCN-GL replaces the structural-temporal modeling component of
CasCN with the combination of GCN and LSTM for modeling structural and tem-
poral patterns, respectively.

CasCN-GRU: This method replaces the LSTM of CasCN with GRU. Similar to
LSTM, CasCN with GRUmodels structural-temporal information using extra gating
units, but without separated memory cells. Formally, we update the state of ht by
a linear interpolation between the last state ht−1 and the candidate state h̃t.

CasCN-Path: In CasCN-Path, we use random walks to represent a cascade graph
(shown in Figure 4.6) rather than sub-cascade graphs used in CasCN. Therefore, we
first embed users into a 50-dimensional space to represent the latent (re-tweeting)
relationships among users in a cascade graph. Next, we use random walks to sample
sufficient number of sequences for all cascade graphs. Finally, we feed them to
CasCN and predict the size of information cascades.

CasCN-Undierected: In CasCN-Undierected, we regard the cascade graphs as
undirected graphs and calculate the normalized Laplacian according to L = I −
D−

1
2WD−

1
2 .

CasCN-Time: In CasCN-Time, we do not consider the time decay effect of re-
tweeting.
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Figure 4.6: Sampling the cascade graph as random walks.
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4.4.4 Evaluation Metric

Following the existing works, we choose standard evaluation metrics – MSLE (mean
square log-transformed error) in our experiments [8, 9, 35]. Note that the smaller
MSLE, the better the prediction performance. Specifically, MSLE is the metric for
evaluating the linking accuracy, defined as:

MSLE =
1

P

P∑

i=1

(
log ∆Si − log ∆S̃i

)
(4.18)

where P is the total number of posts, ∆Si is the predicted incremental size for post
mi, and ∆S̃i is the ground truth.

4.4.5 Hyper-parameters

Models mentioned above involve several hyper-parameters. For example, L2 coeffi-
cient in Feature-linear are chosen from {1, 0.5, 0.1, 0.05, ..., 10−8}. For Feature-
deep, parameters are similar to deep learning-based approaches.

For LIS, we follow the work in [13], the maximum number of epochs M is 1× 105.
We use random values to initialize regularization parameters γI and γS.

For Node2Vec, we follow the work in [122], i.e., parameters p and q are selected
from {0.25, 0.50, 1, 2, 4}, the length of walk is chosen from {10, 25, 50, 75, 100}, and
the number of walks per node varies from {5, 10, 15, 20}.

For DeepCas, DeepHawkes and Topo-LSTM, we follow the setting of Deep-
Cas [8], where the embedding dimensionality of users is 50, the hidden layer of each
GRU has 32 units and the hidden dimensions of the two-layer MLP are 32 and 16,
respectively. The learning rate for user embeddings is 5×10−4 and the learning rate
for other variables is 5×10−3. The batch size for each iteration is 32 and the training
process will stop when the loss of validation set does not decline for 10 consecutive
iterations. The time interval of DeepHawkes is set to 10 minutes for Sina Weibo
and 2 months for HEP-PH. For CasCN , the basic parameters (e.g., learning rate
and batch size, etc.) are the same as above deep learning-based approaches, except
that we choose the support K = 2 of GCN and calculate the max eigenvalue λmax
of the cascade Laplacian.

4.4.6 Overall performance

Table 4.3 summarizes the performance comparison among CasCN and baselines on
both Sina Weibo dataset and HEP-PH dataset. In general, the proposed CasCN
model performs relatively well on information cascade prediction for both datasets
(post re-tweeting and paper citing). It outperforms traditional approaches, e.g.,
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Table 4.3: Overall performance comparison of information cascades prediction among
different approaches. M: model; to: observation time.

Datasets Weibo Dataset HEP-PH
Metric MSLE

M
to 1 hour 2 hours 3 hours 3 years 5 years 7 years

Features-deep 3.680 3.361 3.296 1.893 1.623 1.619
Features-linear 3.501 3.435 3.324 1.715 1.522 1.471

LIS 3.731 3.621 3.457 2.144 1.798 1.787
Node2Vec 3.795 3.523 3.513 2.479 2.157 2.096
DeepCas 2.958 2.689 2.647 1.765 1.538 1.462

Topo-LSTM 2.772 2.643 2.423 1.684 1.653 1.573
Deep-Hawkes 2.441 2.287 2.252 1.581 1.470 1.233

CasCN 2.242 2.036 1.910 1.353 1.164 0.851

Table 4.4: Performance comparison between CasCN and its variants. M: model; to:
observation time.

Datasets Weibo Dataset HEP-PH
Metric MSLE

M
to 1 hour 2 hours 3 hours 3 years 5 years 7 years

CasCN 2.242 2.036 1.916 1.35 1.164 0.851
CasCN-GRU 2.288 2.052 1.965 1.347 1.166 0.874
CasCN-Path 2.557 2.483 2.404 1.664 1.437 1.332
CasCN-GL 2.312 2.028 1.942 1.364 1.357 1.302

CasCN-Undierected 2.309 2.132 1.978 1.562 1.425 1.118
CasCN-Time 2.652 2.547 2.363 1.732 1.512 1.451

feature-based and point process-based approaches, and it is superior to the state-of-
the-art deep learning methods, with a statistically significant drop of MSLE.

The performance gap between these Feature-deep and Feature-linear is quite small
meaning that if we have a set of representative features of information cascades,
deep learning does not always perform better than traditional predicting methods.
However, as discussed earlier, the performance of such methods heavily depends
on hand-crafted features which are difficult to select for different scenarios in prac-
tice.

For embedding methods, Node2Vec [122] does not perform well. Through the com-
parison with DeepCas [8], it proves that only taking the node embeddings as the
graph representation is not enough and is not comparable with representing the
graph as a set of random paths.

DeepCas, as the first proposed end-to-end deep learning method for cascade size
prediction, exhibits better performance than feature-based approaches and diffusion
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model-based approaches. But it still way worse than other deep learning based
approaches, because of failing to consider temporal information and the topological
structure of cascade graphs. The latest method, Topo-LSTM, also lacks time feature,
so that it performs a little bit worse than DeepHawkes and our model. DeepHawkes,
while successful in modeling cascades in a deep generative way, it does not perform
the best due to its weak ability to learn structural information.

Finally, our proposed CasCN model, which purely relies on and fully explores struc-
tural and temporal information, significantly outperforms all baselines. For exam-
ple, it achieves excellent prediction results with MSLE = 1.916 when observing for
3 hours in Sina Weibo and MSLE = 0.851 when observing for 7 years in HEP-PH,
respectively. It reduces the prediction error by 15.2% and 30.9% comparing to the
second best DeepHawkes.

When comparing methods with different observation time to, we clearly see a general
pattern that the larger the to, the easier to make a good prediction. It is mainly
because of the fact that longer to reveals more information for prediction.

4.4.7 Ablation study

To investigate and demonstrate the effectiveness of each component of our model
(e.g., to understand the effect of the sampling part of CasCN ), we present five
variants of CasCN, where all are built upon the original CasCN model with some
components changed. Their details can be found in Section 4.4.3.

The experimental results are shown in Table 4.4, from which we can see that our
original CasCN leads to a certain reduction of prediction error when compared with
other variants. From the comparison to CasCN-Undierected and CasCN-Time, we
find that directionality and time decay effect are proved to be indispensable for
cascade size prediction. Similarly, CasCN-Path brings a remarkable decrease of the
prediction performance, which tells the necessity and effectiveness of sampling in
CasCN. This indicates that the way to sample cascade graph as sub-cascade graph
sequence can better reflect the dynamics of the cascade structure and the topological
structure of each diffusion time.

In summary, sub-graphs sampling and structural-temporal modeling are critical
components in CasCN, both of which essentially improve the performance of in-
formation cascade prediction as presented in the results.

4.4.8 Parameter analysis in CasCN

We now turn to investigating whether the parameters of CasCN have impact on the
performance of cascade size prediction. The results are summarized in Table 4.5.
We consider two vital parameters of graph convolutional kernel, i.e., the Chebyshev
coefficient K and the largest eigenvalue λmax of the Laplacian matrix ∆c. For the
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Table 4.5: Analysis of parameter impact on performance.

Dataset Weibo Dataset
Metric MSLE

Parameter
to 1 hour 2 hours 3 hours

K=1 2.284 2.061 1.932
K=2 2.242 2.036 1.910
K=3 2.312 2.078 1.939

λmax ≈ 2 2.418 2.217 2.046
λmax = real 2.242 2.036 1.910
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Figure 4.8: Impact of smaller-size observations.

Chebyshev coefficients K we selected from {1, 2, 3}. To obtain λmax, we have two
ways: the first is to approximate it as λmax ≈ 2, and the second is to compute
the exact value of λmax for each cascade graph. Table 4.5 shows that CasCN with
K = 2 can achieve better performance than K=1 and 3. And in Figure 4.7, the
validation loss in each epoch steadily declines. There is no evidence showing that
a larger or smaller K is better than a median one. Further, bigger K will increase
the computational cost. For the value of λmax, precise values can lead to better
prediction results at a higher computational cost.
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We also investigated the performance of CasCN when the observed cascades are
small – e.g., the size of the cascades is within 10, 20. Figure 4.8a gives the statistics
of Weibo dataset illustrating the average cascade size increasing with time. Fig-
ure 4.8b shows that the MSLE results for various size decrease with training epochs.
Apparently, the larger the size of the observed cascade, the lower the MSLE value
CasCN achieves.

4.4.9 Discussions on feature learning
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Figure 4.9: Feature visualization. Figure (a) and (b) are learned representations by
CasCN.

Finally, we discuss and demonstrate the capability of CasCN on feature learning in a
visual way. We use the latent representation of each cascade graph Ci(to) : h

′
(Ci(to))

to plot a heatmap (as shown in Figure 4.9). The value in each dimension corresponds
to some implicit or explicit features related to predicting the cascade size. Figure 4.9
tells us that the latent representation varies with cascade size. And surprisingly,
there exists a clear pattern separation between outbreak (larger cascades) and non-
outbreak (smaller) cascades, which indicates that CasCN is able to learn a good
latent representation of cascades with different sizes and thus can be applied for
outbreaking prediction.

Next, we try to understand/interpret the importance of some hand-crafted features
in cascade size prediction. First, we use t-SNE [125] to project the vector represen-
tation summarized in h

′
(Ci(to)) for the cascade graph Ci(to) to one data point in a

2-D space. Note that cascade graphs with similar vector representations are placed
closely. Second, we color each data point (transformed from a cascade graph) using
different strategies, such as based on the value of a certain feature f (e.g., number
of leaf nodes, mean time, etc.), or the true increment size (the ground-truth label).
The distribution of colors suggests a connection between the learned representations
and network properties. That is, if a colored plot based on a certain feature f is
well correlated with that of the true increment size, this feature is positively useful
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(a) f : Leaf nodes plot for Weibo (b) f : Leaf nodes plot for HEP-PH

(c) f : Mean time plot for Weibo (d) f : Mean time plot for HEP-PH

(e) Increment size plot for Weibo (f) Increment size plot for HEP-PH

Figure 4.10: Feature visualization. In Figure (a) - (f), we layout the cascade graphs
as data points in the test set to a 2-D space using t-SNE. Every layout is colored using
hand-crafted network properties or the ground-truth (captioned “f : feature”).
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for cascade size prediction. Take the Weibo dataset as an example: Figure4.10a
and 4.10c have similar color distributions with the true increment size 4.10e – we
believe that leaf nodes and mean time are two important features for cascade size
prediction.

4.5 Summary

In this chapter we proposed a novel deep learning based framework – CasCN. It is
an end-to-end modeling framework for cascade growth prediction that does not rely
heavily on feature engineering and can be easily generalized; enabling the informa-
tion cascade prediction by exploiting both structural and temporal information. The
CasCN model can learn a better latent representation for cascade graph with less
information, using structural and temporal information of cascades within a deep
learning framework. Incorporating the directionality of cascades and time decay
effect further improves the prediction performance. Our experiments conducted on
two scenarios, i.e., forecasting the size of re-tweeting cascades in Sina Weibo and
predicting the citation of papers in HEP-PH, demonstrate that CasCN outperforms
various state-of-the-art methods.
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Chapter 5

Extracting Multi-scale Information
for Cascades Modeling

5.1 Chapter Overview

Following the successes of deep learning methods in many fields, recently researchers
have developed various neural network-based models to extract diverse features from
the cascade graph that can be used for cascade prediction. For example, researchers
have leveraged RNNs and attention mechanisms to automatically learn the cascade’s
temporal characteristics in a sequential learning manner by sampling the cascades
as random walks or diffusion paths [8, 9, 35, 36]. These approaches, however, fail
to capture topological structure features and the dynamic changes of information
diffusion. Later studies [10, 69] introduce graph embedding methods to handle
the structural diffusion learning problem, and have achieved promising results in
cascade prediction. Despite the significant progress made by recent deep learning-
based approaches, currently they are still confronted with several limitations:

(L1) Lack of efficient ways to sample cascade graphs. Most of the existing
studies try to decompose a cascade graph into a bag of nodes [8] or denote it as a set
of diffusion paths [9]. These methods either ignore the structural information or fail
to capture the time-evolving structure of the cascade. CasCN [10] breaks down the
original cascade graph into a sequence of sub-graphs based on timestamps, which
may introduce bias and increase computation cost because there is a large number
of timestamps in the diffusion process.

(L2) Incomplete structural feature extraction. Structural features are demon-
strated as one of the most powerful features in information cascade prediction [10,
69]. Existing works not only capture nodes’ first-order information but also take the
edges’ directional information into consideration. However, they still fail to capture
long-distance message passing between nodes and nodes’ position information in the
cascade graph.

51



5. EXTRACTING MULTI-SCALE INFORMATION FOR CASCADES
MODELING

(L3) Absence of feature-level fusion. After obtaining different features from the
cascade graph, e.g., temporal and structural features, most of the current works try
to directly concatenate them and then fed them into a fully connected layer to make
predictions [8, 9, 10]. However, different features play different roles in information
cascades prediction, which necessitates a more fine-grained feature fusion that would
facilitate predictions.

To overcome the limitations mentioned above, we first define multi-scale informa-
tion for cascade graph, including (1) direction-scale, representing the propagating
direction of the information between nodes; (2) high-order-scale, which is the higher-
order interactions between the nodes; (3) position-scale, which means the sequen-
tial/position information of each node (i.e., the emerging time of each node in the
diffusion); and (4) dynamic-scale, which is the dynamic information captured from
the evolving sub-graph sequence. Then, we propose MUlti-scale Cascades model
(MUCas) – a novel framework for modeling the information cascades and predicting
the increment size of information items. MUCas first employs time interval-aware
sub-cascade graph sampling method, which decomposes the observed cascade graph
into a sequence of sub-cascade graphs based on disjoint time intervals. And then it
uses a multi-scale graph capsule network and an influence attention to learn and fuse
the multi-scale information to form a unique cascade representation for popularity
prediction.

We make the following contributions:

• Efficient sampling method (L1). We propose a novel cascade sampling
method to sample sub-cascade graphs based on disjoint time-intervals. This
method can significantly decrease the number of required sub-cascade graphs
and eliminate the bias in processing the dynamic-scale in cascade modeling.

• Multi-scale information learning (L2). We design a multi-scale graph
network for modeling sub-cascade graphs that can capture direction-scale,
high-order-scale, and position-scale features of information diffusion jointly.
Simultaneously, we design a neural function to learn the influence-attention
between dynamic-scale sub-cascade graphs.

• Hybrid feature aggregation (L3). We propose a capsule-based hybrid
aggregation layer, which selectively aggregates the learned multi-scale features
in a more fine-grained way, i.e., from order-level and node-level to graph-level.

• Comprehensive evaluations. We conducted extensive experiments on two
benchmark datasets. The results demonstrate that MUCas can significantly
improve the prediction accuracy on cascade size prediction compared to the
state-of-the-art baselines.

This chapter is based on the following publication:
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Time line

Original post/paper

Observed retweets/citation

Future retweets/citation

Observed Field

Predict Field
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Figure 5.1: A Toy example of cascade graph.

• Chen, X., Zhang, F., Zhou, F., Bonsangue, M.: Multi-scale graph capsule
with influence attention for information cascades prediction. International
Journal of Intelligent Systems 37 (2022) 2584–2611

5.2 Preliminaries

As illustrated in Figure 5.1, we can find that (1) the cascade graph is dynamic, in
other words, cascade graph is evolving over time, i.e., new nodes will join in the
diffusion process with time elapsed that leads the cascade size growth. For example,
at t7, u7 joins in the diffusion process, and make the cascade size increase to 7;
(2) the message between two nodes, e.g., u1 and u2, can be only passed from u1 to
u2, i.e., the message passing in cascade graph is directed; (3) nodes are infected in
chronological order, and the sequential information can be regarded as the position
of each node in the cascade graph; (4) nodes with high influence will indirectly
infect the long-distance nodes, and the long-distance dependency is the higher-order
information of each node in a cascade graph, e.g., u1 to u6.

In this work, we define the aforementioned aspects as the multi-scale information,
including (1) dynamic-scale, (2) direction-scale, (3) position-scale, and (4)
high-order-scale of cascades.

Definition 9 Cascade Size Prediction – Given the observed cascade graph Ci(to)
of post mi, the goal of cascade size prediction is predicting mi’s incremental size ∆Si,
which is defined as ∆Si = |U tp | − |U to|, where tp and to are the prediction time and
the observation time, respectively; and |U t| denotes the number of nodes, in terms
of the size of cascade graph at time t.

5.3 MUCas: Multi-Scale Graph Capsule with Influ-
ence Attention for Information Cascades Pre-
diction

In this section, we present the proposed MUCas model, as well as its implementation
details and computational complexity.
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5. EXTRACTING MULTI-SCALE INFORMATION FOR CASCADES
MODELING

Table 5.1: Main notations used throughout this chapter.
Symbol Description

g
Tj
i ,A

Tj
i

A sub-cascade graph of Ci(to) at time interval Tj and it’s
adjacency matrix.

GTiv
i ,ATiv

i

A sequence of time interval-aware sub-cascade graphs of
Ci(to) and the corresponding adjacency matrices.

PE(u) Positional encoding.

S, Hl
A set of node embedding matrix, and a node embedding
matrix.

hm Order-level capsule.
nm Node-level capsule.
gi Graph-level capsule.
λj, αj Time decay effect, influence attention.

Overview. Figure 5.2 illustrates the overall framework and the main components
of MUCas, which consists of four major parts: (1) a time interval-aware sampling
layer to generate sub-cascade graphs from observed cascade graph; (2) MUG-Caps
to learn the direction-scale, position-scale and high-order-scale information from
sub-cascade graphs; (3) influence attention for dynamic-scale learning; and (4) a
prediction layer for cascade size prediction.

5.3.1 Time interval-aware Sub-cascade Sampling

Taking the observed cascade graph Ci(to) of a given post mi as input, the existing
works try to decompose the observed cascade graph into a bag of nodes [8] or denote
it as a set of diffusion paths [9]. Such methods either ignore both local and global
structural information or fail to consider the dynamic information. Recently, some
works such as CasCN [10] and VaCas [69] use a Time-aware sampling method to
decompose Ci(to) into a sequence of consecutive sub-cascade graphs based on the
diffusion timestamp, which has been proved to be an efficient way to treat the
observed cascade graph. However, the Time-aware sampling method still faces
some challenges: 1) the difference between the fine-grained sub-graphs is trivial,
which will introduce biases in dynamic modeling; and 2) too many sub-graphs would
significantly increase computation cost. Figure 5.3a shows a toy example of Time-
aware sampling method. Compared with the previous time step, each sub-graph
only contains one more node (e.g., t1 vs. t2). Finally, it would generate z sub-
graphs in total, where z is the number of varying time-stamps in the propagation
process, resulting a huge number of sub-graphs within a short time. However, the
difference between consecutive graphs are too trivial to be distinguished, which may
confuse the model to learn discriminative features of information propagation.

In order to address the aforementioned challenges, we propose a new Time interval-
aware sampling method, as shown in Figure 5.3b. This sampling method breaks
down the observed cascade graph Ci(to) into l discrete sub-cascade graphs GTiv

i =
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5.3 MUCas: Multi-Scale Graph Capsule with Influence Attention for
Information Cascades Prediction

(a) Time interval-aware Sampling

Time interval
Tj

<latexit sha1_base64="HOwun0L0gfliaDN/yoIJ9GUS3/c=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BLx4j5gXJEmYnvcmY2dllZlYIIZ/gxYMiXv0ib/6Nk2QPmljQUFR1090VJIJr47rfTm5tfWNzK79d2Nnd2z8oHh41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfmtJ1Sax7Juxgn6ER1IHnJGjZUe6r3HXrHklt05yCrxMlKCDLVe8avbj1kaoTRMUK07npsYf0KV4UzgtNBNNSaUjegAO5ZKGqH2J/NTp+TMKn0SxsqWNGSu/p6Y0EjrcRTYzoiaoV72ZuJ/Xic14bU/4TJJDUq2WBSmgpiYzP4mfa6QGTG2hDLF7a2EDamizNh0CjYEb/nlVdKslL2LcuX+slS9yeLIwwmcwjl4cAVVuIMaNIDBAJ7hFd4c4bw4787HojXnZDPH8AfO5w8sio25</latexit>

Tl
<latexit sha1_base64="HQZzklzpsjF/TtS1yqysaHz9Zwc=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rFiv6ANZbOdtEs3m7C7EUroT/DiQRGv/iJv/hu3bQ7a+mDg8d4MM/OCRHBtXPfbWVvf2NzaLuwUd/f2Dw5LR8ctHaeKYZPFIladgGoUXGLTcCOwkyikUSCwHYzvZn77CZXmsWyYSYJ+RIeSh5xRY6XHRl/0S2W34s5BVomXkzLkqPdLX71BzNIIpWGCat313MT4GVWGM4HTYi/VmFA2pkPsWipphNrP5qdOyblVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhjZ9xmaQGJVssClNBTExmf5MBV8iMmFhCmeL2VsJGVFFmbDpFG4K3/PIqaVUr3mWl+nBVrt3mcRTgFM7gAjy4hhrcQx2awGAIz/AKb45wXpx352PRuubkMyfwB87nDy+Sjbs=</latexit>

…

… …

g1
<latexit sha1_base64="c5cQmfTpJPRjxBlpi6lPoM6ytzg=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ac0pWy2m3bpZhN2J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//ci1EbF6wEnCexEdKhEKRtFKvo/8CYMwG077Xr9ccavuHGSVeDmpQI5Gv/zlD2KWRlwhk9SYrucm2MuoRsEkn5b81PCEsjEd8q6likbc9LL5zVNyZpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK97mVBJilyxxaIwlQRjMguADITmDOXEEsq0sLcSNqKaMrQxlWwI3vLLq6RVq3oX1dr9ZaV+k8dRhBM4hXPw4ArqcAcNaAKDBJ7hFd6c1Hlx3p2PRWvByWeO4Q+czx87gZHO</latexit>

T1
<latexit sha1_base64="yQBvVrSRtnzPtUd/7gwTLR5LpvU=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rFiv6ANZbPdtEs3m7A7EUroT/DiQRGv/iJv/hu3bQ7a+mDg8d4MM/OCRAqDrvvtrK1vbG5tF3aKu3v7B4elo+OWiVPNeJPFMtadgBouheJNFCh5J9GcRoHk7WB8N/PbT1wbEasGThLuR3SoRCgYRSs9Nvpev1R2K+4cZJV4OSlDjnq/9NUbxCyNuEImqTFdz03Qz6hGwSSfFnup4QllYzrkXUsVjbjxs/mpU3JulQEJY21LIZmrvycyGhkziQLbGVEcmWVvJv7ndVMMb/xMqCRFrthiUZhKgjGZ/U0GQnOGcmIJZVrYWwkbUU0Z2nSKNgRv+eVV0qpWvMtK9eGqXLvN4yjAKZzBBXhwDTW4hzo0gcEQnuEV3hzpvDjvzseidc3JZ07gD5zPH9YXjYA=</latexit>

Observed Cascade

(c) Influence
Attention

gl
<latexit sha1_base64="ZE53vdFLQt3Uh4Ts4a9bcqMypDw=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0mqoMeiF48V7Ac0pWy2k3bpZhN2J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVHJo8lrHuBMyAFAqaKFBCJ9HAokBCOxjfzvz2I2gjYvWAkwR6ERsqEQrO0Eq+j/CEQZgNp33ZL1fcqjsHXSVeTiokR6Nf/vIHMU8jUMglM6bruQn2MqZRcAnTkp8aSBgfsyF0LVUsAtPL5jdP6ZlVBjSMtS2FdK7+nshYZMwkCmxnxHBklr2Z+J/XTTG87mVCJSmC4otFYSopxnQWAB0IDRzlxBLGtbC3Uj5imnG0MZVsCN7yy6ukVat6F9Xa/WWlfpPHUSQn5JScE49ckTq5Iw3SJJwk5Jm8kjcndV6cd+dj0Vpw8plj8gfO5w+U7ZIJ</latexit>

Routing

Sum pooling

FC

… … …(b)
MUG
-Caps

…

Sub-cascade graph

(d) Prediction

ĝ1
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<latexit sha1_base64="gSt0JKIov90/d9W8H4OO2tZaO4w=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5JUQY9FLx4r2A9oQtlsN+3SzSbsTqQl5K948aCIV/+IN/+N2zYHbX0w8Hhvhpl5QSK4Bsf5tkobm1vbO+Xdyt7+weGRfVzt6DhVlLVpLGLVC4hmgkvWBg6C9RLFSBQI1g0md3O/+8SU5rF8hFnC/IiMJA85JWCkgV31xgQyD9gUgjAb5flADOyaU3cWwOvELUgNFWgN7C9vGNM0YhKoIFr3XScBPyMKOBUsr3ipZgmhEzJifUMliZj2s8XtOT43yhCHsTIlAS/U3xMZibSeRYHpjAiM9ao3F//z+imEN37GZZICk3S5KEwFhhjPg8BDrhgFMTOEUMXNrZiOiSIUTFwVE4K7+vI66TTq7mW98XBVa94WcZTRKTpDF8hF16iJ7lELtRFFU/SMXtGblVsv1rv1sWwtWcXMCfoD6/MH8yyVBw==</latexit>

↵
<latexit sha1_base64="+wSBPeL8nxBdvzPXA2qswhGhfpg=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3btZhN2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKrR6KZIT9csWtunOQVeLlpAI5Gv3yV28Q0zRi0lCBWnc9NzF+hspwKti01Es1S5COcci6lkqMmPaz+bVTcmaVAQljZUsaMld/T2QYaT2JAtsZoRnpZW8m/ud1UxNe+xmXSWqYpItFYSqIicnsdTLgilEjJpYgVdzeSugIFVJjAyrZELzll1dJq1b1Lqq1+8tK/SaPowgncArn4MEV1OEOGtAECo/wDK/w5sTOi/PufCxaC04+cwx/4Hz+AIzPjxw=</latexit>

…
c1

<latexit sha1_base64="1h0sJf5XlpX/TJMxR7yb/f63TP8=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0mqoMeiF48V7Ac0pWy2k3bpZhN2J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVHJo8lrHuBMyAFAqaKFBCJ9HAokBCOxjfzvz2I2gjYvWAkwR6ERsqEQrO0Eq+j/CEQZjxad/rlytu1Z2DrhIvJxWSo9Evf/mDmKcRKOSSGdP13AR7GdMouIRpyU8NJIyP2RC6lioWgell85un9MwqAxrG2pZCOld/T2QsMmYSBbYzYjgyy95M/M/rphhe9zKhkhRB8cWiMJUUYzoLgA6EBo5yYgnjWthbKR8xzTjamEo2BG/55VXSqlW9i2rt/rJSv8njKJITckrOiUeuSJ3ckQZpEk4S8kxeyZuTOi/Ou/OxaC04+cwx+QPn8wc1ZZHK</latexit>

cQ
<latexit sha1_base64="WZe7bcxENu7lYYntqBxNIdpotcg=">AAAB83icbVBNS8NAEN34WetX1aOXxSJ4KkkV9Fj04rEF+wFNKZvtpF262YTdiVhC/4YXD4p49c9489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqDk0ey1h3AmZACgVNFCihk2hgUSChHYzvZn77EbQRsXrASQK9iA2VCAVnaCXfR3jCIMz4tN/ol8puxZ2DrhIvJ2WSo94vffmDmKcRKOSSGdP13AR7GdMouIRp0U8NJIyP2RC6lioWgell85un9NwqAxrG2pZCOld/T2QsMmYSBbYzYjgyy95M/M/rphje9DKhkhRB8cWiMJUUYzoLgA6EBo5yYgnjWthbKR8xzTjamIo2BG/55VXSqla8y0q1cVWu3eZxFMgpOSMXxCPXpEbuSZ00CScJeSav5M1JnRfn3flYtK45+cwJ+QPn8wdl5ZHq</latexit>

�S
<latexit sha1_base64="l8ZPJN+KJEofkgBRZR4LfHsvsa0=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BPXiMaB6QLGF2MkmGzM6uM71CWPITXjwo4tXf8ebfOEn2oIkFDUVVN91dQSyFQdf9dnIrq2vrG/nNwtb2zu5ecf+gYaJEM15nkYx0K6CGS6F4HQVK3oo1p2EgeTMYXU/95hPXRkTqAccx90M6UKIvGEUrtTo3XCIl991iyS27M5Bl4mWkBBlq3eJXpxexJOQKmaTGtD03Rj+lGgWTfFLoJIbHlI3ogLctVTTkxk9n907IiVV6pB9pWwrJTP09kdLQmHEY2M6Q4tAselPxP6+dYP/ST4WKE+SKzRf1E0kwItPnSU9ozlCOLaFMC3srYUOqKUMbUcGG4C2+vEwalbJ3Vq7cnZeqV1kceTiCYzgFDy6gCrdQgzowkPAMr/DmPDovzrvzMW/NOdnMIfyB8/kDXr+Phw==</latexit>

…Q

…
!⇤<latexit sha1_base64="7XdEvc0j4DVehF027vnhAsX4cOo=">AAAB73icbVDLSgNBEJz1GeMr6tHLYBDEQ9iNgh6DXjxGMA9IljA76U2GzGOdmRXCkp/w4kERr/6ON//GSbIHTSxoKKq66e6KEs6M9f1vb2V1bX1js7BV3N7Z3dsvHRw2jUo1hQZVXOl2RAxwJqFhmeXQTjQQEXFoRaPbqd96Am2Ykg92nEAoyECymFFindTuKgED0jvvlcp+xZ8BL5MgJ2WUo94rfXX7iqYCpKWcGNMJ/MSGGdGWUQ6TYjc1kBA6IgPoOCqJABNms3sn+NQpfRwr7UpaPFN/T2REGDMWkesUxA7NojcV//M6qY2vw4zJJLUg6XxRnHJsFZ4+j/tMA7V87AihmrlbMR0STah1ERVdCMHiy8ukWa0EF5Xq/WW5dpPHUUDH6ASdoQBdoRq6Q3XUQBRx9Ixe0Zv36L14797HvHXFy2eO0B94nz+wOY+8</latexit>

（1）Node embedding layer - MGN

…

…

N

Node-level capsuleOrder-level capsule

…

n1
<latexit sha1_base64="EsDasPjuNbXN6sH5xgbXl+571Cs=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0mqoMeiF48V7Ac0pWy2k3bpZhN2J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVHJo8lrHuBMyAFAqaKFBCJ9HAokBCOxjfzvz2I2gjYvWAkwR6ERsqEQrO0Eq+j/CEQZipad/rlytu1Z2DrhIvJxWSo9Evf/mDmKcRKOSSGdP13AR7GdMouIRpyU8NJIyP2RC6lioWgell85un9MwqAxrG2pZCOld/T2QsMmYSBbYzYjgyy95M/M/rphhe9zKhkhRB8cWiMJUUYzoLgA6EBo5yYgnjWthbKR8xzTjamEo2BG/55VXSqlW9i2rt/rJSv8njKJITckrOiUeuSJ3ckQZpEk4S8kxeyZuTOi/Ou/OxaC04+cwx+QPn8wdGMpHV</latexit>

nm
<latexit sha1_base64="3TpVcmDc0dI0TOMq8bjqJ62p3o0=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0mqoMeiF48V7Ac0pWy2k3bpZhN2J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVHJo8lrHuBMyAFAqaKFBCJ9HAokBCOxjfzvz2I2gjYvWAkwR6ERsqEQrO0Eq+j/CEQZipaT/qlytu1Z2DrhIvJxWSo9Evf/mDmKcRKOSSGdP13AR7GdMouIRpyU8NJIyP2RC6lioWgell85un9MwqAxrG2pZCOld/T2QsMmYSBbYzYjgyy95M/M/rphhe9zKhkhRB8cWiMJUUYzoLgA6EBo5yYgnjWthbKR8xzTjamEo2BG/55VXSqlW9i2rt/rJSv8njKJITckrOiUeuSJ3ckQZpEk4S8kxeyZuTOi/Ou/OxaC04+cwx+QPn8wehIpIR</latexit>

nN
<latexit sha1_base64="qS6Z5k/IqqrMN4f6kxKGYxeeSDI=">AAAB83icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04kkq2A9oStlsN+3SzSbsTsQS+je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8IJHCoOt+Oyura+sbm4Wt4vbO7t5+6eCwaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3Uz91iPXRsTqAccJ70Z0oEQoGEUr+T7yJwzCTE16d71S2a24M5Bl4uWkDDnqvdKX349ZGnGFTFJjOp6bYDejGgWTfFL0U8MTykZ0wDuWKhpx081mN0/IqVX6JIy1LYVkpv6eyGhkzDgKbGdEcWgWvan4n9dJMbzqZkIlKXLF5ovCVBKMyTQA0heaM5RjSyjTwt5K2JBqytDGVLQheIsvL5NmteKdV6r3F+XadR5HAY7hBM7Ag0uowS3UoQEMEniGV3hzUufFeXc+5q0rTj5zBH/gfP4AciaR8g==</latexit>

Routing

(2) Capsule-based hybrid aggregation layer

g1
<latexit sha1_base64="c5cQmfTpJPRjxBlpi6lPoM6ytzg=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ac0pWy2m3bpZhN2J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//ci1EbF6wEnCexEdKhEKRtFKvo/8CYMwG077Xr9ccavuHGSVeDmpQI5Gv/zlD2KWRlwhk9SYrucm2MuoRsEkn5b81PCEsjEd8q6likbc9LL5zVNyZpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK97mVBJilyxxaIwlQRjMguADITmDOXEEsq0sLcSNqKaMrQxlWwI3vLLq6RVq3oX1dr9ZaV+k8dRhBM4hXPw4ArqcAcNaAKDBJ7hFd6c1Hlx3p2PRWvByWeO4Q+czx87gZHO</latexit>

(b) MUG-Caps ( A Toy example for sub-cascade graph            )gT1
<latexit sha1_base64="yQybFdImhJMYAB7cTeGZ1IV6X2g=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rFCv6CNZbOdtEs3m7C7EUroj/DiQRGv/h5v/hu3bQ7a+mDg8d4MM/OCRHBtXPfbWVvf2NzaLuwUd/f2Dw5LR8ctHaeKYZPFIladgGoUXGLTcCOwkyikUSCwHYzvZn77CZXmsWyYSYJ+RIeSh5xRY6X28DFr9L1pv1R2K+4cZJV4OSlDjnq/9NUbxCyNUBomqNZdz02Mn1FlOBM4LfZSjQllYzrErqWSRqj9bH7ulJxbZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMT3vgZl0lqULLFojAVxMRk9jsZcIXMiIkllClubyVsRBVlxiZUtCF4yy+vkla14l1Wqg9X5dptHkcBTuEMLsCDa6jBPdShCQzG8Ayv8OYkzovz7nwsWtecfOYE/sD5/AETg49l</latexit>

Â
(k)

in
<latexit sha1_base64="MRjvpmmT4HSbR3WNDmTpZtpNs70=">AAACBHicbVC7TsMwFHV4lvIKMHaJqJDKUiUFCcYCC2OR6ENqQuW4TmvVcSL7BlFFGVj4FRYGEGLlI9j4G9w2A7QcydLROffq+hw/5kyBbX8bS8srq2vrhY3i5tb2zq65t99SUSIJbZKIR7LjY0U5E7QJDDjtxJLi0Oe07Y+uJn77nkrFInEL45h6IR4IFjCCQUs9s+QOMaQu0Afwg/Qiy3opE9ldWhkdZz2zbFftKaxF4uSkjHI0euaX249IElIBhGOluo4dg5diCYxwmhXdRNEYkxEe0K6mAodUeek0RGYdaaVvBZHUT4A1VX9vpDhUahz6ejLEMFTz3kT8z+smEJx7OlWcABVkdihIuAWRNWnE6jNJCfCxJphIpv9qkSGWmIDurahLcOYjL5JWreqcVGs3p+X6ZV5HAZXQIaogB52hOrpGDdREBD2iZ/SK3own48V4Nz5mo0tGvnOA/sD4/AGXtJiw</latexit>

Â
(k)

out
<latexit sha1_base64="q7wTO6wzj4Lteaq71zAICNfZzQs=">AAACBXicbVC5TsNAEF1zhnAZKKGwiJBCE9kBCcoADWWQyCHFxlpv1skq60O7Y0S0ckPDr9BQgBAt/0DH37A5Ckh40khP781oZl6QcibBtr+NhcWl5ZXVwlpxfWNza9vc2W3KJBOENkjCE9EOsKScxbQBDDhtp4LiKOC0FQyuRn7rngrJkvgWhin1ItyLWcgIBi355oHbx6BcoA8QhOoiz32VZJDfqfLgOPfNkl2xx7DmiTMlJTRF3Te/3G5CsojGQDiWsuPYKXgKC2CE07zoZpKmmAxwj3Y0jXFEpafGX+TWkVa6VpgIXTFYY/X3hMKRlMMo0J0Rhr6c9Ubif14ng/DcUyxOM6AxmSwKM25BYo0isbpMUAJ8qAkmgulbLdLHAhPQwRV1CM7sy/OkWa04J5XqzWmpdjmNo4D20SEqIwedoRq6RnXUQAQ9omf0it6MJ+PFeDc+Jq0LxnRmD/2B8fkDjHyZOw==</latexit>

W
(k)
in

<latexit sha1_base64="gpDUlHFKYDvtKBC8H/qswfMcx0g=">AAAB/nicbVBNS8NAEN34WetXVDx5WSxCvZSkCnosevFYwX5AG8tmu2mXbjZhdyKWEPCvePGgiFd/hzf/jds2B219MPB4b4aZeX4suAbH+baWlldW19YLG8XNre2dXXtvv6mjRFHWoJGIVNsnmgkuWQM4CNaOFSOhL1jLH11P/NYDU5pH8g7GMfNCMpA84JSAkXr2YRfYI/hB2sp6KZfZfVoenWY9u+RUnCnwInFzUkI56j37q9uPaBIyCVQQrTuuE4OXEgWcCpYVu4lmMaEjMmAdQyUJmfbS6fkZPjFKHweRMiUBT9XfEykJtR6HvukMCQz1vDcR//M6CQSXnvkqToBJOlsUJAJDhCdZ4D5XjIIYG0Ko4uZWTIdEEQomsaIJwZ1/eZE0qxX3rFK9PS/VrvI4CugIHaMyctEFqqEbVEcNRFGKntErerOerBfr3fqYtS5Z+cwB+gPr8we7zpX5</latexit>

W
(k)
out

<latexit sha1_base64="J8HimTVFVc+ARAJWlcDoYnASrOg=">AAAB/3icbVBNS8NAEN3Ur1q/ooIXL8Ei1EtJqqDHohePFewHtDFstpt26SYbdidiiTn4V7x4UMSrf8Ob/8Ztm4O2Phh4vDfDzDw/5kyBbX8bhaXlldW14nppY3Nre8fc3WspkUhCm0RwITs+VpSziDaBAaedWFIc+py2/dHVxG/fU6mYiG5hHFM3xIOIBYxg0JJnHvSAPoAfpO3MS0UC2V1aGZ1knlm2q/YU1iJxclJGORqe+dXrC5KENALCsVJdx47BTbEERjjNSr1E0RiTER7QrqYRDqly0+n9mXWslb4VCKkrAmuq/p5IcajUOPR1Z4hhqOa9ifif100guHBTFsUJ0IjMFgUJt0BYkzCsPpOUAB9rgolk+laLDLHEBHRkJR2CM//yImnVqs5ptXZzVq5f5nEU0SE6QhXkoHNUR9eogZqIoEf0jF7Rm/FkvBjvxsestWDkM/voD4zPH64PloQ=</latexit>

X<latexit sha1_base64="nM3ChPESpQ2dvwthlTzHQNs4T9M=">AAAB8XicbVBNS8NAEN34WetX1aOXxSJ4KkkV9Fj04rGC/cA2lM120i7dbMLuRCyh/8KLB0W8+m+8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk41hwaPZazbATMghYIGCpTQTjSwKJDQCkY3U7/1CNqIWN3jOAE/YgMlQsEZWumhi/CEQZi1J71S2a24M9Bl4uWkTHLUe6Wvbj/maQQKuWTGdDw3QT9jGgWXMCl2UwMJ4yM2gI6likVg/Gx28YSeWqVPw1jbUkhn6u+JjEXGjKPAdkYMh2bRm4r/eZ0Uwys/EypJERSfLwpTSTGm0/dpX2jgKMeWMK6FvZXyIdOMow2paEPwFl9eJs1qxTuvVO8uyrXrPI4COSYn5Ix45JLUyC2pkwbhRJFn8kreHOO8OO/Ox7x1xclnjsgfOJ8/93uRGw==</latexit>

P
<latexit sha1_base64="VSivu9BFjCFD0hWyQI32AsFvifE=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/cA2lM120y7dbMLuRCyh/8KLB0W8+m+8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKzucZxwP6IDJULBKFrpoYv8CYMwq096pbJbcWcgy8TLSRly1Hulr24/ZmnEFTJJjel4boJ+RjUKJvmk2E0NTygb0QHvWKpoxI2fzS6ekFOr9EkYa1sKyUz9PZHRyJhxFNjOiOLQLHpT8T+vk2J45WdCJSlyxeaLwlQSjMn0fdIXmjOUY0so08LeStiQasrQhlS0IXiLLy+TZrXinVeqdxfl2nUeRwGO4QTOwINLqMEt1KEBDBQ8wyu8OcZ5cd6dj3nripPPHMEfOJ8/61OREw==</latexit>

WP
<latexit sha1_base64="n5CLVL3Jv37b0OCNVl3p/nv2Qwo=">AAAB83icbVDLSgMxFM3UV62vqks3wSK4KjNV0GXRjcsK9gGdUjLpnTY0kxmSO2IZ+htuXCji1p9x59+YtrPQ1gOBwznncm9OkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVHJo8lrHuBMyAFAqaKFBCJ9HAokBCOxjfzvz2I2gjYvWAkwR6ERsqEQrO0Eq+j/CEQZi1p/1Gv1xxq+4cdJV4OamQHDb/5Q9inkagkEtmTNdzE+xlTKPgEqYlPzWQMD5mQ+haqlgEppfNb57SM6sMaBhr+xTSufp7ImORMZMosMmI4cgsezPxP6+bYnjdy4RKUgTFF4vCVFKM6awAOhAaOMqJJYxrYW+lfMQ042hrKtkSvOUvr5JWrepdVGv3l5X6TV5HkZyQU3JOPHJF6uSONEiTcJKQZ/JK3pzUeXHenY9FtODkM8fkD5zPH1INkd0=</latexit>

K

…
…

…

h(K)
m

<latexit sha1_base64="jCe7iCHIB57hydYcqDkMH/dI6K4=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16CRahXkpSBT0WvQheKtgPaGPYbDft0s0m7E6kJeSvePGgiFf/iDf/jds2B219MPB4b4aZeX7MmQLb/jYKa+sbm1vF7dLO7t7+gXlYbqsokYS2SMQj2fWxopwJ2gIGnHZjSXHoc9rxxzczv/NEpWKReIBpTN0QDwULGMGgJc8s94FOwA/SUeaFj2n17izzzIpds+ewVomTkwrK0fTMr/4gIklIBRCOleo5dgxuiiUwwmlW6ieKxpiM8ZD2NBU4pMpN57dn1qlWBlYQSV0CrLn6eyLFoVLT0NedIYaRWvZm4n9eL4Hgyk2ZiBOggiwWBQm3ILJmQVgDJikBPtUEE8n0rRYZYYkJ6LhKOgRn+eVV0q7XnPNa/f6i0rjO4yiiY3SCqshBl6iBblETtRBBE/SMXtGbkRkvxrvxsWgtGPnMEfoD4/MHBI6Uag==</latexit>

h(0)
m

<latexit sha1_base64="phD7kdwiy+an3+t4V3xUevVmjjc=">AAAB+3icbVBNS8NAEN34WetXrEcvwSLUS0mqoMeiF48V7Ae0sWy2m3bp7ibsTqQl5K948aCIV/+IN/+N2zYHbX0w8Hhvhpl5QcyZBtf9ttbWNza3tgs7xd29/YND+6jU0lGiCG2SiEeqE2BNOZO0CQw47cSKYhFw2g7GtzO//USVZpF8gGlMfYGHkoWMYDBS3y71gE4gCNNR1hePacU9z/p22a26czirxMtJGeVo9O2v3iAiiaASCMdadz03Bj/FChjhNCv2Ek1jTMZ4SLuGSiyo9tP57ZlzZpSBE0bKlARnrv6eSLHQeioC0ykwjPSyNxP/87oJhNd+ymScAJVksShMuAORMwvCGTBFCfCpIZgoZm51yAgrTMDEVTQheMsvr5JWrepdVGv3l+X6TR5HAZ2gU1RBHrpCdXSHGqiJCJqgZ/SK3qzMerHerY9F65qVzxyjP7A+fwDbXZRP</latexit>

Routingh(k)
m

<latexit sha1_base64="hgRxEXb4iEmtyeKpzyDhGFrFcHM=">AAAB+3icbVBNS8NAEN34WetXrEcvi0Wol5JUQY9FLx4r2A9oY9lsN+3SzSbsTqQl5K948aCIV/+IN/+N2zYHbX0w8Hhvhpl5fiy4Bsf5ttbWNza3tgs7xd29/YND+6jU0lGiKGvSSESq4xPNBJesCRwE68SKkdAXrO2Pb2d++4kpzSP5ANOYeSEZSh5wSsBIfbvUAzYBP0hHWT98TCvj86xvl52qMwdeJW5OyihHo29/9QYRTUImgQqiddd1YvBSooBTwbJiL9EsJnRMhqxrqCQh0146vz3DZ0YZ4CBSpiTgufp7IiWh1tPQN50hgZFe9mbif143geDaS7mME2CSLhYFicAQ4VkQeMAVoyCmhhCquLkV0xFRhIKJq2hCcJdfXiWtWtW9qNbuL8v1mzyOAjpBp6iCXHSF6ugONVATUTRBz+gVvVmZ9WK9Wx+L1jUrnzlGf2B9/gA1TpSK</latexit>
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Figure 5.2: Overview of MUCas: (a) A time interval-aware sub-cascade graphs sam-
pling layer; (b) MUG-Caps layer; (c) Influence attention layer; and (d) The prediction
layer.

{
gT1i , · · · , g

Tj
i , · · · , gTli , |j ∈ [1, l]

}
. Specifically, we first split the observation time

window to into l disjoint time intervals. Then, we sample sub-cascade graphs based
on these intervals. Each sub-cascade graph in GTiv is represented by an adjacency
matrix. Thus, GTiv

i is further represented as a sequence of adjacency matricesATiv
i ={

AT1
i ,A

T2
i , · · · ,ATl

i

}
.

Since the proposed sampling rule transforms the observed cascade graph into a fixed
number of sub-graphs, it is possible that no new retweet/citation occurs in one of
the intervals. To address this issue, we use the sub-graph of the interval before the
empty one as padding to ensure that the final length of GTiv equals l. Algorithm 3
formalizes the process of the Time interval-aware sampling method.

5.3.2 Multi-scale Cascade Representation Learning

After generating l discrete sub-cascade graphs, MUCas turns to learn high-level
representation of these sub-cascade graphs, which contains the multi-scale infor-
mation of cascade graphs. Inspired by the recent success of graph neural net-
works [41, 61, 126] and capsule network [127] in handling graph structured data,
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5. EXTRACTING MULTI-SCALE INFORMATION FOR CASCADES
MODELING
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Time

…

T1
<latexit sha1_base64="yQBvVrSRtnzPtUd/7gwTLR5LpvU=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rFiv6ANZbPdtEs3m7A7EUroT/DiQRGv/iJv/hu3bQ7a+mDg8d4MM/OCRAqDrvvtrK1vbG5tF3aKu3v7B4elo+OWiVPNeJPFMtadgBouheJNFCh5J9GcRoHk7WB8N/PbT1wbEasGThLuR3SoRCgYRSs9Nvpev1R2K+4cZJV4OSlDjnq/9NUbxCyNuEImqTFdz03Qz6hGwSSfFnup4QllYzrkXUsVjbjxs/mpU3JulQEJY21LIZmrvycyGhkziQLbGVEcmWVvJv7ndVMMb/xMqCRFrthiUZhKgjGZ/U0GQnOGcmIJZVrYWwkbUU0Z2nSKNgRv+eVV0qpWvMtK9eGqXLvN4yjAKZzBBXhwDTW4hzo0gcEQnuEV3hzpvDjvzseidc3JZ07gD5zPH9YXjYA=</latexit>

T2
<latexit sha1_base64="pk5lO2eHRk17H1Ahs1pYPstRuKY=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rFiv6ANZbPdtEs3m7A7EUroT/DiQRGv/iJv/hu3bQ7a+mDg8d4MM/OCRAqDrvvtrK1vbG5tF3aKu3v7B4elo+OWiVPNeJPFMtadgBouheJNFCh5J9GcRoHk7WB8N/PbT1wbEasGThLuR3SoRCgYRSs9NvrVfqnsVtw5yCrxclKGHPV+6as3iFkacYVMUmO6npugn1GNgkk+LfZSwxPKxnTIu5YqGnHjZ/NTp+TcKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YY3viZUEmKXLHFojCVBGMy+5sMhOYM5cQSyrSwtxI2opoytOkUbQje8surpFWteJeV6sNVuXabx1GAUziDC/DgGmpwD3VoAoMhPMMrvDnSeXHenY9F65qTz5zAHzifP9ebjYE=</latexit>

Ti
<latexit sha1_base64="mqtrDOIxue7rb4cLDp/B4iDtvRs=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rFiv6ANZbOdtEs3m7C7EUroT/DiQRGv/iJv/hu3bQ7a+mDg8d4MM/OCRHBtXPfbWVvf2NzaLuwUd/f2Dw5LR8ctHaeKYZPFIladgGoUXGLTcCOwkyikUSCwHYzvZn77CZXmsWyYSYJ+RIeSh5xRY6XHRp/3S2W34s5BVomXkzLkqPdLX71BzNIIpWGCat313MT4GVWGM4HTYi/VmFA2pkPsWipphNrP5qdOyblVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhjZ9xmaQGJVssClNBTExmf5MBV8iMmFhCmeL2VsJGVFFmbDpFG4K3/PIqaVUr3mWl+nBVrt3mcRTgFM7gAjy4hhrcQx2awGAIz/AKb45wXpx352PRuubkMyfwB87nDysGjbg=</latexit>

Tl
<latexit sha1_base64="HQZzklzpsjF/TtS1yqysaHz9Zwc=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rFiv6ANZbOdtEs3m7C7EUroT/DiQRGv/iJv/hu3bQ7a+mDg8d4MM/OCRHBtXPfbWVvf2NzaLuwUd/f2Dw5LR8ctHaeKYZPFIladgGoUXGLTcCOwkyikUSCwHYzvZn77CZXmsWyYSYJ+RIeSh5xRY6XHRl/0S2W34s5BVomXkzLkqPdLX71BzNIIpWGCat313MT4GVWGM4HTYi/VmFA2pkPsWipphNrP5qdOyblVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhjZ9xmaQGJVssClNBTExmf5MBV8iMmFhCmeL2VsJGVFFmbDpFG4K3/PIqaVUr3mWl+nBVrt3mcRTgFM7gAjy4hhrcQx2awGAIz/AKb45wXpx352PRuubkMyfwB87nDy+Sjbs=</latexit>

(b) Time interval-aware Sampling

Figure 5.3: Illustration of sampling sub-cascade graph sequence: time-aware sam-
pling vs. time interval-aware sampling. z is the number of timestamps; l is the number
of time intervals, and l is fixed and set manually.

we propose a MUlti-scale Graph Capsule Network (MUG-Caps) to learn the latent
representation for cascade graph from GTiv . MUG-Caps is composed of two main
parts, i.e., (1) the node embedding layer and (2) the capsule-based hybrid aggregation
layer.

Node Embedding Layer: We propose a Multi-scale Graph Network (MGN) as
the node embedding module, which learns node representations at the sub-graph
level simultaneously from direction-scale, position-scale, and high-order-scale. The
implementation of MGN is based on the graph convolutional networks (GCN) [61].
Original GCN proposes graph convolution approximations in the spectral domain
based on graph Fourier transform, which is computationally efficient and achieves
competitive performance in many tasks [128, 129]. However, it still faces some
limitations in cascade modeling:

(1) GCN focuses on static and undirected graphs, whereas cascade graphs are
dynamic and directed graphs.

(2) GCN updates a node’s representation by aggregating its first-order neighbors
and itself, failing to capture each node’s infected order, i.e., the node’s position
information.

(3) GCN aggregates the high-order information for a node through stacking mul-
tiply graph convolutional layers. As demonstrated by many later improved
works [126, 130], deeper GCN could not improve the performance and even
performs worse in graph representation learning.

Our MGN addresses these limitations through revising the convolution kernel of
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5.3 MUCas: Multi-Scale Graph Capsule with Influence Attention for
Information Cascades Prediction

Algorithm 3: The algorithm for transforming cascade graph into a fixed-length
sub-graph sequence: Time interval-aware sampling.
Input: Observed cascade graph Ci(to), time window to, and time interval number

l.
Output: A fixed-length sub-graph sequence GTiv

i =
{
gT1i , · · · , gTli

}

1: for n = 1,2,...,l do
2: for Set of nodes Ui(tj), set of edges Ei(tj) and corresponding timestamp tj

in Ci(to) do
3: Compute the time interval index m = b (tj−t1)

dto/le c+ 1.
4: if m ≤ n then
5: Add Ui(tj) and Ei(tj) into gTni .
6: end if
7: end for
8: end for

GCN, which is defined as:

H = gθ ∗X = σ[ ‖
k∈O

, ‖
φ∈{in,out}

(Â
(k)

φ XW(k)
φ ),PWP ], (5.1)

where ‖
k∈O

and ‖
φ∈{in,out}

represent the order-level concatenation and direction-level

concatenation, respectively; [·] is a tiling concatenate operation; σ is an element-wise
activation such as ReLU; Â

(k)

φ denotes the normalized adjacency matrix Âφ ∈ RN×N

multiplied by itself k times; N is the number of nodes in current sub-cascade graph;
X ∈ RN×F is the input graph signal – F is the dimension number; and O is a set
of integer adjacency powers – the value of O is from 0 to the max-order K of the
current sub-cascade graph. φ ∈ {in, out} represents the in- and out-directions of the
adjacency matrix, respectively. A = Ain = (Aout)

T . The asymmetric normalized
adjacency matrix Âφ of each direction can be calculated as:

Âφ = (D̄φ)−1Āφ,

Āφ = Aφ + IN ,
(5.2)

where IN is the identity matrix, and (D̄φ)ii =
∑

j(Āφ)ij is the diagonal degree
matrix.

In MGN, initially X = A. Further, P ∈ RN×Fp is a position embedding matrix
for current sub-cascade graph, and Fp is an adjustable dimension. Specifically,
we initialize the position embedding matrix P = {p1, · · · ,pu, · · · ,pN} through
positional encoding PE(u) [131] as:

PE(u)2d = sin(u/100002d/dp),

PE(u)2d+1 = cos(u/100002d/dp),
(5.3)
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where 1 ≤ d ≤ Fp/2 denotes the dimension index in pu. The details of this formula
are referred to [131].

In Eq.(5.1), W(k)
φ ∈ RF×Fd is the weight matrix for each direction on different order,

and WP ∈ Rdp×Fp is another weight matrix used to transform position embed-
dings. The output node embedding matrix is denoted as H ∈ RN×K×(2Fd+Fp) and
H = {h1, · · · ,hm, · · · ,hN}, respectively. When implementing MGN, there is no
need to calculate Â

k

φ for each order. Instead, we calculate Â
k

φX via right-to-left

multiplication. For example, when k = 2, Â
2

φX is calculated as Âφ(Âφ(IX)), where
I is the identity matrix. MGN can be regarded as a single layer using multiple times
during actual training. The calculation of MGN is outlined in Algorithm 4.

The rationale behind MGN: MGN handles the direction-scale of cascade
through modeling the incoming and outgoing relations of the cascades, i.e. Â

(k)

φ XW(k)
φ

in Eq. (5.1). Moreover, because the directed graph is asymmetric, we use the
asymmetric normalization Âφ = (D̂φ)−1Āφ to replace the symmetric normaliza-

tion D̂
− 1

2 ĀD̂
− 1

2 used in vanilla GCN. MGN utilizes the adjacency matrix’s multiple
powers to mix the feature representations of higher-order neighbors in one graph
convolutional layer via transitive closure, which is used to handle the high-order-
scale. In our implementation, the sub-cascade graph is an acyclic directed graph,
and the value of A(k)

ij can be either 0 or 1. When A(k)
ij = 1, there is a path between vi

to vj. For arbitrary power p and q, Ap
ijA

q
ij = 0 will always be held, which eliminates

the problem of layer output – imposing the lower-order information on higher-order
relations and increase the feature correlations [132]. As for the position-scale,
MGN adds position embeddings to the convolution kernel, which enriches each node
feature with its corresponding position information.

Capsule-based Hybrid Aggregation Layer From the node embedding layer,
we obtain a set of node embedding matrix for each sub-cascade graph, denoted
as S = {H1,H2, · · · ,Hl}, where S ∈ Rl×N×K×(2Fd+Fp). Inspired by the work of
capsule networks [127, 133], we design a capsule-based hybrid aggregation layer to
aggregate the learned node features from order-level, node-level, and graph-level
through dynamic routing, respectively.

The general procedure of dynamic routing is shown in Algorithm 5: (1) Lower-
level capsules U ∈ R|U|×FU are linearly transformed through shared matrix W ∈
R|U|×|S|×FU×FS , where |U| and FU are the number of lower-level capsules and the
dimensions, respectively. Here we introduce W that not only guarantees the feature
representation ability of the center vector after clustering, but also being able to
identify the order of input features. The result of this step is a set of votes V̂ ∈
R|U|×|S|×FS (cf. line 1 in Algorithm 5), where |S| and FS are the number of upper-
level capsule and the dimensions, respectively. (2) Upper-level capsules S ∈ R|S|×FS
are computed based on the votes via line 3–7 in Algorithm 5, where cij ∈ R|U|×|S|×1
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Algorithm 4: Calculation of multi-scale graph network.
Input: Feature matrix X, normalized adjacency matrix Âφ for both in- and

out-directions, a set of order powers O and its max-value K = max(O), and
positional embedding matrix P.

Parameters: {W(k)
φ }k∈O and WP .

1: P̂ := PWP

2: Bin,Bout := X
3: for k in O do
4: if k = 0 then
5: Bin := IBin

Bout := IBout

6: else
7: Bin := ÂinBin

Bout := ÂoutBout

8: end if
9: H(k) := CONCAT(BinW

(k)
in ,BoutW

(k)
out, P̂)

10: end for
11: H := CONCAT(H(0), · · · ,H(k), · · · ,H(K))
12: return σ(H)

Algorithm 5: Dynamic routing mechanism in MUCas.
Input: Lower-level capsules U, iteration number τ .
Output: Upper-level capsules S
1: for all lower-level capsules i: v̂j|i = Wijui
2: bij ← 0
3: for τ iterations do
4: for all lower-level capsules i: cij ← softmax(bij)
5: for all upper-level capsules j: sj ←

∑
i cijv̂j|i + bj

6: for all upper-level capsules j: s̃j ← Squash(sj)
7: for all lower-level capsules i to all upper-level capsules j:

bij ← bij + v̂j|i · s̃j
8: end for
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is the coupling co-efficiency that helps weight the votes, and the non-linear “squash"
function is denoted as Squash(x) = ‖x‖2

0.5+‖x‖2
x
‖x‖ .

We add biases to the calculation of sj at line 5, which can solve a critical problem in
capsule networks – indistinguishableness between the positive inputs and negative
inputs [134].

In this layer, we defined three levels of capsules, i.e., order-level capsule, node-level
capsule, and graph-level capsule, whose specific definitions are as follows:

Order-level capsule is represented as hm ∈ RK×(2Fd+Fp), focusing on specific node
embedding in the sub-cascade graph. It aims to aggregate the higher-order infor-
mation for each node into one node-level capsule nm ∈ R1×Fn , where Fn is the
dimension of node-level capsule.

Node-level capsule: As for a specific sub-cascade graph gTj , it has a set of node-
level capsules Nj = {n1, · · · ,nm, · · · ,nN}, Nj ∈ RN×Fn , used Nj to generate the
graph-level capsule gj ∈ R1×Fg via dynamic routing, where Fg is the dimension of
graph-level capsule.

Graph-level capsule: We have a set of graph-level capsules G, each of which
corresponds to a specific sub-cascade graph, i.e., G =

{
g1, · · · ,gj, · · · ,gl

}
, G ∈

Rl×Fg . Note that each graph-level capsule contains the properties of the cascade
from different time intervals.

How does MUG-Caps work? Above we presented the details of the two components
of MUG-Caps, i.e., MGN and the capsule-based hybrid aggregation layer. Now
we turn to explain how the two components collaborate. MUG-Caps, as shown in
Figure 5.2, takes a subgraph as input, which is first fed into an MGN layer to learn
the embedding for each node that contains node direction-scale information, higher-
order-scale information, and position-scale information as detailed in Section 5.2.
After this layer, each node is represented as K vectors, with each vector matched
to a different order level, referred to as the order-level capsules. Next, these order-
level capsules are fed into the hybrid aggregation layer. Then dynamic routing is
employed to aggregate order-level capsules to form a node-level capsule for each
node. Finally, the dynamic routing aggregates these node-level capsules to build
a graph-level capsule for the subgraph. The concrete calculation of MUG-Caps is
shown in steps 3 to 11 in Algorithm 6.

5.3.3 Sub-graph Level Influence Attention

Previous works have demonstrated that user influence will decay significantly with
time [9, 10]. In our work, we aim to learn such influence changes (dynamic-scale) at
the sub-graph level, i.e., we assume that the sub-cascade graph’s influence decays as
the interval index increases. Inspired by self-attention mechanism [135], we employ a
neural function to learn the influence attention. First, we represent the time-interval
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as a one-hot vector tj ∈ Rl, and then map tj to λj through a fully-connected layer
with sigmoid function. Here the λj is used to describe the time decay effect.

λj = sigmoid(Wttj + bt), (5.4)

where Wt ∈ RFg×l and bt ∈ RFg . According to the time decay effect vector λj and
graph-level capsules G, we define the influence attention as:

αj =
exp(

〈
w,λj � gj

〉
)

∑l
i=1 exp(〈w,λi � gi〉)

(5.5)

where w ∈ RFg . Given the influence attention αj, we calculate the graph-level
capsule as:

ĝj = αjgj (5.6)

5.3.4 Information Cascade Prediction

Though our work focus on information popularity prediction, unlike existing works,
we add an auxiliary task – an extra classification task i.e., whether a cascade would
go viral, as a supplementary for the cascade size prediction. That is, we predict
whether a cascade can break out a certain threshold value. This step is also imple-
mented using dynamic routing over Ĝ = {ĝj|j ∈ [1, l]} to generate class capsules
C ∈ RQ×Fc , where Q is the number of class, and Fc is the dimension of class cap-
sules. The norm of class capsule ‖cq‖ represents the probability belonging to class
q. And, we use a margin loss to calculate the classification loss:

`1 =
∑

q

{
µqmax(0,m+ − ‖cq‖)2 + ξ(1− µq)max(0, ‖cq‖ −m−)2

}
(5.7)

where m+ = 0.9, m− = 0.1, and µq = 1 iff the cascade belongs to class q. Here ξ is
used to stop initial learning from reducing the length of all class capsules, especially
when Q is large.

Subsequently, we use a weighted sum operation on C to obtain the representation
for a cascade Ĉ. The weight is calculated through ‖c∗‖:

ωq =
exp(‖cq‖)∑Q
∗=1 exp(‖c∗‖)

,

Ĉ =
∑

q

ωqcq
(5.8)

We use a fully-connected layer to predict the increment size ∆S = FC
(
Ĉ
)
. The

loss function is:
`2 =

(
log ∆S − log ∆S̃

)2

(5.9)
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where ∆S̃ is the ground truth. Finally, the overall loss function for a batch is

L =
1

b

b∑

i=1

(β`i1 + (1− β)`i2) (5.10)

where b is the number of cascades in a batch, and β is used to balance the `1 and
`2 losses.

Algorithm 6: Learning with MUCas.
Input: Time-interval aware sub-cascade graphs for n cascade graphs

ATiv =
{
ATiv

1 , · · · ,ATiv
i , · · · ,ATiv

n ,
}
; Max order K; Batch size b.

Output: Incremental size ∆S = {∆S1, · · · } of cascades.
1: repeat
2: b = 1, 2, ...
3: for adjacency matrix sequence ATiv

i in batch b do
4: for ATj

i ∈ ATiv
i do

5: Compute the node embeddings Hj for jth sub-cascade graph according
to Eq. (5.1).

6: for node embedding hm ∈ Hj do
7: Use hm to compute the node-level capsule nm according to

Algorithm 5.
8: end for
9: Nj ← {n1, · · · ,nN}
10: Use Nj to generate the graph-level capsule gj according to Algorithm 5.
11: end for
12: Gi ← {g1, · · · ,gl}
13: Compute influence attention αj according to Eq. (5.4), (5.5).
14: Compute newly graph-level capsules Ĝi according to Eq. (5.6).
15: /*Extra classification task*/
16: Use Ĝi to compute class capsules Ci according to Algorithm 5.
17: /*Popularity prediction task*/
18: Calculate cascade representation C

′

i according to Eq. (5.8).
19: Feed C

′

i into fully-connected layer to compute incremental size ∆Si of
cascade.

20: Use Adaptive moment estimation (Adam) to optimize the objective
function in Eq.(5.10) and update all the parameters.

21: end for
22: until convergence;

5.3.5 Complexity Analysis

We finish this section with a discussion of the computational complexity of the
main components in MUCas, i.e., the cost of (1) node embedding layer, and (2)
capsule-based hybrid aggregation layer.
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Node embedding layer: We use MGN to learn node embeddings from the sub-
cascade graph, whose calculation is shown in Eq. (5.1). As for direction-scale,
MGNmodels both the incoming and outgoing relations of the cascades via Â

(k)

φ XW(k)
φ .

Recall that the dimensions of X, W(k)
φ , and Wp are F , Fd, and Fp, respectively.

Besides, the max-order is K, and the normalized adjacency matrix Âφ in our imple-
mentation is a sparse matrix with |E| nonzero elements – |E| is the number of edges
in current graph. In addition, the number of nodes is denoted as N . According to
existing works [61, 126], for a single direction at each order, the calculation is con-
ducted via sparse-dense matrix multiplications, and the computational complexity is
O(|E| ×F ×Fd). Taking the high-order-scale into consideration, the computational
complexity is then O(K × |E| × F × Fd). As for positional-scale, the calculation
of WpP is completed via matrix multiplication, which requires O(N × dp × Fp)

computations. Therefore, the total computational time cost of evaluating Eq. (5.1)
is then O(2×K × |E| × F × Fd +N × dp × Fp).

Capsule-based hybrid aggregation layer: This layer is implemented by exe-
cuting dynamic routing between different levels capsules. Specifically, we adopt
a dynamic routing mechanism for τ iterations over |U| lower-level capsules and
generate |S| upper-level capsules. This learning process requires O(τ × |U| ×
|S|) computations [136]. From the MGN, we get the order-level capsule H ={
h1, · · · ,hm, · · · ,hN |hm ∈ RK×(2Fd+Fp)

}
. For each node m, it generates the node-

level capsule from order-level capsules, whose computational complexity is O(τ ×
K× 1). Because there are N nodes, the total time of generating node-level capsules
for all nodes is O(N×τ ×K×1). Similarly, generating the graph-level capsule from
node-level capsules can be done within O(τ×N×1) time. The overall computational
time is therefore O(N × τ ×K × 1 + τ ×N × 1).

5.4 Evaluation

In this section, we compare the performance of our proposed model MUCas with
the state-of-the-art approaches, and several variants of MUCas, on information pop-
ularity prediction. In particular, we provide the quantitative results to answer the
following research questions:

• Q1: How does MUCas perform on cascade size prediction compared with the
state-of-the-art baselines?

• Q2: How do different scales of information modeled in MUCas contribute to
the overall performance?

• Q3: How do the key hyper-parameters affect the performance of MUCas?
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Table 5.2: Statistics of datasets
Dataset Weibo APS
# Ori. Cascades 119,313 636,294
# Nodes 5,918,473 636,294
# Edges 12,204,245 3,425,508
Avg. popularity 173 13
Train (0.5 Hour/ 3 Years) 19,472 24,636
Val (0.5 Hour/ 3 Years) 4,173 5,279
Test (0.5 Hour/ 3 Years) 4,172 5,278
Train (1 Hour/ 5 Years) 19,124 33,408
Val (1 Hour/ 5 Years) 4,098 7,159
Test (1 Hour/ 5 Years) 4,097 7,158

5.4.1 Datasets

We evaluate the effectiveness and generalizability of MUCas on two scenarios. The
first one is to predict the size of retweet cascades in Sina Weibo and the second one
is to forecast the citation count of papers in citation dataset APS. The statistics of
the datasets used in this work has shown in Table 5.2.

Sina Weibo: The description of the Weibo dataset is given in Section 4.4.1. Fig-
ure 5.4a plots the distribution of the cascade size (the number of re-tweets of each
post), which, obviously, follows an power-law distribution and reflects the Pareto
principle (80/20 rule). Figure 5.5a shows the distribution of depth over all cascades,
which roughly follows an exponential distribution, indicating that the majority of
cascades have a shallow depth, i.e., most of them are less than 5. The depth of a
cascade is the length of the longest path, which also equals to the max-order of the
cascade. Due to the effect of diurnal rhythm in Weibo [9], in our experiments, the
cascades with the publication time before 8 am and after 6 pm were filtered out,
leaving each post at least 6 hours to obtain retweets. As shown in Figure 5.6a, on
average, a message receives about 70% retweets within 5 hours.

APS: APS 1 is provided by American Physical Society (APS), which consists of
pairs of APS articles that cite each other for the corpus of Physical Review Letters,
Physical Review, and Reviews of Modern Physics from 1893 to 2018. The papers
from 1893 to 1997 are selected as observations so that each of the papers is allowed
to develop for at least 20 years. In the citation scenario, the size of a cascade is
the citation count. Figure 5.4b shows the distribution of cascade size in the APS
dataset, which exhibits a power-law distribution. Figure 5.5b shows the distribution
of the depth over all cascades in APS, which has a similar trend with Weibo. As
shown in Figure 5.6b, on average, the citation reaches around 50% of the final size
within 5 years.

1http://journals.aps.org
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Settings: In our experiments, we use the same dataset settings as in previous
works [9, 69]. The observation time window in Weibo data is set to to = 0.5 and
to = 1 hour. For the observation window of the APS dataset, we choose to = 3 and
5 years. For both Weibo and APS datasets, we filter out cascades whose observed
size Sobs < 10. And for those cascades whose Sobs > 100, we only track the first 100

retweets. In addition, we randomly split each dataset into a training set (70%), a
validation set (15%), and a testing set (15%) following existing works [9, 69].
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Figure 5.4: Cascade size distributions of Weibo (left), and APS (right) in log-log
scales.
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Figure 5.5: Distribution of depth (max-order) of cascades.

5.4.2 Baselines

To validate MUCas’s performance in cascade prediction, we select following state-
of-the-art baselines for comparison:

• Feature-Linear, Feature-Deep, DeepCas [8] and DeepHawkes [9] are
already introduced in Section 4.4.2, for brevity, we will not repeat them here.
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Figure 5.6: Normalized popularity distribution of cascades: retweets (citations) vs.
time.

• CasCN: CasCN (in Chapter 4) is the first graph convolution network (GCN)-

based framework exploiting both temporal and structural information for cas-

cade size prediction. It decomposes a cascade graph into a sequence of sub-

cascade graphs based on propagation time, while learning the local structure

and its evolving process of cascade structure through the combination of graph

convolutions and LSTM.

• VaCas [69]: VaCas is the first Bayesian learning-based approach that uses

pre-trained node embeddings of the cascade as input and leverages a hierar-

chical variational information diffusion model to learn the posterior of cascade

distribution with variational inference.

• Cascade2vec [62]: Cascade2vec is an improvement of CasCN, which proposes

a new graph convolutional kernal – graph perception network (GPN) to replace

the original GCN in CasCN. It also introduces the attention mechanism to

learn different importance of each sub-graph.

5.4.3 Evaluation Metric

Following previous studies [8, 9, 35], we use mean square logarithmic error (MSLE)

and symmetric mean absolute percentage error (SMAPE) for prediction performance

evaluation. In addition, we also report the coefficient of determination (R2) of
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different models. The formulation of all evaluation metric is defined as:

MSLE =
1

n

n∑

i=1

(
log ∆Si − log ∆S̃i

)2

SMAPE =
1

n

n∑

i=1

| log ∆Si − log ∆S̃i|
(| log ∆Si|+ | log ∆S̃i|)/2

R2 = 1−
∑n

i=1(log ∆Si − log ∆S̃i)
2

∑n
i=1(log ∆S̃i − 1

n

∑n
i=1 log ∆S̃i)2

(5.11)

where n is the total number of posts, ∆Si is the predicted incremental size for post
mi, and ∆S̃i is the ground truth. Note that, the value of MSLE and SMAPE the
smaller the better, in contrast, the value of R2 the bigger the better.

5.4.4 Experimental Settings and Parameter Tuning

Parameter settings: Models mentioned above are optimized to the best perfor-
mance which involves several key hyper-parameters. The L2 coefficient of Feature-
Linear is chosen from 10{0,−1,−2··· ,−8}. The node embedding size for DeepCas, Deep-
Hawkes, CasCN, and Cascade2vec is set to 50. The hidden layer of each GRU has
32 units, and the hidden dimensions of the two-layer fully-connected layers for all
deep learning-based methods are 32 and 16, respectively. The learning rate for node
embeddings in DeepCas and DeepHawkes is 5×10−4 and the learning rate for other
methods are 5 × 10−3. The batch size is set as 64. All other hyper-parameters are
set to the same values as used in the original papers.

As for our MUCas, the basic parameters (e.g., the learning rate is 5×10−4 and batch
size is 64, etc.) are the same as above deep learning-based approaches, except that
the max-order K and iteration number τ are chosen from 1 to 5. The embedding
size of positional embedding is chosen from {30, 50, 100, 150, 200}, the hidden size
for MGN is 60, and the hidden size for node-level capsule, graph-level capsule and
the class capsule is 30, 8 and 16, respectively. In addition, the number of time
intervals is set to 6. For the auxiliary classification task, the number of classes Q is
equal to 2. Specifically, we label a cascade as 1 if its increased size is twice or more
than its observed size, 0 otherwise. All methods, including ours, are tuned to the
best performance with early stopping when validation errors has not declined for 10

consecutive epochs.

Experimental environment: The experiments are conducted on a sever with Intel
E5-2680 v4 2.40GHz, one NVIDIA GeForce GTX 3090, and 256GB memory.

5.4.5 Performance Comparison (Q1)

The overall performance of MUCas as well as the state-of-the-art baselines are shown
in Table 5.3 and Table 5.4, from which we have the following important observa-
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Table 5.3: Performance comparison between baselines and MUCas onWeibo datasets.
A paired t-test is performed and ∗ indicates a statistical significance p < 0.001 as
compared to the best baseline method.

Model
Weibo

0.5 Hour 1 Hour
MSLE SMAPE R2 MSLE SMAPE R2

Feature-Linear 2.959 0.331 0.351 2.710 0.356 0.461
Feature-Deep 2.815 0.311 0.379 2.646 0.353 0.465
DeepCas 2.914 0.330 0.352 2.747 0.358 0.459
DeepHawkes 2.891 0.321 0.379 2.632 0.352 0.468
CasCN 2.804 0.311 0.381 2.601 0.350 0.468
Cascade2vec 2.752 0.308 0.384 2.589 0.348 0.479
VaCas 2.586 0.291 0.504 2.359 0.333 0.518
MUCas 2.081* 0.271* 0.621* 1.882* 0.308* 0.647*
(Improvements) 19.53% 6.87% 23.21% 20.22% 7.51% 24.90%

Table 5.4: Performance comparison between baselines and MUCas on APS datasets.
A paired t-test is performed and ∗ indicates a statistical significance p < 0.01 as
compared to the best baseline method.

Model
APS

3 Years 5 Years
MSLE SMAPE R2 MSLE SMAPE R2

Feature-Linear 2.100 0.289 0.126 2.087 0.358 0.311
Feature-Deep 1.996 0.358 0.221 1.874 0.352 0.322
DeepCas 2.033 0.361 0.213 1.944 0.365 0.318
DeepHawkes 1.831 0.344 0.241 1.588 0.337 0.363
CasCN 1.818 0.274 0.244 1.574 0.337 0.367
Cascade2vec 1.783 0.272 0.258 1.560 0.336 0.373
VaCas 1.723 0.268 0.283 1.507 0.335 0.394
MUCas 1.557* 0.263* 0.355* 1.439* 0.333* 0.426*
(Improvements) 9.63% 1.87% 25.44% 4.51% 0.59% 8.12%

tions.

(O1) MUCas outperforms the baselines by a large margin, e.g., as for the MSLE, it
reduces the prediction error up to 19.53%, 20.22% on the Weibo dataset and 9.63%
and 4.51% on the ASP dataset when compared to the best baseline – VaCas, when
to is set to 0.5, 1 hour and 3, 5 years on Weibo and APS, respectively. We plot the
training process of MUCas on the Weibo and APS dataset and show the results in
Figure 5.7. Clearly, the training loss of MUCas consistently decreases and converges
to a lower value.

(O2) The gap between handcrafted feature-based methods and most deep learning-
based baselines are quite small. In some cases the handcrafted feature-based meth-
ods even beat some deep learning-based methods. Comparing the Feature-Deep
with DeepCas, for example, we can observe that a fully connected layer is enough
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Figure 5.7: Convergence of MUCas on Weibo and APS datasets.

to achieve competitive results than complicated neural networks (DeepCas) if we
have a set of well-designed hand crafted features. However, obtaining such fea-
tures requiring extensive domain knowledge, which is hard to be generalized to new
domains.

(O3) DeepCas – the first deep-learning based approach for cascade size prediction –
performs the worst among the deep learning baselines, because it simply learns the
cascade representation based on sampled random walks but ignores temporal and
topological information. DeepHawkes, while being successful in modeling temporal
information for cascades in a generative learning manner, does not perform well due
to its weak ability to learn structural information.

(O4) The rest of the baselines, i.e., CasCN, Cascade2vec and VaCas, generate com-
petitive results because they explore structural and temporal information at the
same time. When comparing CasCN with Cascade2vec, the performance of Cas-
cade2vec is slightly better, due to the modified convolutional kernel in Cascade2vec,
which indeed improves the ability of learning structural features. Besides, VaCas
employed VAE [70] to solve the uncertainty problem in structural representation
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learning and therefore achieves higher accuracy compared to other baselines. Our
MUCas not only combines the advantages of CasCN and VaCas, but also takes
into account the high-order-scale and position-scale of a cascade graph, leading to a
significant improvement in prediction performance.

(O5) When examining the methods with different observation window to, we can
observe a general trend, i.e., the larger the to, the accurate the predictions. This
is intuitive because longer observation time reveals more temporal and structural
knowledge regarding information diffusion that helps cascade size prediction.

5.4.6 Ablation Study (Q2)

To better investigate the contribution of each scale of information modeled in MU-
Cas, we derive the following variants of MUCas:

-Direction: In “-Direction", we do not consider the directional relation in cascades,
i.e., regarding the cascade graphs as undirected graphs. We replace the MGN to
a vanilla GCN [61] and calculate the normalized adjacency matrix according to

Â = D̂
− 1

2 ĀD̂
− 1

2 .

-Order: In “-Order", we only focus on 1st-order neighbors in the cascade graphs,
i.e., setting the max-order number K to 1.

-Position: In “-Position", we ignore the node’s relative position in cascade graph,
i.e., removing the computation of position information PWp in MGN.

-Dynamic: In “-Dynamic", we remove the sub-graph level influence attention com-
ponent, and use G directly.

Figure 5.8 shows the performance comparisons among MUCas and its variants, which
illustrates that: (i) the original MUCas achieves the best performance compared
with other variants, demonstrating the motivation of our work, i.e., considering the
four different scale information for cascade modeling. (ii) From the comparison be-
tween “-Direction" and “-Position", we find that effectively modeling the directional
relation and node’s relative position in the cascade graph will improve the prediction
performance. (iii) Removing “-Order" and “-Dynamic" bring a remarkable decrease
of the prediction performance, which implies that: (a) nodes with different orders
play different importance in prediction task, and (b) the influence decreases as the
cascade graph evolves.

In order to quantify the effectiveness of different levels of capsules, i.e., order-level,
node-level, and graph-level capsule, we test the model performance by designing
several single capsule-based variants of MUCas, including:

Order-level: In “Order-level", we apply sum-pooling to aggregate the order-level
capsules h∗ for each node and form node-level capsule n∗. Finally, the sum-pooling
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Figure 5.8: Ablation study of MUCas on two datasets.

operation is employed again to aggregate node-level capsules to form the graph-level
capsule g∗.

Node-level: In “Node-level", we apply dynamic routing to aggregate order-level
capsules h∗ to form node-level capsule n∗. Subsequently, sum-pooling is used to
aggregate node-level capsules to form the graph-level features g∗.

Graph-level: In “Graph-level", we apply sum-pooling to generate node-level cap-
sule n∗ from h∗, and then employ dynamic routing to aggregate node-level capsules
to form the graph-level capsule g∗.

Figure 5.9 illustrates the differences between three single capsule-based variants and
MUCas. The experimental results are shown in Figure 5.10, where we can find that:
(i) Compared to all single capsule-based variants, the original MUCas performs
the best; (ii) Even keeping only one single-level capsule, the model performance is
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Figure 5.9: Illustration of single capsule-based variants of MUCas.

still superior to all the baselines in Table 5.3 and Table 5.4; and (iii) Compared to
original MUCas, the “order-level" variant performs the worst, while the performance
of the other two variants (i.e., node-level and graph-level) do not drop a lot. This
result demonstrates that (1) the three-level capsules are indispensable, and (2) the
dynamic routing is efficient in aggregating features.

5.4.7 Hyper-parameter Sensitivity (Q3)

We study several important hyper-parameters that may influence the prediction
performance of our model. Here we select the Weibo data set for the experiments
and omit APS as the results are expected to be similar. The impact of the choice
of hyper-parameters is shown in Figure 5.11.

• Impact of max-order K: we try different values of max-order K from 1 to
5, and the prediction results of MUCas are shown in Figure 5.11a and Fig-
ure 5.11b. When the observation time is 0.5 hour, our MUCas achieves the
best performance if K = 3. But for 1 hour observation, the optimal value of K
is 4. The reason is that with the increase of observation time, the information
are more likely to propagated to more nodes with deeper depth.

• Impact of embedding size of positional embedding Fp: we change the dimensions
Fp of positional embedding P within {30, 50, 100, 150, 200}. Compare the re-
sults on 0.5 hour with the results on 1 hour (Figure 5.11c and Figure 5.11d), we
can see that larger embedding size sometimes may degrade the performance,
and the proper embedding size should fall into the scope of [50, 150]. We hy-
pothesize the reason is that most cascade graphs are small, though a few of
them may diffuse to a large number of nodes, i.e., the 80/20 rule as shown in
Figure 5.4a and 5.4b. Therefore, a larger embedding dimensions would incur
overfitting issue for those smaller cascade graphs.

72



5.4 Evaluation

Ord
er-
lev
el

No
de-
lev
el

Gra
ph-
lev
el

MU
Ca
s

2.0

2.2

2.4

M
S
L
E

Ord
er-
lev
el

No
de-
lev
el

Gra
ph-
lev
el

MU
Ca
s

0.27

0.28

0.29

S
M
A
P
E

Ord
er-
lev
el

No
de-
lev
el

Gra
ph-
lev
el

MU
Ca
s

0.50

0.55

0.60

0.65

R
2

(a) Weibo – 0.5 hour

Ord
er-
lev
el

No
de-
lev
el

Gra
ph-
lev
el

MU
Ca
s

1.8

2.0

2.2

M
S
L
E

Ord
er-
lev
el

No
de-
lev
el

Gra
ph-
lev
el

MU
Ca
s

0.30

0.31

0.32

0.33

S
M
A
P
E

Ord
er-
lev
el

No
de-
lev
el

Gra
ph-
lev
el

MU
Ca
s

0.50

0.55

0.60

0.65

R
2

(b) Weibo – 1 hour

Ord
er-
lev
el

No
de-
lev
el

Gra
ph-
lev
el

MU
Ca
s

1.5

1.6

1.7

M
S
L
E

Ord
er-
lev
el

No
de-
lev
el

Gra
ph-
lev
el

MU
Ca
s

0.25

0.26

0.27

0.28

S
M
A
P
E

Ord
er-
lev
el

No
de-
lev
el

Gra
ph-
lev
el

MU
Ca
s

0.30

0.35

0.40

R
2

(c) APS – 3 years

Ord
er-
lev
el

No
de-
lev
el

Gra
ph-
lev
el

MU
Ca
s

1.40

1.45

1.50

1.55

M
S
L
E

Ord
er-
lev
el

No
de-
lev
el

Gra
ph-
lev
el

MU
Ca
s

0.300

0.325

0.350

0.375

S
M
A
P
E

Ord
er-
lev
el

No
de-
lev
el

Gra
ph-
lev
el

MU
Ca
s

0.35

0.40

0.45

R
2

(d) APS – 5 years

Figure 5.10: Capsule study of MUCas on two datasets.

• Impact of iteration number τ : we try different values of the iteration number τ
in dynamic routing, specifically, by increasing the value from 1 to 5. The results
are shown in Figure 5.11e and Figure 5.11f, which suggests that increasing the
number of iterations would improve the performance first, but deteriorate the
model soon. This result raises an open issue in capsule network learning. That
is, the appropriate iterations requires careful tuning that makes the capsule
network unstable. This issue should be addressed for robust representation
learning, which is beyond the scope of this work and left as future work.

• Impact of the length of observed retweets |U to|: we track the first 50, 80, 100,
150, and 200 retweets and report the performance of MUCas based on these
observed retweets. The experimental results show in Figure 5.11g and Fig-
ure 5.11h, where we can observe the improved performance with the increase
of observation retweets, which is a natural result of including more training
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Figure 5.11: Impact of the important hyper-parameters on MUCas. Vertical lines
are settings we used in previous experiments. Orange solid lines represent the results
of MSLE, and the purple dashed lines denote the results of SMAPE.

data.

• Impact of the number of time intervals l: when sampling sub-cascade graphs
from the observed cascade, we set different numbers of time interval, i.e.,
l = [3, 6, 9, 12, 15]. The results are shown in Figure 5.11i and 5.11j, which
reveal that: (1) the fine-grained sampling does not always perform better. For
example, when the observation time is 0.5 hour, the performance of MUCas at
l = 6 is much better than the results when l = 9, 12 and 15. This finding also
proves our hypothesis in Section 5.3.1 that the differences between fine-grained
sub-graphs become trivial as l grows, which will introduce biases in dynamic
modeling. Besides, increasing the number of sub-graphs would significantly
increase the computation cost. (2) The choice of the number of time interval
heavily depends on the distribution of dataset. When the observation window
is 0.5 hour and 1 hour, the model performance achieves the best at l = 6 and
l = 9, respectively.

• Impact of the balance value β: we change the hyper-parameter β in loss func-
tion (Eq. (5.10)) from 0 to 0.9, and report the results in Figure 5.11k and
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Figure 5.11l. We can see that a smaller value of β always achieves better per-
formance. Furthermore, β = 0.5 can be regarded as a watershed, with a value
less than 0.5 being far more suitable for model selection than a value greater
than 0.5. Setting β = 0, which can be regarded as removing the auxiliary
task from the original model. And from the results of β = 0, we can find that
adding an auxiliary task indeed helps us to improve the model performance.

• In order to further support the finding (O5) in Section 5.4.5, we conduct an
extra experiment to assess the model sensitivity varied with the observation
time. Specifically, we consider the propagation in the first 15 hours because
most of the messages in the Weibo dataset will decay after this time [11]. The
results are shown in Figure 5.12, where we can clearly see that the longer the
observations, the better the performance of the model.
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Figure 5.12: The influence of time window in Weibo dataset.

5.4.8 Model Parameters and Computation Cost

Table 5.5: Model parameters and computation time measured by seconds when to =
0.5 hour and 3 years for Weibo and APS, respectively. “∼" means “approximatively".

Methods Parameters Time cost per epoch (in seconds)
Weibo (to = 0.5 hour) APS (to = 3 years)

DeepCas ∼250M ∼150s ∼170s
DeepHawkes ∼250M ∼128s ∼158s
CasCN ∼278K ∼320s ∼400s
Cascade2Vec ∼368K ∼50s ∼75s
VaCas ∼2M ∼83s ∼98s
MUCas ∼495K ∼104s ∼105s

We compute the time cost of training MUCas and the baselines, as well as the re-
quired parameters. The results are reported in Table 5.5. First, the memory required
for DeepCas and DeepHawkes is much higher because they need the embeddings of
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all users in the social network, which required |U | × Fu parameters – |U | represents
the total number of users and Fu denotes the embedding size. Besides, the training
time for each epoch of MUCas is around 104s and 105s in Weibo and APS dataset
when to = 0.5 hour and to = 3 years, respectively. In contrast, Cascade2Vec is the
fastest model that only needs 50s and 70s for Weibo and APS datasets, respectively,
but the quality of the model is much lower.

5.5 Summary

In this chapter, we proposed a novel cascade prediction model – MUCas, which
capture the multi-scale features regarding information diffusion comprehensively
and make good predictions. Specifically, MUCas consists of four components: (1)
a time interval-aware sampling layer used to generate sub-cascade graphs from the
observed cascade graph, (2) MUG-Caps extracts the direction-scale, position-scale,
and high-order-scale information from sub-cascade graphs, (3) an attention layer
applied to learn dynamic-scale, and (4) a prediction layer to make predictions. We
conducted extensive experiments based on two real-world datasets, i.e., Weibo and
APS. The experimental results demonstrate that our method achieves state-of-the-
art performance on information cascade size prediction of tweet propagation in social
networks and scientific papers’ impact.
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Chapter 6

Modeling Hierarchical Diffusion for
Rumor Detection

6.1 Chapter Overview

Conventional methods for rumor detection broadly fall into two groups: (1) hand-
crafted feature-based approaches —mostly identifying and incorporating complicated
hand-crafted features for rumor detection, including lexical features [23, 29], syn-
tactic features [23, 79], visual features [24, 77], user profile related features [26, 83],
and social relationship features [137, 138]. Their performance highly depends on the
effectiveness of extracted features, which require extensive domain knowledge. (2)
credibility propagation-based approaches [24, 31, 32], which aims to find the truth
against conflicting information. These approaches usually leverage the inter-entity
relations but heavily rely on the constructed credibility network for high rumor iden-
tification accuracy. Recent studies inspired by the successes of deep learning methods
in many fields have developed various neural network-based models to learn several
feature representations for rumor detection in an end-to-end way [16, 33, 34, 102].
Although these methods have shown performance improvements over the previ-
ous methods, they still face several critical limitations. First, most of the existing
methods still require a large volume of textual data or a rich collection of users’
comments as input [16, 34, 102]. In addition, previous works focused on either
microscopic diffusion patterns that emphasize users’ personal retweeting behavior
or macroscopic diffusion structures depicting the full rumor in-network diffusion
paths [16, 100].

To overcome the limitations mentioned above, in this chapter, we propose MMRD
(Macroscopic and Microscopic-aware Rumor Detection), a novel deep learning-
based framework for rumor detection. MMRD models the rumor diffusion from both
macroscopic and microscopic perspectives through newly designed encoding compo-
nents MacroE and MicroE and enhancing the diffusion representations through the
cross-learning mechanism. We design a fusion gate to selectively aggregate learned
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macroscopic and microscopic knowledge and introduce the attention mechanism to
merge row-level information to form a unique rumor representation. The rumor
prediction is generated based on the learned rumor representation. Moreover, a
knowledge distillation technique is applied to further improve the model’s detection
performance. Our main contributions are summarized as follows:

• Firstly, we propose a new model to learn the representation of rumor through
modeling the macroscopic and microscopic diffusion. The model is flexible and
can be easily integrated into any existing approaches.

• Secondly, we design two encoding components for macroscopic and micro-
scopic diffusion modeling, respectively, as well as the mechanism to control
the information aggregation.

• Thirdly, MMRD employs a powerful technique–knowledge distillation to trans-
fer knowledge from a teacher model to a student model, which further improves
the model performance since the student capture more knowledge than the
teacher.

• Finally, we conduct extensive evaluations on two benchmark datasets. The
experimental results demonstrate that our model significantly outperforms ex-
isting baseline methods on rumor detection.

This chapter is based on the following publication[44]:

• Chen, X., Zhou, F., Zhang, F., Bonsangue, M.: Modeling microscopic and
macroscopic information diffusion for rumor detection. International Journal
of Intelligent Systems36(2021) 5449–5471

6.2 Problem statement

We first borrow the definitions of macro-level and micro-level diffusion prediction
from the field of information cascades modeling [71] to define macroscopic diffusion
and microscopic rumor diffusion, and then give the formalized definition of rumor
detection, which are formally defined as follows.

In information cascades modeling, the macro-level diffusion prediction aims at pre-
dicting the eventual size of a given cascade. Similarly, the macroscopic diffusion in
our work refers to the evolution of the network scale, representing both the change
of edges and nodes.

Definition 10 Macroscopic diffusion. We denote the macroscopic diffusion as
a diffusion graph G = {U,E} (see Definition 2), where U is the user set comprising
N users, and E = {(ui, uj)|ui, uj ∈ U} represents a set of edges connecting pairs of
users when uj retweets ui.
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Rumor Detection

Similar to micro-level diffusion prediction that aims to predict the next infected user,
we define the user infected process as microscopic diffusion, i.e., who will engage in
the information spreading and when this event (retweeting) occurs.

Definition 11 Microscopic diffusion. We represent the microscopic diffusion as
a user-time series P = {(u1, t1), · · · , (uj, tj), · · · , (uN , tN)}, where (u1, t1) denotes
user u1 created source tweet at time t1, and the rest of (uj, tj) tuples denote user
uj retweet the source tweet at time tj. Here, all users are in chronological order
according to their timestamps. P is also known as diffusion path in Definition 3

Recall the definition of observed diffusion graph G(to) and diffusion path P(to) in
Definition 4, where to is the observation window, we now give a formal definition of
rumor detection in this work:

Definition 12 Rumor detection. Given a tweet m = {Gm(to),Pm(to)} within
an observation window to, the goal of rumor detection is to learn a classification
function f(m) to classify m as a rumor or non-rumor.

Others definitions, such as user vector, used in next sections, are formally given in
Definition 5.

Table 6.1: Main notations used throughout this chapter.
Symbol Description
MacroE(·) Macroscopic diffusion encoding component.
MicroE(·) Microscopic diffusion encoding component.

HMacro
The macroscopic diffusion representation learned by
MacroE.

FMacro Dimension of macroscopic diffusion representation.

HMicro
The microscopic diffusion representation learned by Mi-
croE.

FMacro Dimension of microscopic diffusion representation.
HFuse Importance-aware diffusion representation.
HRumor Rumor representation.
K A set of order powers.
K Max order (i.e., max-value of K).
ŷ,y Prediction and the ground truth.

6.3 MMRD: Modeling Microscopic andMacroscopic
Information Diffusion for Rumor Detection

The overall framework of the proposed model MMRD is shown in Figure 6.1. In
particular, it consists of the following main components: (a) the input layer, which
takes the observed diffusion graph G(to) and diffusion path P(to) as inputs; (b)
the normal training process, so-called the training process of a teacher model, the
teacher model consists of (1) the macroscopic and microscopic diffusion encoding
layer, including MacroE, MicroE, and cross-learning mechanism, (2) the fusion gate,
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Figure 6.1: Overview of MMRD: (a) inputs of MMRD; (b) normal training process
of MMRD; (c) the process of train MMRD with knowledge distillation.

and (3) the rumor detection layer; (c) knowledge distillation phase, which is used to
further improve the model performance. With this model in mind, we first introduce
two essential structural encoding components – MacroE and MicroE, and then
discuss how to generate the unique rumor representation based on the two modules
that will preserve both macroscopic and microscopic diffusion properties. Finally,
we introduce how to use the knowledge distillation technique to develop a powerful
student model for rumor detection.
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Figure 6.2: Illustration of diffusion encoding components.

6.3.1 Macroscopic Diffusion Encoding Component

The macroscopic diffusion of a tweet m reflects its diffusion scale. In our work, we
cast the macroscopic diffusion modeling as learning the latent structural patterns
from its diffusion graph Gm(to). Inspired by the recent success of graph neural
networks in processing the graph structural data, e.g., graph convolutional net-
work (GCN) [41, 61] and graph attention network (GAT) [109], we implement the

82
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macroscopic diffusion encoding component (MacroE) based on vanilla GCN [61].

The vanilla GCN is a multi-layer structure that contains several convolution layers,

which is defined as:
H(j+1) = σ

(
ÃH(j)W(j)

)

Ã = D−
1
2 (A + IN)D−

1
2

(6.1)

where H(j) ∈ RN×dj and H(j+1) ∈ RN×dj+1 are the input and output for layer j,

W(j) ∈ Rdj×dj+1 is a trainable weight matrix and σ(·) is an activation function (e.g.,

Relu). Ã is a symmetrically normalized adjacency matrix with self-connections, and

D is a diagonal degree matrix. The adjacency matrix A and degree matrix D are

expressed as the following:

Aij =

{
1 if (ui, uj) ∈ E and i 6= j,
0 otherwise.

Dii =
∑

j

Aij

(6.2)

The initial input of the first GCN layer H(0) = X, which is formed by user vectors,

i.e., X = {u1, · · · ,uN} ∈ RN×Fuser . Even the vanilla GCN shows powerful ability in

graph embedding, it still faces some limitations: (1) it focuses on undirected graphs

rather than the directed graph [10]; and (2) the nodes receive latent representa-

tions only from their immediate neighbors, cannot be summarized as higher-order

adjacency information [111, 130].

To overcome the aforementioned limitations of GCN in modeling the directed graph

and learning higher-order interactions, in this work, we reference the work of CasCN [10]

(ref. Chapter 4) and MixHop [126], and extend the vanilla GCN. Finally, we propose

a directed multi-hop graph convolutional network with attention aggregation as the

MacroE (Figure 6.2a). The convolutional kernel of MacroE is defined as:

HMacro = fAGG

[
σ(L̃

(k)
XW(k))k∈K

]

= σ(fAGG

[
L̃

(0)
XW(0)

...L̃
(1)
XW(1)

... · · · ...L̃(K)
XW(K)

]
)

= σ(fAGG[H(0)
...H(1)

... · · · ...H(K)])

(6.3)

where X ∈ RN×F is the input feature matrix and HMacro = {h1
Macro, · · · ,hNMacro} ∈

RN×FMacro is the output of MacroE. In order to capture the directional information

from the diffusion graph, we replace the Ã with L̃ – normalized Laplacian for directed

83



6. MODELING HIERARCHICAL DIFFUSION FOR RUMOR DETECTION

graph. The calculation of L̃ is defined as:

P = (1− α)
E
N

+ α
(
D−1A

)
,

L = Φ
1
2 (I−P) Φ−

1
2 ,

L̃ =
2

λmax
L− I

(6.4)

whereP is a transition probability matrix, E ∈ RN×N is an all–one matrix. α ∈ (0, 1)

is an initial probability used to restrict the state transition matrix D−1A a strongly
connected matrix [10]. Φ is a diagonal matrix with entries Φ (v, v) = φ (v) – φ (v) is
the column vector of P [117], and λmax denotes the largest eigenvalue of L.

K is a set of integer order powers – the value ofK is from 0 toK, andWk ∈ RF×FMacro

is the weight matrix for k-hops. L̃
(k)

denotes the normalized Laplacian matrix L̃
multiplied by itself k times, and its value represents the probability connecting
path from vertex ui to vertex uj in k-hops. Specifically, L̃

(0)
= I is an identity

matrix. Through the Laplacian matrix’s multiple powers, MacroE mixes the feature
representation of higher-order neighbors in one graph convolutional layer.

fAGG(·) is an aggregation function, which is used to fuse the latent representation
from different orders. In most of the existing works [112, 126], fAGG(·) is similar to
the pooling methods in CNNs, which can be a mean-pooling function, max-pooling
function, or sum-pooling function. However, the distance of the message passing
for each node is different, i.e., different nodes have different max-orders. In this
work, we implement the aggregation function via the order attention mechanism at
the node-level. As for each node uj in the diffusion graph Gm(to), it has a set of
latent representations huj(0), · · · ,h

uj
(K) from K-orders. Then the order attention of uj

is calculated as:

a
uj
(k) =

exp(〈wuj , tanh(Wujh
uj
(k) + buj〉))∑K

∗=1 exp(〈wuj , tanh(Wujh
uj
(∗) + buj〉))

,

hujMacro =
K∑

k=1

a
uj
(k)h

uj
(k)

(6.5)

where Wuj ∈ RFMacro×d, buj ∈ Rd and wuj ∈ Rd. So that, the aggregation
function fAGG is formulated as fAGG = {hujMacro = Attention(huj(0), · · · ,h

uj
(K)), |j ∈

{1, · · · , N}}. The calculation process of MacroE is outlined in Algorithm 7.

MacroE vs. GCN: As depicted above, the convolutional kernel in MacroE for
one single order is similar to a single layer of GCN, i.e., L̃

(k)
XW(k) and ÃH(j)W(j),

respectively. The main differences between our MacroE and GCN are: (1) we use
normalized directed Laplacian L̃ to replace the symmetrically normalized adjacency
matrix Ã in GCN, which introduces the directional information of edges into the
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Algorithm 7: Calculation of MacroE (Eq. (6.5)).

Input: Feature matrix X, normalized laplacian matrix L̃, a set of order powers K
and its max-value K = max(K).

Parameters: {W(k)}k∈K.
1: B := X
2: for k = 0 to K do
3: if k = 0 then
4: B := IB
5: else
6: B := L̃B
7: end if
8: H(k) := BW(k)

9: end for
/*From step 1 to 9, complete the calculation of (L̃

(k)
XW(k))k∈K in Eq. (6.3)*/

10: HMacro := fAGG([H(0), · · · ,H(k), · · · ,H(K)]) via Eq. (6.5).
11: return σ(H)

convolution rather than only considering the link information between nodes; and
(2) our MacroE can learn high-order information for each node by using one single
layer; however, GCN relies on multi-layers and may introduce the over-smoothing
issue in learning node feature representations [112].

6.3.2 Microscopic Diffusion Encoding Component

The microscopic diffusion encoding component (MicroE, shown in Figure 6.2b)
aims to capture temporal patterns from the user engagement time series Pm(to).
Inspired by the success of RNNs in sequential modeling, we employ a Bi-directional
GRU (Bi-GRU) [108] as the encoding component, where the hidden states are used
to memorize the diffusion history. At each step tj, Bi-GRU takes the feature vector
and previous hidden state as inputs and computes the updated hidden state as:

↔
h
j

= Bi-GRU(xj,hj−1),
↔
h
j

∈ RFMicro (6.6)

Then, the output of MicroE module is a sequence of hidden statesHMicro = {
↔
h
j

Micro|j ∈
{1, · · · , N}} ∈ RN×FMicro

6.3.3 Macroscopic and Microscopic Cross-learning

After introducing the necessary encoding components, we go to describe how to
apply them to learn the latent representations from macroscopic and microscopic
diffusion, summarized into two steps. In the first step, we train MacroE and MicroE
separately. MacroE takes the feature matrix X, the normalized Laplacian matrix L̃
and max-order number K as inputs. As for MicroE, we first represent the infected
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timestamp of each user into one-hot vector tj ∈ Rdtime , and then concatenate the
timestamp vector matrix T = {t1, · · · , tN} with X to form the input X̂ for MicroE.
Specifically, assume that, the time window is [t1, to], and we first split the time
window into l disjoint time intervals, and then compute the corresponding time
interval for each retweet user uj as tjint =

⌊
tj−t1
to/l

⌋
, where t1 is the timestamp for the

source post user, and tj is timestamp for user uj. Finally, each user’s timestamp
is falling into corresponding time intervals and each interval is related to a one-hot
embedding, thus, for uj its timestamp embedding equals to the related time-interval
embedding. Note that, in our work, the initial feature matrix X is extracted from
users’ profiles. Figure 6.3 shows a toy example of the model inputs. The outputs of
first step are H1

Macro and H1
Micro, respectively:

H1
Macro = MacroE(X, L̃, K)

H1
Micro = MicroE(concat(X,T))

(6.7)

In the second step, we train MacroE and MicroE in a cross-learning manner. Specif-
ically, we use H1

Macro to train a new MicroE, and vice versa. The outputs of second
step are H2

Macro and H2
Micro:

H2
Macro = MacroE(H1

Micro, L̃, K)

H2
Micro = MicroE(H1

Macro)
(6.8)
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eL
<latexit sha1_base64="7OF6PrXRMFYembnZrYwQeZQ1jsg=">AAAB/3icbVDJSgNBEO1xjXGLCl68DAbBU5iJgh6DXjx4iGAWyAyhp6cmadKz0F2jhnEO/ooXD4p49Te8+Td2loMmPih4vFdFVT0vEVyhZX0bC4tLyyurhbXi+sbm1nZpZ7ep4lQyaLBYxLLtUQWCR9BAjgLaiQQaegJa3uBy5LfuQCoeR7c4TMANaS/iAWcUtdQt7Tv33AfkwofMQXhAL8iu87xbKlsVawxznthTUiZT1LulL8ePWRpChExQpTq2laCbUYmcCciLTqogoWxAe9DRNKIhKDcb35+bR1rxzSCWuiI0x+rviYyGSg1DT3eGFPtq1huJ/3mdFINzN+NRkiJEbLIoSIWJsTkKw/S5BIZiqAllkutbTdankjLUkRV1CPbsy/OkWa3YJ5XqzWm5djGNo0AOyCE5JjY5IzVyReqkQRh5JM/klbwZT8aL8W58TFoXjOnMHvkD4/MHEi+Wxw==</latexit>

[0 1 0 1 1 0 · · · 0 1 0 1 0]
<latexit sha1_base64="FKNIWZzKXhNtpcWBS6YJezH4l+o=">AAACE3icbVDLSgMxFL3js9bXqEs3wSKIizJTBV0W3bisYB8wM5RMJm1DM5MhyQhl6D+48VfcuFDErRt3/o1pO4K2Hkju4Zx7Se4JU86Udpwva2l5ZXVtvbRR3tza3tm19/ZbSmSS0CYRXMhOiBXlLKFNzTSnnVRSHIectsPh9cRv31OpmEju9CilQYz7CesxgrWRuvap5/gIuT4yxfUL4pNIaPWjFXfQtStO1ZkCLRK3IBUo0Ojan34kSBbTRBOOlfJcJ9VBjqVmhNNx2c8UTTEZ4j71DE1wTFWQT3cao2OjRKgnpDmJRlP190SOY6VGcWg6Y6wHat6biP95XqZ7l0HOkjTTNCGzh3oZR1qgSUAoYpISzUeGYCKZ+SsiAywx0SbGsgnBnV95kbRqVfesWrs9r9SvijhKcAhHcAIuXEAdbqABTSDwAE/wAq/Wo/VsvVnvs9Ylq5g5gD+wPr4Bt46ZDQ==</latexit>

[0 0 0 1 1 0 · · · 0 1 0 1 0]
<latexit sha1_base64="EwiPbQjTr2ihFpwqspcipWbolug=">AAACEnicbVBNS8MwGE79nPOr6tFLcAh6Ge0U9Dj04nGC+4C2jDRNt7A0KUkqjLLf4MW/4sWDIl49efPfmHUVdPPhTXh4nvcleZ8wZVRpx/mylpZXVtfWKxvVza3tnV17b7+jRCYxaWPBhOyFSBFGOWlrqhnppZKgJGSkG46up373nkhFBb/T45QECRpwGlOMtJH69qnn+HBWblGG+DgSWv1o5R307ZpTdwrAReKWpAZKtPr2px8JnCWEa8yQUp7rpDrIkdQUMzKp+pkiKcIjNCCeoRwlRAV5sdIEHhslgrGQ5nANC/X3RI4SpcZJaDoTpIdq3puK/3lepuPLIKc8zTThePZQnDGoBZzmAyMqCdZsbAjCkpq/QjxEEmFtUqyaENz5lRdJp1F3z+qN2/Na86qMowIOwRE4AS64AE1wA1qgDTB4AE/gBbxaj9az9Wa9z1qXrHLmAPyB9fENWmyY4g==</latexit>

[1 1 0 1 1 0 · · · 0 1 0 1 0]
<latexit sha1_base64="vgGeSfktHbCM1PmnRvFCMZZ7EYA=">AAACEnicbVBNS8MwGE79nPOr6tFLcAh6Ge0U9Dj04nGC+4C2jDRNt7A0KUkqjLLf4MW/4sWDIl49efPfmHUVdPMheXl4nvcleZ8wZVRpx/mylpZXVtfWKxvVza3tnV17b7+jRCYxaWPBhOyFSBFGOWlrqhnppZKgJGSkG46up373nkhFBb/T45QECRpwGlOMtJH69qnn+tAcp6gz4uNIaPWjlTXo2zWn7hSAi8QtSQ2UaPXtTz8SOEsI15ghpTzXSXWQI6kpZmRS9TNFUoRHaEA8QzlKiAryYqUJPDZKBGMhzeUaFurviRwlSo2T0HQmSA/VvDcV//O8TMeXQU55mmnC8eyhOGNQCzjNB0ZUEqzZ2BCEJTV/hXiIJMLapFg1IbjzKy+STqPuntUbt+e15lUZRwUcgiNwAlxwAZrgBrRAG2DwAJ7AC3i1Hq1n6816n7UuWeXMAfgD6+MbXb+Y5A==</latexit>

· · ·<latexit sha1_base64="9pGPaDabNijkWLtd2pluvCo4p5o=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRV0GPRi8cK9gPaUDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHodua3n5g2XMkHHKcsSMhA8phTglZq9Wik0PTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcbXwYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJq1b1L6q1+8tK/SaPowgncArn4MMV1OEOGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/AK+ljzM=</latexit>

T
<latexit sha1_base64="7oSbA3WnBYJv+fKmxAA9CjHUUAI=">AAAB8XicbVDLSgNBEJyNrxhfUY9eBoPgKexGQY9BLx4j5IVJCLOT3mTI7Owy0yuGJX/hxYMiXv0bb/6Nk2QPmljQUFR1093lx1IYdN1vJ7e2vrG5ld8u7Ozu7R8UD4+aJko0hwaPZKTbPjMghYIGCpTQjjWw0JfQ8se3M7/1CNqISNVxEkMvZEMlAsEZWumhi/CEfpDWp/1iyS27c9BV4mWkRDLU+sWv7iDiSQgKuWTGdDw3xl7KNAouYVroJgZixsdsCB1LFQvB9NL5xVN6ZpUBDSJtSyGdq78nUhYaMwl92xkyHJllbyb+53USDK57qVBxgqD4YlGQSIoRnb1PB0IDRzmxhHEt7K2Uj5hmHG1IBRuCt/zyKmlWyt5FuXJ/WareZHHkyQk5JefEI1ekSu5IjTQIJ4o8k1fy5hjnxXl3PhatOSebOSZ/4Hz+APFnkRc=</latexit>

t1
<latexit sha1_base64="b0Lh6u06lnO2y1TyB5ruRzQnFG8=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0mqoMeiF48V7Ac0pWy2k3bpZhN2J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVHJo8lrHuBMyAFAqaKFBCJ9HAokBCOxjfzvz2I2gjYvWAkwR6ERsqEQrO0Eq+j/CEQZjhtO/1yxW36s5BV4mXkwrJ0eiXv/xBzNMIFHLJjOl6boK9jGkUXMK05KcGEsbHbAhdSxWLwPSy+c1TemaVAQ1jbUshnau/JzIWGTOJAtsZMRyZZW8m/ud1Uwyve5lQSYqg+GJRmEqKMZ0FQAdCA0c5sYRxLeytlI+YZhxtTCUbgrf88ipp1areRbV2f1mp3+RxFMkJOSXnxCNXpE7uSIM0CScJeSav5M1JnRfn3flYtBacfOaY/IHz+QNPXJHb</latexit>

t2
<latexit sha1_base64="+jJwroHhDaR2X4/mBbNuCTUvbcA=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0mqoMeiF48V7Ac0pWy2k3bpZhN2J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVHJo8lrHuBMyAFAqaKFBCJ9HAokBCOxjfzvz2I2gjYvWAkwR6ERsqEQrO0Eq+j/CEQZjhtF/rlytu1Z2DrhIvJxWSo9Evf/mDmKcRKOSSGdP13AR7GdMouIRpyU8NJIyP2RC6lioWgell85un9MwqAxrG2pZCOld/T2QsMmYSBbYzYjgyy95M/M/rphhe9zKhkhRB8cWiMJUUYzoLgA6EBo5yYgnjWthbKR8xzTjamEo2BG/55VXSqlW9i2rt/rJSv8njKJITckrOiUeuSJ3ckQZpEk4S8kxeyZuTOi/Ou/OxaC04+cwx+QPn8wdQ4JHc</latexit>

t6
<latexit sha1_base64="71xFxKnK4ztK122U6biCkv8eh2A=">AAAB83icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Vj04rGC/YCmlM120y7dbMLuRCyhf8OLB0W8+me8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXJtRKwecJzwbkQHSoSCUbSS7yN/wiDMcNK77JXKbsWdgSwTLydlyFHvlb78fszSiCtkkhrT8dwEuxnVKJjkk6KfGp5QNqID3rFU0Yibbja7eUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4XU3EypJkSs2XxSmkmBMpgGQvtCcoRxbQpkW9lbChlRThjamog3BW3x5mTSrFe+8Ur2/KNdu8jgKcAwncAYeXEEN7qAODWCQwDO8wpuTOi/Ou/Mxb11x8pkj+APn8wdW8JHg</latexit>

[1 11 0 189 1906 · · · 3769 0 0]
<latexit sha1_base64="W7nM4w9e5vgPD9hxtVHcTrnVY6o=">AAACE3icbVC7TsMwFHV4lvAKMLJYVEiIoUpa1MdWwcJYJPqQkqhyHKe16jxkO0hV1H9g4VdYGECIlYWNv8FNM0DLka59dM69su/xEkaFNM1vbW19Y3Nru7Sj7+7tHxwaR8c9Eaccky6OWcwHHhKE0Yh0JZWMDBJOUOgx0vcmN3O//0C4oHF0L6cJcUM0imhAMZJKGhqXtuVAS5WprmZLHS2z7kAH+7EUDqw16q3cM3V3aJTNipkDrhKrIGVQoDM0vhw/xmlIIokZEsK2zES6GeKSYkZmupMKkiA8QSNiKxqhkAg3y3eawXOl+DCIuapIwlz9PZGhUIhp6KnOEMmxWPbm4n+encqg6WY0SlJJIrx4KEgZlDGcBwR9ygmWbKoIwpyqv0I8RhxhqWLUVQjW8sqrpFetWLVK9e6q3L4u4iiBU3AGLoAFGqANbkEHdAEGj+AZvII37Ul70d61j0XrmlbMnIA/0D5/AGtgmNw=</latexit>

u2
<latexit sha1_base64="eCC1YxHsREEQRmTE57tKCoZKY9Q=">AAAB83icbVBNS8NAEN3Ur1q/qh69BIvgqSRV0GPRi8cK9gOaUjbbSbt0swm7s2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZemAqu0fO+ncLa+sbmVnG7tLO7t39QPjxq6cQoBk2WiER1QqpBcAlN5CigkyqgcSigHY5vZ377EZTmiXzASQq9mA4ljzijaKUgQHjCMMrMtF/rlyte1ZvDXSV+TiokR6Nf/goGCTMxSGSCat31vRR7GVXImYBpKTAaUsrGdAhdSyWNQfey+c1T98wqAzdKlC2J7lz9PZHRWOtJHNrOmOJIL3sz8T+vazC67mVcpgZBssWiyAgXE3cWgDvgChiKiSWUKW5vddmIKsrQxlSyIfjLL6+SVq3qX1Rr95eV+k0eR5GckFNyTnxyRerkjjRIkzCSkmfySt4c47w4787HorXg5DPH5A+czx9SZ5Hd</latexit>

u2
<latexit sha1_base64="eCC1YxHsREEQRmTE57tKCoZKY9Q=">AAAB83icbVBNS8NAEN3Ur1q/qh69BIvgqSRV0GPRi8cK9gOaUjbbSbt0swm7s2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZemAqu0fO+ncLa+sbmVnG7tLO7t39QPjxq6cQoBk2WiER1QqpBcAlN5CigkyqgcSigHY5vZ377EZTmiXzASQq9mA4ljzijaKUgQHjCMMrMtF/rlyte1ZvDXSV+TiokR6Nf/goGCTMxSGSCat31vRR7GVXImYBpKTAaUsrGdAhdSyWNQfey+c1T98wqAzdKlC2J7lz9PZHRWOtJHNrOmOJIL3sz8T+vazC67mVcpgZBssWiyAgXE3cWgDvgChiKiSWUKW5vddmIKsrQxlSyIfjLL6+SVq3qX1Rr95eV+k0eR5GckFNyTnxyRerkjjRIkzCSkmfySt4c47w4787HorXg5DPH5A+czx9SZ5Hd</latexit>

u1
<latexit sha1_base64="/eh+oLxlxAaYM/H3KlU0ud6YnA8=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0mqoMeiF48V7Ac0pWy2k3bpZhN2J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVHJo8lrHuBMyAFAqaKFBCJ9HAokBCOxjfzvz2I2gjYvWAkwR6ERsqEQrO0Eq+j/CEQZil077XL1fcqjsHXSVeTiokR6Nf/vIHMU8jUMglM6bruQn2MqZRcAnTkp8aSBgfsyF0LVUsAtPL5jdP6ZlVBjSMtS2FdK7+nshYZMwkCmxnxHBklr2Z+J/XTTG87mVCJSmC4otFYSopxnQWAB0IDRzlxBLGtbC3Uj5imnG0MZVsCN7yy6ukVat6F9Xa/WWlfpPHUSQn5JScE49ckTq5Iw3SJJwk5Jm8kjcndV6cd+dj0Vpw8plj8gfO5w9Q45Hc</latexit>

u6
<latexit sha1_base64="FYqBhFhDRxYdcS8SlxqgFjj2mmg=">AAAB83icbVBNS8NAEN34WetX1aOXxSJ4KkkV9Vj04rGC/YCmlM120i7dbMLuRCyhf8OLB0W8+me8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk41hwaPZazbATMghYIGCpTQTjSwKJDQCka3U7/1CNqIWD3gOIFuxAZKhIIztJLvIzxhEGbppHfZK5XdijsDXSZeTsokR71X+vL7MU8jUMglM6bjuQl2M6ZRcAmTop8aSBgfsQF0LFUsAtPNZjdP6KlV+jSMtS2FdKb+nshYZMw4CmxnxHBoFr2p+J/XSTG87mZCJSmC4vNFYSopxnQaAO0LDRzl2BLGtbC3Uj5kmnG0MRVtCN7iy8ukWa1455Xq/UW5dpPHUSDH5IScEY9ckRq5I3XSIJwk5Jm8kjcndV6cd+dj3rri5DNH5A+czx9Yd5Hh</latexit>

[4 14 0 15 394 · · · 2256 0 0]
<latexit sha1_base64="ljQ+LTAGHiWWadFirz4CSt8fwG4=">AAACEXicbVC7TsMwFHXKq4RXgJHFokLqVCVpy2OrYGEsEn1ISVQ5jtNadR6yHaQq6i+w8CssDCDEysbG3+CmHaDlSFc+OudeXd/jp4wKaZrfWmltfWNzq7yt7+zu7R8Yh0ddkWQckw5OWML7PhKE0Zh0JJWM9FNOUOQz0vPHNzO/90C4oEl8Lycp8SI0jGlIMZJKGhhVp+FCS5WpnqYL61eKuzhIpHChbTfPC8fUvYFRMWtmAbhKrAWpgAXaA+PLDRKcRSSWmCEhHMtMpZcjLilmZKq7mSApwmM0JI6iMYqI8PLioik8U0oAw4SriiUs1N8TOYqEmES+6oyQHIllbyb+5zmZDC+9nMZpJkmM54vCjEGZwFk8MKCcYMkmiiDMqforxCPEEZYqRF2FYC2fvEq6ds2q1+y7RqV1vYijDE7AKagCC1yAFrgFbdABGDyCZ/AK3rQn7UV71z7mrSVtMXMM/kD7/AFlsphY</latexit>

[15 13 136 7143 · · · 4356 1 0]
<latexit sha1_base64="M1srBScg9TR9DPX+L5IuCLzPSlY=">AAACEXicbZC7TsMwFIadcivhFmBksaiQOlVxL5SxgoWxSPQiNVHlOE5r1bnIdpCqqq/AwquwMIAQKxsbb4PTZoCWXzrSp/+cI/v8XsKZVLb9bRQ2Nre2d4q75t7+weGRdXzSlXEqCO2QmMei72FJOYtoRzHFaT8RFIcepz1vcpP1ew9USBZH92qaUDfEo4gFjGClraFVHqCGA1Etq0sHNlFdo0P8WEkH1msN7SEH2qY7tEp2xV4IrgPKoQRytYfWl+PHJA1ppAjHUg6QnSh3hoVihNO56aSSJphM8IgONEY4pNKdLS6awwvt+DCIha5IwYX7e2OGQymnoacnQ6zGcrWXmf/1BqkKrtwZi5JU0YgsHwpSDlUMs3igzwQlik81YCKY/iskYywwUTpEU4eAVk9eh261gmqV6l291LrO4yiCM3AOygCBJmiBW9AGHUDAI3gGr+DNeDJejHfjYzlaMPKdU/BHxucPRKSYRA==</latexit>

· · ·<latexit sha1_base64="9pGPaDabNijkWLtd2pluvCo4p5o=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRV0GPRi8cK9gPaUDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHodua3n5g2XMkHHKcsSMhA8phTglZq9Wik0PTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcbXwYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJq1b1L6q1+8tK/SaPowgncArn4MMV1OEOGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/AK+ljzM=</latexit>

X
<latexit sha1_base64="nM3ChPESpQ2dvwthlTzHQNs4T9M=">AAAB8XicbVBNS8NAEN34WetX1aOXxSJ4KkkV9Fj04rGC/cA2lM120i7dbMLuRCyh/8KLB0W8+m+8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk41hwaPZazbATMghYIGCpTQTjSwKJDQCkY3U7/1CNqIWN3jOAE/YgMlQsEZWumhi/CEQZi1J71S2a24M9Bl4uWkTHLUe6Wvbj/maQQKuWTGdDw3QT9jGgWXMCl2UwMJ4yM2gI6likVg/Gx28YSeWqVPw1jbUkhn6u+JjEXGjKPAdkYMh2bRm4r/eZ0Uwys/EypJERSfLwpTSTGm0/dpX2jgKMeWMK6FvZXyIdOMow2paEPwFl9eJs1qxTuvVO8uyrXrPI4COSYn5Ix45JLUyC2pkwbhRJFn8kreHOO8OO/Ox7x1xclnjsgfOJ8/93uRGw==</latexit>

Propagation threads

G(to)
<latexit sha1_base64="IviKX2H26m9qaPBIQllnUmmkBe0=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoMQL2FXBT0GPegxgnlAsoTZyWwyZnZmmekVQsg/ePGgiFf/x5t/4yTZgyYWNBRV3XR3hYngBj3v28mtrK6tb+Q3C1vbO7t7xf2DhlGppqxOlVC6FRLDBJesjhwFayWakTgUrBkOb6Z+84lpw5V8wFHCgpj0JY84JWilxm0Zu+q0Wyx5FW8Gd5n4GSlBhlq3+NXpKZrGTCIVxJi27yUYjIlGTgWbFDqpYQmhQ9JnbUsliZkJxrNrJ+6JVXpupLQtie5M/T0xJrExozi0nTHBgVn0puJ/XjvF6CoYc5mkyCSdL4pS4aJyp6+7Pa4ZRTGyhFDN7a0uHRBNKNqACjYEf/HlZdI4q/jnlbP7i1L1OosjD0dwDGXw4RKqcAc1qAOFR3iGV3hzlPPivDsf89ack80cwh84nz+9UI6U</latexit>

P(to)
<latexit sha1_base64="SH+BQv94q/ROjvC0oVB/zZopsfM=">AAAB+XicbVDLSsNAFJ3UV62vqEs3wSLUTUmqoMuiG5cV7APaECbTSTt0MhNmbgol9E/cuFDErX/izr9x0mahrQcGDufcyz1zwoQzDa77bZU2Nre2d8q7lb39g8Mj+/iko2WqCG0TyaXqhVhTzgRtAwNOe4miOA457YaT+9zvTqnSTIonmCXUj/FIsIgRDEYKbHsQYxgTzLPWvAaBvAzsqlt3F3DWiVeQKirQCuyvwVCSNKYCCMda9z03AT/DChjhdF4ZpJommEzwiPYNFTim2s8WyefOhVGGTiSVeQKchfp7I8Ox1rM4NJN5Tr3q5eJ/Xj+F6NbPmEhSoIIsD0Upd0A6eQ3OkClKgM8MwUQxk9UhY6wwAVNWxZTgrX55nXQade+q3ni8rjbvijrK6Aydoxry0A1qogfUQm1E0BQ9o1f0ZmXWi/VufSxHS1axc4r+wPr8ATXOk2A=</latexit>

Figure 6.3: A toy example of the model inputs.

6.3.4 Feature fusion via hybrid aggregation layer

We concatenate H1
Macro with H2

Macro to form HMacro ∈ RN×2FMacro , and concatenate
H1

Micro with H2
Micro to form HMicro ∈ RN×2FMicro . Thus, for each tweet mi, we have a

macroscopic representationHMacro and a microscopic representationHMicro. In most
of the existing works, after gettingHMacro andHMicro, they will concatenate them di-
rectly, however, this operation ignores the different dependence on the two different
representations. In our work, in order to effectively aggregate the learned represen-
tations, inspired by the gate mechanism [108] and attention mechanism [131], we
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design (1) a fusion gate to fuse HMacro and HMicro to form HFuse, and (2) row-level
attention to aggregate features to merge a unique representation HRumor.

To selectively integrate the important information of two representations, we employ
a concise and effective fusion gating mechanism that produces an importance-aware
diffusion representation HFuse as follows:

G = sigmoid(W1
gateHMacro + W2

gateHMicro + bgate)

HFuse = G�HMacro + (1−G)�HMicro
(6.9)

where W1
gate,W

2
gate ∈ R2F ′×2F ′ , and bgate ∈ R2F ′ . Note that, here F ′ = FMacro =

FMicro. G is used to drop trivial parts of macroscopic representation and add impor-
tant information from microscopic representation. The rationale behind this design
is that the representation fusion HFuse = {h1

Fuse, · · · ,hNFuse} ∈ RN×2F ′ would be
aware of the different importance of macroscopic and microscopic diffusion.

Then, we merge the row-level information of HFuse to form an unique representation
HRumor for tweet m through attention sum-pooling operation:

aj =
exp(〈w, tanh(Wah

j
Fuse + ba〉))∑N

∗=1 exp(〈w, tanh(Wah∗Fuse + ba〉))
,

HRumor =
N∑

j=1

ajh
j
Fuse

(6.10)

where Wa ∈ R2F ′×d, ba ∈ Rd and w ∈ Rd.

6.3.5 Rumor detection and optimization

Subsequently, HRumor is used to generate the corresponding binary prediction vector
ŷ = [ŷ0, ŷ1], where ŷ0, ŷ1 indicate that the prediction probabilities of the label being
0 and 1, respectively, via a fully connected layer and the Softmax function:

ŷ = Softmax (FC (HRumor)) . (6.11)

In our implementation, we train all the model parameters by minimizing the cross-
entropy between ŷ and y:

L = − 1

|B|

|B|∑

i=1

1∑

c=0

yi,c log ŷi,c + λ ‖Θ‖2
2 , (6.12)

where |B| is the batch size, yi,c and ŷi,c are the ground truth and predicted results
for the i-th sample. That is, if the sample belongs to c-th class, ŷi,c is 1; other-
wise it is 0. ‖Θ‖2

2 is the L2 regularizer over all the model parameters Θ, and λ

is the trade-off coefficient. The optimization can be solved by stochastic gradient
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descent–based optimization approaches, such as Adam [139] and RAdam [140]. The
above computation process of our MMRD model is outlined in Algorithm 8.

Algorithm 8: Training process of MMRD.

Input: A set of tweets M =
{
mi

}|M |
i=1

, each tweet mi =
{
Gi(to),Pi(to)

}
, the

max-order number K.
Output: MMRD-optimized parameters Θ.
1: initialize Θ
2: while Θ has not converged do
3: for each tweets batch B do
4: for each tweet mi in tweets batch B do
5: /* (1st) Train MacroE and MicroE separately. */

1st macroscopic diffusion encoding: H1
Macro ← X, L̃, K via Eq.(6.3);

1st microscopic diffusion encoding: H1
Micro ← X̂ via Eq.(6.6);

6: /* (2nd) Cross-learning MacroE and MicroE */
2nd macroscopic diffusion encoding: H2

Macro ← H1
Micro, L̃, K via Eq.(6.3);

2nd microscopic diffusion encoding: H2
Micro ← H1

Macro via Eq.(6.6);
7: /* Concatenate operation */

HMacro = concat(H1
Macro,H

2
Macro)

HMicro = concat(H1
Micro,H

2
Micro)

8: macroscopic and microscopic representation fusion:
HFuse ← HMacro,HMicro via Eq.(6.9);

9: Attention sum-polling: HRumor ← HFuse via Eq.(6.10);
10: Estimate the probability ŷ via Eq.(6.11);
11: end for
12: L ← Eq.(6.12);
13: Θ← RAdam(L)
14: end for
15: end while

6.3.6 Rumor detection with knowledge distilling

In order to further improve the model performance on rumor detection task, we
inspired by knowledge distillation technique [141]. The knowledge distillation tech-
nique, which involves capturing the “dark knowledge” from a teacher model to guide
the learning of a student network, has emerged as an essential technique for model
improvement. We first train a teacher model via Algorithm 8, and then trans-
fer the knowledge from the teacher model to a student model. Here in our work,
the student model has the same model architecture as the teacher model (self-
distillation [142, 143]). Before introducing the concrete training procedure of MMRD
with knowledge distillation, we first give the definition of the softmax with temper-
ature:

qi = softmax(H, τ) =
exp(H/τ)∑
j exp(H/τ)

(6.13)
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where τ is a temperature that is normally set to 1. We use a higher value for
temperature τ to produce a softer probability distribution over the class, which
brings the advantage that the information carried by the negative label will be
relatively amplified, and the model training will pay more attention to the negative
label.

The concrete training procedure of the knowledge distillation is listed in Algorithm 9,
and Figure 6.1–(c) gives a visualization of Algorithm 9. The objective function of
the knowledge distillation is a weighted average of two different objective functions.
The first loss function is the cross-entropy with the soft targets and it is computed
using the same high temperature τ = t in the softmax of the student model as was
used for generating the soft targets from the teacher model.

Lsoft = −
|B|∑

i=1

ȳTi log ȳSi (6.14)

where ȳTi = softmax(FC(HT
Rumor), τ = t) is soft output from teacher model, and

ȳSi = softmax(FC(HS
Rumor), τ = t) is soft output from student model.

The second loss function is the cross-entropy with the ground truth. This is com-
puted using exactly the same logits in softmax of the student model but at a tem-
perature of 1.

Lhard = −
|B|∑

i=1

yi log ŷSi (6.15)

where yi is the ground truth and ŷSi = softmax(FC(HS
Rumor), τ = 1) is the hard

output of student model. Finally, the objective function of knowledge distillation
is:

LKD = (1− β)Lsoft + βLhard (6.16)

where β is the balance weight, which always been a considerably lower value since
the amplitude of the gradients produced by the scale of the soft output as 1/τ 2. This
ensures that the relative contributions of the hard and soft targets remain roughly
unchanged [141].

6.4 Evaluating MMRD

In this section present the findings from our experimental evaluations. We compare
the performance of our MMRD with the state-of-art baselines on rumor detection,
and we also investigate the effects of different components by comparing several
variants of MMRD. Specifically, we aim at providing empirical evaluations to answer
the following research questions:

• Q1 How does MMRD perform compared with the state-of-the-art baselines
on rumor detection?
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Algorithm 9: Training procedure of MMRD with knowledge distillation.

Input: A set of tweets M =
{
mi

}|M |
i=1

, each tweet mi =
{
Gi(to),Pi(to)

}
, the

max-order number K, temperature τ .
Output: Student-optimized parameters Θ.
1: Pre-train a Teacher model via Alogrithm 8.
2: initialize Θ in Student model.
3: while Θ has not converged do
4: for each tweets batch B do
5: for each tweet mi in tweets batch B do
6: HT

Rumor ←Teacher
7: /* Train Student model via step 1 to step 9 in Alogrithm 8.*/

HS
Rumor ← Student

8: /* Soft outputs from Teacher*/
ȳTi = softmax(FC(HT

Rumor), τ = t)
/* Soft outputs from Student*/
ȳSi = softmax(FC(HS

Rumor), τ = t)
/* Hard outputs from Student */
ŷSi = softmax(FC(HS

Rumor), τ = 1)
9: calculate loss LKD via Eq. 6.16
10: end for
11: Θ← RAdam(LKD)
12: end for
13: end while
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• Q2 How does each component of MMRD contribute to the performance?

• Q3 Can MMRD detect rumor at an early stage?

6.4.1 Datasets

We conducted our experiments on two real-world datasets: Twitter15, Twitter16.
Both Twitter15 and Twitter16 datasets were collected by Ma et al. [33]. Each dataset
contains a collection of source tweets with its corresponding propagation threads.
The original datasets were constructed for multi-class classification, and we removed
the tweets labeled as “unverified” or “true rumor” since they were beyond our research
interest, and only keep “non-rumor" and “false-rumor" labels as ground truth in both
datasets. We built the macroscopic diffusion graph and microscopic diffusion path
for each source tweet from its propagation threads. The statistics of the datasets
are presented in Table 6.2. The user profiles were crawled via Twitter API based on
the provided user IDs, and for a fair comparison, we follow PPC_RNN+CNN [100]
that extracts eight types of characteristics, including, (1) length of a user name; (2)
created time of a user account; (3) length of description; (4) followers count; (5)
friends count; (6) statuses count; (7) whether the user is verified; and (8) whether
the geographical information is enabled.

Table 6.2: Statistics of the datasets.
Statistic Twitter15 Twitter16
# source tweets 739 404
# non-rumor 370 199
# rumor 369 205
# users 306,402 168,659
Max. # retweets 2,990 999
Min. # retweets 97 100
Avg. # retweets 493 479
Avg. # time length 743 Hours 167 Hours

6.4.2 Baselines

We compare our model with a series of state-of-the-art baseline approaches for rumor
detection:

• DTC [23]: A decision tree-based classification model that combines manually
engineered characteristics of tweets to compute the information credibility.

• SVM-TS [85]: A linear SVM-based time series model, which can capture
the variation of a broad spectrum of social context information over time by
converting the continuous-time stream into fixed time intervals.
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• SVM-RBF [86]: A SVM-based model that uses radius basis function (RBF)
as the kernel, and leverages the handcrafted features of posts for rumor detec-
tion.

• GRU [33]: An RNN-based model, which learns temporal patterns and content
features from user comments for rumor detection.

• TD-RvNN [34]: A top-down tree-structured RNN model that explores the
importance of propagation structure for rumor detection.

• PPC_RNN+CNN [100]: A model combines RNN and CNN for early rumor
detection, which learns the rumor representations through the characteristics
of users.

• Bi-GCN [16]: A GCN-based model exploring rumor dissemination through
bi-directional propagation structures and text contents for rumor detection.

• GCAN [102]: A state-of-the-art co-attention network for rumor detection,
which learns the rumor representation based on the tweets content and the
corresponding retweet users.

6.4.3 Parameter Settings and Evaluation Metrics

We implement DTC with Weka1, SVM-TS and SVM-RBF with scikit–learn2, and
other deep learning-based baselines and our MMRD with Tensorflow3. The hy-
perparameters of baselines are the same as the settings described in the original
papers.

Note that, in our work, MMRD only takes the user profiles and timestamps as
inputs, and ignores the content features, such as source tweet text and comments,
for a fair comparison, we implement some variants for the baselines by changing
the initial inputs. Specifically, as for TD-RvNN and Bi-GCN, we use user profile
features to replace the comment features, and the variants of these two baselines are
denoted as TD-RvNN(User) and Bi-GCN(User), respectively. As for GCAN, we remove
the source tweet features in the original inputs which termed as GCAN-Text.

The main hyperparameters in our MMRD are tuned as follows. The batch size is
32. The output dimension of MacroE FMacro = 64, and the hidden sizes of both the
forward GRU and backward GRU units are FMicro = 32. The max-order number
K is 3. The number of time intervals l is 100 and the embedding size for each
timestamp vector dtime is 50. The learning rate for both the teacher training phase
and knowledge distillation is 0.001 and the balance weight β in distillation is 0.3.
The temperature τ in knowledge distillation is 2.5. The training process is iterated
upon for 500 epochs but would be stopped earlier if the validation loss does not

1https://www.cs.waikato.ac.nz/ml/weka/
2https://scikit-learn.org/
3https://www.tensorflow.org/
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decrease after 10 epochs. And we randomly choose 70% data for training and the
rest of 10% and 20% for validation and testing. In this work, we measured the
detection deadline by the number of retweets, i.e., the first k-th retweets. In the
overall performance, the baselines and our MMRD consider the first 40-th retweets.
We choose accuracy (ACC), precision (Pre), recall (Rec) and F-score (F1) as the
evaluation protocols to measure the models’ performance in this work.

Table 6.3: Overall performance comparison of rumor detection on Twitter15. The
best method is shown in bold, and the second best one is underlined.

Twitter15
Method Acc Pre Rec F1
DTC 0.495 0.494 0.481 0.495
SVM-TS 0.519 0.519 0.518 0.519
SVM-RBF 0.535 0.552 0.521 0.536
GRU 0.580 0.544 0.545 0.544
TD-RvNN 0.628 0.594 0.616 0.604
PPC_RNN+CNN 0.691 0.674 0.686 0.679
Bi-GCN 0.748 0.731 0.759 0.745
GCAN 0.835 0.825 0.829 0.825
TD-RvNN(User) 0.678 0.671 0.674 0.672
Bi-GCN(User) 0.820 0.846 0.824 0.834
GCAN-Text 0.683 0.705 0.652 0.678
MMRD 0.922 0.922 0.923 0.922
Improvement 10.41% 11.76% 11.34% 11.76%

Table 6.4: Overall performance comparison of rumor detection on Twitter16. The
best method is shown in bold, and the second best one is underlined.

Twitter16
Method Acc Pre Rec F1
DTC 0.561 0.575 0.537 0.562
SVM-TS 0.693 0.692 0.691 0.692
SVM-RBF 0.711 0.724 0.709 0.716
GRU 0.554 0.514 0.516 0.515
TD-RvNN 0.633 0.619 0.610 0.614
PPC_RNN+CNN 0.655 0.632 0.651 0.641
Bi-GCN 0.711 0.709 0.710 0.716
GCAN 0.823 0.803 0.841 0.822
TD-RvNN(User) 0.661 0.632 0.641 0.636
Bi-GCN(User) 0.814 0.815 0.816 0.816
GCAN-Text 0.664 0.716 0.579 0.648
MMRD 0.876 0.877 0.874 0.875
Improvement 6.44% 9.22% 3.92% 6.45%
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6.4.4 Overall performance (Q1)

The overall performance is shown in Table 6.3 and 6.4, from which we can find that
our MMRD model consistently outperforms all baselines on both Twitter15 and
Twitter16 datasets. In addition to the overall superiority of our model, we have the
following observations.

First, compared to the deep learning-based methods, feature-based methods such
as DTC, SVM-TS, and SVM-RBF are not competitive because their performance
heavily depends on the hand-crafted features. However, designing effective features
is time-consuming and requires extensive field-specific knowledge. Furthermore, the
performance gain of SVM-TS over DTC lies in its capability of considering time
information. On the other hand, SVM-RBF performs slightly better than SVM-TS,
suggesting that the kernel-based SVM is better than linear SVM but is still limited
to the quality of hand-crafted features.

Second, among all the deep learning-based baselines, GRU, as the early deep learning-
based work for rumor detection, performs the worst, primarily because it only relies
on temporal-linguistics of the repost sequence but ignores other informative signals
such as diffusion structures and user profiles. In addition, both TD-RvNN and Bi-
GCN explore the dissemination of rumors on the basis of GRU and learn textual
information from replies (i.e., the retweets with comments). However, their perfor-
mance is not competitive when there are few comments or replies. Bi-GCN generally
performs well than TD-RvNN, demonstrating that GCN is a powerful graph learn-
ing model compared with tree structure RNN. PPC_RNN+CNN performs relatively
well than GRU and TD-RvNN, implying that user-profile information is more in-
formative than text information in rumor detection, the reason is that compared
with the replies, in reality, there exist more retweets without any comments, how-
ever, the user information of such retweets is acquirable. The same observations
can find when compare Bi-GCN with its variant Bi-GCN(User) and TD-RvNN with
TD-RvNN(User).

On the other hand, GCAN takes both text information and user-profile information
as input and indeed outperforms other baselines. By comparing GCAN with its
variant GCAN-Text, we can find that the performance of GCAN still heavily relies
on text information. This is because it models the structural information from the
user similarity matrix rather than the retweet network, which may be insufficient in
capturing user interactions, and due to the two datasets were existed for a long time,
when we try to crawl the user profiles for all users in the datasets, we find that some
user accounts do not exist anymore, and it causes difficulties in constructing user
similarity graph. Besides that, compare GCAN-Text with Bi-GCN(User), the results
of Bi-GCN(User) far exceed GCAN-Text, this observation illustrates the diffusion
graph is more powerful than user similarity graph in detecting rumor when ignoring
the textual features. To further illustrate that our MMRD indeed significantly
outperforms the baselines, we conduct a McNemar’s test [144] between our MMRD
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and the best baseline (GCAN) based on the prediction results on the testing set, and
the p-values are 0.001 and 0.013 on Twitter15 and Twitter16, respectively. As p <
0.05 on both Twitter15 and Twitter16, we can conclude that MMRD significantly
outperforms GCAN.

Our MMRD, in contrast, learns rumor representation from macroscopic and mi-
croscopic diffusion without any textual information, suggesting the possibility of
detecting rumors by completely exploiting rumors’ diffusion patterns. However, the
performance of MMRD can be further improved by taking into account other infor-
mation such as textual information.

6.4.5 Ablation study (Q2)

In order to answer the RQ2, we conduct several ablation studies from the following
perspectives: (1) we first propose five variants of MMRD and compare their perfor-
mance on both Twitter15 and Twitter16; then, (2) we compare the performance of
MMRD in without knowledge distillation and cross distillation settings; finally, (3)
we pick up two special parameters to test the model’s accuracy change brings by
them when changing their value.

6.4.5.1 Variants comparison

We conducted an ablation study to explore each component’s effect in MMRD by
removing a particular component from the original MMRD. Towards that, we derive
the following variants of MMRD:

• -AGG_Atten: In “-AGG_Atten”, we use sum-pooling function to replace
the attention aggregation function fAGG in MacroE.

• -Gate: In “-Gate”, we remove the fusion gate from the MMRD, i.e., concate-
nate HMacro and HMicro directly (HFuse = concat(HMacro,HMicro)).

• -Atten: In “-Atten”, we replace the attention sum-pooling with normal sum-
pooling, that is HRumor =

∑N
j=1 h

j
Fuse.

• -GCN: In “-GCN”, we replace the convolution kernel in MacroE with a vanilla
GCN layer.

• -Time: In “-Time”, we ignore the timestamp information, i.e., the input fea-
ture of the first MicroE are user profile features.

The results of the ablation study are summarized in Table 6.5, where we can observe
that:

(1) The accuracy of “-Atten" remarkably decreases compared with other variants,
which indicates that user-level attention sum-pooling can learn the importance of
each user in rumor diffusion since it allocates different significance to each row (that
correlated to a specific user) of HFuse. The visualization of the attention weights is
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Table 6.5: Performance comparison between MMRD and its variants.

Twitter15 Twitter16
Method Acc Pre Rec F1 Acc Pre Rec F1
-AGG_Atten 0.854 0.855 0.855 0.855 0.826 0.827 0.824 0.825
-Gate 0.875 0.875 0.874 0.875 0.845 0.845 0.844 0.844
-Atten 0.831 0.835 0.829 0.832 0.795 0.799 0.769 0.784
-GCN 0.851 0.851 0.851 0.851 0.807 0.807 0.806 0.807
-Time 0.878 0.878 0.879 0.878 0.845 0.863 0.839 0.851
MMRD 0.922 0.922 0.923 0.922 0.876 0.877 0.874 0.875

depicted in Figure 6.4, which further proves the effectiveness. From Figure 6.4, we
also find that the later users are more critical in rumor spreading, which confirms the
hypothesis that rumors can spread deeper than non-rumors [43]. (2) Using the fusion
gate to control the dependency on macroscopic diffusion and microscopic diffusion
will improve the model performance as achieved by the “-Gate". (3) The results
of “-GCN" demonstrate that multi-hop and directional information are essential for
macroscopic diffusion modeling, and the performance of “-AGG_Atten" worse than
MMRD, which further demonstrates that as for each node, their order-dependency is
different. (4) As for “-Time", it shows the importance of the timestamp information
in capturing microscopic diffusion.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Users in retweet order

R1
R2
R3

NR1
NR2
NR3

Figure 6.4: Visualization of attention weights in attention sum-pooling, which ran-
domly choose 3 rumors and 3 non-rumors from Twitter15. Dark colors refer to a higher
value.

6.4.5.2 Performance on knowledge distillation

In our work, one of the most important components is the use of knowledge distilla-
tion to enhance model performance. In order to test the performance of knowledge
distillation (for briefly, simplify as KD), in this section, we conduct experiments on
removing KD and using cross KD, respectively.

Figure 6.5 shows the results when removing the KD, we find that, after removing
KD, although the model still can achieve better performance compared with the
baselines in Table 6.3 and 6.4, it can be further improved by using KD to transfer
knowledge from a teacher model to a student model. Besides that, the effect of KD
is more remarkable on the Twitter16 dataset, it yields a large performance interval
between “MMRD” and “MMRD w/o KD”.
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Figure 6.5: The effectiveness of knowledge distillation. The number of observed
retweet users per source tweet varies from 10 to 100, and we plot the corresponding
detection accuracy of MMRD with and without knowledge distillation. “MMRD w/o
KD” denotes MMRD without knowledge distillation.

Figure 6.6 shows the comparison between different strategies of cross KD. Specif-
ically, we train the teacher model and student model based on different datasets
and then test the student’s performance on both Twitter15 and Twitter16 datasets.
For example, “T15/S16” means we first train a Teacher model “T15” on Twitter15
dataset and then distill the model on Twitter16 to get a student model “S16”, and
finally use the “S16” model to perform rumor detection on Twitter15 and Twitter16,
respectively. From Figure 6.6, we observe that the performance of MMRD is much
better when both the Teacher model and Student model train on the same dataset,
this is because of some dataset-specific reasons, such as diffusion scale, the number
of non-exist users, user-specific feature (e.g., create time), etc.
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Figure 6.6: Cross knowledge distillation. The number of observed retweet users per
source tweet sets to 40. Each bar represents the detection accuracy and the labels
of the x-axis denote the datasets used when training the teacher model and student
model. E.g., “T15” and “T16” denote that we train the teacher model on Twitter15,
and Twitter16, respectively; “S15” and “S16” means that we learn the student model
via distilling knowledge on Twitter15 and Twitter16, respectively.
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6.4.5.3 Parameter analysis

From all parameters in MMRD, we choose two special parameters to conduct pa-
rameter analysis experiments – the value of max-order K and the time embedding
size dtime. The results shows in Figure 6.7. From both Figure 6.7a and Figure 6.7b,
we find that by blindly increase the number of K and dtime, the model accuracy
not improve, instead, decreased. And when set K = 3 and dtime = 50, the model
achieves the best performance. Moreover, the embedding size dtime with small values
achieve better performance than large values. And Figure 6.7a also demonstrates
that take the higher-order of node interaction into consideration is useful when mod-
eling macroscopic diffusion of tweets.
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Figure 6.7: Results of parameter analysis on Twitter15 and Twitter16 when the num-
ber of observed retweet users per source tweet sets to 40. (a) Performance on different
max-order value K, ranging from 2 to 5. (b) Performance on different embedding size
dtime of timestamp vector T.
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Figure 6.8: Evaluations on early rumor detection. (a) The average propagation speed
of tweets calculated based on Twitter15 and Twitter16 datasets. (b) and (c) plot the
detection accuracy when the number of observed retweet users per source tweet are in
the range of [10, 20, 30, 40, 50, 100] on Twitter15 and Twitter16, respectively.

6.4.6 Early detection (Q3)

Detecting rumors as early as possible is crucial for public opinion control. Figure 6.8a
shows the average propagation speed of messages on twitter calculated based on
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Twitter15 and Twitter16. We find that within 60 minutes, both Twitter15 and
Twitter16 have a diffusion speed near 190 retweets. And when the time is extremely
small, i.e., within 30 minutes, the average retweets of both two datasets are close
to 100. So, to investigate the performance of models on identifying rumors at an
early stage, here, we consider the number of observed retweet users per source tweet
from the list [10, 20, 30, 40, 50, 100]. Besides, for a fair comparision, we choose user
profile-based mtheods, i.e., “TD-RvNN(User)”, “PPC_RNN+CNN”, “Bi-GCN(User)”
and “GCAN-Text” as contrast methods. Figure 6.8b and Figure 6.8c show the
performance comparison of early-stage detection between our MMRD and selected
baselines. We can see that MMRD performs better, especially when there are only a
few observations, i.e., MMRD achieves almost 89% and 87% accuracy on Twitter15
and Twitter16, respectively, even with only 10 retweet user observations.

6.5 Summary

This paper proposed a novel rumor detection model named MMRD, which can
effectively and efficiently summarize a unique representation for each rumor prop-
agation through capturing the dissemination patterns from both macroscopic and
microscopic diffusion levels. Simultaneously, MMRD leverages the knowledge distil-
lation technique to transfer knowledge from a pretraining teacher model to a student
model which further improves the model detection performance. The experimen-
tal results based on two real-world Twitter data sets demonstrate that our method
achieves state-of-the-art performance on rumor detection and also effective in de-
tecting rumors at an early stage. Besides that, MMRD detects rumor via learning
its spreading process, which can help us to develop rumor spreading models.
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Chapter 7

Participant-level Rumor detection
based on Information Diffusion
Analysis

Users are the main contributor to the rumor spreading in Online social networks
(OSNs) [26], which go through the whole life cycle of news diffusion. In this chapter,
we propose two independent and complementary participant-level models for rumor
detection, i.e., PLRD (Participant-Level Rumor Detection model) and UMLARD
(User-aspect Multi-view Learning with Attention for Rumor Detection mlodel). And
both PLRD and UMLARD are implemented according the following two design
considerations.

First, we considered the life cycle of real and fake news on social media, which
plays a crucial role in information diffusion. When the news is produced by the
content creator, it starts its journey on the social media platform. Once people
are exposed to the news, they become the content consumers. According to the
confirmation bias theory, people tend to favor, interpret and share information in a
way that confirms or strengthens their prior beliefs or ideologies [145]. As a result,
if a news item confirms the consumers’ prior ideology, they may share it within their
social networks in the role of content distributor. Since fake news is intentionally
written to mislead readers into believing and propagating false information (e.g., 5G
networks trigger COVID-19), it is plausible that fake news is more easily distributed
among its believers than real news, which is neutral in its beliefs and ideology.
This idea is supported by prior studies, which have noted that false information
tends to spread significantly faster, further, deeper, and more broadly than real
information [43]. Therefore, considering all participants, including content creators
and content distributors, in the news diffusion chain may improve the overall rumor
detection performance of our approach.

Another design consideration is the lack of effective methods to represent all partic-
ipants in the news diffusion chain. Prior predictive studies have simply used aggre-
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gated statistics, such as the total number of content distributors (retweets) and the
average time of information distribution, to quantify the diffusion process. This in-
evitably results in information loss and suboptimal performance. Other examples of
such aggregated statistics include network-level attributes (e.g., density) to represent
diffusion networks, the final hidden representation from recurrent neural networks
to model the temporal spreading sequence, and overall descriptive statistics of user
characteristics (e.g., mean user tenure) to describe users in the diffusion [23]. While
such data may be helpful in modeling, they are not quite specific enough to provide
a clear picture of by whom, when, why, and how news is diffused. Therefore, the key
question motivating our study is how to design an effective predictive method that
represents all-participant patterns throughout the whole diffusion process.

7.1 PLRD: A Participant-Level Rumor Detection
Framework via Fine-grained User Representa-
tion Learning

7.1.1 Section Overview

In this section, we propose a novel framework based on deep representation learning
for rumor detection, named PLRD (Participant-Level Rumor Detection). In view of
theories on propagation and social influence, PLRD incorporates multi-scale features
of all users1 enrolled in the diffusion process to predict a given post’s credibility (e.g.,
classify it as rumor or non-rumor). Specifically, PLRD first employs sparse matrix
factorization to embed the global graph (i.e., user-interaction graph constructed on
all propagation threads), which can efficiently learn the social homophily for users.
Then, it uses a multi-hop graph convolutional layer, and a bi-directional GRU to
learn fine-grained user representations (i.e., the user influence, user susceptibility,
and user temporal information). To understand the different importance of users’
multi-scale representations, a feature-level attention layer was designed to explain
which types of features are essential in rumor propagation. Moreover, to capture
the uncertainty in learned features, PLRD introduces a variational autoencoder.
Finally, PLRD employs a user-level attention layer to allocate different importance
to users and aggregate them to form a unique rumor representation. The rumor
prediction is generated based on the learned unique representation.

Our design science work on rumor detection makes two main contributions to the
literature in this field. First, our design is rooted in social influence and propagation
theory, from which we derive various constructs in our model. PLRD detects rumors
at a very fine-grained participant level. It is very different from prior works that also
combine information from various sources (e.g., reply networks, diffusion sequence,

1In our work, the user influence, user susceptibility and user temporal information are collec-
tively referred to as multi-scale information of users
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and attributes of spreading users), but still heavily depend on the text features.
Our approach comprehensively exploits user-profiles and propagation threads and
shows a strong ability to detect rumors without using any text information. Second,
we make a methodological contribution by proposing an approach to learn fine-
grained user representation via deep representation learning that effectively captures
all participant information in a diffusion chain. This information includes user
influence, user susceptibility, and user temporal information. Experimental results
using real-world datasets confirm the effectiveness of our approach over prior rumor
detection methods. Our approach has direct implications for social media platforms
that are vulnerable to rumor spreading since it can be deployed to identify original
users who initiate rumors and those who spread rumors. Overall, the proposed
rumor-detection model can help improve the user experience and benefit society by
helping individuals obtain healthy and genuine information.

This section is based on the following publication [45]:

• Chen, X., Zhou, F., Zhang, F., Bonsangue, M.: Catch me if you can: A
participant-level rumor detection framework via fine-grained user representa-
tion learning. Information Processing & Management, 58(2021) 102678

7.1.2 Birds of a feather flock together: the perspective of all
participants

Rumor detection has long been a subject of interdisciplinary research. Various
theories have been proposed and validated. In this section, we discuss several major
theories that guide us to derive relevant constructs in our model for better rumor
detection.

7.1.2.1 Theory

Users play major roles in the dissemination of rumors or fake news. A set of user-
based and propagation-based theories have been developed to study how a rumor
spreads, how users engage with a rumor, and the role users play in rumor creation,
propagation, or intervention. For example, in the echo chamber effect, individuals
tend to believe information is correct after repeated exposures [146]. Confirmation
bias theory tells us that individuals tend to trust information that confirms their
preexisting beliefs or hypotheses, which they perceive to surpass that of others [147].
People choose to interact with those who share similar opinions and avoid those
with whom they profoundly disagree. Both indicate that people may react to and
process information differently based on information type (e.g., rumor vs. non-
rumor). On the other hand, homophily theory says that individuals in homophilic
relationships share common characteristics (beliefs, demographics, etc.) that make
communication easier [148]. Meanwhile, social identity theory shows that individuals
do something primarily because others are doing it and to conform in order to be
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liked and accepted by others. Such social influence and homophilic atmospheres also
exist in and are commonly seen in online social networks [149].

In sum, all the above considerations suggest that user attributes likely have an
impact on rumor detection, such as user influence, susceptibility, and temporal, etc.
This assumption is also empirically confirmed by our data exploration (see below)
and computational experiments (see the Evaluation section below). We therefore
hypothesize that:

Hypothesis 1. Combining various information at a fine-grained all-participant
level in a diffusion chain will improve rumor discovery performance.

Hypothesis 2. Deep representation learning-based methods will improve rumor
discovery performance compared to using shallow machine learning methods.

7.1.2.2 Data

In our work, we conduct experiments on four standard real-word testbeds: Twit-
ter15, Twitter16, Science and RumourEval19, all of which were collected from Twit-
ter1, one of the most popular social media platforms in the U.S. The descriptive
statistics of all datasets are shown in Table 7.1.

Twitter15/162 were released by [84]. More details can be found in Section 6.4.1.
In Twitter15 and Twitter16, we keep the tweets labeled as “non-rumor” or “false
rumor” (relabeled as “rumor” in our work), since the others were beyond our research
interest.

Science3 is collected and studied by [43]. It includes complete retweet cascades
linked to rumors that were verified and published by fact-checking websites. In the
original data, each tweet cascade is related to a specific label, i.e., “TRUE”, “FALSE”
or “MIXED”. In our work, we keep only the tweets labeled as “TRUE” or “FALSE”
(relabeled as “non-rumor” and “rumor” in our work, respectively). To the best of our
knowledge, the Science dataset is the most credible dataset among all the existing
Twitter-based rumor detection datasets as it overcomes issues of partiality or bias
because of the sampling restriction characteristic. In this chapter, we use the Science
dataset to provide model-free evidence to support the Hypothesis 1.

RumourEval194 [150] is an extensive dataset from RumourEval17 [151], which is
augmented with new Twitter test data and Reddit material. Here, we keep Twitter
data but ignore the Reddit material, to finally obtain 381 Twitter conversation
threads. Each thread consists of a claim and a tree of comments, and is related to a
specific label, i.e., “true”, “false” or “unverified”. We filter out unverified tweets and
finally get 271 Twitter conversation threads (relabeled as “non-rumor” and “rumor”,

1https://twitter.com/
2https://www.dropbox.com/s/46r50ctrfa0ur1o/rumdect.zip
3Researchers interested in gaining access to Science dataset should contact [43] directly.
4https://competitions.codalab.org/competitions/19938
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respectively). Because the RumourEval19 contains rich textual information rather
than diffusion patterns, in the experiments part, we use RumourEval19 to test our
model performance when including textual features.

Table 7.1: Statistics of the datasets.

Statistic Science Twitter15 Twitter16 RumourEval19
# source tweets 16,901 739 404 271
# users 3,603,265 306,402 168,659 4,774
# edges of global graph 3,586,360 336,486 182,493 4,503
# non-rumors 14,442 370 199 167
# rumors 2,459 369 205 104
Max. # retweets 46,895 2,990 999 155
Min. # retweets 5 97 100 3
Avg. # retweets 213 493 479 18
Avg. # time length 749 Hours 743 Hours 167 Hours 37 Hour

For each tweet, we construct the diffusion graph and the global graph from the
propagation threads (see Section 3.1 for recalling the formal definitions). In Twit-
ter15/16, no user information is provided due to constraints set out in Twitter’s
terms of service. We crawl all the related user profiles via Twitter API 1 based on
the provided user IDs. We follow the work of Liu et al. [100] and select 8 general user
characteristics for experiments, which are summarized in Table 7.2. As for Science,
all data, such as ids, were anonymized, so we directly use the user characteristics
provided in this dataset, which are listed in Table 7.3. Here, the concrete definitions
of each characteristic can be found in the supplementary of [43]. The RumourEval19
provided JSON files for each source tweet and its corresponding replies, and each
file contains the complete information of the tweet and the users.

Table 7.2: Summary of user characteristics for Twiter15/16 and RumourEval19.

No. Characteristic Data Type
1 length of user name Integer
2 user count created time Integer
3 length of description Integer
4 followers count Integer
5 friends count Integer
6 statuses count Integer
7 is verified Binary
8 is geo enabled Binary

7.1.2.3 Model-free evidence

Following from our earlier Hypothesis 1 that utilizing the information of all users
who participated in a diffusion chain might improve rumor detection, we first check

1https://dev.twitter.com/rest/public
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Table 7.3: Summary of user characteristics for Science.

No. Characteristic Data Type
1 user count created time Integer
2 followers count Integer
3 friends count Integer
4 Engagement Float
5 is verified Binary

for any patterns or differences among involved participants in terms of their overall
attributes across the rumors and non-rumors via analyzing the Science dataset.
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Figure 7.1: Social influence/susceptibility analysis on Science.

• Social influence/susceptibility: followers/friends. Social influence may
affect the speed and the depth of diffusion. On Twitter, a user’s social influence
can be measured by the size of their social circle in relation to two factors:
the number of friends (i.e., users the specific user is following) and the number
of followers (i.e., users following the specific user). We calculate the average
followers/friends across all participants and find that this average in the rumors
group is different from that in the non-rumors group (see Figure 7.1a). To
compute the social influence of all participants, we define a new metric, TFF
(the follower-friend-ratio [152]), which combines followers and friends: TFF =
#followers
#friends . Users with TFF < 1 are less influential but with higher susceptibility,
since they have fewer followers than friends, and extreme cases are fake users.
In contrast, users with TFF > 1 are more influential, e.g., celebrity accounts.
Figure 7.1b shows that a higher percentage of users with TFF < 1 are involved
in rumors, while more influential users participate in non-rumors.

• Structural and temporal impact of diffusion. Many prior studies have
demonstrated that falsehood diffuses significantly farther, faster, deeper, and
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Figure 7.2: Structural and temporal analysis on Science.

more broadly than the truth in all categories of information [43]. This being
the case, we expect to see that the spreading pattern, in terms of network struc-
tures and the temporal sequence of retweeting, should vary based on rumor
type. To this goal, we analyze the propagation speed, depth-time distribution
and depth-breadth distribution, respectively, which are shown in Figure. 7.2.
In the diffusion graph, the depth of a node is the number of hops from the
node to the source node, and the breadth at a specific depth of a graph is the
total number of nodes at this depth level. From Figure. 7.2a, we can find that
at the same time-scale, rumors can infect more users than non-rumors, which
demonstrates that rumors spreading faster than non-rumors. In Figure. 7.2b,
we measured the average time (in minutes) rumor or non-rumor tweets took
to reach different depths, where we observe that (1) rumors can reach deeper
users than non-rumors, and (2) rumors require less time to reach the same
depth with non-rumors. In Figure. 7.2c, we plot the average breadth at every
depth for rumors and non-rumors, which indicates that rumors spread broader
than non-rumors, especially at a deeper level. These observations substantiate
our belief that incorporating such structural and temporal information into the
model may improve rumor detection performance.

7.1.3 Methodology

In this section, we first present a preliminary overview of rumor detection in our
context and describe the overall framework of the proposed PLRD method, followed
by details of each component in the model. As discussed above, two challenges
need to be addressed when designing an effective rumor detection system: (1) how
to incorporate fine-grained all-participant information in one model – not simply
aggregating or concatenating – to capture rumor spreading patterns; and (2) how to
effectively learn latent representations of users’ propagation activities in a diffusion
chain to capture fine-grained user representations. To answer these two questions,
we first formally define our problem and describe its context.
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Table 7.4: Main notations used throughout this chapter.
Symbol Description
G, N Global graph, and the number of nodes of global graph.
Gi, GT

i Diffusion graph and inverse diffusion graph of mi.

EG, eG∗
The user social homophily embedding matrix and social
homophily vector for user u∗.

Ti Time-embedding of mi.
Hinf
i The representations of the user influence.

Hsus
i The representations of the user susceptibility.

Htemp
i The representations of the user temporal information.

Ūi The representation after feature-level attention.
Uz
i The representation after VAE.

UF
i The representation after concatenate operation.

Ri the final representation of tweet mi.
Ŷ/ŷ∗ The predicted label.
Y/y∗ The ground truth.

7.1.3.1 Preliminaries and Problem Statement

In this section, we give the necessary background and formally define the rumor
detection problem. We list the main mathematical notations used throughout the
paper in Table 7.4.

In this study, we formalize our rumor detection problem as a supervised binary-
class classification task. Suppose the input of the task is from a rumor detec-
tion dataset (e.g., Twitter) consisting of a set of posts (e.g., tweets) denoted as
M = {mi, i ∈ [1, |M |]}. Each mi corresponds to its own diffusion process and all
participating users, so that mi can be represented by {Ci,Ui}, where Ci and Ui

are the cascade graph and the user characteristics matrix (see Definition 1 and Def-
inition 5), respectively. The cascade graph Ci can be further broken down into a
diffusion graph Gi and diffusion path Pi (see Definition 2 and Definition 3). In ad-
dition, we construct a global graph G based on all tweets M , to represent the social
homophily among all users. See their formal definitions below.

Definition 13 Global Graph G. The global graph G = {U,E} is a collection of
nodes and edges, which is constructed based on all posts in the dataset. U =

⋃|M |
i=1 Ui

is a user set contains all users in dataset, and E is the edge set. An edge between ui
and uj refers to these two users share the same tweet (or discuss the same topic).

Definition 14 Rumor Detection. Given a tweet mi = {Ci(to),Ui(to)} within
an observation window to ( in our work, to is the total number of retweets), and
the global graph G, the goal of rumor detection is to learn a function f(ŷi|mi,G) to
classify the source tweet mi into one of the rumor categories, where the predicted
result ŷi represents either non-rumor or rumor.
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<latexit sha1_base64="nxi4W6FgBGzZPuXsF3XafWM1jMw=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj0oMeK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8HoZuq3nlBpHstHM07Qj+hA8pAzaqz0cNvjvVLZrbgzkGXi5aQMOeq90le3H7M0QmmYoFp3PDcxfkaV4UzgpNhNNSaUjegAO5ZKGqH2s9mpE3JqlT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtO0YbgLb68TJrVindeqd5flGvXeRwFOIYTOAMPLqEGd1CHBjAYwDO8wpsjnBfn3fmYt644+cwR/IHz+QMXOI2r</latexit> GT

i
<latexit sha1_base64="yJSWBhPpvxw7loC3FL3wGGmXhls=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRmLiieyiiR6JHvSICQsksJJu6UJDt920XROy4Td48aAxXv1B3vw3FtiDgi+Z5OW9mczMCxPOtHHdb6ewtr6xuVXcLu3s7u0flA+PWlqmilCfSC5VJ8Saciaob5jhtJMoiuOQ03Y4vp357SeqNJOiaSYJDWI8FCxiBBsr+Xd99tjslytu1Z0DrRIvJxXI0eiXv3oDSdKYCkM41rrruYkJMqwMI5xOS71U0wSTMR7SrqUCx1QH2fzYKTqzygBFUtkSBs3V3xMZjrWexKHtjLEZ6WVvJv7ndVMTXQcZE0lqqCCLRVHKkZFo9jkaMEWJ4RNLMFHM3orICCtMjM2nZEPwll9eJa1a1buo1h4uK/WbPI4inMApnIMHV1CHe2iADwQYPMMrvDnCeXHenY9Fa8HJZ47hD5zPH3FdjnE=</latexit>

(a)

(b)

MHGCN Bi-GRU

                                                                  

Ui
<latexit sha1_base64="jExzZUTCC8EXFwSAOU8S30R6kKI=">AAAB83icbVBNS8NAEN3Ur1q/qh69BIvgqSRV0GPRi8cKpi00oWy2k3bpZhN2J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZemAqu0XG+rdLa+sbmVnm7srO7t39QPTxq6yRTDDyWiER1Q6pBcAkechTQTRXQOBTQCce3M7/zCErzRD7gJIUgpkPJI84oGsn3EZ4wjHJv2uf9as2pO3PYq8QtSI0UaPWrX/4gYVkMEpmgWvdcJ8Ugpwo5EzCt+JmGlLIxHULPUElj0EE+v3lqnxllYEeJMiXRnqu/J3Iaaz2JQ9MZUxzpZW8m/uf1Moyug5zLNEOQbLEoyoSNiT0LwB5wBQzFxBDKFDe32mxEFWVoYqqYENzll1dJu1F3L+qN+8ta86aIo0xOyCk5Jy65Ik1yR1rEI4yk5Jm8kjcrs16sd+tj0Vqyiplj8gfW5w9045H0</latexit>

M
<latexit sha1_base64="qoIgzmWRkxtOIOPGOqTDWraEkPI=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BLx4jmAcmS5idzCZDZmeWeQhhyV948aCIV//Gm3/jJNmDJhY0FFXddHdFKWfa+P63V1hb39jcKm6Xdnb39g/Kh0ctLa0itEkkl6oTYU05E7RpmOG0kyqKk4jTdjS+nfntJ6o0k+LBTFIaJngoWMwINk567EVsKFNuNeqXK37VnwOtkiAnFcjR6Je/egNJbEKFIRxr3Q381IQZVoYRTqelntU0xWSMh7TrqMAJ1WE2v3iKzpwyQLFUroRBc/X3RIYTrSdJ5DoTbEZ62ZuJ/3lda+LrMGMitYYKslgUW46MRLP30YApSgyfOIKJYu5WREZYYWJcSCUXQrD88ipp1arBRbV2f1mp3+RxFOEETuEcAriCOtxBA5pAQMAzvMKbp70X7937WLQWvHzmGP7A+/wBcYGQww==</latexit>

EG
<latexit sha1_base64="3y/HZAVTPoQgS2ycNmgHhzWrXpE=">AAACAXicbVBNS8NAEN3Ur1q/ol4EL8EieCpJFfRYFNFjBfsBTSyb7aZdutmE3YlYQrz4V7x4UMSr/8Kb/8ZN24O2Phh4vDfDzDw/5kyBbX8bhYXFpeWV4mppbX1jc8vc3mmqKJGENkjEI9n2saKcCdoABpy2Y0lx6HPa8ocXud+6p1KxSNzCKKZeiPuCBYxg0FLX3HOBPoAfpJfZXeqGGAYE8/Qqy7pm2a7YY1jzxJmSMpqi3jW/3F5EkpAKIBwr1XHsGLwUS2CE06zkJorGmAxxn3Y0FTikykvHH2TWoVZ6VhBJXQKssfp7IsWhUqPQ1535jWrWy8X/vE4CwZmXMhEnQAWZLAoSbkFk5XFYPSYpAT7SBBPJ9K0WGWCJCejQSjoEZ/bledKsVpzjSvXmpFw7n8ZRRPvoAB0hB52iGrpGddRABD2iZ/SK3own48V4Nz4mrQVjOrOL/sD4/AGBCpeQ</latexit>

Xi
<latexit sha1_base64="7NreFF8w212N83RIX/DFCIxjYUI=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0mqoMeiF48V7Ac0pWy2k3bpZhN2J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVHJo8lrHuBMyAFAqaKFBCJ9HAokBCOxjfzvz2I2gjYvWAkwR6ERsqEQrO0Eq+j/CEQZh1pn3RL1fcqjsHXSVeTiokR6Nf/vIHMU8jUMglM6bruQn2MqZRcAnTkp8aSBgfsyF0LVUsAtPL5jdP6ZlVBjSMtS2FdK7+nshYZMwkCmxnxHBklr2Z+J/XTTG87mVCJSmC4otFYSopxnQWAB0IDRzlxBLGtbC3Uj5imnG0MZVsCN7yy6ukVat6F9Xa/WWlfpPHUSQn5JScE49ckTq5Iw3SJJwk5Jm8kjcndV6cd+dj0Vpw8plj8gfO5w95eJH3</latexit>

Ai,A
T
i

<latexit sha1_base64="OLS0NRVW0H3qM+KZVYw7ZOIK8zw=">AAACCnicbVC7TsMwFHXKq5RXgJElUCExoCopSDAWWBiL1JfUhshxndaq40T2DaKKMrPwKywMIMTKF7DxN7iPgbYc6UrH59wr33v8mDMFtv1j5JaWV1bX8uuFjc2t7R1zd6+hokQSWicRj2TLx4pyJmgdGHDaiiXFoc9p0x/cjPzmA5WKRaIGw5i6Ie4JFjCCQUueedgB+gh+kF5lXsqy09nnfVrLPLNol+wxrEXiTEkRTVH1zO9ONyJJSAUQjpVqO3YMboolMMJpVugkisaYDHCPtjUVOKTKTcenZNaxVrpWEEldAqyx+ncixaFSw9DXnSGGvpr3RuJ/XjuB4NJNmYgToIJMPgoSbkFkjXKxukxSAnyoCSaS6V0t0scSE9DpFXQIzvzJi6RRLjlnpfLdebFyPY0jjw7QETpBDrpAFXSLqqiOCHpCL+gNvRvPxqvxYXxOWnPGdGYfzcD4+gXC8puT</latexit>

Hinf
i

<latexit sha1_base64="A13m1UfZZLmN+HwP4ODiax9VKw8=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwVZIq6LLopssK9gFtLJPppB06mYSZG7GG4K+4caGIW//DnX/jtM1CWw9cOJxzL/fe48eCa3Ccb2tpeWV1bb2wUdzc2t7Ztff2mzpKFGUNGolItX2imeCSNYCDYO1YMRL6grX80fXEb90zpXkkb2EcMy8kA8kDTgkYqWcfdoE9gB+ktayX8uwu5TLIenbJKTtT4EXi5qSEctR79le3H9EkZBKoIFp3XCcGLyUKOBUsK3YTzWJCR2TAOoZKEjLtpdPrM3xilD4OImVKAp6qvydSEmo9Dn3TGRIY6nlvIv7ndRIILj3zUJwAk3S2KEgEhghPosB9rhgFMTaEUMXNrZgOiSIUTGBFE4I7//IiaVbK7lm5cnNeql7lcRTQETpGp8hFF6iKaqiOGoiiR/SMXtGb9WS9WO/Wx6x1ycpnDtAfWJ8/lJmV8w==</latexit>

Hsus
i

<latexit sha1_base64="yEHhJmGdN3+pzD+St6x3uQ6NgQ8=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwVZIq6LLopssK9gFtLJPppB06mYSZG7GG4K+4caGIW//DnX/jtM1CWw9cOJxzL/fe48eCa3Ccb2tpeWV1bb2wUdzc2t7Ztff2mzpKFGUNGolItX2imeCSNYCDYO1YMRL6grX80fXEb90zpXkkb2EcMy8kA8kDTgkYqWcfdoE9gB+ktayX8uwu1YnOenbJKTtT4EXi5qSEctR79le3H9EkZBKoIFp3XCcGLyUKOBUsK3YTzWJCR2TAOoZKEjLtpdPrM3xilD4OImVKAp6qvydSEmo9Dn3TGRIY6nlvIv7ndRIILr2UyzgBJulsUZAIDBGeRIH7XDEKYmwIoYqbWzEdEkUomMCKJgR3/uVF0qyU3bNy5ea8VL3K4yigI3SMTpGLLlAV1VAdNRBFj+gZvaI368l6sd6tj1nrkpXPHKA/sD5/AMJKlhE=</latexit>

Htime
i

<latexit sha1_base64="g6OhlNZLgq97/jOHz0DS+ewreE8=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJS7AInkpSBT0WvfRYwX5AG8tmO2mXbj7YnYglBPwrXjwo4tXf4c1/47bNQVsfDDzem2FmnhcLrtC2v43Cyura+kZxs7S1vbO7Z+4ftFSUSAZNFolIdjyqQPAQmshRQCeWQANPQNsb30z99gNIxaPwDicxuAEdhtznjKKW+uZRD+ERPT+tZ/2UZ/cp8gCyvlm2K/YM1jJxclImORp986s3iFgSQIhMUKW6jh2jm1KJnAnISr1EQUzZmA6hq2lIA1BuOjs/s061MrD8SOoK0ZqpvydSGig1CTzdGVAcqUVvKv7ndRP0r9yUh3GCELL5Ij8RFkbWNAtrwCUwFBNNKJNc32qxEZWUoU6spENwFl9eJq1qxTmvVG8vyrXrPI4iOSYn5Iw45JLUSJ00SJMwkpJn8krejCfjxXg3PuatBSOfOSR/YHz+AG8olm8=</latexit>

· · ·<latexit sha1_base64="9pGPaDabNijkWLtd2pluvCo4p5o=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRV0GPRi8cK9gPaUDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHodua3n5g2XMkHHKcsSMhA8phTglZq9Wik0PTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcbXwYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJq1b1L6q1+8tK/SaPowgncArn4MMV1OEOGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/AK+ljzM=</latexit>

|Ui|
<latexit sha1_base64="fHTNM/IEJ/WXNvfZB91/K0UrnY0=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvtpl262YTdiVDa/gYvHhTx6g/y5r9x2+agrQ8GHu/NMDMvTKUw6Lrfztr6xubWdmGnuLu3f3BYOjpumCTTjPsskYluhdRwKRT3UaDkrVRzGoeSN8Ph3cxvPnFtRKIecZTyIKZ9JSLBKFrJn/hdMemWym7FnYOsEi8nZchR75a+Or2EZTFXyCQ1pu25KQZjqlEwyafFTmZ4StmQ9nnbUkVjboLx/NgpObdKj0SJtqWQzNXfE2MaGzOKQ9sZUxyYZW8m/ue1M4xugrFQaYZcscWiKJMEEzL7nPSE5gzlyBLKtLC3EjagmjK0+RRtCN7yy6ukUa14l5Xqw1W5dpvHUYBTOIML8OAaanAPdfCBgYBneIU3RzkvzrvzsWhdc/KZE/gD5/MH8VqOxQ==</latexit>

Feature-level Attention

VAE

µj
<latexit sha1_base64="f5nmjnUTLmgD6R/5VnqKuDSgxzs=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48VTFtoQ9lsN+3a3U3Y3Qgl9Dd48aCIV3+QN/+N2zQHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRW8epItQnMY9VN8Saciapb5jhtJsoikXIaSec3M79zhNVmsXywUwTGgg8kixiBBsr+X2RDh4H1Zpbd3OgVeIVpAYFWoPqV38Yk1RQaQjHWvc8NzFBhpVhhNNZpZ9qmmAywSPas1RiQXWQ5cfO0JlVhiiKlS1pUK7+nsiw0HoqQtspsBnrZW8u/uf1UhNdBxmTSWqoJItFUcqRidH8czRkihLDp5Zgopi9FZExVpgYm0/FhuAtv7xK2o26d1Fv3F/WmjdFHGU4gVM4Bw+uoAl30AIfCDB4hld4c6Tz4rw7H4vWklPMHMMfOJ8/3AyOtw==</latexit>

�j
<latexit sha1_base64="Am0/FL3b5tXHD7EFh+GxJPaY7Ro=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxWME84BkCbOT2WTMPNaZWSEs+QkvHhTx6u9482+cJHvQxIKGoqqb7q4o4cxY3//2VlbX1jc2C1vF7Z3dvf3SwWHTqFQT2iCKK92OsKGcSdqwzHLaTjTFIuK0FY1upn7riWrDlLy344SGAg8kixnB1kntrmEDgXsPvVLZr/gzoGUS5KQMOeq90le3r0gqqLSEY2M6gZ/YMMPaMsLppNhNDU0wGeEB7TgqsaAmzGb3TtCpU/ooVtqVtGim/p7IsDBmLCLXKbAdmkVvKv7ndVIbX4UZk0lqqSTzRXHKkVVo+jzqM02J5WNHMNHM3YrIEGtMrIuo6EIIFl9eJs1qJTivVO8uyrXrPI4CHMMJnEEAl1CDW6hDAwhweIZXePMevRfv3fuYt654+cwR/IH3+QMdhpAE</latexit>

zj
<latexit sha1_base64="1d0L55YQtorfoRo0gO54lpe9zQ8=">AAAB83icbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BLx4jmAdklzA7mU3GzD6Y6RXjkt/w4kERr/6MN//GSbIHTSxoKKq66e7yEyk02va3VVhZXVvfKG6WtrZ3dvfK+wctHaeK8SaLZaw6PtVciog3UaDknURxGvqSt/3R9dRvP3ClRRzd4TjhXkgHkQgEo2gk10X+iH6QPU16971yxa7aM5Bl4uSkAjkavfKX249ZGvIImaRadx07QS+jCgWTfFJyU80TykZ0wLuGRjTk2stmN0/IiVH6JIiVqQjJTP09kdFQ63Hom86Q4lAvelPxP6+bYnDpZSJKUuQRmy8KUkkwJtMASF8ozlCODaFMCXMrYUOqKEMTU8mE4Cy+vExatapzVq3dnlfqV3kcRTiCYzgFBy6gDjfQgCYwSOAZXuHNSq0X6936mLcWrHzmEP7A+vwBruqSGg==</latexit>

ūj
<latexit sha1_base64="0FHj81lPdy1HSfu+JLMd7zwMms4=">AAAB+3icbVBNS8NAEN34WetXrEcvi0XwVJIq6LHoxWMF+wFtCJvtpl272YTdibSE/BUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvSATX4Djf1tr6xubWdmmnvLu3f3BoH1XaOk4VZS0ai1h1A6KZ4JK1gINg3UQxEgWCdYLx7czvPDGleSwfYJowLyJDyUNOCRjJtyv9gKisD2wCQZilee4/+nbVqTlz4FXiFqSKCjR9+6s/iGkaMQlUEK17rpOAlxEFnAqWl/upZgmhYzJkPUMliZj2svntOT4zygCHsTIlAc/V3xMZibSeRoHpjAiM9LI3E//zeimE117GZZICk3SxKEwFhhjPgsADrhgFMTWEUMXNrZiOiCIUTFxlE4K7/PIqaddr7kWtfn9ZbdwUcZTQCTpF58hFV6iB7lATtRBFE/SMXtGblVsv1rv1sWhds4qZY/QH1ucP+PiVCw==</latexit>

ū
0
j

<latexit sha1_base64="OkCnlB/Xa9qS9vWlmdanOtks3nM=">AAAB/3icbVBNS8NAEN3Ur1q/ooIXL8EieipJFfRY9OKxgv2ANobNdtOu3WzC7kQsMQf/ihcPinj1b3jz37htc9DWBwOP92aYmefHnCmw7W+jsLC4tLxSXC2trW9sbpnbO00VJZLQBol4JNs+VpQzQRvAgNN2LCkOfU5b/vBy7LfuqVQsEjcwiqkb4r5gASMYtOSZe10fy7QL9AH8IE2yzLu7TY8yzyzbFXsCa544OSmjHHXP/Or2IpKEVADhWKmOY8fgplgCI5xmpW6iaIzJEPdpR1OBQ6rcdHJ/Zh1qpWcFkdQlwJqovydSHCo1Cn3dGWIYqFlvLP7ndRIIzt2UiTgBKsh0UZBwCyJrHIbVY5IS4CNNMJFM32qRAZaYgI6spENwZl+eJ81qxTmpVK9Py7WLPI4i2kcH6Bg56AzV0BWqowYi6BE9o1f0ZjwZL8a78TFtLRj5zC76A+PzB/AQlrA=</latexit>

User-level Attention

ŷi
<latexit sha1_base64="LLuD+0H6QsirIpYmIonHd/tZAQ0=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16CRbBU0mqoMeiF48V7Ac0IWy2m3bpZhN2J9IQ8le8eFDEq3/Em//GbZuDtj4YeLw3w8y8IOFMgW1/G5WNza3tnepubW//4PDIPK73VJxKQrsk5rEcBFhRzgTtAgNOB4mkOAo47QfTu7nff6JSsVg8QpZQL8JjwUJGMGjJN+vuBEPuAp1BEOZZUfjMNxt2017AWidOSRqoRMc3v9xRTNKICiAcKzV07AS8HEtghNOi5qaKJphM8ZgONRU4osrLF7cX1rlWRlYYS10CrIX6eyLHkVJZFOjOCMNErXpz8T9vmEJ44+VMJClQQZaLwpRbEFvzIKwRk5QAzzTBRDJ9q0UmWGICOq6aDsFZfXmd9FpN57LZerhqtG/LOKroFJ2hC+Sga9RG96iDuoigGXpGr+jNKIwX4934WLZWjHLmBP2B8fkDCj+VFg==</latexit>

… …
…

FC

Softmax

(c)

UF
i

<latexit sha1_base64="DAbRwn4LK4BDWnWYeskuxJtdBJk=">AAAB+XicbVBNS8NAEN34WetX1KOXxSJ4KkkV9FgUxGMF0xbaWDbbTbt0swm7k2IJ+SdePCji1X/izX/jts1BWx8MPN6bYWZekAiuwXG+rZXVtfWNzdJWeXtnd2/fPjhs6jhVlHk0FrFqB0QzwSXzgINg7UQxEgWCtYLRzdRvjZnSPJYPMEmYH5GB5CGnBIzUs+0usCcIwszLe/wxu817dsWpOjPgZeIWpIIKNHr2V7cf0zRiEqggWndcJwE/Iwo4FSwvd1PNEkJHZMA6hkoSMe1ns8tzfGqUPg5jZUoCnqm/JzISaT2JAtMZERjqRW8q/ud1Ugiv/IzLJAUm6XxRmAoMMZ7GgPtcMQpiYgihiptbMR0SRSiYsMomBHfx5WXSrFXd82rt/qJSvy7iKKFjdILOkIsuUR3doQbyEEVj9Ixe0ZuVWS/Wu/Uxb12xipkj9AfW5w8HpZPp</latexit>

Global graph

Time 
Embedding

Ti
<latexit sha1_base64="2pgjzr29J+GU1MA2I8g3ylqyvG4=">AAAB83icbVBNS8NAEN34WetX1aOXxSJ4KkkV9Fj04rFCv6ApZbOdtEs3m7A7EUvo3/DiQRGv/hlv/hu3bQ7a+mDg8d4MM/OCRAqDrvvtrK1vbG5tF3aKu3v7B4elo+OWiVPNocljGetOwAxIoaCJAiV0Eg0sCiS0g/HdzG8/gjYiVg2cJNCL2FCJUHCGVvJ9hCcMwqwx7Yt+qexW3DnoKvFyUiY56v3Slz+IeRqBQi6ZMV3PTbCXMY2CS5gW/dRAwviYDaFrqWIRmF42v3lKz60yoGGsbSmkc/X3RMYiYyZRYDsjhiOz7M3E/7xuiuFNLxMqSREUXywKU0kxprMA6EBo4CgnljCuhb2V8hHTjKONqWhD8JZfXiWtasW7rFQfrsq12zyOAjklZ+SCeOSa1Mg9qZMm4SQhz+SVvDmp8+K8Ox+L1jUnnzkhf+B8/gBzXJHz</latexit>

Xi
<latexit sha1_base64="7NreFF8w212N83RIX/DFCIxjYUI=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0mqoMeiF48V7Ac0pWy2k3bpZhN2J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVHJo8lrHuBMyAFAqaKFBCJ9HAokBCOxjfzvz2I2gjYvWAkwR6ERsqEQrO0Eq+j/CEQZh1pn3RL1fcqjsHXSVeTiokR6Nf/vIHMU8jUMglM6bruQn2MqZRcAnTkp8aSBgfsyF0LVUsAtPL5jdP6ZlVBjSMtS2FdK7+nshYZMwkCmxnxHBklr2Z+J/XTTG87mVCJSmC4otFYSopxnQWAB0IDRzlxBLGtbC3Uj5imnG0MZVsCN7yy6ukVat6F9Xa/WWlfpPHUSQn5JScE49ckTq5Iw3SJJwk5Jm8kjcndV6cd+dj0Vpw8plj8gfO5w95eJH3</latexit>
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Figure 7.3: Overview of PLRD: (a) input of PLRD; (b) preprocessing layer; (c)
fine-grained user representation learning and rumor detection layer.

7.1.3.2 Overall framework of PLRD

In this section, we describe our proposed PLRD rumor detection system. It con-
sists of the following components (see Figure 7.3): (a) inputs, including (1) the
propagation threads of tweet mi, and (2) a global graph constructed on all tweets
propagation threads; (b) the preprocessing layer, which consists of (1) constructing
a diffusion graph and inverse diffusion graph based on propagation threads, (2) con-
structing a user characteristic matrix based on user profiles, (3) pre-training retweet
time-stamps via positional encoding, and (4) pre-training global graph via random-
ized truncated singular value decomposition-based sparse matrix factorization; and
(c) the fine-grained user representation learning layer and the rumor detection layer,
in which we learn user influence and susceptibility via a multi-hop graph convolution
layer, model user temporal feature via bi-directional GRU, then aggregate and en-
hance the learned multi-scale user representations through a feature-level attention
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layer and a variational autoencoder. Finally, after a user-level attention layer, we
feed the unique rumor representation into a rumor classifier. Specifically, we use
several fully connected feedforward layers and a softmax output layer to generate a
rumor prediction. Below, we explain each of the above components in detail.

7.1.3.3 Social homophily learning from global graph

As mentioned in section 7.1.3.1, we construct the global graph based on all the
retweet threads in the dataset. Our goal is to capture social homophily for all users.
The social homophily among users specifies that users with similar interests are more
likely to closely connected [153]. We assume that the users who discuss the same
post in social communities share homophilous relationships in our work. Then, we
try to model social homophily in an unsupervised manner, which encourages users
with shared social neighborhoods to have similar latent representation.

More specifically, we cast the problem of learning social homophily as the task of
graph embedding. The global graph G always contains tens of thousands of nodes,
and to model such a large graph effectively is a tough challenge in the field of graph
representation learning [154, 155]. Inspired by the success of sparse matrix fac-
torization (SMF) in large-sized graph representation learning, in our work, we use
a randomized tSVD-based SMF to learn social homophily from the global graph.
Here, tSVD is truncated singular value decomposition, which can prevent the prob-
lem of infeasible computation of factorization for a large-sized matrix [156, 157].
Specifically, given global graph G, we can obtain the adjacency matrix AG ∈ RN×N

and diagonal degree matrix DG ∈ RN×N , N is the number of nodes in global graph.
Each entry AGi,j of A

G equals to 1 when uj and uj share the same post or i = j, oth-
erwise AGi,j = 0. And DGi,i =

∑N
j AGi,j. To learn the embedding of G via randomized

tSVD-based SMF, we first define a proximity matrix MG as:

MG
i,j =

{
ln pGi,j − ln(λN GE,j), (ui, uj) ∈ E

0, otherwise (7.1)

where pGi,j = AGi,j/D
G
i,i indicates the weight of (ui, uj) in E. N GE,j are the negative

samples connected with user uj, which can be defined as N GE,j ∝ (
∑

i:(i,j)∈E pi,j)
3/4

(y ∝ x means that y and x are in a directly proportional relation) [158]. The goal of
the global graph embedding is transformed to factorize the matrix MG. Specifically,
the step for the approximate matrix factorization of M1 are as follows: (1) we first
look for a matrix Q ∈ RN×d with d orthonormal columns that let M ≈ QQTM;
(2) suppose we found such matrix Q, we define M̂ = QTM ∈ Rd×N , which is
quite smaller compare with the original matrix M. Then we have M̂ = SΣVT,
where Σ is the diagonal matrix with top-d singular values, and S,V ∈ RN×d are
orthonormal matrices with d selected singular values; (3) finally, the factorization of
M is approximate to M ≈ QQTM = (QS)ΣVT and the calculation of the output

1for brevity, we ignore the superscript G.
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embeddings for the global graph is EG = QSΣ1/2 and EG = {eGj |j ∈ [1, N ]} ∈ RN×d

. That is, for each user uj in the global graph, was allocated a relative latent
embedding, i.e., eGj , and users with similar preferences and behavior (i.e., interested
in the same posts) will have similar embeddings.

7.1.3.4 Users’ influence and susceptibility learning

The role of each participant in the diffusion process of mi has two types, i.e., sender
and receiver [159]. In previous diffusion research [160, 161], the role of the sender
reflects a user’s influence, that is, the ability to spread information to other users.
On the opposite, the receiver role reflects the susceptibility of a user, i.e., the ability
of a user to be infected by possible senders. In our work, we learn the influence
and susceptibility for each user from the diffusion graph Gi of mi. However, in the
original diffusion graph Gi, the information passed from a sender to a receiver, so
that modeling Gi can acquire influence for each user, is not efficient for suscepti-
bility learning. To overcome this problem, we introduce an inverse diffusion graph
GT
i , which changes the direction of information propagation, i.e., from receiver to

sender.

Inspired by the recent success of deep learning technologies in graph representation
learning, such as graph convolutional network (GCN) [41, 61], and graph attention
network (GAT) [109], in order to model the higher-order relationships among par-
ticipants, we propose a multi-hop graph convolution layer (MHGCN) to extract user
influence and susceptibility from Gi and GT

i , respectively. The convolution kernel
of MHGCN is defined as:

H = gθ ∗X = σ( ‖
k∈O

(Â
(k)
XW(k))) (7.2)

where ‖
k∈O

represents the order-level concatenate, and σ is a non-linear activation

function such as ReLU. Â
(k)

denotes the normalized adjacency matrix Â ∈ R|U |×|U |
multiplied by itself k times, |U | is the number of nodes in graph, and O is a set
of integer adjacency powers from 0 to K, K is the max-order. The calculation of
normalized adjacency matrix is denoted as Â = D̄−1Ā, where Ā = A + I, and I is
diagonal identity matrix. X ∈ RN×dX is the input graph signal, dX is the dimension
number. W(k) ∈ RdX×F is the weight matrix for different order. Given the diffusion
graph Gi and its inverse diffusion graph GT

i , we have:

Xi = Concat(Ei,Ui),

Hinf
i = σ( ‖

k∈O
(Â

(k)
i XiW

(k)
1 )),

Hsus
i = σ( ‖

k∈O
((Â

T
i )(k)XiW

(k)
2 )).

(7.3)

Ei = {eGj |uj ∈ Ui}, where eGj is looked up through global graph embedding matrix
EG by given user id, and Ui is the user characteristics matrix. Hinf

i ,Hsus
i ∈ R|Ui|×F
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are user influence and user susceptibility, respectively.

7.1.3.5 Users’ temporal learning

We learn temporal information for users from the diffusion path Pi. Specifically,
by modeling the timestamp information we can extract the dynamic and temporal
information for each participant user, which has been demonstrated to help rumor
detection [162].

Assume that, the time window is [t1, to], we first split the time window into l disjoint
time intervals, and compute the corresponding time interval for each retweet user
uj as pos =

⌊
tj−t1
to/l

⌋
, where t0 is the timestamp for the source post user. Then,

we use positional encoding introduced in the Transformer [131] to allocate initial
embedding for each time interval.

TP (pos)2d = sin
pos

100002d/dtime
,

TP (pos)2d+1 = cos
pos

100002d/dtime
.

(7.4)

where pos ∈ [0, l) denotes the time interval each user fall into, d refers to dimension,
and dtime is the total dimensions of the time interval embedding. So that, for a
given tweet mi, we construct an initial time-embedding matrix denoted as Ti ∈
R|Ui|×dtime .

After that, we feed Ti into a Bi-directional GRU (Bi-GRU) [108] to learn the tem-
poral information Htime

i for users.

Htime
i = Bi-GRU(Ti),Htime

i ∈ R|Ui|×F (7.5)

7.1.3.6 Feature-level aggregation attention

After obtaining the multi-scale latent representation of users, i.e., Hinf
i , Hsus

i and
Htime
i , we propose an attention-based method to capture the different importance

among three types of representations. Let ûj =
[
hinfj ,hsusj ,htimej

]
∈ R3×F denote

the learned feature set for user uj. The attention aj for ûj is calculated as:

û
′

j = tanh (ûj ·wj) ,

aj = softmax
(
û

′

j ·w
′

j

)
,

(7.6)

where wj ∈ RF×F and w′
j ∈ RF×1 are weight matrices, aj ∈ R3×1 is the learned at-

tention. Then the aggregated feature vector for user uj is ūj = ûj ·aj, where ūj ∈ RF .
Finally, we get the fused user feature vector matrix as Ūi = {ūj|j ∈ [1, |Ui|]}.
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7.1.3.7 VAE-based uncertainty learning

In most of the existing works, the learned Ūi can be directly fed into a classification
layer to predict the label of mi. In our work, motivated by the ability of variational
autoencoders (VAE) [163] in coping with randomness and uncertainty, we employ
VAE to capture the uncertainty in the learned user features. Let fDec(·), fDec(·)
and fNN(·) denote the encoder, decoder and neural network, respectively. Then the
VAE-based uncertainty learning layer can be simply formalized as:

zj = fENC(ūj), ū
′

j = fDec(zj), j = 1, 2, · · · , |Ui|.
µj = fNN(ūj), log σ2

j = fNN(ūj), zj ∼ N (µj, σ
2
j )

(7.7)

where ū′
j represents the reconstructed input features. zj ∈ Rdz is the latent vector.

Specifically, VAE gets µ and log σ2 from the encoder (we omit the subscript j for
simplicity), and then samples latent representation z from Gaussian distribution via
reparameterization trick, where z = µ+σε and ε ∼ N (0, 1). Then the decoder takes
the latent representation z as input, and try to reconstruct the original input feature.
In general, the marginal log-likelihood of ū – log pθ(ū) = log

∫
z pθ(ū|z)p(z)dz, which

is intractable to compute effectively. Instead, we adopt variational inference by
defining a simple parametric distribution over the latent variables qφ(z|ū) (a.k.a.
fEnc parameterized by φ), and maximizing the evidence lower bound (ELBO) on
the marginal log-likelihood of each observation:

log pθ(ū) = log

∫

z
pθ(ū|z)p(z)dz

= Eqφ(z|ū) log[
pθ(ū, z)

qφ(z|ū)
] + KL[qφ(z|ū)||pθ(z|ū)]

≥ Eqφ(z|ū)[log pθ(ū, z)− log qφ(z|ū)] , ELBO(ū)

(7.8)

To optimize the ELBO, we use a parametric inference network and reparameteriza-
tion of qφ(z|ū) to alternatively maximize the following reformulation:

ELBO(ū) = Eqφ(z|ū)[log pθ(ū, z)− log qφ(z|ū)]

= Eqφ(z|ū)[log pθ(z) + log pθ(ū|z)− log qφ(z|ū)]

= Eqφ(z|ū)pθ(ū|z)−KL[qφ(z|ū)||pθ(z)]

(7.9)

where pθ(ū|z) denotes the decoder and the first term of Equation (7.9) is the re-
construction loss, which is used to measure the likelihood value of the reconstructed
features. The second term is the Kullback-Leibler (KL) divergence between the vari-
ational distribution qφ(z|ū) and the prior pθ(z) (which is always ≥ 0). Therefore,
the objective of maximizing ELBO of log pθ(ū) turns to minimize the Kullback-
Leibler (KL) divergence. Through this VAE-based uncertainty learning layer, the
learned latent representation for all users form a user latent representation matrix
Uz
i = {uzj |j ∈ R|Ui|×dz}.
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7.1.3.8 User-level aggregation attention

We concatenate Ūi and Uz
i at user-level to form a new user representation ma-

trix UF
i ∈ R|Ui|×(F+dz). Then we try to merge the user-level information to form

an unique representation Ri for tweet mi through attention sum-pooling opera-
tion:

âj =
exp(〈w, tanh(WauFj + ba)〉)∑|Ui|
∗:=1 exp(〈w, tanh(WauF∗ + ba)〉)

,

Ri =
N∑

j=1

âjuFj

(7.10)

where Wa ∈ R(F+dz)×d, ba ∈ Rd and w ∈ Rd.

7.1.3.9 Rumor detection

Our ultimate goal is to predict the rumor label ŷi of tweet mi. We calculate this
through feeding Ri into several fully connected layers and a softmax output layer,
which is denoted as:

ŷi = softmax (FC (Ri)) (7.11)

where ŷi is a vector of predicted probabilities of all rumor categories for the tweet
mi.

In the implementation, we train PLRD to estimate all the model parameters by
minimizing the cross-entropy of the predictions Ŷ and the ground truth labels Y.
The prediction loss is:

Lpre = − 1

|B|

|B|∑

i=1

1∑

c=0

yi,c log ŷi,c (7.12)

where |B| is the batch size, yi,c and ŷi,c are the ground truth and predicted results
for the i-th sample. That is, if the sample belongs to c-th class, ŷi,c is 1; otherwise
it is 0.

The total loss of PLRD should take the ELBO into consideration, that is:

L = Lpre −
1

|B|

|B|∑

i=1

ELBO(Ūi) (7.13)

During training, the well-known stochastic gradient descent is applied to update
parameters. Specifically, we use the adaptive learning rate optimization algorithm
Adam [139] for model training. All hyper-parameters are tuned using the stan-
dard grid search for optimal results. The next section provides the details of the
computational experiments.
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7.1.3.10 Computational complexity analysis

In this section, we give a brief analysis of the computational complexity of PLRD.
(1) The complexity for social homophily learning from global graph: as analyzed
in [155], the overall complexity of this layer is O(d2|U | + |E|), where d, |U | and
|E| are the dimensions of user social homophily, number of nodes and edges in
global graph, respectively. (2) The complexity for users’ influence and susceptibility
learning: we use a multi-hop graph convolutional layer to learn the users’ influence
and susceptibility (cf. Eq 7.2). Recall that, the dimensions of the input and the
output are dX and F , respectively, the max-order isK, and the normalized adjacency
matrix Â is a sparse matrix with m nonzero elements. Therefore, for a single
MHGCN layer, the computational complexity is O(F × K × m × dX). (3) The
other parts of the PLRD are implemented by GRUs and MLPs. The time and
space complexity are related to the input dimensions of latent variables. Since the
users’ social homophily are computed in preprocessing phase, the computational
complexity of whole PLRD is therefore O(F ×K ×m× dX).

7.1.4 Evaluation

In this section we evaluate our proposed PLRD framework and demonstrate its
practical utility through quantitative experiments.

7.1.4.1 Evaluation metrics and baselines

In our work, we use Accuracy (ACC), Precision (Pre), Recall (Rec), and F1 as
the evaluation protocols to measure the models’ performance. In particular, ACC
measures the proportion of correctly classified tweets, while F1 is the harmonic mean
of the precision and recall.

We compare our method with a battery of baselines, they are:

• DTC [23]: A decision tree-based classification model that combines manually
engineered characteristics of tweets to compute the information credibility.

• SVM-TS [85]: A linear SVM-based time series model, which can capture
the variation of a broad spectrum of social context information over time by
converting the continuous-time stream into fixed time intervals.

• GRU [33]: An RNN-based model has been employed to learn the sequential
cascading effect of tweets with high-level feature representations extracted
from relevant posts over time.

• TD-RvNN [34]: A tree-structured RNN model for rumor detection, which
embeds hidden indicative signals in the tree-structures and explores the im-
portance of comments for rumor detection.
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• PPC_RNN+CNN [100]: An early-stage rumor detection model through
classifying news propagation paths with RNN and CNN, which learns the
rumor representations through the characteristics of users and source tweets
(for brevity, the model name is abbreviated to PPC).

• dEFEND [87]: A co-attention-based fake news detection model that exploits
both news contents and user comments for fake news detection.

• Bi-GCN [16]: A GCN-based model exploiting the bi-directional propagation
structures and comments for rumor detection.

• GCAN [102]: A co-attention network that detects true and false rumors based
on the content of the source tweet and its propagation-based users. We also
provide a variant of GCAN, denoted as GCAN-Text, which removes the source
tweet features in the original inputs.

7.1.4.2 Experimental setup

We implement DTC with Weka1, SVM-based models with scikit-learn2, and other
neural network-based models with Tensorflow3. All baselines follow the parameter
settings in the original papers.

For PLRD, the learning rate is initialized at 0.001 and gradually decreases as the
training proceeds. We set the embedding size d for the social homophily to 40. As
for time-embedding, we set the total number of time intervals to be 100 and each
interval represents 10 minutes. Retweets with a latency of more than 1,000 minutes
would fall into the last time interval. The size of time-embedding is dtime set to 50.
The hidden size F of user influence, susceptibility, and temporal information are set
to 64; the hidden size dz of the VAE-based uncertainty learning layer is set to 32. The
batch size is set to 32 for Twitter15/16, 128 for Science and 16 for RumourEval19,
and the training process is iterated upon for 500 epochs but would be stopped earlier
if the validation loss does not decrease after 10 epochs. And we randomly choose
70% data for training and the rest of 10% and 20% for validation and testing. The
experiments are conducted on a machine with an Intel i7-6700 3.40GHZ CPU and a
single NVIDIA GeForce GTX 2080Ti. The time cost for model training is less than
10 minutes on all datasets used in this work.

7.1.4.3 Study on Twitter15/16

Table 7.5 and 7.6 summarizes the overall performance on Twitter15 and Twit-
ter16 datasets. The last two rows show the performance of the complete version
of our model PLRD and the improvement percentage compare with the second-best
method, which basically yields much better performance than the other baseline

1https://www.cs.waikato.ac.nz/ml/weka/
2https://scikit-learn.org/
3https://www.tensorflow.org/
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Table 7.5: Overall performance comparison of rumor detection on Twitter15. The
best method is shown in bold, and the second best one is underlined. The number of
retweets is 40.

Twitter15
Method Acc Pre Rec F1
DTC 0.495 0.494 0.481 0.495
SVM-TS 0.519 0.519 0.518 0.519
GRU 0.580 0.544 0.545 0.544
TD-RvNN 0.678 0.671 0.674 0.672
PPC 0.691 0.674 0.686 0.679
dEFEND 0.738 0.658 0.661 0.654
Bi-GCN 0.748 0.731 0.759 0.745
GCAN 0.875 0.825 0.829 0.825
GCAN-Text 0.683 0.705 0.652 0.678
PLRD 0.934 0.928 0.929 0.927
Improvement 8.98% 12.5% 12.1% 12.4%

Table 7.6: Overall performance comparison of rumor detection on Twitter16. The
best method is shown in bold, and the second best one is underlined. The number of
retweets is 40.

Twitter16
Method Acc Pre Rec F1
DTC 0.561 0.575 0.537 0.562
SVM-TS 0.693 0.692 0.691 0.692
GRU 0.554 0.514 0.516 0.515
TD-RvNN 0.661 0.632 0.641 0.636
PPC 0.655 0.632 0.651 0.641
dEFEND 0.702 0.637 0.638 0.631
Bi-GCN 0.711 0.709 0.710 0.716
GCAN 0.823 0.803 0.841 0.822
GCAN-Text 0.664 0.716 0.579 0.648
PLRD 0.875 0.876 0.874 0.855
Improvement 6.32% 9.09% 3.92% 4.01%

methods across all metrics. Note that we conduct a McNemar’s test [144] between
our PLRD and the best baseline based on the prediction results on the testing set.
The p-values are p < 0.001 on both Twitter15 and Twitter16. Therefore, we can
conclude that the performance between PLRD and GCAN exists with statistical
significance.

We make the following additional observations. O1: The feature-based approaches –
DTC and SVM-TS use hand-crafted features based on the overall statistics of tweets,
which perform poorly. These two methods not sufficient to capture the generalizable
features associated with tweets and the diffusion process. Notably, SVM-TS achieves
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comparatively better performance than DTC because it utilizes an extensive set
of features and focuses on retweets’ temporal features. O2: Deep learning-based
models achieve better performance than feature-based methods. GRU is the first
deep-learning-based method for rumor detection, which performs worst among deep-
learning-based baselines because it only relies on the temporal-linguistics features of
the post sequence but ignores other useful information such as diffusion structures
and user profiles. Both TD-RvNN and PPC outperform GRU, which indicates the
effectiveness of modeling the propagation structure and temporal information in
rumor detection. Moreover, PPC proves user profile features as important as text
features for rumor detection. dEFEND utilize a co-attention mechanism to learn the
correlation between news contents and user comments, which performs better than
TD-RvNN and PPC but worse than Bi-GCN and GCAN. Bi-GCN and GCAN claim
that they can learn structure information from graphs, and their performance indeed
exceeds other baseline methods. However, Bi-GCN constructs the structural tree
based on the replies, which can not reflect the full process of rumor diffusion. As for
GCAN, it captures the similarity between users rather than propagation structural
features. According to the results, GCAN performs much better than Bi-GCAN,
because it takes both text information and user profiles into consideration. By
comparing GCAN with its variants GCAN-Text, we can find that after removing
text information, the performance of GCAN remarkably decrees, demonstrating
that GCAN is not efficient to capture user-related features. O3: PLRD consistently
outperforms all baselines on both Twitter15 and Twitter16. Compare to the best
baseline method Bi-GCN, PLRD learns rumor representation from a participant-
level without any text information, demonstrate the primary motivations of this
work – i.e., users are the main contributor to the rumor propagation.

7.1.4.4 Study on Science

Table 7.7: Overall performance comparison of rumor detection on Science. The best
method is shown in bold. The number of retweets is 40.

Science
Method Acc Pre Rec F1
PPC 0.655 0.649 0.568 0.606
GCAN-Text 0.671 0.646 0.622 0.634
PLRD 0.768 0.727 0.814 0.768

In this section, we conduct an experiment on Science dataset. Specifically, from the
original Science dataset, we first filter out (1) the tweets with less than 10 retweets
and more than 100; and (2) the tweets’ with a diffusion period exceed 24 hours.
After that, we have 3, 493 tweets in total, and the processed dataset is still highly
imbalanced, e.g., only 610 tweets were labeled as “non-rumor”, while the majority
(i.e., 2, 883) were classified as “rumor”. We randomly select 1, 000 items from the
rumor set to make sure the number of tweets labeled as non-rumors is 50% of the
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rumors, and finally, we get a new experiment dataset with 1, 000 rumors and 610

non-rumors. Table 7.3 summarizes the performance comparison between PLRD and
two state-of-the-art propagation-based baselines, i.e., PPC and GCAN-Text1. We
can observe that our PLRD outperforms both PPC and GCAN-Text on all metrics,
which indicates that our model is more effective and stable in extracting diffusion
patterns of users even without any textual information.

7.1.4.5 Study on RumourEval19

Table 7.8: Overall performance comparison of rumor detection on RumourEval19.
The best method is shown in bold. The result of the “Base” model has referenced the
best method from the paper [150]. “w/o Text” means without textual features. The
number of comments is 100.

RumourEval19
Method Acc Pre Rec Macro-F1
Base – 0.596 0.603 0.577
TD-RvNN 0.667 0.641 0.673 0.615
Bi-GCN 0.734 0.733 0.735 0.661
PLRD 0.813 0.826 0.885 0.788
PLRD w/o Text 0.750 0.806 0.842 0.692

Since the RumorEval19 dataset has rich textual features, in this section we conduct
an experiment on RumourEval19 to test the PLRD performance when including
textual features. Specifically, we first use a pre-trained model – BERTweet [164] – to
generate the tweet embedding for each source tweet and its corresponding comments,
and then concatenate the source tweet embedding and comments embedding to form
a textual embedding matrix C ∈ R|Ui|×dtext for each tweet. Finally, we combine C
with X to form the input of PLRD. For a comparison, we choose TD-RvNN and
Bi-GCN as baselines, and also provide the result of the best method in [150] denotes
as “Base”. From Table 7.8, we can find that under the situation of unbalanced
label distribution, our PLRD can still achieve competitive performance compared
with other baselines on rumor detection. After deleting the textual features, the
performance of PLRD slightly drops, which demonstrate that textual features are
powerful and can help improve the model performance.

7.1.4.6 Ablation study

In this section, we conduct an ablation study on Twitter15 and Twitter16 to explore
the effect of each component in PLRD. Towards that, we derive the following variants
of PLRD:

1The Science dataset only provides anonymous user profile characteristics and propagation
threads. No textual features are available. So we compare with PPC and GCAN-Text.
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• w/o user profiles (UP): In “w/o UP”, we do not consider the user profile
characteristics, which means we do not use Ui and only keep Ei as input
features.

• w/o social homophily (SH): In “w/o SH”, we ignore the social homophily
of users, which means we do not use Ei and only keep Ui as input features.

• w/o user influence (UI): In “w/o UI”, we do not capture user influence,
which means ignore Hinf

i .

• w/o user susceptibility (US): In “w/o US”, we do not capture user sus-
ceptibility, which means ignore Hsus

i ..

• w/o user temporal (UT): In “w/o UT”, we do not take the user temporal
information into consideration, which means ignore Htime

i .

• w/o graph information (GI): In “w/o GI”, we do not utilize any infor-
mation from the global graph and the diffusion graph, which means we ignore
users’ social homophily, influence, susceptibility and only keep the users’ tem-
poral learning component. The input of this part is the concatenation of user
features and temporal information.

• w/o feature uncertainty (FU): In “w/o FU”, we remove the VAE-based
uncertainty learning layer and use Ūi directly.

• w/o feature-level attention (FA): In “w/o FA”, we remove the feature-
level aggregation attention in PLRD and concatenate the different user features
directly, i.e., Ūi = concat(Hinf

i ,Hsus
i ,Htime

i ) ∈ R|Ui|×3F .

• w/o user-level attention (UA): In “w/o UA”, we do not allocate different
importance for each user and directly use a sum-pooling to form the rumor
representation.

Table 7.9: performance comparison between PLRD and its variants.

Twitter15 Twitter16
Method Acc Pre Rec F1 Acc Pre Rec F1
w/o UP 0.853 0.842 0.838 0.828 0.838 0.858 0.847 0.840
w/o SH 0.906 0.894 0.910 0.896 0.802 0.821 0.786 0.794
w/o UI 0.868 0.863 0.871 0.859 0.800 0.859 0.871 0.867
w/o US 0.841 0.877 0.857 0.864 0.781 0.794 0.775 0.782
w/o UT 0.873 0.914 0.935 0.920 0.795 0.792 0.802 0.788
w/o GI 0.806 0.755 0.811 0.782 0.758 0.716 0.732 0.724
w/o FU 0.913 0.911 0.914 0.911 0.854 0.847 0.859 0.848
w/o FA 0.811 0.842 0.843 0.848 0.790 0.831 0.837 0.816
w/o UA 0.896 0.906 0.877 0.886 0.854 0.838 0.831 0.829
PLRD 0.934 0.928 0.929 0.927 0.875 0.876 0.874 0.855
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The results, shown in Table 7.9, indicate that the original PLRD outperforms these
variants in terms of all metrics. From Table 7.9, we can observe that: (1) Both user
profile features (w/o UP) and social homophily (‘w/o SH) are reliable inputs of our
model that because user profiles can be used to identify an individual, and social
homophily can reflect the user preference. (2) User influence (w/o UI), susceptibility
(w/o US), and temporal features (w/o UT) are indispensable for rumor detection.
(3) The result of “w/o GI” performs worst among all variants, demonstrating that
graph data (global graph and diffusion graph) provide considerable meaningful fea-
tures, and are thus indispensable in rumor detection. (4) The fact that “w/o FU”
provides lower performance compare with PLRD, reflects the benefit of modeling
the feature uncertainty. (5) The two attention-based aggregation layers, i.e., feature-
level aggregation attention (w/o FA) and user-level aggregation attention (w/o UA),
play crucial roles in detecting rumors. Especially the feature-level aggregation atten-
tion (w/o FA), after removing it, the performance remarkably decreases, suggesting
that distinguishing the importance of different scale of user features can improve
detection performance. Similarly, “w/o UA” demonstrates that different users play
different roles in rumor spreading.

7.1.4.7 Privacy-preserving study

In this section, we conduct experiments on Twitter15 dataset to test our PLRD’s
performance on privacy-preserving scenarios which can be summarized as: (1) ran-
domly removing different proportions of edges in the global graph G; (2) randomly
masking different proportions of user characteristics u, and (3) randomly removing
different proportions of edges in the diffusion graph G. Note that, in scenario (1)
and (2) we only keep related features as inputs, i.e., in scenario (1), we only use
the user homophily E generated from the global graph as input, and in scenario
(2) we only keep user characteristic U as input. Both scenarios are tested on 40

retweets.

Figure 7.4 plots the performance of PLRD in scenarios (1) and (2), which shows that
even though we only keep 20% of edges in the global graph, the PLRD still achieves
90% accuracy. However, when masking 80% of user characteristics, the performance
of PLDR drops significantly.

Figure 7.5 shows the performance of PLRD with the different numbers of retweets
in scenario (3). We find that when we only observe few retweets, e.g., 10 and 40, the
performance of the model decreases as the removal of edges in the diffusion graph.
In contrast, when the number of observation retweets is sufficient enough such as
100, dropping a few edges would help improve the model performance. The reasons
behind is that: (1) with the increase of observed retweets, there is a great possibility
to introduce noise into the graph, which can be eliminated with random removal of
graph edges; and (2) randomly drop a few of graph edges is widely used as a data
augmentation method in graph representation learning field [165, 166], which can
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Figure 7.4: Evaluations on randomly removing different proportions of edges in the
global graph and random masking different proportions of user characteristics.

improve model generalization and overcome the overfitting and over-smooth issues
of graph neural networks.)

7.1.4.8 Early detection

Another critical goal of rumor detection is to detect rumors as early as possible
that is essential to stop their spread in a timely fashion. Next we investigate the
performance of models on identifying rumors at an early stage. Here, we consider
the early 50 retweets.

Figure 7.6 shows the performance comparison on early-stage detection between our
PLRD and the selected baselines. Note that we omit the feature-based approaches
(i.e., DTC and SVM-TS) and GRU since they did not show comparable performance,
especially on early rumor detection. Moreover, we also ignore TvRvNN, dEFEND,
and Bi-GCN, because these methods are built on the replies that may not exist
in the early-stage. We observe that PLRD performs better than PPC and GCAN,
especially when there are only a few observations. PLRD needs a short time to
identify the misinformation because PLRD learns the rumor representation from a
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Figure 7.5: Evaluations on randomly removal of diffusion links based on Twitter15.
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Figure 7.6: Evaluations on early rumor detection.

participant-level and fuses users’ multi-scale knowledge, such as user influence, user
susceptibility, user temporal information, etc.

We also investigate the time-varying performance between PLRD and its variants.
Specifically, we choose “w/o UP”, “w/o SH”, “w/o FU”, “w/o FA” and “’w/o UA’ as the
comparison methods. The results show in Figure 7.7. We find that the performance
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Figure 7.7: Evaluations on early rumor detection among variants of PLRD.

of PLRD surpasses all variants, and with the number of retweets increased, the
accuracy of all methods grow to saturation.

7.1.4.9 Interpretability analysis

The above ablation studies have shown the superiority of each component in PLRD.
In this section, we provide more in-depth insights by visualizing features.

Figure 7.8 plots the importance of the feature-level aggregation layer and user-
level aggregation layer. As for the feature-level aggregation attention, we randomly
selected two different types of tweets in Twitter15 and plotted the importance of the
different features. Figure 7.8a and Figure 7.8b show the results of previous 10 and
40 retweet users, respectively. Overall, we find that (1) the three types of features
for each user have different importance; (2) attention distribution varies between
rumor and non-rumor. Specifically, as for rumor tweets, participants try to affect
others, while themselves are easier to expose in the misleading tweets. In contrast, in
non-rumor tweets, participants are more influential compare with the susceptibility.
Moreover, temporal information plays a crucial role in detecting both rumor and
non-rumor. In Figure 7.8c, we investigate the role of the retweet users at the very
beginning of the diffusion. As shown, the later users are more critical in rumor
spreading, which confirms the hypothesis that rumors can spread deeper than non-
rumors [43]. Moreover, to have an intuitive explanation regarding the superiority
of each component in PLRD, we plot the learned latent representations (i.e.,Ū, Uz,
UF and R ) using t-SNE [125]. Each point in the plot represents a tweet in the test
set (tweets with similar latent vectors are closer in the plot), and different colors
refer to different labels, i.e., green represents non-rumor, orange represents rumor.
From Figure 7.9a, we see clear clustering phenomena by Ū. These latent vectors
can already be used to predict directly. In contrast, Figure 7.9b “smoothes” this
clustering effect by modeling the feature uncertainty, which should help explore more
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Figure 7.8: Attention visualization of PLRD. “Inf”: influence; “Sus”: susceptibility;
“Temp”: temporal.

possibilities. From Figure 7.9c – Figure 7.9d, we find that the model learned more
suitable latent representations for prediction after a user-level attention layer.

7.1.5 Summary

In this first part of the chapter, we first provided empirical evidence that all partic-
ipants in the diffusion chains of rumors exhibit different patterns than participants
in the diffusion chains of non-rumors. Based on these findings, we proposed a novel
fine-grained all- participant level rumor detection model, named PLRD (Participant-
Level Rumor Detection). Specifically, PLRD learns fine-grained user representa-
tions, i.e., user influence, user susceptibility, and user temporal information from
the propagation threads of a given post, and merges the learned features to form a
unique rumor representation through a feature-level attention layer and a user-level
attention layer. Moreover, a variational autoencoder used to capture uncertainty
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Figure 7.9: Visualization of the learned latent representation on Twitter15 using t-
SNE. Each point is a sample from the test set. The color green represents non-rumor,
and the orange one represents rumor.
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from features further improves the learned rumor representation. Compared with
existing rumor detection methods, PLRD makes predictions only based on user-level
features learned from the diffusion process of posts, which overcomes the problem
of overemphasizing the text features. We conducted experiments on four real-world
datasets, Twitter15, Twitter16, Science and RumourEval19. The experiment results
not only demonstrate that our model significantly outperforms the baselines regard-
ing effective early detection, but also supports the hypothesis that the combination
of various user information at a participant level in a diffusion chain will improve the
performance of rumor discovery. Besides, our ablation study further demonstrates
that each part in our model is indispensable for rumor detection.
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7.2 UMLARD: Multi-view Learning with Distinguish-
able Feature Fusion for Rumor Detection

7.2.1 Section Overview

In section 7.1, we proposed a novel participant-level rumor detection model – PLRD,
which can learn fine-grained all-participant patterns throughout the whole diffusion
process, including social patterns (user social homophily), diffusion patterns (user
influence and susceptibility), temporal patterns (how fast the news is propagated
in the social network), all-participant profile patterns. Based on the experimental
results compared with existing state-of-the-art deep learning-based rumor detection
methods, we have seen that PLRD achieves significant improvements. In this sec-
tion, we propose a new model UMLARD – User-aspect Multi-view Learning with
Attention for Rumor Detection model, which can make even better predictions than
PLRD and other recent works. UMLARD inherits the advantages of PLRD, i.e.,
solving the same limitations that are also considered by PLRD:

(L1) Lack of systematic user-aspect rumor modeling : Recent research [43] reveals
that humans are the principal “culprits” in spreading false news. Existing studies
either directly aggregate users’ profile information as model inputs [85, 86, 102],
which only pay attention to the local structure correlations among propagated users
and the sequential propagation patterns [100] (i.e., user temporal features), or focus
on learning the global structure of rumor diffusion [16] (i.e., user structural features).
Essentially, these works learn the rumor representation from an event-level, and still
lacks a unified framework that can learn rumor diffusion while extracting meaningful
features from user-aspect.

(L2) Indistinguishable importance of both features and users : Different features play
different roles in rumor detection at different phases of propagation. As information
spreads, for example, the effect of structural information and temporal information
on discriminating rumors becomes different [84, 85]. Also, users may either uncon-
sciously forward some unproven news, or deliberately propagate the fake news in
the information spread [26]. Understanding the efficacy of features and individual
users at the same time would help detect rumors, which, however, has not been well
investigated in existing studies.

(L3) Limited interpretability : Most existing studies focus on explaining the news
content, e.g., discover the important sentence in the articles or emotional words
in comments [87], to interpret the detection results. However, these works cannot
explain critical features beyond text and determine user’s roles in rumor propaga-
tion.

Besides all those points above, UMLARD also improves on PLRD by overcoming
the following limitation is not solved by PLRD:
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(L4) Entangled high-level feature learning : Existing works learn high-level represen-
tations (e.g., structural or temporal) for rumor detection by exploiting user profiles
or pretrained textual features as model inputs. While improving detection perfor-
mance, it is difficult to demonstrate the effectiveness and high-level representations
of the model, because (1) the learned representations are entangled with the original
input [102], and (2) the models use the same input [44] to learn different high-level
features.

To develop UMLARD and address the limitations L1–L4 above, inspired by recent
progress in multi-view learning [167, 168, 169], we initiate the attempts to cap-
ture the principal characteristics of users and rumors by learning multiple distinct
features. Multi-view learning is a promising learning paradigm that jointly models
different views of the same input data for improving learning performance [170]. For
example, a web page can be described in forms of text, video, and image [171] simul-
taneously. By exploring the complementarity and consistency of different views, it
can further improve the model performance [172]. Specifically, we exploit different
views to represent an instance for comprehensively describing the information of
the instance. We first abstract the user-aspect features of the users engaged in the
diffusion process as user profile-view, user structural-view, and user temporal-view,
and then incorporate different views to predict the credibility of the given infor-
mation. Specifically, UMLARD exploits different embedding methods to learn the
view-specific high-level representations of a given post from the hierarchical diffusion
process and user profiles. To understand the importance of each view and the role
of the user, UMLARD employs a view-wise attention network and a capsule atten-
tion network to incorporate both view-level and user-level features. It allows us to
better discriminate feature influence and the effect of user behaviors in spreading
rumors.

Our main contributions towards rumor detection problem provide:

• User-aspect feature extraction (L1): We conceptualize user-aspect fea-
tures as different views, including profile-view, structural-view, and temporal-
view, and present a novel model to learn different views for each user who
engaged in the information diffusion.

• View-specific embedding methods (L2): UMLARD utilizes different em-
bedding methods to learn view-specific high-level representations based on
different inputs: (1) an attention-based layer aims to learn user profile-view
by assigning different importance to features in user profiles; (2) an improved
GCN-based network to learn structural-view from the diffusion network while
considering the direction of information dissemination, taking the adjacency
matrices of diffusion networks as input; and (3) a time-decay LSTM considers
the influence of users and is used for temporal-view learning based on the dif-
fusion path taking two types of embeddings as inputs, i.e., static-embedding
and dynamic-embedding.
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• Distinguishable hierarchical feature fusion (L3): We design a hierarchi-
cal feature fusion mechanism to unify the knowledge from different perspec-
tives, which consists of two components: (1) a view-wise attention layer to
capture the features from different views; and (2) a capsule attention layer to
differentiate the most related users.

• Explainable prediction results (L4): UMLARD explains the significance
of features according to the learned attention values. Specifically: (1) the
dimensional-wise attention network shows the importance of different charac-
teristics in the user profiles; (2) the view-wise attention results tell how the
users play different roles in different phases of rumor propagation; and (3)
from the capsule attention results, one can easily understand which users play
critical roles in detecting the rumors.

This section is based on the following publication [46]:

• Chen, X., Zhou, F., Trajcevski, G., Bonsangue, M.: Multi-view Learning
with Distinguishable Feature Fusion for Rumor Detection. Knowledge-Based
Systems 240 (2022) 108085

7.2.2 Problem Statement
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Figure 7.10: An example of the extracted information from a tweet diffusion.

Suppose we have a set of tweets M =
{
mi, i ∈

[
1, |M |

]}
, where each tweet mi is a

quadruplet representing the corresponding diffusion process and the users enrolled:
mi =

{
Gi,Pi,Ui,Ci

}
, where Gi,Pi,Ui,Ci are diffusion graph, diffusion path, user

characteristic matrix and the content vector of source tweet, respectively. The con-
cepts of diffusion graph, diffusion path and user characteristic matrix are formally
defined in Definition. 2, 3 and 5. And the definition of tweet content is shown as
follow:

Definition 15 Tweet Content. For a tweet mi, the text content Ci is considered
to be a sequence of words – i.e., Ci = [wi1,wi2, . . . ,wiL] ∈ RL×dword, where L is the
number of words in source tweet.

We note that each word is represented by a dword-dimension vector using a particular
word embedding technique, e.g., word2vec.
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7.2 UMLARD: Multi-view Learning with Distinguishable Feature Fusion for
Rumor Detection

We summarize the (definitions of the) symbols used in this section in Table 7.10. We
note that, in the sequel, whenever there is no ambiguity, we may omit the double-
subscript from the notation (i.e., whenever we are unambiguously working with one
specific tweet mi, we may drop i from the sequences denoting users, time-stamps,
etc.).

Table 7.10: Main notations used throughout this chapter.
Symbol Description
p∗ the user profile vector of each user.
g∗ The pre-trained node embedding of each user.
es∗ The static embedding of each user.
ed∗ The dynamic embedding of each user.
duser The hidden size of the profile-view.
dstru The hidden size of the structural-view.
dtemp The hidden size of the temporal-view.
dword The hidden size of the word embedding.
dview The hidden size of the multi-view layer.
HUser
i The representations of the profile-view.

HStru
i The representations of the structural-view.

HTemp
i The representations of the temporal-view.

HText
i The representations of the content feature.

V
′

i, sin
the representation after view-wise attention and capsule
attention for tweet mi.

HRumor
i the final representation of tweet mi.

Ŷ/ŷ∗ The predicted label.
Y/y∗ The ground truth.

We now formally define the rumor detection problem that we study as follows:

Definition 16 Rumor Detection. Given a tweet mi =
{
Gi,Pi,Ui,Ci

}
within

an observation window to, our rumor detection goal is to learn a function f from
labeled claims, i.e., f(ŷi|Gi,Pi,Ui,Ci; to), where the predicted result ŷi takes one of
the four finer-grained classes: non-rumor, false rumor, true rumor, and unverified
rumor (as introduced in [84]).

7.2.3 Methodology

In this section, we first introduce the preliminaries and basic notations, and then
formalize the problem studied in this paper. Subsequently, we present the details of
the proposed UMLARD framework.

As illustrated in Figure 7.11, UMLARD consists of three main components: (1)
Representation learning layer that simultaneously extracts user-aspect features from
the profile-view, structural-view, and temporal-view, while embedding the source
tweet content into low-dimensional space; (2) Hierarchical fusion layer that fuses
the learned representation at both view-level and user-level; and (3) Rumor detection
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7. PARTICIPANT-LEVEL RUMOR DETECTION BASED ON INFORMATION
DIFFUSION ANALYSIS

layer that makes use of a fully connected layer to predict the labels of tweets, based
on the learned user-aspect knowledge and tweet content.
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xu<latexit sha1_base64="QvCvyU0ZhYy6SjPl/vBLZrF67sE=">AAAB83icbVC7SgNBFJ2NrxhfUUtBRoNgFXZjoWXAxsIignlANoTZyWwyZHZ2mbkjWZb8ho2FIrb+iKWdv+BXOHkUmnjgwuGce7n3niARXIPrfjm5ldW19Y38ZmFre2d3r7h/0NCxUZTVaSxi1QqIZoJLVgcOgrUSxUgUCNYMhtcTv/nAlOaxvIc0YZ2I9CUPOSVgJd8HNoIgzEbjrukWS27ZnQIvE29OStUT/zjtf3zXusVPvxdTEzEJVBCt256bQCcjCjgVbFzwjWYJoUPSZ21LJYmY7mTTm8f4zCo9HMbKlgQ8VX9PZCTSOo0C2xkRGOhFbyL+57UNhFedjMvEAJN0tig0AkOMJwHgHleMgkgtIVRxeyumA6IIBRtTwYbgLb68TBqVsndRrtzZNG7RDHl0hE7ROfLQJaqiG1RDdURRgh7RM3pxjPPkvDpvs9acM585RH/gvP8AWT2VmA==</latexit>

hu�1
<latexit sha1_base64="SZIndp2yoLGjoQ4Ivb0zqZvKW4A=">AAAB+XicbVDJSgNBEO2JW4zbqDdzaQyCCIaZeNBjwIsHDwmYBZJh6On0JE16FrprgmGcP/HiQRFv4p9406+xsxw08UHB470qqup5seAKLOvLyK2srq1v5DcLW9s7u3vm/kFTRYmkrEEjEcm2RxQTPGQN4CBYO5aMBJ5gLW94PfFbIyYVj8I7GMfMCUg/5D6nBLTkmmYX2D14fjrI3DQ5tzPXLFllawq8TOw5KVXP3h+K3/Wjmmt+dnsRTQIWAhVEqY5txeCkRAKngmWFbqJYTOiQ9FlH05AETDnp9PIMn2ilh/1I6goBT9XfEykJlBoHnu4MCAzUojcR//M6CfhXTsrDOAEW0tkiPxEYIjyJAfe4ZBTEWBNCJde3YjogklDQYRV0CPbiy8ukWSnbF+VKXadxi2bIoyI6RqfIRpeoim5QDTUQRSP0iJ7Ri5EaT8ar8TZrzRnzmUP0B8bHD8xTlr8=</latexit>

fu
<latexit sha1_base64="Hu1SsfwuLKWxQP3qEilsQ53yslU=">AAAB83icbVC7SgNBFJ31GeMrainIaBCswm4stAzYWFhEMA/ILmF2MpsMmZ1dZu6Iy5LfsLFQxNYfsbTzF/wKJ49CEw9cOJxzL/feE6aCa3DdL2dpeWV1bb2wUdzc2t7ZLe3tN3ViFGUNmohEtUOimeCSNYCDYO1UMRKHgrXC4dXYb90zpXki7yBLWRCTvuQRpwSs5PvAHiCM8mjUNd1S2a24E+BF4s1IuXbsH2X9j+96t/Tp9xJqYiaBCqJ1x3NTCHKigFPBRkXfaJYSOiR91rFUkpjpIJ/cPMKnVunhKFG2JOCJ+nsiJ7HWWRzazpjAQM97Y/E/r2MgugxyLlMDTNLposgIDAkeB4B7XDEKIrOEUMXtrZgOiCIUbExFG4I3//IiaVYr3nmlemvTuEFTFNAhOkFnyEMXqIauUR01EEUpekTP6MUxzpPz6rxNW5ec2cwB+gPn/Qc9v5WG</latexit>

hu�1
<latexit sha1_base64="SZIndp2yoLGjoQ4Ivb0zqZvKW4A=">AAAB+XicbVDJSgNBEO2JW4zbqDdzaQyCCIaZeNBjwIsHDwmYBZJh6On0JE16FrprgmGcP/HiQRFv4p9406+xsxw08UHB470qqup5seAKLOvLyK2srq1v5DcLW9s7u3vm/kFTRYmkrEEjEcm2RxQTPGQN4CBYO5aMBJ5gLW94PfFbIyYVj8I7GMfMCUg/5D6nBLTkmmYX2D14fjrI3DQ5tzPXLFllawq8TOw5KVXP3h+K3/Wjmmt+dnsRTQIWAhVEqY5txeCkRAKngmWFbqJYTOiQ9FlH05AETDnp9PIMn2ilh/1I6goBT9XfEykJlBoHnu4MCAzUojcR//M6CfhXTsrDOAEW0tkiPxEYIjyJAfe4ZBTEWBNCJde3YjogklDQYRV0CPbiy8ukWSnbF+VKXadxi2bIoyI6RqfIRpeoim5QDTUQRSP0iJ7Ri5EaT8ar8TZrzRnzmUP0B8bHD8xTlr8=</latexit>

xu<latexit sha1_base64="QvCvyU0ZhYy6SjPl/vBLZrF67sE=">AAAB83icbVC7SgNBFJ2NrxhfUUtBRoNgFXZjoWXAxsIignlANoTZyWwyZHZ2mbkjWZb8ho2FIrb+iKWdv+BXOHkUmnjgwuGce7n3niARXIPrfjm5ldW19Y38ZmFre2d3r7h/0NCxUZTVaSxi1QqIZoJLVgcOgrUSxUgUCNYMhtcTv/nAlOaxvIc0YZ2I9CUPOSVgJd8HNoIgzEbjrukWS27ZnQIvE29OStUT/zjtf3zXusVPvxdTEzEJVBCt256bQCcjCjgVbFzwjWYJoUPSZ21LJYmY7mTTm8f4zCo9HMbKlgQ8VX9PZCTSOo0C2xkRGOhFbyL+57UNhFedjMvEAJN0tig0AkOMJwHgHleMgkgtIVRxeyumA6IIBRtTwYbgLb68TBqVsndRrtzZNG7RDHl0hE7ROfLQJaqiG1RDdURRgh7RM3pxjPPkvDpvs9acM585RH/gvP8AWT2VmA==</latexit>

cu<latexit sha1_base64="XbRPQGBbhepgbyrYMZGMV7DHYf0=">AAAB83icbVC7SgNBFJ31GeMrainIaBCswm4stAzYWFhEMA/ILmF2MpsMmZ1dZu6Iy5LfsLFQxNYfsbTzF/wKJ49CEw9cOJxzL/feE6aCa3DdL2dpeWV1bb2wUdzc2t7ZLe3tN3ViFGUNmohEtUOimeCSNYCDYO1UMRKHgrXC4dXYb90zpXki7yBLWRCTvuQRpwSs5PvAHiCMcjrqmm6p7FbcCfAi8WakXDv2j7L+x3e9W/r0ewk1MZNABdG647kpBDlRwKlgo6JvNEsJHZI+61gqScx0kE9uHuFTq/RwlChbEvBE/T2Rk1jrLA5tZ0xgoOe9sfif1zEQXQY5l6kBJul0UWQEhgSPA8A9rhgFkVlCqOL2VkwHRBEKNqaiDcGbf3mRNKsV77xSvbVp3KApCugQnaAz5KELVEPXqI4aiKIUPaJn9OIY58l5dd6mrUvObOYA/YHz/gM5KpWD</latexit>

ou<latexit sha1_base64="bp4X+DcUOb+iF8KuSOzVIBk69Pg=">AAAB83icbVC7SgNBFJ31GeMrainIaBCswm4stAzYWFhEMA/ILmF2MpsMmd1ZZu6Iy5LfsLFQxNYfsbTzF/wKJ49CEw9cOJxzL/feE6aCa3DdL2dpeWV1bb2wUdzc2t7ZLe3tN7U0irIGlUKqdkg0EzxhDeAgWDtVjMShYK1weDX2W/dMaS6TO8hSFsSkn/CIUwJW8n1gDxBGuRx1TbdUdivuBHiReDNSrh37R1n/47veLX36PUlNzBKggmjd8dwUgpwo4FSwUdE3mqWEDkmfdSxNSMx0kE9uHuFTq/RwJJWtBPBE/T2Rk1jrLA5tZ0xgoOe9sfif1zEQXQY5T1IDLKHTRZERGCQeB4B7XDEKIrOEUMXtrZgOiCIUbExFG4I3//IiaVYr3nmlemvTuEFTFNAhOkFnyEMXqIauUR01EEUpekTP6MUxzpPz6rxNW5ec2cwB+gPn/QdLfpWP</latexit>

xu<latexit sha1_base64="QvCvyU0ZhYy6SjPl/vBLZrF67sE=">AAAB83icbVC7SgNBFJ2NrxhfUUtBRoNgFXZjoWXAxsIignlANoTZyWwyZHZ2mbkjWZb8ho2FIrb+iKWdv+BXOHkUmnjgwuGce7n3niARXIPrfjm5ldW19Y38ZmFre2d3r7h/0NCxUZTVaSxi1QqIZoJLVgcOgrUSxUgUCNYMhtcTv/nAlOaxvIc0YZ2I9CUPOSVgJd8HNoIgzEbjrukWS27ZnQIvE29OStUT/zjtf3zXusVPvxdTEzEJVBCt256bQCcjCjgVbFzwjWYJoUPSZ21LJYmY7mTTm8f4zCo9HMbKlgQ8VX9PZCTSOo0C2xkRGOhFbyL+57UNhFedjMvEAJN0tig0AkOMJwHgHleMgkgtIVRxeyumA6IIBRtTwYbgLb68TBqVsndRrtzZNG7RDHl0hE7ROfLQJaqiG1RDdURRgh7RM3pxjPPkvDpvs9acM585RH/gvP8AWT2VmA==</latexit>

hu�1
<latexit sha1_base64="SZIndp2yoLGjoQ4Ivb0zqZvKW4A=">AAAB+XicbVDJSgNBEO2JW4zbqDdzaQyCCIaZeNBjwIsHDwmYBZJh6On0JE16FrprgmGcP/HiQRFv4p9406+xsxw08UHB470qqup5seAKLOvLyK2srq1v5DcLW9s7u3vm/kFTRYmkrEEjEcm2RxQTPGQN4CBYO5aMBJ5gLW94PfFbIyYVj8I7GMfMCUg/5D6nBLTkmmYX2D14fjrI3DQ5tzPXLFllawq8TOw5KVXP3h+K3/Wjmmt+dnsRTQIWAhVEqY5txeCkRAKngmWFbqJYTOiQ9FlH05AETDnp9PIMn2ilh/1I6goBT9XfEykJlBoHnu4MCAzUojcR//M6CfhXTsrDOAEW0tkiPxEYIjyJAfe4ZBTEWBNCJde3YjogklDQYRV0CPbiy8ukWSnbF+VKXadxi2bIoyI6RqfIRpeoim5QDTUQRSP0iJ7Ri5EaT8ar8TZrzRnzmUP0B8bHD8xTlr8=</latexit> �tu

<latexit sha1_base64="IqwYoe2isS/3Rl4CncJPXloEXHo=">AAAB8nicbVC7SgNBFJ31GeMrainIaBCswm4stAxoYWERwTxgdwmzk9lkyOzMMnNXCEs+w8ZCEVu/xNLOX/ArnDwKTTxw4XDOvdx7T5QKbsB1v5yl5ZXVtfXCRnFza3tnt7S33zQq05Q1qBJKtyNimOCSNYCDYO1UM5JEgrWiwdXYbz0wbbiS9zBMWZiQnuQxpwSs5AfXTADJoZONOqWyW3EnwIvEm5Fy7Tg4GvY+vuud0mfQVTRLmAQqiDG+56YQ5kQDp4KNikFmWErogPSYb6kkCTNhPjl5hE+t0sWx0rYk4In6eyIniTHDJLKdCYG+mffG4n+en0F8GeZcphkwSaeL4kxgUHj8P+5yzSiIoSWEam5vxbRPNKFgUyraELz5lxdJs1rxzivVO5vGLZqigA7RCTpDHrpANXSD6qiBKFLoET2jFwecJ+fVeZu2LjmzmQP0B877DzBelOc=</latexit>

Attention

FC+Softmax

Source tweet

Content  representation

HText
i<latexit sha1_base64="EHwfuI5rIRtTxkNyLKe8oo5ObQo=">AAACBXicbVC7TsMwFHXKq5RXgBGGiAqJqUoKEowVLB2L1JfUhspxndaq40T2DaKKsrDwKywMIMTKP7DxN7hpBmg5kuXjc+7V9T1exJkC2/42Ciura+sbxc3S1vbO7p65f9BWYSwJbZGQh7LrYUU5E7QFDDjtRpLiwOO0401uZn7nnkrFQtGEaUTdAI8E8xnBoKWBedwH+gCen9TTAbtLsheDpKmvNB2YZbtiZ7CWiZOTMsrRGJhf/WFI4oAKIBwr1XPsCNwES2CE07TUjxWNMJngEe1pKnBAlZtkW6TWqVaGlh9KfQRYmfq7I8GBUtPA05UBhrFa9Gbif14vBv/KTZiIYqCCzAf5MbcgtGaRWEMmKQE+1QQTyfRfLTLGEhPQwZV0CM7iysukXa0455Xq7UW5dp3HUURH6ASdIQddohqqowZqIYIe0TN6RW/Gk/FivBsf89KCkfccoj8wPn8AMtSZqQ==</latexit>

Concat

V
0
i<latexit sha1_base64="Qy9eQ5eHcz9b1eH7s/vG5ZRbV0o=">AAAB+XicbVBNS8NAEN34WetX1KOXxSJ6KkkV9Fj04rGC/YA2hs120y7dbMLupFhC/okXD4p49Z9489+4bXPQ1gcDj/dmmJkXJIJrcJxva2V1bX1js7RV3t7Z3du3Dw5bOk4VZU0ai1h1AqKZ4JI1gYNgnUQxEgWCtYPR7dRvj5nSPJYPMEmYF5GB5CGnBIzk23YP2BMEYdbKff6YneW+XXGqzgx4mbgFqaACDd/+6vVjmkZMAhVE667rJOBlRAGnguXlXqpZQuiIDFjXUEkipr1sdnmOT43Sx2GsTEnAM/X3REYirSdRYDojAkO96E3F/7xuCuG1l3GZpMAknS8KU4EhxtMYcJ8rRkFMDCFUcXMrpkOiCAUTVtmE4C6+vExatap7Ua3dX1bqN0UcJXSMTtA5ctEVqqM71EBNRNEYPaNX9GZl1ov1bn3MW1esYuYI/YH1+QPaBpPL</latexit>HStru

i<latexit sha1_base64="14bcXIQ67fiIXFovq46hiyJVtmo=">AAACBXicbVC7TsMwFHXKq5RXgBGGiAqJqUoKEowVLB2LoA+pDZHjOq1Vx4nsG0QVZWHhV1gYQIiVf2Djb3DbDNBypCsdn3OvfO/xY84U2Pa3UVhaXlldK66XNja3tnfM3b2WihJJaJNEPJIdHyvKmaBNYMBpJ5YUhz6nbX90NfHb91QqFolbGMfUDfFAsIARDFryzMMe0Afwg7Seeewunb4YpDcgkyzzzLJdsaewFomTkzLK0fDMr14/IklIBRCOleo6dgxuiiUwwmlW6iWKxpiM8IB2NRU4pMpNp1dk1rFW+lYQSV0CrKn6eyLFoVLj0NedIYahmvcm4n9eN4Hgwk2ZiBOggsw+ChJuQWRNIrH6TFICfKwJJpLpXS0yxBIT0MGVdAjO/MmLpFWtOKeV6vVZuXaZx1FEB+gInSAHnaMaqqMGaiKCHtEzekVvxpPxYrwbH7PWgpHP7KM/MD5/AECfmbI=</latexit>

HTemp
i<latexit sha1_base64="3k386UF32TMZ2sZ6NMp5gwzqvK8=">AAACBXicbVC7SgNBFJ2Nrxhfq5ZaLAbBKuxGQcugTcoIeUESw+zkbjJk9sHMXTEs29j4KzYWitj6D3b+jZNNCk08cOHMOfcy9x43ElyhbX8buZXVtfWN/GZha3tnd8/cP2iqMJYMGiwUoWy7VIHgATSQo4B2JIH6roCWO76Z+q17kIqHQR0nEfR8Ogy4xxlFLfXN4y7CA7peUk37/C7JXhyTOvhRmvbNol2yM1jLxJmTIpmj1je/uoOQxT4EyARVquPYEfYSKpEzAWmhGyuIKBvTIXQ0DagPqpdkV6TWqVYGlhdKXQFamfp7IqG+UhPf1Z0+xZFa9Kbif14nRu+ql/AgihECNvvIi4WFoTWNxBpwCQzFRBPKJNe7WmxEJWWogyvoEJzFk5dJs1xyzkvl24ti5XoeR54ckRNyRhxySSqkSmqkQRh5JM/klbwZT8aL8W58zFpzxnzmkPyB8fkDG++Zmg==</latexit>

HUser
i<latexit sha1_base64="cIdamFuLYWU7tsOldUVp98X0BMo=">AAACBXicbVA9SwNBEN3zM8avqKUWh0GwCndR0DJokzKClwSSGPY2c8mSvQ9258RwXGPjX7GxUMTW/2Dnv3FzuUITHwy8fW+GnXluJLhCy/o2lpZXVtfWCxvFza3tnd3S3n5ThbFk4LBQhLLtUgWCB+AgRwHtSAL1XQEtd3w99Vv3IBUPg1ucRNDz6TDgHmcUtdQvHXURHtD1knra53dJ9uKYOApkmvZLZatiZTAXiZ2TMsnR6Je+uoOQxT4EyARVqmNbEfYSKpEzAWmxGyuIKBvTIXQ0DagPqpdkV6TmiVYGphdKXQGamfp7IqG+UhPf1Z0+xZGa96bif14nRu+yl/AgihECNvvIi4WJoTmNxBxwCQzFRBPKJNe7mmxEJWWogyvqEOz5kxdJs1qxzyrVm/Ny7SqPo0AOyTE5JTa5IDVSJw3iEEYeyTN5JW/Gk/FivBsfs9YlI585IH9gfP4AKbyZow==</latexit>

sin
<latexit sha1_base64="gyDDRMGPruvlWs5IoyG/mfJZsbo=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEInkpSBT0WvXisYD+gDWGz3bRLN5uwOxFryC/x4kERr/4Ub/4bt20O2vpg4PHeDDPzgkRwDY7zbZXW1jc2t8rblZ3dvf2qfXDY0XGqKGvTWMSqFxDNBJesDRwE6yWKkSgQrBtMbmZ+94EpzWN5D9OEeREZSR5ySsBIvl0dAHuEIMx07mdc5r5dc+rOHHiVuAWpoQIt3/4aDGOaRkwCFUTrvusk4GVEAaeC5ZVBqllC6ISMWN9QSSKmvWx+eI5PjTLEYaxMScBz9fdERiKtp1FgOiMCY73szcT/vH4K4ZVn/klSYJIuFoWpwBDjWQp4yBWjIKaGEKq4uRXTMVGEgsmqYkJwl19eJZ1G3T2vN+4uas3rIo4yOkYn6Ay56BI10S1qoTaiKEXP6BW9WU/Wi/VufSxaS1Yxc4T+wPr8Abjtk8c=</latexit>

HRumor
i<latexit sha1_base64="Ozvy4nn+z+qGPZyWXDG17Q7Cwpc=">AAACBnicbVDLSsNAFJ3UV62vqEsRgkVwVZIq6LLopssq9gFtDJPppB06k4SZG7GErNz4K25cKOLWb3Dn3zhts9DWAxfOnHMvc+/xY84U2Pa3UVhaXlldK66XNja3tnfM3b2WihJJaJNEPJIdHyvKWUibwIDTTiwpFj6nbX90NfHb91QqFoW3MI6pK/AgZAEjGLTkmYc9oA/gB2k989hdOn0xSG8SEcks88yyXbGnsBaJk5MyytHwzK9ePyKJoCEQjpXqOnYMboolMMJpVuolisaYjPCAdjUNsaDKTadnZNaxVvpWEEldIVhT9fdEioVSY+HrToFhqOa9ifif100guHBTFsYJ0JDMPgoSbkFkTTKx+kxSAnysCSaS6V0tMsQSE9DJlXQIzvzJi6RVrTinler1Wbl2mcdRRAfoCJ0gB52jGqqjBmoigh7RM3pFb8aT8WK8Gx+z1oKRz+yjPzA+fwANsZoj</latexit>

Gi
<latexit sha1_base64="OBeHGUbhgcMPk9H7MrZd2pezA6s=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiBz1WMG2hDWWznbZLN5uwuxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjpo5TxdBnsYhVO6QaBZfoG24EthOFNAoFtsLx7cxvPaHSPJaPZpJgENGh5APOqLGSf9fL+LRXrrhVdw6ySrycVCBHo1f+6vZjlkYoDRNU647nJibIqDKcCZyWuqnGhLIxHWLHUkkj1EE2P3ZKzqzSJ4NY2ZKGzNXfExmNtJ5Eoe2MqBnpZW8m/ud1UjO4DjIuk9SgZItFg1QQE5PZ56TPFTIjJpZQpri9lbARVZQZm0/JhuAtv7xKmrWqd1GtPVxW6jd5HEU4gVM4Bw+uoA730AAfGHB4hld4c6Tz4rw7H4vWgpPPHMMfOJ8/26SOtw==</latexit>

Pi
<latexit sha1_base64="VgQMkxfIyhmoVwfwHMOT6kgfXrM=">AAAB+HicbVDLSsNAFL3xWeujUZduBovgqiRV0GXRjcsK9gFtCJPppB06mYSZiVBDvsSNC0Xc+inu/BsnbRbaemDgcM693DMnSDhT2nG+rbX1jc2t7cpOdXdv/6BmHx51VZxKQjsk5rHsB1hRzgTtaKY57SeS4ijgtBdMbwu/90ilYrF40LOEehEeCxYygrWRfLs2jLCeEMyzdu5nLPftutNw5kCrxC1JHUq0fftrOIpJGlGhCcdKDVwn0V6GpWaE07w6TBVNMJniMR0YKnBElZfNg+fozCgjFMbSPKHRXP29keFIqVkUmMkiplr2CvE/b5Dq8NrLmEhSTQVZHApTjnSMihbQiElKNJ8ZgolkJisiEywx0aarqinBXf7yKuk2G+5Fo3l/WW/dlHVU4ARO4RxcuIIW3EEbOkAghWd4hTfryXqx3q2PxeiaVe4cwx9Ynz9PuJOD</latexit>Ui

<latexit sha1_base64="TxldeID61aX5PTQrtJAKtkG/kCs=">AAAB9XicbVDLSgNBEJyNrxhfUY9eBoPgKexGQY9BLx4jmAcka5id9CZDZh/M9Kph2f/w4kERr/6LN//GSbIHTSxoKKq66e7yYik02va3VVhZXVvfKG6WtrZ3dvfK+wctHSWKQ5NHMlIdj2mQIoQmCpTQiRWwwJPQ9sbXU7/9AEqLKLzDSQxuwIah8AVnaKT7HsITen7azPqpyPrlil21Z6DLxMlJheRo9MtfvUHEkwBC5JJp3XXsGN2UKRRcQlbqJRpixsdsCF1DQxaAdtPZ1Rk9McqA+pEyFSKdqb8nUhZoPQk80xkwHOlFbyr+53UT9C/dVIRxghDy+SI/kRQjOo2ADoQCjnJiCONKmFspHzHFOJqgSiYEZ/HlZdKqVZ2zau32vFK/yuMokiNyTE6JQy5IndyQBmkSThR5Jq/kzXq0Xqx362PeWrDymUPyB9bnD0FgkwA=</latexit>

Ci
<latexit sha1_base64="spZ1iMaw8TYUwLAS7LhCN4bEMUI=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBA8hd0o6DGYi8cI5gHJGmYnvcmQ2QczvWpY9j+8eFDEq//izb9xkuxBEwsaiqpuuru8WAqNtv1trayurW9sFraK2zu7e/ulg8OWjhLFockjGamOxzRIEUITBUroxApY4Eloe+P61G8/gNIiCu9wEoMbsGEofMEZGum+h/CEnp/Ws34qsn6pbFfsGegycXJSJjka/dJXbxDxJIAQuWRadx07RjdlCgWXkBV7iYaY8TEbQtfQkAWg3XR2dUZPjTKgfqRMhUhn6u+JlAVaTwLPdAYMR3rRm4r/ed0E/Ss3FWGcIIR8vshPJMWITiOgA6GAo5wYwrgS5lbKR0wxjiaoognBWXx5mbSqFee8Ur29KNeu8zgK5JickDPikEtSIzekQZqEE0WeySt5sx6tF+vd+pi3rlj5zBH5A+vzByW+ku4=</latexit>

(a) User-aspect multi-view learning 

(b) View-wise attention and capsule attention (c) Prediction

Figure 7.11: An overview of UMLARD. (a) The inputs of UMLARD are the ob-
served diffusion network, the diffusion path, the user characteristic matrix, and the
content of the source tweet. It uses a dimensional-wise attention layer, a multi-layer
diffusion graph convolutional network (M-DGCN), and a time-decay LSTM to learn
the latent representations from the three kinds of inputs, respectively. (b) It learns to
discriminate the role of three-views and the importance of users in identifying misinfor-
mation. (c) Finally, we concatenate the learned features with text content to perform
classification.

7.2.3.1 Learning the User Profile-View

User profiles have been demonstrated to be strong indicators when detecting ru-
mors [26, 83]. The user profile characteristics are either explicit (e.g., username
and geolocations) or implicit (e.g., gender and age). However, accessing the implicit
features may not always be feasible due to the privacy concerns of many OSNs.
Therefore, we consider the following eight explicit features, grouped in two major
categories, which can be typically accessed in most OSNs:

• Profile-Related features include five basic user description fields: the screen
name that the user identify herself; the user’s self description; the attribute
indicating whether the account has been verified by the platform; the geo-
graphical location of the user; and the UTC time that the user account was
created on the social platform.

• Influence-Related features include three attributes describing user activi-
ties and social relations: the number of posts issued by the user, the number
of followers, and the mutual follower-ship.

For each user uj in a tweet mi, we concatenate the profile characteristics into one
feature vector, and then form the user characteristic matrix Ui ∈ R|Ui|×duser by
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concatenating all user vectors for the users involved in spreading the tweet.

To provide explanations on which characteristics are useful for rumor detection, we
design a dimensional-wise attention layer to assign weights to each dimension of user
profiles. Its aim is to learn how to discriminate the importance of different char-
acteristics. First, we expand Ui as a sequence of 1-dimensional “channels” for the
features, i.e., Ui ∈ R|Ui|×1×duser , where |Ui|, 1 and duser can be regarded as the height,
width and channel of an image (similarly to the channels for each of the primitive
colors – red, green and blue – in image processing). Then, we use a global average
pooling (GAP) to aggregate the global information into a dimensionality-wise de-
scriptor z ∈ Rduser , where z = 1

|Ui|×1

∑|Ui|,1
h=1,w=1 Ui(h,w). To capture the dimensional-

wise dependencies, we employ two fully connected layers with non-linearity – i.e.,
dimensionality-reduction layer and dimensionality-increasing layer:

fred = tanh(W1z + b1),

finc = softmax(W2fred + b2),
(7.14)

where W1 ∈ R duser
r
×duser and W2 ∈ Rduser× duserr are parameter matrices, b1 ∈ R duser

r

and b2 ∈ Rduser are biases, and r is the reduction ratio. Thus, the final output of
the user profile-view becomes:

HUser
i = Uifinc + Ui, (7.15)

where HUser
i ∈ R|Ui|×duser , finc denotes the attention score allocating different im-

portance to each dimension of Ui through the multiplication operation, i.e., Uifinc.
The operation of plus Ui is borrowed from the idea of skip connections [66].

The objective of dimensional-wise attention layer is to obtain a new user character-
istic matrix through correlation training between the user profile’s different charac-
teristics by assigning different dimensions of the matrix with the different weights
during training the model. In general, the contributing characteristics would be
strengthened. Since the trivial characteristics should be weakened, we can also
reduce the noise brought by non-critical characteristics, thereby improving the ac-
curacy of the detection task. This effect is especially valuable for early-stage rumor
detection. For example, when the number of participating users and the correspond-
ing profiles are limited, it is particularly important to encourage the fundamental
characteristics to explain rumor identification decisions. We will provide visual ex-
planations in Sec. 7.2.4.

7.2.3.2 Learning the User Structural-View

The structural information of users who participate in spreading a tweet is extracted
from the diffusion graph, which aims to capture the degree of connection, similarity,
distance, and even community, etc., between users [99]. Inspired by the recent suc-
cesses of network representation learning methods in processing graph-structured

133



7. PARTICIPANT-LEVEL RUMOR DETECTION BASED ON INFORMATION
DIFFUSION ANALYSIS

data [41, 61, 115, 173], we define a multi-layer diffusion graph convolutional net-
work (M-DGCN) as user structural-view encoder, in which the propagation rule of
diffusion convolutional network is defined as:

H(l+1) = σ((θO(D−1
O A) + θI(D−1

I AT ))H(l)), (7.16)

where θO and θI are filter parameters; D−1
O A and D−1

I AT are transition matrices
of the forward diffusion process and the reverse one, respectively – DO and DI

represent out-degree diagonal matrix and in-degree diagonal matrix, respectively;
σ(·) denotes activation function, i.e., ReLU(·) here; H(l) ∈ R|U |×F is the matrix of
activation in the l-th layer – |U | is the number of users in the diffusion graph and F
is the dimension of the output. The difference between our M-DGCN and previous
graph convolutional network [41, 61] is that the Chebyshev kernel in M-DGCN is
equal to 1, whereas we stack a couple of such layers to aggregate the information
from the distant nodes rather than the K-localized convolutions. In this layer, the
initial input H(0) is obtained from a pre-trained network embedding layer which
maps a user uj to it’s D-dimensional representation gj ∈ RD, which allows the
varying-size diffusion networks learning.

In order to reduce over-fitting for diffusion convolutional network, we employed a
recently developed technique DropEdge (cf. [165]) for robust structural-view learn-
ing. That is, we randomly drop edges from the input diffusion graphs to generate
different copies with a certain ratio in each training epoch. More specifically, sup-
pose the total number of edges in the diffusion graph is |E| and the dropping rate
is rdrop. The adjacency matrix after dropout is computed as Â = A−Adrop, where
Adrop is the matrix constructed using |E| × rdrop edges randomly sampled from the
original edge set E. After the diffusion convolutional layer, the diffusion graph Gi

is represented as a vector matrix HStru
i ∈ R|Ui|×dstru .

The structural-view HStru
i learned through M-DGCN represents the role of a node

(i.e., a user) in the information spreading. M-DGCN not only models the prop-
agation direction of information between spreaders but also aggregates high-order
structural details, including the cascade virality, spreading patterns, etc., which may
facilitate the rumor identification. We note that in [84] it has been demonstrated
that the rumors have similar propagation patterns.

7.2.3.3 Learning the User Temporal-View

Users’ engagement time and the sequential patterns of retweets also play an essential
role in detecting rumors [33, 100]. We capture this view of users based on the
diffusion path. Each user in the diffusion path would be assigned two types of
embeddings: a static-embedding and a dynamic-embedding.

• Static-embedding refers to the relative position j (1 ≤ j ≤ |Ui|) for each
user uj in the sequence. We encode this information based on the chronological

134



7.2 UMLARD: Multi-view Learning with Distinguishable Feature Fusion for
Rumor Detection

order of retweet times, and the users with the same retweet time will have the
same position embedding. Inspired by the self-attention [131], we obtain the
static-embedding esj using a positional-encoding technique based on sine and
cosine functions of frequencies:

PE(j)2d = sin(j/100002d/de),

PE(j)2d+1 = cos(j/100002d/de)
(7.17)

where de is an adjustable dimension and 1 ≤ d ≤ de/2 denotes the dimension
index in esj . The basic idea of this choice is to allow the model attending the
relative position of the users. For details of this formula, refer to [131].

• Dynamic-embedding initializes user representations as one-hot vector q ∈
RN , where N denotes the total number of users in the dataset. All users
are associated with a specific embedding matrix E ∈ RN×de , where de is an
adjustable dimension. Matrix E converts each user uj into a unique represen-
tation vector as edj = qE, edj ∈ Rde . In this way, the user embedding matrix E
can be learned during training, supervised by the downstream task, i.e., rumor
detection in this work.

Subsequently, we use an RNN model (e.g., LSTM [40]) to learn the temporal de-
pendence of the diffusion. However, the influence of retweet users will diminish
over time, and the “vanilla LSTM” is not capable of capturing this time-decay effect
of information diffusion. To address this issue, we introduce a time-gate inspired
by [174] into the LSTM.

The time-gate not only controls the influence of xj – the combination of static
and dynamic embeddings – on the current step, but also caches the time interval
between consecutive retweets to model the time-decay effect. Specifically, a time-
decay LSTM unit takes: xj, previous hidden state hj−1, and time interval ∆tj as
inputs – and outputs the current hidden state hj using:

xj = esj + edj ,

ij = σ (Wxixj + Uhihj−1 + bi) ,

fj = σ (Wxfxj + Uhfhj−1 + bf ) ,

Tj = σ (WxTxj + tanh (Wtt∆tj) + bT ) ,

oj = σ (Wxoxj + Uhohj−1 + Wto∆tj + bo) ,

c̃j = tanh (Wxzxj + Uhzhj−1 + bz) ,

(7.18)

where σ (·) is the sigmoid function; ij, fj,Tj,oj, c̃j,b∗ are the input gate, forget
gate, time gate, output gate, new candidate vector and bias vector, respectively.
The matrices Wx∗ ∈ Rde×dtemp , Wt∗ ∈ R1×dtemp and Uh∗ ∈ Rdh×dtemp represent the
different gate parameters. In particular, the memory cell cj is updated by replacing
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the existing memory unit with a new cell cj as:

cj = fj � cj−1 + ij �Tj � c̃j, (7.19)

where � denotes the element-wise multiplication. The hidden state is then updated
by:

hj = oj � tanh (cj) , (7.20)

Finally, the representation vector for the temporal-view isHTemp
i =

{
hTemp
j |j ∈ [1, |Ui|]

}
,

where HTemp
i ∈ R|Ui|×dtemp . Note that the temporal-view of the user obtained by the

time-decay LSTM reflects each user’s influence on the subsequent participators in
the message diffusion.

7.2.3.4 View-Wise Attention for View-Level Feature Fusion
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<latexit sha1_base64="YANXWUk+Qg+Fwc+HbzqNKSbPF9I=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxWME84BkCbOzs8mQ2YczvYGw7Hd48aCIVz/Gm3/jJNmDJhY0FFXdM93lJVJotO1va219Y3Nru7RT3t3bPzisHB23dZwqxlsslrHqelRzKSLeQoGSdxPFaehJ3vHGdzO/M+FKizh6xGnC3ZAOIxEIRtFIrj/I+gKzVHOV54NK1a7Zc5BV4hSkCgWag8pX349ZGvIImaRa9xw7QTejCgWTPC/3zbsJZWM65D1DIxpy7WbzpXNybhSfBLEyFSGZq78nMhpqPQ090xlSHOllbyb+5/VSDG7cTERJijxii4+CVBKMySwB4gvFGcqpIZQpYXYlbEQVZWhyKpsQnOWTV0m7XnMua/WHq2rjtoijBKdwBhfgwDU04B6a0AIGT/AMr/BmTawX6936WLSuWcXMCfyB9fkDpWeSqw==</latexit>

dstru
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dtemp
<latexit sha1_base64="YLyvXXmSaI1RH/vz8xjXrDdSp/o=">AAAB9HicbVBNS8NAEN34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lM1m0y7d3cTdSaGE/A4vHhTx6o/x5r9x2+agrQ8GHu/NMDMvSAQ34Lrfztr6xubWdmmnvLu3f3BYOTpumzjVlLVoLGLdDYhhgivWAg6CdRPNiAwE6wTju5nfmTBteKweYZowX5Kh4hGnBKzkh4OszyEDJpM8H1Sqbs2dA68SryBVVKA5qHz1w5imkimgghjT89wE/Ixo4FSwvNxPDUsIHZMh61mqiGTGz+ZH5/jcKiGOYm1LAZ6rvycyIo2ZysB2SgIjs+zNxP+8XgrRjZ9xlaTAFF0silKBIcazBHDINaMgppYQqrm9FdMR0YSCzalsQ/CWX14l7XrNu6zVH66qjdsijhI6RWfoAnnoGjXQPWqiFqLoCT2jV/TmTJwX5935WLSuOcXMCfoD5/MHl5qSog==</latexit>
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<latexit sha1_base64="RZsGkQ5y+joTkEdHIKMQsWmhL7k=">AAAB+nicbVDLSsNAFJ34rPWV6tJNsAiuSlIFXRbduKxgH9CGMJnctEMnkzAzaS0xn+LGhSJu/RJ3/o3TNgttPTBwOOce7p3jJ4xKZdvfxtr6xubWdmmnvLu3f3BoVo7aMk4FgRaJWSy6PpbAKIeWoopBNxGAI59Bxx/dzvzOGISkMX9Q0wTcCA84DSnBSkueWQm8rK/gUUezMYVJnntm1a7Zc1irxClIFRVoeuZXP4hJGgFXhGEpe46dKDfDQlHCIC/3UwkJJiM8gJ6mHEcg3Wx+em6daSWwwljox5U1V38nMhxJOY18PRlhNZTL3kz8z+ulKrx2M8qTVAEni0VhyiwVW7MerIAKIIpNNcFEUH2rRYZYYKJ0W2VdgrP85VXSrteci1r9/rLauCnqKKETdIrOkYOuUAPdoSZqIYIm6Bm9ojfjyXgx3o2PxeiaUWSO0R8Ynz9y8JTF</latexit>
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<latexit sha1_base64="uQ9lQM8DYGxcHctho5O0ozj4hIM=">AAAB/HicbVBNS8NAEN34WeNXtEcvwSJ4KkkV9Fj04rGCaQttCJvtpl26+WB3Ugxp/CtePCji1R/izX/jts1BWx8MPN6bYWaen3AmwbK+tbX1jc2t7cqOvru3f3BoHB23ZZwKQh0S81h0fSwpZxF1gAGn3URQHPqcdvzx7czvTKiQLI4eIEuoG+JhxAJGMCjJM6p6H+gj+EE+Kbx86nhsWnhGzapbc5irxC5JDZVoecZXfxCTNKQREI6l7NlWAm6OBTDCaaH3U0kTTMZ4SHuKRjik0s3nxxfmmVIGZhALVRGYc/X3RI5DKbPQV50hhpFc9mbif14vheDazVmUpEAjslgUpNyE2JwlYQ6YoAR4pggmgqlbTTLCAhNQeekqBHv55VXSbtTti3rj/rLWvCnjqKATdIrOkY2uUBPdoRZyEEEZekav6E170l60d+1j0bqmlTNV9Afa5w9YkpU6</latexit>

View-wise Attention

Figure 7.12: Illustration of view-wise attention.

After obtaining the latent representation for each view, we need to fuse the multi-
view features. Rather than directly concatenating different aspects, as often done in
the existing solutions [91, 94, 175], we present a method to capture the differences
between different views. The primary motivation stems from the observation that
various views are not equally relevant in the task of rumor identification. Towards
that, we propose a view-wise attention layer to prioritize the fundamental views for
each user.

As depicted in Figure 7.12, the view-wise attention layer takes profile-view, structural-
view, and temporal-view as input and generates the attention score for each view at
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the user-level. Specifically, it first normalizes the dimensions of the three views’ vec-
tors as dview via a fully connected layer. Let Vi =

[
Ĥ

User
i , Ĥ

Stru
i , Ĥ

Temp
i

]
denote the

feature set after dimension normalization. Each vector vj =
[
ĥ

User
j , ĥ

Stru
j , ĥ

Temp
j

]
∈

Vi represents a view feature set for a specific user uj engaged in spreading tweet mi.
Then, the view-wise attention layer calculates the attention score attenj ∈ R1×3 for
each view of the user-level feature set vj ∈ Rdview×3 as:

v̄j = tanh (Wv · vj) , (7.21)

attenj = softmax
(
wT
v · v̄j

)
, (7.22)

where Wv ∈ Rdview×dview , wv ∈ Rdview are learnable projection parameters during
training, v̄j =

[
h̄User
j , h̄Stru

j , h̄Temp
j

]
. Here, the view-wise attention layer first com-

putes the hidden representation of vj through multiplying it with Wv to get v̄j,
which is implemented with a fully connected layer without bias. It measures the
weight of a view as the similarity of h̄∗j (∗ ∈ {User, Stru,Temp}) with a view-level
context vector wv and finally obtains a normalized weight through a softmax func-
tion. Each entry of attenj represents an importance score for a specific view of user
j.

Finally, the fused multi-view feature vector v′
j for user uj can be calculated as:

v
′

j = attenj · vj, (7.23)

where v′
j ∈ Rdview . The fused multi-view feature vector for each user forms the multi-

view matrix, denoted as V
′

i =
{
v′

1,v
′
2, · · · ,v

′

|Ui|

}
, where V

′

i ∈ R|Ui|×dview .

7.2.3.5 Capsule Attention for User-level Feature Fusion

Most of existing works [16, 100, 102] would directly use V
′

i for rumor detection.
However, that does not properly discriminate different users, contrary to the fact
that different users in a tweet propagation network may contribute differently to
classifying the tweet. In our UMLARD, we introduce a capsule attention layer
inspired by the recent success of capsule networks [133, 176, 177]. The Capsule
network was first proposed in [133] and the main idea is to replace the scalar-
output feature detectors in traditional neural networks with vector-output capsules,
and train the model by the dynamic routing algorithm. It can be regarded as
a parallel attention mechanism that allows each underlying capsule to attend to
higher capsules at different importance.

In UMLARD, the capsule attention chooses the most related underlying vectors dy-
namically to form the only upper capsule via an unsupervised routing-by-agreement
mechanism, which also avoids the intensive computation raised by a huge amount
of parameters used in multi-layer attention. More precisely, in the n-th iteration,
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the upper capsule sin is calculated by:

sin =

|Ui|∑

j

ajv̂j, v̂j = Wv
′

j, (7.24)

where the coupling coefficient aj indicates the contributions of a user capsule to the
upper capsule – namely, the attention score of each user. W ∈ Rdview×dcaps is the
transform matrix that guarantees the feature representation ability of the center
vector after clustering, and identifies the order of input features. Note that before
the last iteration we add a normalization s̃in = sin/ ‖sin‖ in sin to overcome the
information loss caused by the original CapsAtt [176].

The coupling coefficient aj ∈ R|Ui|×1 is determined by a “routing softmax” whose
initial logit is denoted as bj, where bj is the log prior probability that the j-th user
capsule should be coupled to the upper capsule sin. The coefficient is calculated
by:

aj =
exp(bj)∑|Ui|
k exp(bk)

, (7.25)

The log prior is initialized with zero and then updated by adding agreements between
the user capsule and the upper capsule:

bj = bj + v̂j · s̃in, (7.26)

These agreements are added to log priors after each routing, i.e., the output capsule
sin represents the feature matrix after correlation learning, which can be easily
coupled into the model for downstream tasks, in our case the rumor detection.

7.2.3.6 Tweet Content Representation

Tweet content is one of the most important features in rumor detection [23, 29, 78],
and has been extensively studied in the literature [16, 33, 80, 102, 178], where vari-
ous natural language processing (NLP) techniques have been exploited for learning
informative signals from the textual content. Though content learning is beside the
scope of this thesis, we describe a simple CNN layer for text representation learning
from the input of word embedding matrix for completeness. A single CNN layer is
denoted as:

hm = σ(W ∗wm:m+d−1), (7.27)

where H = {h1,h2, · · · ,hL−d+1} is the extracted feature map, and W ∈ Rd×dword is
the convolutional kernel with d as size of the receptive filed, and σ as non-linearity.
Then max-pooling operation is used over the feature map to generate the output
representation Ĥ. In our work, we use multiple CNN layers with different receptive
fields to obtain multiple features, and then concatenate all outputs to form the tweet
content representation HText

i .
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7.2.3.7 Training Objective

Finally, we concatenate content representation HText
i and capsule attention sin to

merge the information as:

HRumor
i = concat(HText

i , sin) (7.28)

which is subsequently used for predicting the label ŷi of tweet mi via a fully con-
nected layer and the softmax function:

ŷi = softmax
(
FC
(
HRumor
i

))
. (7.29)

We train all the parameters by minimizing the cross-entropy of the predictions Ŷ
and the ground truth labels Y as:

L(Y, Ŷ) = −
∑

i∈|M |

yi log ŷi + λ ‖Θ‖2
2 , (7.30)

where ‖Θ‖2
2 is the L2 regularizer over all the model parameters Θ, and λ is the

trade-off coefficient. In this work, we use RAdam [140] as optimizer. The whole
training process of UMLARD is outlined in Algorithm 10.

Algorithm 10: Training of UMLARD.

Input: A set of tweets M =
{
mi

}|M |
i=1

, each tweet mi =
{
Gi,Pi,Ui,Ci

}
.

Output: Predicted labels Ŷ for all tweets.
1: repeat
2: for mi in a batch do
3: Profile-view learning: HUser

i ← Ui via Eq.(7.14) and Eq.(7.15);
Structural-view learning HStru

i ← Gi via Eq.(7.16);
Temporal-view Learning HTemp

i ← Pi via Eq.(7.18) - Eq.(7.20);
Content representation: HText

i ← Ci via Eq.(7.27);
4: Nomalize dimensions:

Vi = [Ĥ
User
i , Ĥ

Stru
i , Ĥ

Temp
i ]← [HUser

i ,HStru
i ,HTemp

i ];
5: View-wise attention learning: V

′

i ← Vi via Eq.(7.21) to Eq.(7.23);
6: Capsule attention learning: sin ← V

′

i via Eq.(7.24);
7: Merge HText

i and sin via Eq.(7.28);
8: Estimate the probability ŷi via Eq.(7.29);
9: Compute loss L(yi, ŷi), via Eq.(7.30);
10: Update parameters using RAdam.
11: end for
12: until convergence;

7.2.3.8 Computational Complexity

We finalize this section with a discussion of the computational complexity of UM-
LARD, analyzed in two categories.
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— Complexity of multi-view representation learning is influenced by four main com-
ponents:

(1) As for profile-view that only uses dimensional-wise attention to allocate varying
weights to each dimension, the computational complexity stems from the two fully
connected layers, i.e., O(2d2

user/r). Because the dimension of user characteristic duser

is very small, this computational cost is typically negligible.

(2) We use a multi-layer diffusion convolutional network for the structural-view
learning (cf. Eq.(7.16)), which can be decomposed into two parts with the same
time complexity, i.e., D−1

I A and D−1
O AT . Since the two matrices are very sparse,

the time complexity is O(|E|), i.e., linear with the number of edges. Specifically,
in a two-layer M-DGCN, the computational complexity is O(|E|DF1F2), where D,
F1 and F2 are the input feature size, and the hidden size for the first and the last
M-DGCN layer, respectively.

(3) The temporal-view is learned through a time-decay LSTM. The computational
complexity of original LSTM per time step is O(1) due to LSTM is local in space
and time [40]. Compared with LSTM, the only difference of our time-decay LSTM is
an extra time-gate that controls the influential decreasing with time. This operator
introduced extra parameters that requires 4(dedtemp + d2

temp + dtemp) + dedtemp +

3dtemp complexity. Besides, the dynamic embedding in UMLARD needs N × de
parameters.

(4) For the source tweet representation learning, the CNN layers have the time
complexity of O(

∑L
l=1(M2

l K
2
l Cl−1Cl)), where L is the total number of CNN layers;

Kl Cl−1, Cl are kernel size, input channel number and output channel number for
l-th layer; output size is Ml = (Xl−Kl)/Stride+ 1 and Xl is the input feature size.
Overall, this component requires

∑L
l=1(K2

l Cl−1Cl) parameters.

— Complexity of fusion layers. In the hierarchical fusion layers, the time and space
complexities of both view-wise attention and capsule attention are related to the
input and output dimensions of the latent variables. In view-wise attention, it
introduces dview× dview + |Ui| × dview parameters. As for the capsule attention layer,
the parameter size is dview × dcaps, where dview and dcaps represent view size and
capsule size, respectively.

7.2.4 Evaluation

We now present the findings from our experimental evaluations. We compare the
performance of our UMLARD with the state-of-art baselines on rumor detection,
and we also investigate the effects of different components by comparing several
variants of UMLARD.

Specifically, we would aim at providing quantitative characterization of the following
research-related questions:
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Table 7.11: Statistics of the datasets.

Statistic Twitter15 Twitter16 Weibo
# source tweets 1,482 809 4,664
# users 477,009 286,657 2,746,818
# non-rumors 370 199 2,351
# false-rumors 369 205 2,313
# true-rumors 372 207 –
# unverified-rumors 371 198 –
Max. # retweets 2989 3058 59,318
Min. # retweets 55 73 10
Avg. # retweets 398 422 816
Avg. # time length 1,268 Hours 828 Hours 1,811 Hours

• Q1: How does UMLARD perform on rumor detection compare with the state-
of-the-art baselines?

• Q2: What is the effect of each component of UMLARD?

• Q3: Can UMLARD detect rumors in early stages of their propagation?

• Q4: Can UMLARD explain the model behavior and the predicted results?

7.2.4.1 Experimental Settings

Following is the description of the main aspects of our experimental setup.

1) Datasets: We conduct our experiments on the three real-world datasets1: Twit-
ter15, Twitter16 [84] and Weibo [33]. In each dataset, a group of widespread source
tweets along with their propagation threads with time stamps are provided. We
construct propagation paths and diffusion networks from the propagation threads,
which are also used for user temporal-aspect embedding and user structural-aspect
embedding.

Different from the experiment settings in previous PLRD (Section 7.1), in this sec-
tion, we consider the two Twitter datasets as multi-class datasets, i.e., each source
tweet is annotated with one of the four class labels, i.e., non-rumor, false-rumor,
true-rumor, and unverified-rumor, while the Weibo dataset contains binary labels:
false-rumor, non-rumor – the labeling rules follow the method in [33]. The statis-
tics of the three datasets are shown in Table 7.11. We extract the same user char-
acteristics as PLRD for both Twitter and Weibo dataset, as shown in Table 7.2.
Specifically, as for the Weibo dataset, we directly extract these eight characteris-
tics from the JSON files in the original dataset. And the way to split the dataset
into training, validation, and testing set follows the same setting in PLRD (see
Section 7.1.4.2).

1https://www.dropbox.com/s/7ewzdrbelpmrnxu/rumdetect2017.zip?dl=0
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2) Baselines: We compare UMLARD with following state-of-the-art rumor detection
baseline models:

• DTC [23], SVM-TS [85],GRU [108], TD-RvNN [34], PPC_RNN+CNN
(PPC), Bi-GCN [16], GCAN [102], the description of these baseline meth-
ods can be found in Section 7.1.4.1. We also compared UMLARD with
PLRD [45] (Section 7.1).

• SVM-RBF [86]: A support vector machine (SVM) based model that uses ra-
dius basis function (RBF) as the kernel and leverages the handcrafted features
of posts for rumor detection.

• PLAN [179]: A hierarchical token- and post-level attention model for ru-
mor detection, which models pairwise interactions between tweets via the self-
attention mechanism.

• Bi-GCN-U [16]: A variant of Bi-GCN, which uses user profile characteristics
to replace the comment features.

• STS-NN [180]: A rumor detection model based on spatial-temporal neural
networks. It treats the spatial structure and temporal structures as a whole
to learn a fine-grained rumor representation.

• GCAN-G [102]: A variant of GCAN, which uses the diffusion graph to replace
the user similarity graph.

• RDEA [103]: A self-supervised rumor detection model. On the basis of Bi-
GCN [16], RDEA improves the rumor representations and alleviates limited
data issues through event augmentation and contrastive learning.

3) Implementation details: We implement DTC with Weka1, SVM-based models
with scikit-learn2, and other neural network-based models with Tensorflow3. All
baselines follow the parameter settings in the original papers. For UMLARD, the
learning rate is initialized at 0.001 and gradually decreases as the training proceeds.
We use word2vec to initialize the word embeddings with dword = 300 dimensions,
and the convolution kernel size is set to [3, 4, 5], and per size with 100 kernels. The
embedding size for structural view dstru and temporal view dtemp of users are both
set to 64; the view size dview is also set to 64, as is the the capsule size; and the
iteration number varies between 2 and 4. The batch size is 64; and the rate of
dropout in the main neural networks is 0.5; the dropout rate in DropEdge is 0.2.
The training process is iterated upon for 200 epochs, but would be stopped earlier
if the validation loss does not decrease after 10 epochs.

4) Evaluation metrics: We use accuracy (ACC) and F-measure (F1) as the eval-
uation protocols to measure the models’ performance. Specifically, ACC measures

1https://www.cs.waikato.ac.nz/ml/weka/
2https://scikit-learn.org/
3https://www.tensorflow.org/
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the proportion of correctly classified tweets, while F1 is the harmonic mean of the
precision and recall values averaged across four classes. As for the Weibo dataset,
we also report the precision and recall results.

Table 7.12: Overall performance comparison of rumor detection on Twitter15 (the
observation window is set to the previous 40 retweets). “UR": unverified-rumor; “NR":
non-rumor; “TR": true-rumor; “FR": false-rumor. The best method is shown in bold,
and the second best is shown as underlined. A paired t-test is performed and ∗ indicates
a statistical significance p < 0.05 compared to the best baseline method (RDEA).

Model
Twitter15

ACC. F1
UR NR TR FR

DTC 0.454 0.415 0.733 0.317 0.355
SVM-RBF 0.318 0.218 0.225 0.455 0.082
SVM-TS 0.544 0.483 0.796 0.404 0.472
GRU 0.646 0.608 0.592 0.792 0.574
TD-RvNN 0.723 0.654 0.682 0.821 0.758
PPC 0.697 0.689 0.760 0.696 0.645
PLAN 0.787 0.775 0.7754 0.768 0.807
Bi-GCN 0.829 0.752 0.772 0.885 0.847
Bi-GCN-U 0.778 0.764 0.741 0.853 0.752
GCAN 0.808 0.690 0.930 0.812 0.758
GCAN-G 0.750 0.731 0.754 0.823 0.678
STS-NN 0.808 0.779 0.786 0.860 0.808
RDEA 0.835 0.819 0.786 0.887 0.837
PLRD 0.622 0.519 0.832 0.438 0.596
UMLARD 0.857* 0.835* 0.840* 0.906* 0.848*

7.2.4.2 Overall Performance (Q1)
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Figure 7.13: ROC curve comparison for each information type. Area under curve of
ROC (AUC) is presented after the legend.

Table 7.12, Table 7.13, and Table 7.14 report the performance comparison among
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Table 7.13: Overall performance comparison of rumor detection on Twitter16 (the
observation window is set to the previous 40 retweets). “UR": unverified-rumor; “NR":
non-rumor; “TR": true-rumor; “FR": false-rumor. The best method is shown in bold,
and the second best is shown as underlined. A paired t-test is performed and ∗ indicates
a statistical significance p < 0.05 compared to the best baseline method (RDEA).

Model
Twitter16

ACC. F1
UR NR TR FR

DTC 0.465 0.403 0.643 0.419 0.393
SVM-RBF 0.321 0.419 0.037 0.423 0.085
SVM-TS 0.574 0.526 0.755 0.571 0.420
GRU 0.633 0.686 0.593 0.772 0.489
TD-RvNN 0.737 0.708 0.662 0.835 0.743
PPC 0.702 0.608 0.711 0.816 0.664
PLAN 0.799 0.779 0.754 0.836 0.821
Bi-GCN 0.837 0.818 0.772 0.885 0.847
Bi-GCN-U 0.786 0.733 0.783 0.875 0.767
GCAN 0.765 0.784 0.848 0.678 0.754
GCAN-G 0.721 0.642 0.690 0.799 0.732
STS-NN 0.829 0.838 0.775 0.899 0.809
RDEA 0.848 0.868 0.729 0.922 0.823
PLRD 0.646 0.618 0.698 0.609 0.445
UMLARD 0.901* 0.822* 0.965* 0.960* 0.855*

UMLARD and baselines on three datasets, from which we have the following obser-
vations:

O1: Feature-based approaches such as SVM-TS, SVM-RBF, and DTC perform
poorly. These methods use hand-crafted features based on the overall statistics of
tweets, but are not sufficient to capture the generalizable features associated with
tweets and the process of information diffusion. Notably, SVM-RBF performs worse
than the other two methods on two Twitter datasets. However, it achieves the best
performance among the feature-based modes on Weibo dataset, because it selects
the features based on Weibo that are hard to be generalized to other social platforms
such as Twitter. SVM-TS achieves relatively better performance because it utilizes
an extensive set of features and primarily focuses on retweets’ temporal traits.

O2: Deep learning-based models perform significantly better than feature-based
methods. As the first work exploiting RNN for efficient rumor detection, GRU only
relies on temporal-linguistics of the repost sequence while ignoring other useful infor-
mation such as diffusion structures and user profiles. TD-RvNN and PPC_RNN+CNN
outperform GRU, which indicates the effectiveness of modeling the propagation
structure and temporal information in rumor detection. The performance of PLAN
slightly exceeds TD-RvNN and PPC_RNN+CNN, because it still mainly focuses
on textual information and ignores structural features of rumor propagation.
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Table 7.14: Overall performance comparison of rumor detection on Weibo (the ob-
servation window is set to the previous 40 retweets). “NR": non-rumor; “FR": false-
rumor. The best method is shown in bold, and the second best is shown as underlined.
A paired t-test is performed and ∗∗ indicates a statistical significance p < 0.01 com-
pared to the best baseline method (RDEA).

Model
Weibo

ACC NR FR
Prec. Rec. F1 Prec. Rec. F1

DTC 0.731 0.715 0.747 0.730 0.747 0.715 0.731
SVM-RBF 0.741 0.738 0.747 0.742 0.745 0.735 0.740
SVM-TS 0.780 0.801 0.753 0.780 0.762 0.808 0.784
GRU 0.762 0.803 0.715 0.757 0.728 0.809 0.767
TD-RvNN 0.832 0.832 0.812 0.821 0.821 0.861 0.841
PPC 0.845 0.870 0.810 0.839 0.810 0.883 0.844
PLAN 0.857 0.829 0.904 0.857 0.893 0.805 0.835
Bi-GCN 0.891 0.892 0.892 0.890 0.891 0.891 0.890
Bi-GCN-U 0.864 0.896 0.818 0.860 0.830 0.910 0.868
GCAN 0.880 0.911 0.861 0.885 0.866 0.929 0.896
GCAN-G 0.831 0.815 0.824 0.819 0.847 0.815 0.831
STS-NN 0.875 0.881 0.866 0.865 0.851 0.872 0.852
RDEA 0.911 0.902 0.923 0.907 0.913 0.899 0.901
PLRD 0.899 0.936 0.863 0.900 0.862 0.946 0.904
UMLARD 0.928** 0.942** 0.965** 0.924** 0.894** 0.944** 0.928**

O3: Bi-GCN, GCAN, STN-SS, and RDEA have considered structural or temporal
information, and thus outperform other baselines. In particular, Bi-GCN constructs
the diffusion graph based on user replies, i.e., the retweets with comments, which
may not reflect the whole structure of rumor dispersion. In contrast, GCAN models
the structural information from the user similarity matrix rather than propagation
network. Therefore, according to the results, Bi-GCN performs much better than
GCAN, because it takes the comments information into consideration. Besides, the
bi-directional GCN is more effective in learning propagation structures than vanilla
GCN used in GCAN. Although STS-NN extracts both structural and temporal fea-
tures for rumor detection, STS-NN still performs worse than Bi-GCN, because it
fails to discriminate the spatial structures and the temporal patterns. RDEA im-
proves the performance of Bi-GCAN via introducing contrastive learning and event
augmentations, which alleviate the influence of limited data issue. However, this
method still faces the same problem as Bi-GCN, i.e., reply network is not enough to
represent the full information diffusion process. Through comparing UMLARD with
Bi-GCN-U and GCAN-G, we find that the performance of Bi-GCN-U and GCAN-G
drops significantly. This result indicates that these methods heavily depend on the
input features and are ineffective in extracting diffusion patterns as our method.
PLRD does not perform very well at Twitter15 and Twitter16 while showing com-
petitive results on the Weibo dataset, since the label of Twitter15 and Twitter16
becomes more fine-grained, and PLRD is not sensitive to the un-verified and true
rumors.
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O4: UMLARD consistently outperforms all other baselines across all datasets. Com-
pare to the best baseline RDEA, UMLARD models rumor diffusion from multi-view
perspective that allows the model to discriminate the importance of features and
users in spreading the tweets. These results also validate one of our primary moti-
vations, i.e., various features play different roles in spreading the rumors, and users
are the main contributor to the misinformation propagation.

Finally, we scrutinize the performance of UMLARD on discriminating against the
individual type of information on Twitter15 and Twitter16. Figure 7.13 plots the
ROC curves of the model performance on four different kinds of tweets. We find that
our model achieves the best identification results on true-rumors, which indicates
that the characteristics of true-rumors are more distinctive from other types of
messages. This result also implies that our model is more expressive on a binary
classification task that only needs to classify tweets as rumors or truths (cf. the
results on Weibo in Table 7.13). In practice, however, unverified-rumors and false-
rumors are noisy signals that require careful treatment, which is a promising way of
further improving the detection accuracy.

7.2.4.3 Ablation Experiments (Q2)

In this section, we conduct an ablation study to explore the effect of each component
in UMLARD. Towards that, we derive the following variants of UMLARD:

• -VA: In -VA, ignores the different importance of different views, i.e., it removes
the view-wise attention layer.

• -CA: In -CA, replaces the capsule attention layer with a fully connected layer.

• -TD: In -TD, neglects the time decay effect of retweet behaviors which is
replaced by a vanilla LSTM [40] to learn sequential retweet behavior.

• -NC: In -NC, removes the content feature of the source tweet but keeps the
temporal, profile, and structural features.

• -NP: In -NP, disregards the profile features of users but retains temporal,
structural, and content features.

• -NS: In -NS, ignores the structural features of users but keeps temporal, pro-
file, and content features.

• -NT: In -NT, ignores the temporal features of users but keep structural, profile,
and content features.

• -USER: In -USER, ignores the user-aspect features (i.e., temporal, structural,
and profile) that only retains the content feature.

Figure 7.14 illustrates the performance of the variants, where we can observe that:
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Figure 7.14: Ablation study of UMLARD. Two attention mechanisms can signifi-
cantly improve the detection performance by distinguishing the importance of features
and users. Tweet content and profile information are two most informative features
on rumor detection.

(1) The content of tweet (-NC and -USER) is still the most critical signal of dis-
criminating rumors among various features. Without it, the model performance
would significantly drop, as observed in many previous works [16, 102]. However,
only based on the content feature is insufficient to develop an effective rumor detec-
tion model that can identify different types of rumors with high accuracy.

(2) Profile information (-NP) is another reliable indicator to detect the rumors
because it is a straightforward but useful method to identify the users that spread
the misinformation intentionally [26, 83].
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(a) Structural view (b) Temporal view

Figure 7.15: Study on structural and temporal view. We only use structural or
temporal views to detect rumors in 10, 30, and 60 mins. The results demonstrate the
importance of both views in rumor detection.

(3) Though both structural (-NS) and temporal information (-NT) are informa-
tive, they are not as important as contents of tweets and user profiles. This result
also explains why the methods proposed in [100], and [16] do not show comparable
performance as ours – the former mainly focuses on modeling the temporal informa-
tion of retweets, whereas the latter one relies on graph neural networks to exploit
the diffusion structures. We also conduct additional experiments to demonstrate
the importance of structural and temporal features once the input contains enough
information, especially in a binary classification task (e.g., Weibo). The results are
shown in Figure 7.15. We find that as for Twitter datasets, the detection perfor-
mance based on structural features grows slightly but is still not good enough as the
type of rumors is fine-grained, making it challenging to learn discriminative struc-
tural features. As for the Weibo dataset, both structural and temporal features are
helpful for rumor detection even in a short time.

In order to demonstrate our findings in Figure 7.15, we conduct statistical analysis
of the datasets and plot the temporal and structural propagation patterns in Fig-
ure 7.16–7.19. We find that the differences in temporal patterns are more obvious
compared with the structural patterns. In addition, the differences between true
and false rumors in Weibo are more significant than the discrepancy between the
fine-grained types of rumors in Twitter datasets.

(4) The two attention mechanisms proposed in this work, i.e., view-wise attention
(-VA) and capsule attention (-CA), play a crucial role on identifying the misin-
formation – the importance of which even exceed temporal features and diffusion
patterns. This result also suggests that distinguishing the significance of different
views of users can improve classification performance. Similarly, different users play
different roles in spreading misinformation, e.g., users may intentionally mislead
others or unknowingly retweet doubtful news. However, examining users’ purposes
is beyond the scope of this work and is left as our future work.
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Figure 7.16: The average number of retweets for different types of rumors at different
timestamps.
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Figure 7.17: The cumulative number of retweets for different types of rumors at
different timestamps.
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Figure 7.18: The average time (in seconds) required to reach the same network
depth. The observation window 60 minutes.
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Figure 7.19: The average network breadth for different types of rumors. The obser-
vation window is 60 minutes.

(5) Finally, the discrepancy between UMLARD and -TD indicates the gain of mod-

eling time decay in retweet cascades. In other words, both real information and false
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information will significantly reduce their influence over time.

(a) Accuracy (b) Macro-F1

Figure 7.20: Content-aspect study of UMLARD.

0 20 40 60 80
Dropout rate (%)

0.80

0.85

0.90

0.95

A
cc

ur
ac

y

Twitter15
Twitter16
Weibo

Figure 7.21: DropEdge Study of UMLARD.

To further investigate the content-aspect effect, we examine the influence of differ-
ent word embedding methods. Specifically, we use the state-of-the-art Bert-based
pretraining model [181] to replace the word2vec and then compare the performance
on accuracy and macro-F1. In our work, we choose BERT-Base1, which was trained
on a large text corpus (e.g., Wikipedia). The results are shown in Figure 7.20. We
can observe that the performance of Bert-based UMLARD is surprisingly lower.
This happens due to the characteristics of tweet text, which are short, sparse, spo-
radic and written casually. Therefore, the Bert-based pretraining techniques that
are usually trained on large-scale language corpus are difficult to directly used for
short-text tasks such as Twitter content embedding. This conjecture is in accordance
with some recent observations on [164].

Furthermore, at the end of this section, we conduct an extra experiment to demon-
strate the effectiveness of the ”DropEdge” technical used in the data prepossessing.
The dropout rate is set from 0 to 0.9, and the experimental results are shown in

1https://github.com/google-research/bert
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Figure 7.21. We find that slightly dropping the edges in the diffusion graph would
improve the model performance.

7.2.4.4 Performance on Early Detection (Q3)

Another important goal of rumor detection is to detect misinformation as early as
possible and stop its spread in a timely fashion. Now we investigate the performance
of models on identifying rumors at early-stage. Here, we consider two metrics for
gauging the observation windows of information spread, i.e., the previous 40 retweets
and the propagation in the first hour. In this section, the experiments of early
detection are conducted on Twitter15 and Twitter16.
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10 20 30 40
Number of retweets

0.4

0.6

0.8

1.0

A
cc
ur
ac
y

PPC_RNN+CNN
GCAN

UMLARD

(b) Early 40 retweets (Twitter16).
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(c) Early 1-hour retweets (Twitter15).
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(d) Early 1-hour retweets (Twitter16).

Figure 7.22: Evaluations on early rumor detection. (a) and (b): PPC_RNN+CNN
and GCAN are cascade length-based methods. (c) and (d): Tv-RvNN, Bi-GCN, STS-
NN and RDEA are built on the user comments that may not exist in early-stage
retweets – hence, we observe their performance over time.

Figure 7.22 shows the performance comparison on early-stage detection between
our UMLARD and the baselines. Note that we omit the feature-based methods
and credibility-based approaches since they did not show comparable performance,
especially on early rumor detection. We observe that UMLARD performs better,
especially when there are only a few observations. UMLARD needs a short time
to identify the misinformation because it fuses the multi-view knowledge of users.
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For example, understanding the role of a user in spreading information is vital
since tweets’ size, spread speed and patterns are different. Moreover, UMLARD
is capable of discriminating the importance of features even with few observations,
which means the interference caused by the trivial or useless features would be
dampened during training the model. In all cases, their early detection accuracy
grows at the early stage of propagation. However, we find that the performance of
our model demonstrates obvious advantage as time goes on.

(a) Early 40 retweets (Twitter15). (b) Early 40 retweets (Twitter16).

(c) Early 1-hour retweets (Twitter15). (d) Early 1-hour retweets (Twitter16).

Figure 7.23: Evaluations on early rumor detection among variants of UMLARD. (a)
and (b): The model performance using early 40 retweets. (c) and (d): The models are
trained with early one hour observations.

We also investigate the time-varying performance between the variants and the full
UMLARD. As shown in Figure 7.23, we find that the accuracy of all methods grows
to saturation with increasing the number of retweets or time elapsed. Moreover,
from Figure 7.23c and 7.23d, we can observe that the performance of -NP, -NT, and
-NS is very close to the full UMLARD, because the models have acquired enough
knowledge to detect rumors within a short observation time.

7.2.4.5 Interpretability Analysis (Q4)

The above experimental results have shown the superiority of the proposed hier-
archical attentions. Namely, they can effectively discriminate the importance of
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multi-views of users and the roles of users in spreading the (mis)information. Here,
we provide more in-depth insights into the two components by visualizing the hier-
archical attention layers in UMLARD.
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Figure 7.24: Visualization of user profiles importance and the role of earlier spreaders
(Twitter15).

Figure 7.24 shows the importance of user-profiles and users themselves – the higher
the value, the more important the feature or the user. Figure 7.24a plots the im-
portance of eight user profile characteristics, where we vary the number of observed
retweets between {5, 10, 15, 20}. We can observe that the follower counts is the most
informative feature, followed by the register time, verified account, and geo-enabled
features, consistent with the findings in [26, 83], i.e., the users enrolled in spreading
of rumors have fewer followers.

In Figure 7.24b, we investigate the role of the retweet users at the very begin-
ning of the cascade. As shown, the earlier users are more important for detecting
non-rumors (NR) and true-rumors (TR). To the contrary, the later participators
are important for detecting unverified-rumors (UR) and false-rumors (FR). This
phenomenon shows that authoritative users usually spread TRs and NRs at the be-
ginning of spreading information. URs and FRs, after the false information spread a
while, will see an influx of massive malicious users, who would pretend these tweets
as real information.

We now discuss the impact of the different views of users in rumor detection. We
randomly selected four different types of tweets in Twitter15 and plots the impor-
tance of different views. Figure 7.25a and Figure 7.25b show the results of previous
5 and 10 retweet users, respectively. Overall, we can see that the three views of each
user in these tweets have different importance. Specifically, when there are few ob-
servations (e.g., only 5 retweet users), the profile view and the temporal view of the
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Figure 7.25: Visualization of the different user-aspect importance (Twitter15).

users dominate the rumor detection performance. As the number of retweet users
increases, the structural information becomes more and more important. This re-
sult can be understood intuitively: In reality, at the very beginning the participants
directly retweet the information from the source spreader, which leads to the similar
propagation structures of information cascades. However, users are different from
each other in profile and the time of retweeting, which are, consequently, the most
important views for early-stage misinformation detection. Besides, by comparing
different types of information, the non-rumor and the true-rumor have very similar
weight distribution over different users’ views, as observed in Figure 7.24b.

7.2.5 Summary

In this work, we presented UMLARD – a novel model for rumor detection which fuses
multiple information contexts pertaining to users of social networks. Combining
multiple views of users aspects and discriminating the importance of spreaders and
user-aspect information, we successfully identified users’ roles in different stages of
rumor diffusion. UMLARD significantly outperforms previous methods in terms
of misinformation classification and rapid rumor detection. Our approach is also
notable in its strength of interpreting model behaviors and the predicted results.
The experiments conducted on real Twitter datasets and Weibo dataset support
the hypothesis that characteristics of user-profiles, aspects view of participants, as
well as user’s engagement time and tweets’ diffusion patterns, can contribute to
the misinformation prediction from the collective signals. Besides, our experimental
results on early-detection discern several vital features of false information.
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Chapter 8

Conclusions and Future work

In this thesis, we focused on two specific tasks in the field of information diffusion
analysis in online social networks, namely, information cascades modeling and rumor
detection. In this chapter, we first briefly summarize the main contributions of this
thesis, and then conclude by discussing some important future directions.

8.1 Summary of Contributions

In Chapter 1, we stated four different research questions that we now recall so to
summarize for each question the contribution of this thesis.

Research Question 1 (RQ 1) Can we develop an effective deep learning-based
model to capture structural and temporal features from the observed cascade graph
for macro-level information cascade prediction?

To the best of our knowledge, the proposed Recurrent Cascades Convolutional Net-
work (CasCN) [10] (Chapter 4) is the first neural diffusion model answering this
question. Besides that, CasCN also provides an important first step to sample the
observed cascade graph as a sequence of subgraphs rather than random walks and
diffusion paths. Based on the experimental results and feature visulizations, we find
that (1) the way to sample an observed cascade as a sequence of subgraphs is much
informative than other node sequence-based sampling methods; (2) CasCN can ef-
fectively learn the structural-temporal features from a sequence of subgraphs; (3)
CasCN significantly outperform earlier deep learning-based methods for the task of
macro-level information cascade prediction.

Research Question 2 (RQ 2) How can we improve upon earlier deep learning-
based models that learn the latent representation for the observed cascade graph from
a multi-scale perspective to predict the future size of this cascade?

We have introduced theMulti-scale Cascades (MUCas) model [42] (Chapter 5) to ad-
dress this question. MUCas abstracts the multi-scale information for cascade graphs
as a collection of direction-scale, high-order-scale, position-scale, and dynamic-scale
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features, and it uses a multi-scale graph capsule network and an influence attention
to learn and fuse the multi-scale information to form a unique cascade representation.
This marks an important first step towards solving RQ 2. Different from previous
works, MUCas innovatively propose a time interval-based sampling method, which
significantly reduces the number of subgraphs, and increases differences between
each subgraph as much as possible. Moreover, we find that: (1) each of the scale
information is vital for information cascades; (2) aggregate features in a more fine-
grained way by introducing routing mechanism can be a more effective and simple
way to replace multi-head attention from prior works.

Research Question 3 (RQ 3) Can we detect rumors at an early stage by learning
various diffusion patterns from rumor spreading threads?

The Macroscopic and Microscopic-aware Rumor Detection (MMRD) model [44]
(Chapter 6) addresses this research question by two newly designed encoding com-
ponents MacroE and MicroE, which were used for modeling rumor diffusion from
macroscopic and microscopic perspectives, respectively. To the best of our knowl-
edge, this is the first work to solve the rumor detection task by only exploring
different levels of diffusion patterns. Also, MMRD innovatively introduces cross-
learning and hybrid aggregation mechanisms to improve the model ability in feature
learning and feature fusion. Furthermore, MMRD successfully leverages knowledge
distillation to increase detection performance, which is a meaningful attempt that
can be further considered in future research. We conduct our experiments on two
real-world datasets, the experimental results demonstrate MMRD outperforms other
state-of-the-art methods and can be applied in an extremely early rumor detection,
i.e., with only 10 retweet user observations.

Research Question 4 (RQ 4) Can we improve the model performance by devel-
oping effective rumor detection models at the participant level?

We have proposed two complementary models to solve the RQ 4 in Chapter 7: the
Participant-level Rumor Detection (PLRD) model [45] and the User-aspect Multi-
view Learning with Attention for Rumor Detection (UMLARD) model [46]. Both
of them aim to extract features at the user level rather than the event level. PLRD
serves as the first deep learning-based participant-level rumor detection model rooted
in social influence and propagation theory, which provides demonstrations of the im-
portance of users in rumor spreading from both theoretical and model performance
perspectives. PLRD comprehensively exploits various fine-grained user features from
the diffusion threads, i.e., the users’ social homophily, influence, susceptibility, tem-
poral features, and then uses these features to determine whether the information is
true or false. PLRD also introduces a variational autoencoder (VAE) to handle the
uncertainty which exists in the feature learning phase. Moreover, Compared with
prior deep learning-based rumor detection models, PLRD can make good predictions
only based on user-level features and also provides explainability from both feature-
level and user-level. UMLARD solves one burning limitation left by PLRD and
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other existing rumor detection methods, i.e., input features entangled with learned
high-level features, by using three view-specific embedding methods with distinct
inputs. Compared with PLRD, UMLARD innovatively proposes a capsule-based
attention layer to replace the original attention mechanism in PLRD, which is more
effective from both performance and time cost. UMLARD classifies information
into more fine-grained labels, which is rarely considered in existing works because it
increases the difficulty in detection.

8.2 Future Work

The research presented in this thesis achieved some interesting results, opens some
potential research directions that we leave for future work.

Data collection and processing: Current open benchmark datasets (such as
Weibo [9], Twitter [33], etc.) face several challenges. First, due to the strict privacy
protection policies in online social platforms, the benchmark datasets can not open
access to all resources, such as user profiles, which leads to difficulty in reproducing
the same results as the state-of-the-art methods provided. Secondly, the data col-
lection APIs of online social platforms do not provide true retweet paths. In fact,
the raw data looks like all retweets point to the original post, which is generally
not the case in reality. To deal with this problem, the current method infers the
true retweet path based on the follower relationship between all users enrolled in the
diffusion process and the timestamps for all retweets, however, this method is time-
consuming and biased. Last, the collection of the complete diffusion graph and the
social graph is difficult for researchers due to the access limitation of data collection
APIs. There is the needs to develop an open-source data collection platform rather
than only provide public available datasets, such as FakeNewsNet1. To construct
the diffusion graph, we can further improve the quality of inferred edges by learning
edge uncertainty. And in order to acquire the complete graphs, a corporation with
online social platforms is indispensable.

Developing self-supervised and unsupervised model: Most existing efforts
on information cascade modeling and rumor detection have been mainly focused on
developing supervised and semi-supervised models, both of which require a dataset
with sufficient labeled data. However, deciding on a label for a specific message
requires a lot of manual labor, especially when it comes to rumor detection. For ex-
ample, the label of each tweet in Twitter15/16 was confirmed from the fact-checking
systems (e.g., Snopes 2, Factcheck 3, etc.). Hence, designing a model that can reduce
dependence on labeled data while nevertheless doing well in information diffusion

1https://github.com/KaiDMML/FakeNewsNet
2https://www.snopes.com/
3https://www.factcheck.org/
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analysis tasks is an urgent task. Ideally, one could design self-supervised and un-
supervised frameworks to encode the information diffusion including structural and
temporal features and facilitate the downstream tasks, such as information cascade
prediction and rumor detection. Moreover, self-supervised learning always asks for
a data augmentation operating, different from the augmentation on images, exist-
ing augmentation on graphs, such as edge-delete/add, node-delete/add, etc., which
will harm the real diffusion networks and cause information biases. Therefore, how
to design a diffusion-aware augmentation method or develop an augmentation-free
self-supervised model is another interesting research topic.

Incorporating multi-modal and external information: To improve the model
performance for both information cascade modeling and rumor detection, incorpo-
rating the knowledge from different aspects is demonstrated to be indispensable
in Chapter 7. Apart from the previously used graph, sequence, and text, how to
comprehensively extract features from other related sources, such as images, videos,
websites, and so on, in a unified framework and efficiently fuse multiple features is
an interesting research topic. Incorporating the external information from knowl-
edge graphs in information diffusion prediction or rumor detection can introduce
interpretability and inference ability into models, how to combine multi-modal data
and external information is absolutely an interesting research direction.

Learning robust embedding for tail-nodes in the graph: The long-tail dis-
tribution phenomena can be discovered not only in datasets, such as the label im-
balance, but also in graphs, where the majority of nodes are tail-nodes (with small
degree) and only a small fraction have a big degree (head-node). Most of the ex-
isting works of graph neural networks treat all nodes equally, and do not pay more
attention to the difference between tail-nodes and head-nodes, which have limited
ability in learning distinguishable and robust embedding for the most vulnerable tail-
nodes. As future work, one could borrow the idea from the fields of meta-learning
and transfer learning to design a more unified graph neural network for tail-node
embedding.

Developing interpretable deep learning-based models: Despite the signifi-
cant achievements made by employing deep learning methods in information analysis
tasks, compared with the traditional hand-crafted feature-based methods, the deep
learning-based models do not provide enough interpretability due to their “black-
box" models. However, besides looking for improvements of model performance, re-
searchers also want to know the reason behind a message going viral or the intentions
behind rumors. Thus, developing interpretable deep learning-based models without
significantly sacrificing model performance, is another interesting direction to ex-
plore. For example, we plan in future work to keep designing new attention-based
and disentangled models, as well as introducing causality into model learning.

.
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English Summary

With the emergence of online social networks (OSNs), the way people create and
share information has changed, which becomes faster and broader than traditional
social media. Understanding how information (both good and harmful) spreads
through OSNs, as well as what elements drive the success of information diffusion,
has significant implications for a wide range of real-world applications. In this
thesis, we conduct research to analysis the diffusion of information in OSNs via
using deep representation learning. Specifically, we aim to develop deep learning-
based models to solve two specific tasks, i.e., information cascades modeling and
rumor detection.

Our contributions are as follows:

We propose recurrent cascades convolutional network (CasCN) in Chapter 4, a
graph-based neural model for macro-level information cascade prediction. CasCN
utilizes a combination of graph convolutional network and recurrent neural net-
work to predict the incremental size of a cascade by extracting structural-temporal
features from a sequence of timestamp-based subgraphs. CasCN also introduces
CasLaplacian for directed graphs, which overcomes the limitations of previous graph
neural networks when dealing with directed graphs. The experimental results con-
ducted on two real-world datasets, show that CasCN is well-suited for modeling
structural-temporal features from cascades.

We propose multi-scale cascades model (MUCas) in Chapter 5, which aims at cap-
turing multi-scale features for macro-level information cascade prediction. MUCas
utilizes a multi-scale graph capsule network and an influence attention to learn
and fuse the multi-scale information (i.e., dynamic-scale, direction-scale, position-
scale, and high-order-scale) to form a unique cascade representation. MUCas also
improves the sampling methods in CasCN by sampling subgraphs based on time
intervals rather than timestamps. We conduct experiments on real-world datasets
and demonstrate that MUCas is particularly effective at extracting features on cas-
cades from different scales, and multi-scale features are vital for improving prediction
accuracy.

We propose macroscopic and microscopic-aware rumor detection model (MMRD)
in Chapter 6, a diffusion-based rumor detection model that detects rumors by only
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exploring different levels of diffusion patterns. MMRD leverages graph neural net-
works to learn the macroscopic diffusion of rumor propagation and capture micro-
scopic diffusion patterns using bidirectional recurrent neural networks while taking
into account the user-time series. MMRD also leverages knowledge distillation tech-
nique to create a more informative student model and further improve the model
performance. MMRD is evaluated on the well-known Twitter data sets and could
obtain good detection results in the early stage of rumor spreading.

We propose participant-level rumor detection model (PLRD) and multi-view learn-
ing with attention for rumor detection model (UMLARD) in Chapter 7. Both PLRD
and UMLARD are designed at user-level. PLRD exploits various fine-grained user
features from the diffusion threads, i.e., the users’ social homophily, influence, sus-
ceptibility, temporal features, and then uses these features to determine whether the
information is true or false. PLRD also introduces a variational autoencoder (VAE)
to handle the uncertainty which exists in the feature learning phase. UMLARD
extends PLRD and solves one burning limitation left by PLRD, i.e., input features
entangled with learned high-level features, by using three view-specific embedding
methods with distinct inputs. UMLARD also innovatively proposes a capsule-based
attention layer to replace the original attention mechanism in PLRD, which is more
effective in both performance and time cost. Both PLRD and UMARD outperform
other non-user-level models, which demonstrates that developing models at the user
level indeed improves detection performance.
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Met de opkomst van online sociale netwerken (OSNs) is de manier waarop mensen
informatie delen veranderd, wat sneller en breder wordt dan traditionele media. Be-
grijpen hoe informatie (zowel goede als schadelijke) zich via OSNs verspreidt, en
welke elementen het succes van informatieverspreiding stimuleren, heeft belangrijke
implicaties voor een breed scala aan toepassingen in de echte wereld. In dit proef-
schrift doen we onderzoek om de diffusie van informatie in OSNs te leren kennen
door gebruik te maken van Deep Representation Learning. Concreet willen we twee
specifieke taken oplossen, namelijk het modelleren van informatiecascades en het
detecteren van geruchten.

We dragen het volgende bij:

We introduceren recurrent cascades convolutional network (CasCN) in Hoofdstuk 4,
een op grafieken gebaseerd neuraal model voor voorspelling van informatiecascades
op macroniveau. CasCN gebruikt een combinatie van een graafconvolutienetwerk
en een terugkerend neuraal netwerk om de incrementele grootte van een cascade te
voorspellen door structurele en tijdelijke kenmerken te extraheren uit een reeks op
tijdstempels gebaseerde subgrafieken. CasCN introduceert ook CasLaplace voor
gerichte grafieken, waarmee de beperkingen van eerdere neurale netwerken voor
graafgrafieken worden overwonnen bij het omgaan met gerichte grafieken. De exper-
imentele resultaten die zijn uitgevoerd op twee real-world datasets, laten zien dat
CasCN zeer geschikt is voor het modelleren van structurele-tijdelijke kenmerken van
cascades.

We introduceren multi-scale cascades model (MUCas) in Hoofdstuk 5, die gericht is
op het vastleggen van multi-scale functies voor voorspelling van informatiecascades
op macroniveau. MUCas gebruikt multi-scale graph capsule network en influence
attention om de multi-scale informatie te leren en samen te smelten om een unieke
cascade representatie. MUCas verbetert ook de bemonsteringsmethoden in CasCN
door subgrafieken te bemonsteren op basis van tijdsintervallen in plaats van tijd-
stempels. We voeren experimenten uit met real-world datasets en tonen aan dat
MUCas bijzonder effectief is in het extraheren van kenmerken op cascades van ver-
schillende schalen, en multi-scale functies zijn van vitaal belang voor het verbeteren
van de nauwkeurigheid van voorspellingen.
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We introduceren macroscopic and microscopic-aware rumor detection model (MMRD)
in Hoofdstuk 6, een op diffusie gebaseerd geruchtendetectie model dat geruchten
detecteert door alleen verschillende niveaus van diffusie patronen te onderzoeken.
MMRD maakt gebruik van graph neural networks om de macroscopische diffusie
van geruchten propagatie te leren en microscopische diffusie patronen vast te leggen
met behulp van bidirectional recurrent neural networks, rekening houdend met de
user-time serie. MMRD maakt ook gebruik van de knowledge distillation techniek
om een meer informatief studentenmodel te creëren en de modelprestaties verder te
verbeteren. MMRD wordt geëvalueerd op de bekende Twitter-datasets en zou goede
detectieresultaten kunnen opleveren in het vroege stadium van geruchtenverspreid-
ing.

We introduceren participant-level rumor detection model (PLRD) en multi-view
learning with attention for rumor detection model (UMLARD) in Hoofdstuk 7.
Zowel PLRD als UMLARD zijn ontworpen op participant-level. PLRD maakt ge-
bruik van verschillende fijnmazige gebruikersfuncties van de diffusiethreads, i.e., de
sociale homofilie, invloed, gevoeligheid, temporele kenmerken van de gebruikers, en
gebruikt deze kenmerken vervolgens om te bepalen of de informatie waar of onwaar
is. PLRD introduceert ook een Variational Autoencoder (VAE) om de onzekerheid
aan te pakken die bestaat in de leerfase van functies. UMLARD breidt PLRD uit
en lost één brandbeperking op die is achtergelaten door PLRD, i.e., invoerfuncties
verstrengeld met geleerde functies op hoog niveau, door gebruik te maken van drie
view-specific inbeddingsmethoden met verschillende invoer. UMLARD stelt ook op
innovatieve wijze een capsule-based attention layer voor ter vervanging van het oor-
spronkelijke attention mechanism in PLRD, dat effectiever is in zowel prestaties als
tijdskosten. Zowel PLRD als UMARD presteren beter dan andere non-user-level
modellen, wat aantoont dat het ontwikkelen van modellen op user-level inderdaad
de detectieprestaties verbetert.
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