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2
Global trends in winds of M dwarf stars

Amanda L. Mesquita, & Aline A. Vidotto.
2020, MNRAS, 494, 1297–1307

Abstract

M dwarf stars are currently the main targets in searches for potentially habitable plan-
ets. However, their winds have been suggested to be harmful to planetary atmospheres.
Here, in order to better understand the winds of M dwarfs and also infer their physical
properties, we perform a one-dimensional magnetohydrodynamic parametric study of
winds of M dwarfs that are heated by dissipation of Alfvén waves. These waves are
triggered by sub-surface convective motions and propagate along magnetic field lines.
Here, we vary the magnetic field strength B0 and density ρ0 at the wind base (chro-
mosphere), while keeping the same relative wave amplitude (0.1B0) and dissipation
lenghtscale. Our simulations thus range from low plasma-β to high plasma-β (0.005 to
3.7). We find that our winds very quickly reach isothermal temperatures with mass-loss
rates Ṁ ∝ ρ20. We compare our results with Parker wind models and find that, in the
high-β regime, both models agree. However, in the low-β regime, the Parker wind un-
derestimates the terminal velocity by around one order of magnitude and Ṁ by several
orders of magnitude. We also find that M dwarfs could have chromospheres extending
to 18% to 180% of the stellar radius. We apply our model to the planet-hosting star
GJ 436 and find, from X-ray observational constraints, Ṁ < 7.6×10−15M⊙ yr−1. This
is in agreement with values derived from the Lyman-α transit of GJ 436b, indicating
that spectroscopic planetary transits could be used as a way to study stellar wind
properties.

2.1 Introduction

M dwarf stars are the most common type of stars in our Galaxy. They are small, main-
sequence stars with masses smaller than ∼ 0.5M⊙, low surface temperatures and low
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2.1 Introduction

brightness. One of the most interesting features in M dwarfs is their close-in habitable
zone, which is defined as the extended area away from the star where an orbiting
planet could have liquid water on its surface (Kasting et al., 1993; Selsis et al., 2007).
Because M dwarf stars have low luminosities, their habitable zones are much closer
in, which makes it easier to observe exoplanets in their habitable zones due to current
biases in planet detection. For a M dwarf with 0.5M⊙, for example, the habitable
zone is at ∼ 0.2 – 0.4 astronomical units (Kasting et al., 1993; Selsis et al., 2007).
However, one potential issue for planet habitability is that main-sequence M dwarfs
remain active for a long fraction of their lives, generating strong kG magnetic fields
(Morin et al., 2010; Lang et al., 2014; See et al., 2019; Shulyak et al., 2019). A star with
strong activity can generate strong flares, winds and coronal mass ejections, which can
affect the exoplanets orbiting their habitable zones as well as exoplanet habitability
(Khodachenko et al., 2007; Vida et al., 2017; Tilley et al., 2019).

In addition to consequences to planetary habitability, stellar winds play an essential
role in stellar evolution (Matt et al., 2015; Johnstone et al., 2015). However, M dwarfs,
similar to other cool dwarf stars, have rarefied winds and, as a consequence, it is
difficult to directly measure them (Wood, 2004; Vidotto & Bourrier, 2017; Jardine &
Collier Cameron, 2019). There are some techniques developed to infer the mass-loss
rates of cool dwarf stars, such as radio emission analysis (Panagia & Felli, 1975; Lim
& White, 1996; Fichtinger et al., 2017; Vidotto & Donati, 2017), or the identification
of X-ray emission generated due to the interaction between ionized wind particles
with neutral atoms from the interstellar medium (Wargelin & Drake, 2002; Jardine &
Collier Cameron, 2019). Another more successful method used to detect stellar winds
is related to the study of stellar Ly-α line absorption when the stellar wind exchange
charges with a neutral or partially neutral interstellar medium (Wood et al., 2002,
2005). By studying Ly-α observations of the binary system α Centauri (G2 + K0) and
its distant companion star Proxima Centauri (M5.5), Wood et al. (2001) predicted a
mass-loss rate upper limit of Ṁ < 4×10−15M⊙ yr−1 for Proxima Centauri. A recently
proposed method is to use the exoplanet atmosphere interaction with the host star
wind to infer some properties of the local stellar wind (Vidotto & Bourrier, 2017).
These techniques have provided some constraints on the winds of M dwarfs, but still a
full picture does not yet exist.

In the present work, we turn to numerical simulations to investigate stellar winds
of M dwarfs. There are still not many numerical studies dedicated to the winds of M
dwarfs (e.g. Vidotto et al., 2014a; Garraffo et al., 2016; Vidotto & Bourrier, 2017). In
cool dwarfs, it is common to study winds by adopting a Parker wind model (Parker,
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1958), which consists of a stellar wind with constant temperature. One weakness of
isothermal winds is that, by assuming that the temperature is constant, we cannot
derive the detailed structure of the wind energetics, such as, heating and cooling. In
our work, we assume that the winds of M dwarfs are heated by magnetic processes,
similar to the solar wind. For that, we use a model that considers the presence of
Alfvén-waves to drive the winds of M dwarfs. With this, we can better investigate the
physical processes of the wind acceleration mechanism and of its heating.

Alfvén waves are magnetohydrodynamic (MHD) waves that propagate with an
Alfvén velocity vA = B/

√
4πρ, where B is the magnetic field and ρ is the density.

In 1942, Alfvén (1942) hypothesized that MHD waves generated in the lower layers
of the Sun could be associated with sunspots. Later on, Schatzman (1949) proposed
that MHD waves were responsible by the coronal heating. Alfvén waves are still one
of the hypothesis to explain the temperature gradient in the Sun’s atmosphere (e.g.,
Winebarger & Warren 2004; De Moortel & Browning 2015). Alfvén waves are gen-
erated if oscillations are induced at the magnetic field at the base of the wind. The
dissipation of energy and momentum associated with the wave propagation can lead
to the acceleration of the outer atmosphere in the form of an Alfvén-wave driven wind
(Hartmann & MacGregor, 1980; Vidotto & Jatenco-Pereira, 2006).

In this paper, we perform a parametric study of winds of M dwarf stars, using
an Alfvén-wave driven stellar wind model to understand the winds of M dwarfs and
also infer their properties, like mass-loss rates, velocities, etc. This paper consists of
the following sections. In Section 2.2, we describe our stellar wind model and the
simulation parameters. Our results for the wind structure and general trends of M
dwarfs are presented in Section 2.3, followed by a discussion about the chromospheric
size of M dwarfs and an application to the planet-hosting star GJ 436 in Section 2.4.
Finally, we present a comparison with a Parker wind model and a discussion about
the effects of the free input parameters in our simulation in Section 2.5 followed by
conclusions in Section 2.6.

2.2 Alfvén-wave driven stellar wind model

We perform one dimensional magnetohydrodynamic simulations to heat and drive the
wind of M dwarf stars. Alfvén waves are generated by perturbations induced in the
magnetic field at the base of the wind. The waves accelerate the stellar atmosphere in
the form of an Alfvén-wave driven wind (Hartmann & MacGregor, 1980; Holzer et al.,
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2.2 Alfvén-wave driven stellar wind model

1983; MacGregor & Charbonneau, 1994). The model used in this work is based on
Vidotto & Jatenco-Pereira (2010), and we describe it next.

We numerically solve the time-independent MHD equations including momentum
and energy equations:

u
du

dr
= −GM⋆

r2
− 1

ρ

dP

dr
− 1

2ρ

dϵ

dr
, (2.1)
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dϵ
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= Q− Pr, (2.2)

where u is the wind velocity, r the radial coordinate, G the gravitational constant,
M⋆ the stellar mass, P = ρkBT/m the gas pressure, m the average mass of the wind
particles, ρ the wind density, T the wind temperature, ϵ the energy density of the
Alfvén waves, Fc the thermal conduction, Q the volumetric heating rate and Pr is the
volumetric radiative cooling rate.

The terms on the right-hand side of Equation (2.1) are the gravitational force, the
gradient of the thermal pressure and the gradient of the wave pressure, respectively.
The first, second and third terms on the left-hand side of Equation (2.2) are related
to the wind energy (kinetic energy, enthalpy and gravitational energy), the thermal
conductivity and the rate at which the waves do work, respectively. The terms on the
right-hand side of Equation (2.2) are related to the wave heating and the radiative
cooling.

The energy density of the Alfvén waves (Hartmann & MacGregor, 1980) are given
by:

ϵ = ϵ0
M0

M

(
1 +M0

1 +M

)
exp

[
−
∫ r

r0

1

L
dr

]
, (2.3)

where M is the Mach number and L is the damping length. In this paper, whenever
we use the subscript “0”, it represents a quantity calculated at the base of the wind,
thus, in Equation (2.3), M0 is the Mach number at the wind base at r = r0. Here, we
assume the nonlinear damping mechanism for the waves, as this has been used in some
solar wind models (Suzuki & Inutsuka, 2005; Suzuki et al., 2013). We parametrise the
non-linear damping mechanism, following the work of Jatenco-Pereira & Opher (1989),
by

L = L0

(
vA
vA0

)4 ⟨δv20⟩
⟨δv2⟩

(1 +M), (2.4)

with an initial length of 10% of stellar radius (L0 = 0.1r0). Here, ⟨δv2⟩ is the mean
quadratic amplitude of the fluctuations in the wave velocity. The amplitude of the
velocity fluctuations are connected with the amplitude of magnetic field fluctuations
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by energy equipartition
1

2
ρ⟨δv2⟩ = ⟨δB2⟩

8π
. (2.5)

Finally, the energy density of the wave is related to its flux as

ϕA = ϵvA

(
1 +

3

2
M

)
. (2.6)

The thermal conduction flux is

Fc = −κT 5/2dT

dr
, (2.7)

where κ = 10−6 erg cm−1s−1K−1 is the Spitzer conductivity. The volumetric heating
rate caused by wave dissipation is

Q =
ϵ

L
(u+ vA), (2.8)

and the volumetric radiative cooling rate is

Pr = ΛnenH , (2.9)

where Λ is the cooling function which depends on the metallicity, ne is the electron
density and nH is the total hydrogen density. In our simulations, we adopt the cooling
function from Schure et al. (2009) for solar-like metallicity. Given the high temperatures
our winds achieve, our winds are fully ionised through the simulation domain, which
implies that nH = np = ne, where np is the proton density.

We also numerically solve the mass conservation equation, assuming steady state

d

dr

(
ρur2

)
= 0. (2.10)

We initially perform 134 simulations assuming spherical symmetry with the input
parameters presented in Table 2.1. We use the values of mass and radius for an early
M dwarf, similar to GJ 436. We adopt an open magnetic field line configuration
with magnetic field oscillations induced at the base of the chromosphere. The initial
perturbations in the magnetic field lines were set to be 10% of magnetic field,

√
⟨δB2

0⟩ =
0.1B0. Given our values of input magnetic fields our simulations are more appropriate
for an inactive to moderately active star. Our simulations results in wave fluxes ranging
from 7.9× 102 to 1.64× 106 erg cm−2s−1 at the base of the chromosphere.

To solve the set of coupled differential equations, we use a shooting method, in which
the only physical solution is the one that passes through the Alfvén point (e.g. Vidotto
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2.3 Parametric study of winds of M-dwarfs

Table 2.1: The top part of the table shows the input parameters of our simulations,
assumed at the base of the wind (chromosphere). The parameters at the bottom, below
the line, are derived from the input parameters.

Physical parameter Symbol Value Unit
Stellar mass M⋆ 0.452 M⊙
Stellar radius r0 0.437 R⊙
Temperature T0 2× 104 K
Magnetic field B0 1 – 10 G
Density ρ0 (1 – 90)×10−15 g cm−3

Magnetic field perturbation
√
⟨δB2

0⟩ 0.1 B0

Damping length L0 0.1 r0
Wave amplitude

√
⟨δv20⟩ 0.9 – 25.4 km s−1

Wave flux ϕA0 7.9× 102 – 1.64× 106 erg cm−2s−1

Wave energy density ϵ0 (7.9 – 790)×10−4 erg cm−3

plasma β at base β 0.005 – 3.7

& Jatenco-Pereira, 2006). The Alfvén point is the point where the wind velocity is equal
to Alfvén velocity, i.e., the distance where the Mach number is unit (M = u/vA = 1).
This is an important parameter for calculating the angular momentum-loss rate, which
we will discuss in Section 2.3.2 (Weber & Davis, 1967; Kraft, 1967).

2.3 Parametric study of winds of M-dwarfs

2.3.1 The structure of the wind

To understand the wind properties, we analyze how temperature, velocity and density
profiles are affected by different input parameters. Fig. 2.1 shows wind profiles for
different magnetic field intensities and for two ranges of base density. We separate the
base densities in two ranges that we label as ‘low-β’ for ρ0 = (1−9)×10−15 g cm−3 and
‘high-β’ for ρ0 = (1 − 9) × 10−14 g cm−3. The plasma β parameter gives information
about the balance between the gas pressure and the magnetic pressure and is given by:

β =
P

Pmag
=

8πρkBT

mB2
, (2.11)

where Pmag = B2/8π is the magnetic pressure.
We see an overall higher wind temperature (Fig. 2.1-a) for higher base densities

(high-β), and, to a lesser extent, higher temperatures are also seen with higher base
magnetic fields. However, the magnetic field does not affect significantly the temper-
ature profiles for high-β, which is seen in the similarities of all distance-profiles. The

34



CHAPTER 2

temperature profile displays a sudden rise before ∼ 1.5 r0 and then reaches a flat pro-
file. This flat profile is caused by conduction – models of red supergiant winds without
conductive fluxes, for example, do not show this (Vidotto & Jatenco-Pereira, 2006).
The plateau profile can be interpreted as M dwarfs having nearly isothermal winds.
We will come back to this in Section 2.5.1, when we compare our results with Parker
winds, and the trends with plasma β are discussed in Section 2.3.2.

Figure 2.1: Temperature, velocity and density profiles for high-β (solid lines) and low-β
(non-solid lines) ranges and magnetic fields 1 (red), 5 (blue) and 8G (green). The profiles
for high-β do not depend significantly on the magnetic field intensity. This is because
these winds are thermally dominated. We use ρ0 = 9× 10−15 g cm−3 for low-β cases and
ρ0 = 9× 10−14 g cm−3 for high-β cases.

The overall velocity profiles (Fig. 2.1-b) are higher for high magnetic field intensities.
These profiles show two different behaviours with β parameter. For all our wind models,
the terminal velocities vary from around 710 to 3100 km s−1. The wind is rapidly
accelerated by the transfer of momentum from the waves to the plasma (a consequence
of the third term in Equation (2.1)) and then reaches an asymptotic profile. The
acceleration process happens closer to the star for high-β cases. For low-β, the velocity
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2.3 Parametric study of winds of M-dwarfs

decreases with base density and for high-β the velocity increases with base density. The
velocity profile for high-β is not significantly affected by the magnetic field intensity.

The overall density profiles (Fig. 2.1-c) are higher for higher magnetic field inten-
sities and base densities. Further away from the star, the wind is orders of magnitude
less dense than at the base, which demonstrates that winds of M dwarfs can be very
rarefied, like the solar wind. Similarly to the other profiles studied here, the density
profile for high-β is not significantly affect by the intensity of the base magnetic field.
At large distances, the density profile falls with r2 as a consequence of mass conserva-
tion (Equation (2.10)) and the asymptotic wind speed. At small distances, the nearly
exponential decrease in density is due to the rapid increase observed in the velocity
profile.

All profiles show a very clear trend according to base density range. The physical
explanation for it lies on the β parameter. Beta smaller than one (β < 1) indicates
that magnetic field plays a major role in the wind and beta greater than one (β > 1)
indicates that the thermal forces dominate. In our simulations, we do not change the
temperature at the base, which means that the only parameters influencing β at the
base are the base density and magnetic field intensity. Therefore by analyzing the
beta profile we can interpret what is happening in our simulations for different input
parameters.

Fig. 2.2 shows some selected β profiles for B0 = 5G and ρ0 = 5, 9, 50 and 90 ×
10−15 g cm−3. In this plot, we see that smaller base densities (5 and 9× 10−15 g cm−3)
have β < 1 for nearly the whole wind. The wind only reaches β > 1 for r > 100 r0.
For higher base densities (50 and 90× 10−15 g cm−3), β < 1 only for distances smaller
than 10 r0. These different profiles are due to a combination of different densities,
temperature and magnetic field throughout the wind (see Fig. 2.1). These trends in
the beta profiles demonstrate that low base density cases (low-β) are more magnetically
dominated (magnetic field plays a major role in the wind) and high base density cases
(high-β) are more thermally dominated (winds are thermally driven). This explains
why temperature, velocity and density profiles for high-β are not particularly affected
by changes in magnetic field intensities.

2.3.2 Global trends of M dwarf winds

Here, we investigate the overall trends found in our simulations. To extract the global
quantities of the wind, we use the fact that the values for temperature and velocity are
nearly constant at large distance (≳ 50 r0). We group simulations of same base density
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Figure 2.2: Plasma-β as function of the distance for a constant magnetic field of 5G
and different values of base density. The plot shows that the winds with lower densities
(green-dash dotted and blue-dashed curves) are more magnetically dominated (β < 1) and
higher density winds (pink-solid and red-dotted curves) are more thermally dominated
(β > 1). The crosses denote the minimum of β, here defined as the base of the corona.

and, for each group, we extract local values of velocity, density and temperature at
r = 300 r0, which represent the asymptotic terminal wind velocity (u∞), the density
at large distances (ρ300) and the “isothermal” (plateau) value of the temperature (Tpl),
respectively. Note that the density profile is not constant, but it continues to fall with
r2, following mass conservation of a constant-velocity wind. Within each ρ0 group,
there is a range of values of u∞, ρ300 and Tpl, due to different adopted B0. To better
identify the global trends, we average values of u∞, ρ300 and Tpl for each group with
same ρ0.

Fig. 2.3 shows the results we found for the general trends of the wind. The red
points are the average values of Tpl and the solid line is the power-law fit. The shaded
area in Fig. 2.3-a shows the range of the temperature plateau for different magnetic
field values. The shaded area is larger for low-β values, but overall we see that the
averages (red points) are good representation of the different simulation parameters.
The temperature plateau (Fig. 2.3-a) depends on the base density and can be described
by a power law fit:

Tpl = (7.8± 0.2)× 1014 ρ0.61±0.01
0 , (2.12)

where Tpl is given in K and ρ0 in g cm−3. The numbers in parentheses in Equation (2.12)
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2.3 Parametric study of winds of M-dwarfs

(and also in Equations 2.13 and 2.14) are the 1σ uncertainties for each coefficient of the
fit. In our models, winds with higher base densities use a higher fraction of the wave
flux to heat the wind, thus we find that an increase in the base density also increases
the temperature plateau.

Figure 2.3: Given that for each ρ0, there are multiple simulations with different B0,
we compute an average value (red points) of the (a) temperature plateau, (b) terminal
velocity and (c) density at r = 300 r0, for each group of simulations with the same ρ0.
We see two different regimes for terminal velocity and density at 300 r0, according to
their values of plasma-β. The shaded areas in all plots represents the extreme values
for each plotted quantity, that are due to different assumed B0. The black lines are fits
(Equations (2.12) to (2.14)).

The terminal velocity (Fig. 2.3-b) exhibits two different trends with base density.
For low-β range, the terminal velocity falls off with base density, while for high-β
range, the terminal velocity increases with base density. These two tendencies can be
described by the power law fits:{

u∞ = (1.59± 0.64)× 10−5 ρ−0.55±0.04
0 , for low-β

u∞ = (1.64± 0.07)× 107 ρ0.31±0.01
0 , for high-β

(2.13)
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where u∞ is given in km s−1 and ρ0 in g cm−3. Here, we define low-β for ρ0 <

10−14 g cm−3 and high-β for ρ0 ≥ 10−14 g cm−3. The shaded area in Fig. 2.3-b shows
the range of the terminal velocity for different magnetic field values. Opposite to what
happens with the temperature plateau, the terminal velocity has a slightly large range
with magnetic field, except for high-β range. The terminal velocity shows a ‘V’ shape
profile with base density, where the average values of terminal velocities vary from
approximately 850 − 2700 km s−1. In our simulations we can find the same terminal
velocity for distinct values of wind temperature. Due to the fact that high-β cases are
thermally driven, the terminal velocity follows a simple Parker wind in where the higher
the plateau temperature, the higher the terminal velocity. However, low-β cases are
more magnetically dominated and the wind speed becomes smaller with increase in base
density for these cases. This occurs because the wind cannot be effectively accelerated
due to the large quantity of material to lift up (larger inertia), which results in winds
with lower terminal velocities. This is also seen in simulations by Suzuki et al. (2013).

The density at 300 r0 (Fig. 2.3-c) also has two different trends with base density,
showing two different slopes for low and high-β values. These two trends can be
described by the following power laws:{

ρ300 = (1.44± 1.17)× 1015 ρ2.74±0.08
0 , for low-β,

ρ300 = (8.35± 0.62)× 10−3 ρ1.49±0.01
0 , for high-β,

(2.14)

where ρ300 and ρ0 are given in g cm−3. Overall, the increase we see in ρ300 is affected by
the increase in temperature. Stellar wind density profiles can be approximated as an
exponential decay closer to the star, with a certain scale height. Higher temperature
winds have larger scale heights, thus a slow density decay with distance. This would
explain why as we go to higher wind temperatures, the density at 300 r0 remains larger
(Fig. 2.1-c). The shaded area represents the range on the density at 300 r0 for different
magnetic field values. Similarly to the other plots, the shaded area is larger for low-β
and smaller for high-β cases. The density at 300 r0 is one of the most affected properties
by the magnetic field variation, showing up to one order magnitude variation for the
same ρ0 in the low-β regime.

Given the relation between Tpl and ρ0 (Fig. 2.1-a), in Panels b and c of Fig. 2.3, we
add a top axis indicating Tpl values.

The mass-loss rate can be calculated assuming spherical symmetry as

Ṁ = 4πr2uρ. (2.15)
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2.3 Parametric study of winds of M-dwarfs

Since the mass-loss rate depends of the velocity and the density, as a result it is possible
to determine the trend of Ṁ with ρ0. Fig. 2.4 presents the relation between mass-loss
rate, base density and temperature plateau (grey shaded area). The solid lines are
given by the equations:

Ṁ ∝ ρ300u∞ ∝

{
ρ2.190 , for low-β
ρ1.800 , for high-β

(2.16)

Equation (2.16) comes from the combination of Equations (2.13) and (2.14). Even
though the terminal velocity and the density at 300 r0 have two different trends with ρ0,
the mass-loss rate increases with ∼ base density squared. Given the linear dependence
of Ṁ with density (Equation (2.15)), why is Ṁ ∝ ρ20? This is because the initial
velocity of the wind, i.e., the one that is required for the wind to pass through the
Alfvén radius, has a linear relation with base density. I.e., the denser the wind, the
larger is its required initial velocity.

Figure 2.4: Mass-loss rate as function of base density and temperature plateau. The
two straight lines are represented by Equation (2.16). The shaded area represents the
minimum and maximum values of mass-loss rate for each value of base density. The blue
shaded area represents the model with 100% open magnetic field lines and the red shaded
area represents the model with only 10% open magnetic field lines (see Section 2.5.2).

The wind achieves the Alfvén velocity at the Alfvén radius rA. The Alfvén radius
determines, along with the mass-loss rate and rotation rate of the star, the amount of
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angular momentum that is carried away by the stellar wind. The angular momentum-
loss rate is

J̇ ∝ Ω⋆r
2
AṀ, (2.17)

where Ω⋆ is the stellar rotation rate. The angular momentum is important to explain
how the observed rotation periods of the stars change as they age (Matt et al., 2015;
Johnstone et al., 2015). In our simulations, we do not consider rotation, so in Fig. 2.5,
we show r2AṀ , a proxy for the angular momentum-loss rate, as a function of base wave
flux.

Figure 2.5: The angular momentum-loss rate, given by the proxy r2AṀ , as a function of
wave flux colour-coded according to base density. The symbol sizes are associated with
magnetic field intensity, which varies from 1 (left set of points) to 10G (top right set of
points). Angular momentum loss rates are larger for larger wave fluxes.

Rotation can alter the position of the Alfvén radius and the mass-loss rate, but
these parameters are more affected in the case of fast rotation. From Fig. 2.5, we
see that for a given value of base density, the angular momentum-loss rate is higher
for higher wave fluxes. The magnetic field intensity is represented by the size of the
symbols. Given that ϕA,0 ∝ ϵ0vA,0 ∝ (δB2)0B0/

√
ρ0, higher values of magnetic fields

show higher values of wave flux, when the density is kept constant. For a given value of
magnetic field, the angular momentum-loss rate decreases with wave fluxes, this trend
is more evident for small B0. In cases with higher B0 the angular momentum-loss rate
have a, roughly constant value, regardless of ϕA,0.
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2.4 Applications of our model

2.4.1 The extension of the chromosphere in inactive or moder-
ately active M dwarfs

The chromospheric size of the present Sun is less than 1% of the solar radius (Aschwan-
den et al., 2001; Suzuki et al., 2013). In contrast, Czesla et al. (2012) showed, by using
the Rossiter-McLaughlin effect, that a younger and active sun-like star, CoRoT-2A,
could have a larger chromosphere extending to 16% of the stellar radius. Suzuki et al.
(2013) also analysed the time evolution of the height of the chromosphere for young
solar-like stars and found that the size of the chromosphere is time dependent and
varies from 10%–20% of the stellar radius. They define the top of the chromosphere
as the distance where the temperature is T = 2× 104 K. We use a different definition
here, as we present below.

We start our simulation in the chromospheric region and we assume by simplicity
that the top of the chromosphere also defines the base of the corona. In the Sun, the
base of the corona starts when the beta parameter (Eq. 2.11) reaches a local minimum
(Gary, 2001; Aschwanden et al., 2001). Below this local minimum, the photosphere
has a high-plasma β, which reaches values of up to 100 (for a magnetic field of ∼ kG).
Above this local minimum, the plasma-β increases towards the corona. For the Sun,
the minimum of plasma β happens at β ≃ 0.01, at a height of ∼ 0.003 R⊙ (Aschwanden
et al., 2001).

We use the same idea here to define the top of the chromosphere/base of the corona
in our simulations. In Fig. 2.2, the crosses indicate the position of the local minimum
(and therefore the base of the corona) for two cases with low base density (dashed and
dash dotted curves) and two cases with high base density (dotted and solid curves). In
Fig. 2.2, for low-β cases the local minimum of β is around 2 r0, while for the high-β,
the local minimum of β is ∼ 1.2 r0. Overall, for all our simulations, we find that low-β
cases have the base of the corona in between 1.7 and 2.7 r0, while for high-β cases, the
base of the corona is in between 1.2 and 2.2 r0.

This process to define the base of the corona also gives us an estimate of the size of
the chromosphere. Fig. 2.6 shows the extension of the chromosphere as a function of
base density where colour represents the magnetic field intensity. The larger the value
of base density (high-β range), the smaller is the chromosphere of the star. Winds
with higher magnetic field intensities show smaller chromospheres. For low-β range,
we observe a large scatter in the chromospheric size.
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From our simulations, we estimate that the size of the chromosphere is around
18% – 174% of the stellar radius, depending on our inputs. The extension of the
chromosphere has a very wide range of values in our simulations and is considerably
larger than that observed by Czesla et al. (2012) and derived by Suzuki et al. (2013)
in the context of solar-like stars. The difference between the results of Suzuki et al.
(2013) and ours can be due to the different types of stars and/or definitions of the top
of the chromosphere used by each work. In our cases, the temperature at the top of the
chromosphere vary from 0.6 to 3.5MK, and, in theirs, it is assumed to be 2 × 104 K.
They also have a transition region, which is not defined in our simulations.

Figure 2.6: Extension of the chromosphere as function base density color-coded accord-
ing to magnetic field intensity.

2.4.2 The wind of the planet-hosting star GJ 436

Cool dwarf stars, especially when more active, emit in X-rays. Here, we follow the
work of Suzuki et al. (2013), and use our wind models to estimate the X-ray emis-
sion of the planet-hosting star GJ 436. This star has measurements of both X-ray
luminosity and mass-loss rate. GJ 436 is an M2.5 dwarf star, located at 10.14 pc
and host to an exoplanet GJ 436b at 0.0287 au (about 14.1 r0). Based on XMM-
Newton EPIC-pn spectrum of GJ 436, Ehrenreich et al. (2015) reported an X-ray flux
of 4.6×10−14 erg s−1cm−2 in the 0.12 – 2.48 keV band, resulting in an X-ray luminosity
of 5.7× 1026 erg/s.
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2.4 Applications of our model

By assuming that the radiative losses in the chromosphere is proportional to the
X-ray luminosity, we can estimate the luminosity from the radiative losses (Pr):

LX =

∫
PrdV (2.18)

where dV is the volume element. Here we perform the integral over 4πr2dr, from
1 < r < 300 r0, but note that only the inner region of the wind, within 2 r0 contribute
significantly to LX . We note however that this underestimates the true X-ray lumi-
nosity of the star. Similar to the Sun, we expect that winds of M dwarfs are X-ray
dark as they flow along open flux tubes (coronal holes) and are X-ray bright inside
closed-field line regions. As in our simulations we only consider open flux tubes (i.e.,
the wind region), the observed X-ray luminosity is used as an upper limit to rule out
certain simulations in our parameter space. With this, we can place an upper limit to
the mass-loss rate of GJ 436. This is presented next.

Fig. 2.7 shows our computed X-ray luminosity as a function of the base density (top)
or energy E = kBTpl (bottom) for all our simulations. We get an X-ray luminosity
ranging from 3.5 × 1025 – 9.5 × 1027 erg s−1 and energy range from 0.05 – 0.7 keV
(corresponding to a wavelength ranging from 17 to 234Å). The energy bound includes
the radiation in the ultraviolet range and also in the X-ray range.

The observed luminosity is marked in Fig. 2.7 by a horizontal line. We see that the
models with base densities smaller than 7×10−15 g cm−3 would give rise to luminosities
similar or smaller to the observed one. These models produce mass-loss rates smaller
than 7.6× 10−15M⊙ yr−1, with Alfvén radius varying from 23 r0 – 75 r0. This puts the
planet orbiting at a distance below the Alfvén radius, in a sub-Alfvénic region. Because
of the sub-Alfvénic interaction, energy can be transported back to the star, potentially
causing star-planet interaction signatures on the star (Saur et al., 2013).

Vidotto & Bourrier (2017) used modelling of stellar wind interactions with upper
planetary atmosphere of the warm-neptune GJ 436b to derive the global characteristics
of the wind of GJ 436. Using this approach they estimated the mass-loss rate to be
(0.5 – 2.5)×10−15M⊙ yr−1, which is within our predictions. However, inspite of the
mass-loss rate agreement, our models predict a local velocity that do not match with
their values. While Bourrier et al. (2016) reported a local velocity of 69 – 91 km s−1

at the orbit of the planet, our models give higher velocities with values < 800 km s−1.
Our local densities are < 2.8 × 10−21 g cm−3, in agreement with theirs (1.34 – 7.02)
×10−21 g cm−3. Overall, the local wind velocity has a higher value in our work, but
density has a similar value, and the combined values give a similar mass-loss rate to
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Figure 2.7: X-ray luminosity from radiative losses as function of the base density (top)
and energy (bottom). The X-ray luminosity observed for GJ 436 is represent by the
shaded area with the respective base density.

Vidotto & Bourrier (2017). By modelling the wind of GJ 436 as an isothermal wind,
Vidotto & Bourrier (2017) found that the Parker wind cannot satisfy simultaneously
the wind density, temperature and velocity reported in Bourrier et al. (2016). They
suggested that this could be due to a different, or additional, acceleration mechanism
for the wind (i.e., other than the thermal forces), such as, for example, the Alfvén-wave
pressure force. Similar to their findings, our model cannot reproduce simultaneously
the wind density, velocity and temperature reported in Bourrier et al. (2016).
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2.5 Discussion

By modelling the Lyman-α transits, other works have also derived the properties
of the wind of GJ 436, as it interacts with the warm Neptune GJ 436b. All these
results are summarised in Table 2.2. It is surprising to see overall agreement between
all these different models. All the works have densities of the same order of magnitude.
Local wind velocities are also all in the same ballpark, although, except for Villarreal
D’Angelo et al. (2021), other models predict a factor of 4 to 8 smaller velocities than
ours. Mass-loss rates of all these works are also of similar magnitude, except for
Kislyakova et al. (2019), who found Ṁ higher than the other works. Maybe the largest
disagreement is on the temperature values: our values are higher by a factor of a few
than the values found by other works.

Table 2.2: Comparison of local stellar wind properties of GJ 436 at the position of GJ
436b for different works.

Velocity (km s−1) Density (10−21 g cm−3) Temperature (MK) Ṁ (10−15M⊙ yr−1)
< 800 < 2.8 < 1.7 < 7.6 this work

69 – 91 1.34 – 7.02 0.36 – 0.46 0.5 – 2.5 Vidotto & Bourrier (2017)
110 3.4 0.41 35 Kislyakova et al. (2019)
170 6.7 0.6 4 set No 8 of Khodachenko et al. (2019)
470 0.5 0.17 2 Villarreal D’Angelo et al. (2021)

Still, the overall agreement indicates that planetary transits can be used as a way to
study stellar wind properties, as proposed by Vidotto & Bourrier (2017). We note how-
ever, that, different models, like the Alfvén-wave driven wind and Parker wind models,
can show similar properties at the orbital distances of exoplanets (Section 2.5.1). As a
consequence, by using only planetary transit observations, it is difficult to distinguish
between different models. Thus, it is more likely that models would only be able to
derive some global characteristics of the wind (like mass-loss rate), but not the detailed
physics of wind acceleration.

2.5 Discussion

2.5.1 Comparison between the Alfvén-wave driven wind and
the Parker wind models

It is interesting to investigate how our results compare to the most commonly-adopted
stellar wind model, namely the isothermal, Parker wind (PW) model. This has been
done, for example, for solar wind simulation (Cohen, 2017), although here we use a
different comparison method. In our comparison, we calculate the isothermal wind
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solution for each of our simulations. One free parameter in the PW is the tempera-
ture. Given that our simulations reach a temperature plateau, we use this temperature
plateau as an input for our PW simulations. While the base density plays an important
role in the temperature profile in the Alfvén-wave driven wind (AWDW) simulations,
this is not the case for a PW. Since the isothermal wind equations are independent of
the density, the base density itself in a PW is a scaling factor for the mass-loss rate.
Below we present a scheme of how we use the outputs of AWDW as a input for the
PW.

ρ0 (AWDW) ⇒

{
⟨Tpl⟩
⟨ρcor⟩

⇒ Parker Wind ⇒

{
u∞ (PW)

Ṁ(PW)

.

For a given set of simulations with same ρ0 in our AWDW model, we extract values of
average temperatures plateau and coronal base densities. These are then used as input
for a PW simulation, which results in values of terminal velocity and mass-loss rate.

Unlike the AWDW simulation, the PW simulation starts at the corona, where the
temperatures have already reached around a million K, therefore the base density needs
to be chosen accordingly. We inspect the results of the AWDW to get the density of
the corona for each simulation (see Section 2.4.1 for definition of the corona). This
density at the base of the corona was used as the input density for the PW.

Fig. 2.8 shows the mass-loss rates, as calculated by Equation (2.15), for the PW
(red dots) and AWDW (blue dots). At the Tpl ≳ 106.34 K, both wind mechanisms
give similar values for mass-loss rate. This is because the velocity and density at large
distances are similar in both models (see section 2.A). In contrast, at the Tpl < 106.34 K,
the PW underestimates mass-loss rate by several orders of magnitude. The difference
is particularly high (≥ 104 times) for cases with base density values smaller than
4× 10−15 g cm−3.

In conclusion, the PW is a good representation of the AWDW for high-β, where
the wind is thermally dominated. However, the PW can underestimate the terminal
velocity and density, and thus mass-loss rate, for the low-β cases, where the wind is
magnetically dominated.

2.5.2 Different parameters of the model

In the AWDW model, we have a considerable number of free parameters: ρ0, B0, T0,
L0,

√
⟨δB2

0⟩, damping type and two parameters to describe the flux tube geometry and
coverage; in opposition to PW model which needs only T0 and ρcor. We investigate
now how these parameters affect the structure of our winds.
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Figure 2.8: Mass-loss rate using Alfvén-wave driven wind (blue dots) and Parker wind
(red dots). The PW mass-loss rate is underestimated for winds with low temperature
plateau, and it is in good agreement with AWDW for high temperatures. The PW do
not extend out to the same temperature range as the AWDW because the solution does
not pass trough the sonic point for those Tpl values.

2.5.2.1 Flux tube geometry

In order to investigate how the flux tube geometry and coverage affect our results, we
run a set of 125 simulations with only 10% of open magnetic field line configuration.
To implement this configuration we use a filing factor of open flux tubes, defined as
f0 = 1

F0
= 0.1, which defines the open flux tubes coverage at the stellar surface. The

open flux tubes have a super-radial expansion until a distance rc, which defines the
extension of the closed-field lines (Vidotto & Jatenco-Pereira, 2006). See sketch in
Fig. 2.9.

For a given S > 2, rc (Kuin & Hearn, 1982; Vidotto & Jatenco-Pereira, 2006) is
defined by

F0 =
Ωc

Ω0

=
A(rc)/r

2
c

A(r0)/r20
=

(
rc
r0

)S−2

, (2.19)

where Ωc and Ω0 are the solid angle at r = rc and r = r0, respectively, S the super
radial expansion exponent and A is the area. We chose S = 4.095 because it gives rise
to an extension of the closed field line region of rc = 3 r0, which is similar to the value
observed in the solar wind (i.e., above rc the magnetic field is purely radial). The area
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Figure 2.9: Sketch of a stellar atmosphere showing regions with closed-field lines and
open-field lines (coronal holes). The coronal holes have super-radial flux tubes (area
A ∝ rS , where S in the super radial expansion factor) until the point rC , beyond which
the flux tubes become radial.

of the flux tube is defined as

A(r) =

{
A(r0)(r/r0)

S, if r ≤ rc

A(r0)(rc/r0)
S(r/rc)

2, if r > rc.
(2.20)

The new configuration (with 10% open magnetic field lines) shows a similar value
of temperature plateau when compared with simulations with 100% open magnetic
field lines. The density at 300 r0 is similar for low-β cases but smaller for high-β cases,
around one order of magnitude. The terminal velocity is similar for high-β cases, but
for low-β, u∞ is considerably smaller, around half of the value. This can be understood
by using an analogy of a pipe: if the aperture of the pipe is reduced, the velocity of the
flow through the pipe increases. Similarly, if the aperture of the pipe is increased, the
velocity of the flow goes down (assuming the same flux in both cases). The mass-loss
rate have the same main trends as the ρ300, as can be seen in Fig. 2.4 (red shaded
area). In spite of changes in density and velocity, overall the mass-loss rates in both
set of simulations are comparable.
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2.5.2.2 Thermal properties

Back to our original geometry, we also run a set of simulations with a higher base
temperature of 5 × 104 K (2.5 times higher than the previous value). Overall, the
temperature of the wind increases, but we found that a higher T0 does not significantly
affect the wind velocity profile. However, the mass-loss increases by around one order
of magnitude when compared with a lower base temperature. This is the same problem
as seen in PW models, namely, that the mass-loss rate is sensitive to the temperature
of the wind.

2.5.2.3 Properties of the waves

As discussed before in Section 2.4.2, our velocity values at the orbit of the planet GJ
436b is much higher than the values reported by Bourrier et al. (2016). In order to
check if we could reproduce the low wind speed at GJ 436b orbit, we run our simulations
with densities (6 – 7)×10−15 g cm−3 (which reproduces the luminosity value observed
for GJ 436) but changing some properties of the waves, namely L0 and

√
⟨δB2

0⟩.
When we run the simulation with L0 = 0.01 r0 (one order of magnitude smaller

than our main simulations), the temperature profile decreases (the factor depends on
the B0 intensity). The velocity profile also shows a small reduction. For example, if we
compare the profiles for ρ0 = 6×10−15 g cm−3 and B0 = 1G, the velocity at the planet
orbit is up = 430 km s−1 using L0 = 0.1 r0 and up = 402 km s−1 using L0 = 0.01 r0. As
we can see, there is a decrease in the velocity, but it is still much higher than the value
observed by Bourrier et al. (2016).

When we run the simulation with
√
⟨δB2

0⟩ = 0.01B0 (one order of magnitude
smaller than our main simulations), the density decreases less than one order of mag-
nitude, the temperature also decreases, but to a lesser extent. The velocity, goes
down very significantly, with the decrease being stronger for higher B0. For instance,
for ρ0 = 6 × 10−15 g cm−3 and B0 = 3G, the velocity at GJ 436b orbital distance is
up = 711 km s−1 using

√
⟨δB2

0⟩ = 0.1B0 and up = 348 km s−1 using
√

⟨δB2
0⟩ = 0.01B0,

which is about half of the previous value. The side effect of using a smaller value of√
⟨δB2

0⟩ is that it affects directly the mass-loss rate resulting in a new value smaller
by around one order of magnitude.

From the discussion presented in Sections 2.5.2.1 to 2.5.2.3, we conclude that, as a
consequence of several free parameters, it might be possible to find a set of inputs that
would reproduce the observations by Bourrier et al. (2016). However, this is beyond
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the scope of this paper and, in this work, we focus on discussing general trends of our
model.

2.6 Conclusions

In this paper, we investigated the general trends of winds of M dwarfs. Our goal
was to derive the main properties of the winds, including properties that could be
observationally tested (size of the chromosphere and lower limits to X-ray luminosities).
For that, we investigated how stellar winds from M dwarfs are affected by variations in
the magnetic field and density at the chromosphere. Overall, we performed more than
300 MHD simulations with Alfvén wave energy fluxes spanning 4 orders of magnitude.

We classified our simulations in low-β (β<1) and high-β (β>1) regimes, which is
related to the adopted values of base density (low and high, respectively). When the
base density is larger, the temperature and density profiles are larger. The velocity
profile has two different regimes: it decreases for low-β and increases for high-β with
base density. To a lesser extent, the temperature, velocity and density profiles increase
with magnetic field intensity (Fig. 2.1).

We calculated the mass-loss rate using Equation (2.15) and found that our mass-loss
rates are proportional to ρ20. The square dependency with base density is associated to
the fact that input velocity, required for the wind to pass trough the Alfvén radius, is
higher for cases with higher base density. We also calculate r2AṀ , which is proportional
to the angular-momentum loss rate J̇ (Equation (2.17)). We found that J̇ increases
overall with wave base flux (Fig. 2.5).

When compared to the Parker wind (PW), we showed that Alfvén-wave driven wind
(AWDW) model accelerates more quickly but both wind mechanisms reach a similar
terminal velocity for high-β. The PW can underestimate density by several orders of
magnitude when compared with the AWDW – this feature is more accentuated for
the low-β regime and is a consequence of both the large-distance density (ρ300) and
terminal velocity (u∞) being underestimated in the PW model (Fig. 2.8). On the
contrary, for high-β, both wind mechanisms give a similar mass-loss rate. This is due
to the fact that the high-β regime is thermally dominated. We conclude that, the
PW is a good representation of the AWDW for high-β, where the wind is thermally
dominated. However, the PW can underestimate the terminal velocity and density, and
thus mass-loss rate, for the low-β cases, where the wind is magnetically dominated.

As applications of our model, we use the local minimum of the plasma beta param-
eter to define the transition between the chromosphere and corona. We found that the
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size of the chromosphere for M dwarf stars is more extended than that of our present-
day Sun. We found that M dwarfs can have a very wide chromosphere extending to
18% – 174% of the stellar radius and is larger for the low-β regime.

Assuming that the X-ray luminosity is proportional to the radiative losses in the
chromosphere, we estimated the X-ray luminosity from our stellar wind models. We
compared our results with the observed X-ray luminosity of GJ 436 to constrain its
mass-loss rate to be Ṁ < 7.6 × 10−15M⊙ yr−1, with local velocities smaller than
800 km s−1, local densities smaller than 2.8× 10−21 g cm−3 and local temperatures 1.4
– 1.7 MK. Overall, our results are in good agreement with works that use Lyman-
α transits to constrain the properties of the stellar wind (Vidotto & Bourrier, 2017;
Kislyakova et al., 2019; Khodachenko et al., 2019; Villarreal D’Angelo et al., 2021). This
indicates that transmission spectroscopy of planetary transits coupled with models can
be used as a way to study stellar wind properties (Vidotto & Bourrier, 2017).
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2.A Further comparison between our wind models
and a Parker wind

Here we present further comparison between the AWDW and the PW, following Sec-
tion 2.5.1. We show in details the differences in the density and velocity profiles and
the ratio of u∞ and ρ300. Fig. 2.10 shows the comparison between the AWDW simu-
lations and the PW simulations for a few selected cases: ρ0 = 9 × 10−15 g cm−3 and
B0 = 1 G (red-solid line) and 8G (green-dashed line). The main difference is that
the AWDW accelerates more quickly than the PW, but both methods reach a similar
terminal velocity. This is due to the fact that once the AWDW reaches Tpl, and thus
most of the wave energy has been deposited in the wind, the wind becomes thermally
driven, similar to a PW. Fig. 2.10-a shows the velocity profile for both methods. It is
interesting to note the similar decay of the three curves at large distance: this is the
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r−2 decay of the density that is seen in all models. The density profile (Fig. 2.10-b)
for the PW displays a more rarefied wind. Here, the coronal density of the PW was
defined as the average density for all the cases with ρ0 = 9× 10−15 g cm−3. We could,
in principle, have scaled the dashed-dot blue curve of the PW to match either the 1-G
or the 8-G model, given that the density in the PW is a scaling factor. This would
force the density at large distances to be the same in the AWDW and PW models, but
then they would deviate from each other at small distances.

Figure 2.10: Comparison between the profiles for Parker wind (blue-dash doted curve)
and Alfvén-wave driven wind with B=1G (red-solid curve) and with B=8 G (green-dashed
curve). (a) velocity profile and (b) density profile.

Fig. 2.11 compares the results from the AWDW and the PW, for u∞ (Fig. 2.11-a)
and ρ300 (Fig. 2.11-b). We see that, for the high base density (high-β), the ratios are
∼ 1, showing that both methods reach similar results. In contrast, for the low base
density regime (low-β), u∞ can be nearly one order of magnitude larger for AWDW
and ρ300 several orders of magnitude larger. Together, these two Figures explain why
the PW deviates from the AWDW solution at low-β (Fig. 2.8).

53



2.A Further comparison between our wind models and a Parker wind

Figure 2.11: Ratio between the PW and the AWDW as function of base density, for
(a) u∞ and (b) ρ300. For low density range, the PW shows smaller values for u∞ and
underestimated ρ300 while for higher densities the two models produce the same result
for u∞ and ρ300.
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