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Abstract 

1. Mycorrhizal associations have massive impacts on ecosystem functioning, but the 

mode and magnitude heavily depend on the mycorrhizal type involved. Different 

types of mycorrhizas are recognized to predominate under different 

environmental conditions. However, the respective importance of climate and soil 

characteristics in shaping mycorrhizal global distributions are still poorly 

understood.  

2. We provide a quantitative and comprehensive global analysis of the main climatic 

and edaphic predictors of the distribution of plants featuring different mycorrhizal 

types. Estimates on per grid-cell relative aboveground biomass of plants holding 

arbuscular mycorrhiza (AM), ectomycorrhiza (EcM) and ericoid mycorrhiza 

(ErM) association were related to a set of 39 climatic and edaphic variables. We 

assessed their relationship by applying a Generalized Additive Models for 

Location, Scale and Shape (GAMLSS).  

3. The best GAMLSS models were able to explain 55%, 41% and 46% of the 

variance in AM, EcM and ErM distribution, respectively. Temperature-related 

factors were the main predictors of distribution patterns for the three different 

mycorrhizal plant types. AM plants are favoured by warm climates, while EcM 

plants’ dominance (and to some extents ErM plants too) is favoured by colder 

climates. 

4. Synthesis: The observed lack of importance of soil drivers challenges the 

predominant view that mycorrhizal plants distribution mainly reflects soil type 

preferences – as related to its nutrient foraging strategies- of the different 

mycorrhizal types. Instead, our results highlight climate -and particularly 

temperature- as the main force shaping the distribution of AM, EcM and ErM 

host plants at the global scale and suggest that climate change can significantly alter 

the distribution of mycorrhizal host plants, with a subsequent impact on ecosystem 

functioning.  
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2.1. Introduction 

Mycorrhizas are mutualistic associations between soil fungi and plants, where host 

plants receive mineral nutrients from fungi and, in exchange, fungi obtain 

photosynthetically derived carbon (C) compounds from plants (Smith and Read 

2008). It is widely recognized that mycorrhizal associations play a key role in the 

functioning of terrestrial ecosystems, affecting plant community composition (Van der 

Heijden et al. 1998, Klironomos et al. 2011), soil formation and structure (Rillig and 

Mummey 2006, Leifheit et al. 2013), and C and nutrient cycles (Read 1991, 

Veresoglou et al. 2012, Phillips et al. 2013, Averill et al. 2014). However, the mode 

and magnitude of mycorrhizal impacts on ecosystem functioning are strongly related 

to the mycorrhizal type involved (Phillips et al. 2013, van der Heijden et al. 2015).  

According to differences in morphology and plant and fungal taxa, seven major types 

of mycorrhizas are distinguished (Smith and Read 2008). Among these types, 

arbuscular mycorrhiza (AM), ectomycorrhiza (EcM) and ericoid mycorrhiza (ErM) 

are the most taxonomically and geographically widespread, being present in the 

majority of terrestrial biomes. It has been estimated that approximately 80% of the 

Earth’s plant species form mycorrhizal associations with AM, EcM and ErM fungi 

(Brundrett and Tedersoo 2018). The majority of plant species is able to form 

mycorrhizal symbiosis of only one type (Wang and Qiu 2006), with only a few 

exceptions in which the same plant species can be colonized by two mycorrhizal fungi 

types (McGuire et al. 2008).  

AM, EcM and ErM associations predominate under distinct edaphic and climatic 

conditions. This differentiation is presumed to be strongly associated to the different 

nutrient uptake strategies among AM, EcM and ErM fungi. For example, EcM and 

ErM fungi are capable of breaking down organic matter through the expression of 

extracellular lytic enzymes, making these associations more suitable for organic soils 

(Read et al. 2004). In contrast, AM saprotrophic abilities are less developed, causing 

AM to mostly rely on inorganic compounds as a source of nutrients, and therefore 

more prevalent in mineral soils (Smith and Smith 2011). Based on these insights, Read 

(1991) and Read and Perez-Moreno (2003) proposed a theoretical model where the 
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abundance of AM, EcM and ErM host plants gradually changes along a latitudinal and 

altitudinal gradient, driven mainly by the effects of climate on decomposition, which 

is ultimately reflected in the accumulation of organic C in the soil and the availability 

of nutrients for plants. According to this model, AM plants dominate in grasslands 

and tropical forests; EcM trees are abundant in temperate and boreal forests; and, 

finally, plants featuring ErM associations predominate in heathlands. 

Since Read’s first approach, only a few attempts have been made to understand 

quantitatively which environmental drivers explain the distribution of distinct types of 

mycorrhizal plants. Menzel et al. (2016) focused on AM and analysed the geographical 

distribution and environmental drivers of AM plants status (obligate, facultative or 

non-mycorrhizal) on a regional scale (Germany). Bueno et al. (2017) examined how 

the number of plant species featuring distinct mycorrhizal traits (type and status) varied 

with different climatic and soil factors at the European scale. Only recently, Steidinger 

et al. (2019) performed a coarse resolution (1 degree) global analysis on mycorrhizal 

trees distribution and its environmental drivers although focusing specifically on forest 

ecosystems. Despite these efforts, the contribution of the different driving forces (e.g. 

dispersal, climatic factors, edaphic characteristics or evolution) in shaping the 

biogeography of mycorrhizal vegetation of the entire plethora of plant functional types 

at global scale and covering all natural biomes and plant growth forms needs better 

understanding. Moreover, most of the previous studies were based on the number of 

plant species capable of forming different mycorrhizal associations, without taking the 

relative abundance of these species in the ecosystems into account. 

A quantitative understanding of the relationships between environmental drivers and 

the relative abundance, in terms of biomass or plant cover, of AM, EcM and ErM host 

plants is important, because the relative abundance of mycorrhizal types largely 

underpins ecosystem functioning. Changes in relative abundance of the different 

mycorrhizal plant types lead to changes in C and nutrient cycling (Phillips et al. 2013, 

Soudzilovskaia et al. 2015), soil processes and structure (Rillig and Mummey 2006), 

and can even cause deeper modifications in plant community assembly (Van Der 

Heijden 2002). In an era of human-induced environmental changes, unravelling the 

relative importance of soil and climatic factors in shaping the geographical distribution 
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of plant species featuring different mycorrhizal types will lead to better predictions of 

changes in ecosystem functioning under a future climate. 

Here we present the first quantitative global analysis of the role of climatic and edaphic 

factors in explaining the distribution patterns of the three main types of mycorrhizal 

plants that covers all natural biomes and includes all plant growth forms. Our analysis 

is based on a high resolution gridded dataset (10 arc-minutes), which includes 

information about 39 environmental variables and the percentage of aboveground 

biomass of plant species featuring AM, EcM and ErM mycorrhizal associations. 

Following Read’s hypothesis, we expect a relatively high contribution of soil properties 

related to organic C content.  

2.2. Methods 

2.2.1. Database assembly 

2.2.1.1.Distribution of biomass fractions of different mycorrhizal associations 

Estimates on the relative aboveground biomass of AM, EcM and ErM mycorrhizal 

associations were obtained from the high-resolution 10 arc-minutes (~315km
2

 around 

the equator) gridded global maps from Soudzilovskaia et al. (2019b). An extended 

description of their procedure is provided in the Supplementary Information. Briefly: 

1) All combinations of continents, 98 Bailey’s ecological regions and 38 land cover 

types were considered for their mycorrhizal association. 2) The dominant species in 

each abovementioned combination were determined following an extensive 

compilation of vegetation surveys (see Supplementary Information in  Soudzilovskaia 

et al. 2019b for a list of surveys used). 3) The mycorrhizal association of each dominant 

species was extracted from a large database on the presence and type of mycorrhizal 

colonization of vascular plant species (36,303 site records for 14,768 plant species) 

(complete database is available in Soudzilovskaia et al. 2019a, Supplementary Table 

S2.3). 4) Each dominant species was attributed to a growth form and the relative 

aboveground biomass of each growth form for each land cover type was estimated 

based on rules detailed in the Supplementary Information. 5) The fraction of biomass 
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of EcM, AM, ErM and non-mycorrhizal plants in each combination of ecoregion, 

continent and land cover type was calculated from the combination of 3. and 4. Finally, 

6) Global maps were obtained by overlaying continents, ecoregions and land cover 

types at 10 arc-minutes and linking the results of 5. to this overlay. While these maps 

are composed of multiple sources of information and subjected to a number of 

conversion factors, their average accuracy was estimated at  80-85% (Soudzilovskaia et 

al. 2019). 

For the purpose of the current paper, non-natural biomes (croplands and urban areas) 

and bare areas were excluded from the analysis to ensure reliability. This exclusion 

was performed using the 2015 Land Cover Initiative map developed by the European 

Space Agency at 300m spatial resolution (https://www.esa-landcover-cci.org/ ) as a 

reference. As a result, a total of 270353 gridded cells were included in the final dataset.  

2.2.1.2.Climatic and edaphic factors 

We assembled a dataset of climatic and edaphic variables that have been proposed to 

be potential drives of mycorrhizal plants distribution at global scale (Read 1991, Smith 

and Read 2008). In total, our dataset includes information about 39 environmental 

variables (see Supplementary information, Tables S2.1 and S2.3). The inclusion of 

this large number of variables allowed us to evaluate the contribution of temperature, 

precipitation, seasonality and soil physicochemical properties to shaping the global 

distribution of different mycorrhizal plant types.  

Climatic variables were obtained from the WorldClim database, Version2  

(http://worldclim.org/version2; Fick and Hijmans, 2017) at 10 arc-min resolution. In 

total 19 bioclimatic variables were included (see Supporting Information Table S2.1). 

These bioclimatic variables are a combination of monthly temperatures and 

precipitation values. The inclusion of the 19 bioclimatic variables allowed us to 

determine potential correlations with seasonality or extreme and limiting 

environmental factors. In addition, Annual Global Potential Evapotranspiration 

(Global-PET) (https://cgiarcsi.community/category/data/; Zomer et al., 2007, Zomer 

et al., 2008) was added to the climatic variables due to its ecological relevance. Global-

https://www.esa-landcover-cci.org/
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PET was calculated according to the Hargreaves equation (Hargreaves et al. 1985) 

which includes mean temperature, daily temperature range and extra-terrestrial 

radiation.  

Data on the main edaphic variables were obtained from the Harmonized World Soil 

Database (HWSD) (http://dare.iiasa.ac.at/; FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012). 

We included in total 12 variables (see Supporting Information Table S2.2) from the 

soil top layer (0-30cm), which were scaled up to 10arc-minutes resolution using the 

mean of the raster cells as aggregation criterion. 

Data on water holding capacity, Total C, Total nitrogen (N), Total phosphorus (P) 

and available P is not available in the HWSD database. We considered these variables 

to have a potential implication on mycorrhizal host plants distribution due to their 

high ecological relevance, and therefore we prioritized their inclusion.  

Available water Capacity, Total C, Total N were obtained from the ISRIC-WISE 

gridded database (https://www.isric.org/explore/wise-databases; Batjes, 2012 ) at 5 by 

5 arc-minutes resolution. Only the soil top layer (0-20cm) was included and scaled up 

to 10 arc-minutes resolution.  

Phosphorus content was obtained from the gridded Global Soil Dataset for use in 

Earth System Models (GSDE) (http://globalchange.bnu.edu.cn/research/soilw/; 

Shangguan et al., 2014) at 30 by 30 seconds resolution. Due to the high number of 

missing values of the different phosphorus measurements, only data of total 

phosphorus and phosphorus extracted by Bray method was retained. The edaphic 

information on these variables was presented in eight different depth layers ranging 

from 0 to 2.3m. For each variable, we calculated the mean of the first four layers 

covering the top layer (0 – 26 cm) and aggregated it to 10-arcmin resolution.  

2.2.2. Statistical analysis 

As climatic variables are highly correlated (Supporting Information, Table S2.3), we 

applied a Principal Component Analysis (PCA) to alleviate the problematics related 

to the high degree of collinearity while maintaining a high degree of variance in climate 

http://dare.iiasa.ac.at/
https://www.isric.org/explore/wise-databases
http://globalchange.bnu.edu.cn/research/soilw/
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variables. The first two axes (PC1 and PC2) of the principal component analysis 

explained 79.6% of the total variance in climatic data. PC1 was mainly related to 

temperature variables; while PC2 incorporated mainly precipitation-related variables 

(Supporting Information Figure S2.1).  Soil factors were examined individually due to 

the low explanatory power of the principal components and difficulties with the 

ecological interpretation of the PCA axes of the soil variables (see Supporting 

Information Figure S2.2).  

Generalized Additive Models for Location, Scale and Shape (GAMLSS) were fitted 

to relate the percentage of biomass of AM, EcM and ErM plants, respectively, to the 

soil factors and PC1 and PC2 of the climatic factors using the “gamlss” package. A 

GAMLSS allows fitting flexible regression and smoothing models and relaxes the 

assumption of the exponential family distribution for the response variable, replacing 

it by a general distribution family.  Models were fitted using a zero-inflated beta 

distribution, which is appropriate for modelling proportional data that contain a high 

proportion of zeros. The smooth functions of each predictor were restricted to a 

maximum of 3 degrees of freedom, allowing for non-linearity while detecting only 

general trends and avoiding overfitting issues. Assuming that different mycorrhizal 

plant types may vary independently to environmental drivers, EcM, AM and ErM 

plant distributions were modelled separately. For model simplification, interaction 

terms were not included.  

Model selection was performed by testing competing models that included a set of 

variables within which each variable explained at least 5% of the data variance, had a 

Pearson pairwise correlations lower than 0.6 (see Supporting Information Table S2.4) 

and Variance Inflation Factors (VIFs) lower than 3. This procedure allowed us to 

select for sets of non-correlated variables with high explanatory power and to avoid 

including suppressive variables that would obscure the interpretation of the models. 

In total, we tested 18 different competing models for AM plant distribution, each of 

which included 8 different variables, 6 competing models for EcM plant distribution 

(each including 6 different variables) and 2 competing models for ErM plant 

distribution (each including 3 variables) (see Supplementary information Tables S2.5, 
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S2.6 and S2.7). For each mycorrhizal plant type, the best model was selected according 

to the lowest Bayesian Information Criterion (BIC). 

After the best models have been selected, a further variable selection was performed. 

We removed non-significant variables (with p-value >0.05) and variables with low 

relative importance in the model. We considered that a variable had little explanatory 

power when the effect of removing the variable did not decrease the Pseudo R
2

 

(Nagelkerke 1991) with more than 1%. Finally, degrees of freedom of the smooth 

terms were reduced to preserve only clearly non-linear patterns.  

The presence of spatial autocorrelation (SAC) in AM, EcM and ErM final model 

residuals was tested using Moran’s I correlograms with the “sp.correlogram” function 

in the “spded” package. Moran’s tests confirmed the presence of SAC in the model 

residuals. The existence of SAC may lead to an overestimation of degrees of freedom 

and Type I errors may be strongly inflated (Legendre 1993). The presence of SAC 

can be alleviated by 1) Including spatial coordinates explicitly in the model as 

covariates: This can be problematic since they could covary with the environmental 

variables present in the model (Dormann 2007, Miller et al. 2007), which can obscure 

the interpretation of the relative importance of the predictors. 2) Accounting for spatial 

autocorrelation in model residuals: There is a wide range of methods available in the 

mainstream software that allow alleviating SAC in model residuals (Dormann et al. 

2007). However, their implementation in the context of a zero-inflated beta 

distribution is still extremely limited. This problem is even increased by the large 

number of data points included (270353), which makes the computation of the spatial 

models unfeasible.  

Due to these technical limitations, no correction of SAC could be applied to our global 

high-resolution data. However, filtering the dataset by distances where SAC is 

significantly reduced as they decrease exponentially with distance (see Supplementary 

Information Figure S2.3) demonstrated that the presence of SAC does not alter the 

importance of the predictors in the final models and therefore their interpretation is 

not biased due to the autocorrelation (more detailed information about the reduced 

models is provided in the Supplementary Information). As the main goal of the 



Chapter 2 

24 
 

models is to detect important predictors of mycorrhizal plants distribution and not to 

serve as a predictive tool, we further discuss the output of the model with the complete 

dataset.  

The final models were validated by 10-fold cross-validation. A difference of less than 

10% between the RMSE (root mean squared error) of the final models and cross-

validated models was used as a criterion for model validity. Both in AM, EcM and 

ErM models, the difference was lower than 5%. 

Statistical analysis was performed using R 3.5.3 (R Core Team 2021) and gridded data 

was processed using ArcGis v10.2.2. 

2.3. Results 

The model selection applied to the AM host plant distribution retained in total 2 

different climatic and soil predictors: temperature-related factors (PC1), and bulk 

density. Together, these predictors were able to explain 55% of the variance in AM 

plant distribution (as indicated by Pseudo-R
2

). PC1 was, by far, the best single 

predictor, providing 44% of the total variance explained by the model. The model 

describes a positive logistic relation between AM host plant relative abundances and 

temperature-related factors (Figure 2.2a). These results suggest that AM plants 

dominate temperate and warm climates. Soil properties had little influence on the 

distribution of  AM plants. Bulk density explained only 2% of the variance (see Table 

2.1). The difference between the sum of Pseudo-R
2

 of each variable (0.46) and the 

Pseudo-R
2

 of the final model (0.55) indicates that 9% of the variance explained is 

shared between the two predictors.  
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Figure 2.1: Predicted relation between AM (a), EcM (b) and ErM (c) relative abundances and 

the environmental factors maintained in the best models. Each relation was calculated setting 

the rest of the variables to the mean value. Light coloured shades represent the region within 

the upper and lower 95%-confidence limits. Numbers between brackets in the x-axes 

correspond to the individual variance explained by each factor in the models. 

For the relative abundance of EcM plants, the predictors retained by the best model 

were temperature-related factors (PC1)  and base saturation. This set of predictors 

explained 41% of the total variance (Table 2.1). Similar to the patterns for AM, 

temperature-related factors arose as the most important predictor of EcM plant 

distribution, explaining 29% of the variance (Table 2.1). Figure 2.2b shows that EcM 

plants relative abundance peaks at relatively low values of PC1, and decreases 

exponentially at higher PC1 values. This suggests that EcM plants dominate under 

cold (but not extremely cold) climates. In contrast to the AM model, soil properties 

played a more important role in explain EcM plants distribution. Although only base 

saturation remained in the final model, it was able to explain 8% of the variance. The 

model output shows that the dominance of EcM plants is mainly favoured by base 

saturation values between 40-70% (Figure 2.2b). 
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Table 2.1: Predictors, GAMLSS-estimated degrees of freedom (edf), t-value, p-values, Pseudo-

R
2

 of the final model for each mycorrhizal plant type and the Pseudo-R
2

 that is attributed to 

each individual variable included in the final model. 

 Predictor edf t value p-value Pseudo-R
2

 
Contribution to 

Pseudo-R2* 

 

AM 

Bulk density 2 -98.94 <0.001 
 

0.55 

0.02 

PC1 climatic 

factors 
1 449.42 <0.001 0.44 

EcM 

Base saturation 2 -54.58 <0.001 

0.41 

0.08 

PC1 climatic 

factors 
3 -103.51 <0.001 0.29 

ErM 
PC1 climatic 

factors 
2 140.2 <0.001 0.46 0.46 

*Due to the presence of joint effects (which refers to the shared contribution in the final model), the sum 

of the independent contribution of each variable to the model Pseudo-R
2

 does not necessarily 

approximate to the Pseudo-R
2

 of the final model.  

For ErM plant distribution, only PC1 of climatic variables was retained in the final 

model, explaining 48% of the variance. Figure 2.2c indicates that ErM relative 

abundance is favoured by both extremely cold and warm temperatures (low and high 

PC1 values). However, the rapid increase in high values of PC1 had higher 

uncertainties associated which indicate that predictions in that temperature range are 

less reliable and possibly influenced by the low number of points. 

Examination of the model predictions and residuals (Figure 2.1 a-f), suggests that our 

sets of predictors were able to capture a high degree of accuracy of the global patterns 

in the distribution of AM, EcM and ErM host plants.  
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Figure. 2.2: Predicted global distribution of AM (a), EcM (b) and ErM (c) mycorrhizal host 

plants and prediction residuals (d-f); here only the 5% of data points with the highest residual 

values are depicted. Light blue areas denote non-natural biomes, bare areas or regions for 

which no environmental data was available. Residues are expressed as the difference between 

predicted and observed AM , EcM, and ErM plant relative abundances. Red points (positive 

values) indicate zones where the predicted plant relative abundance was overestimated by the 

model and blue points (negative values) indicate underestimations.  

2.4. Discussion 

This study is the first global data-based analysis of the environmental variables (climatic 

and edaphic) explaining the global distribution patterns of AM, EcM and ErM 

mycorrhizal plants. The fitted GAMLSS models revealed that climatic factors were 
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the main predictors for all mycorrhizal plant types. In contrast, soil properties played 

a secondary role in explaining mycorrhizal plants distribution at global scale. 

The conclusion that edaphic factors do not control mycorrhizal plants distribution 

may be questioned based on three arguments: 1) The larger extent of unaccounted 

variation in soil data compared to climate may lead to an underestimation of soil 

importance. However, the soil data used in this analysis has been proven to be robust 

enough to detect association patterns with above- and below-ground plant traits at 

global scales (Maire et al. 2015, Freschet et al. 2017), which supports the reliability of 

our results. This suggests that the patterns detected within our study reflect the true set 

of important predictors. 2) The theoretical overlap between soil properties and 

climatic condition may act as a confounding factor in detecting their relative 

importance in our models. However, although soil properties are theoretically 

influenced by climate (e.g., soil organic stocks are affected by temperature regimes), 

their actual values result from complex interactions between climatic, geochemical and 

biotic conditions (Davidson and Janssens 2006, Doetterl et al. 2015). In line with this, 

our dataset shows that, at global scale, the principal components of climatic factors 

and soil properties are not highly correlated (see Supplementary Information Table 

S2.4), reinforcing the role of climate as a main driver of large scale distribution of 

mycorrhizal plants. 3) The resolution of mycorrhizal plant maps (10 arc-minutes) may 

not be appropriate to capture the impacts of small scale variation of soil properties 

and, consequently, may reduce their explanatory power in the final models. However, 

given that the used resolution captures the main patterns in global soil distribution 

(Batjes 2012) our models are likely capable of capturing global scale trends. 

Thus, Read’s paradigm of the latitudinal separation between AM, EcM and ErM 

plants being a reflection of their differential ability to take nutrient from organic 

sources (Read 1991, Read and Perez-Moreno 2003) is not supported by our findings. 

Our results also partially contradict the conclusion drawn by Steidinger et al. (2019), 

who as well found a strong climatic control over mycorrhizal trees distribution. 

Steidinger et al. (2019) related the mechanisms explaining this pattern purely to 

differences in decomposition rates, while they did not find a direct link with soil 
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physicochemical properties. Our results suggest that other mechanisms play a role, as 

detailed below. 

2.4.1. Environmental predictors of AM plants distribution 

Our results clearly highlight the impact of climate (especially temperature) on AM 

plant distributions. Several studies have reported temperature as an important limiting 

factor for the growth of AM extraradical mycelium (Rillig et al. 2002, Gavito et al. 

2003, Heinemeyer and Fitter 2004). Also, a reduction of intraradical colonization has 

been commonly reported at temperatures lower than 15°C (Hetrick and Bloom 1984, 

Gavito and Azcón–Aguilar 2012). As an alternative mechanism, Veresoglou (2019) 

recently proposed that irradiance reduction in higher latitudes contributes to a 

reduction of AM fungi responsiveness, which may contribute to the detected decline 

of AM plant abundance in colder climates. In line with these studies, our findings 

suggest that the physiological restrictions of AM fungi to develop and provide benefits 

to its plant partner at lower temperatures might be a primarily important driver of AM 

plant distribution at global scale, independent of soil properties.  

In contrast, soil properties were not relevant in explaining AM abundances (Table 

2.1). Especially surprising is the absence of soil P impacts in the final AM best model, 

which contradicts the view of AM associations being a key adaptation for P uptake. 

This view was already challenged by previous research. For instance, Soudzilovskaia 

et al. (2015a) reported no significant correlation between P limitation and AM root 

colonization. Similarly, using a meta-analysis approach,   Allison & Goldberg (2002) 

showed that changes in P availability do not have a consistent effect on mycorrhizal 

infection at plant community level. These results indicate that, although P availability 

influences the performance of the plant-fungi relationship at the plant species level 

(Treseder 2013), this does not necessarily translate into P availability driving AM 

distribution patterns at a global scale. 

What is clear from these results is that climatic conditions are deeply affecting the 

global biogeography of AM associations. Therefore, the increase of global 

temperatures expected for next decades (IPCC 2014) can potentially modify the 
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distribution range of AM plants and therewith their impacts on the functioning of 

terrestrial ecosystems.  

Although climatic and soil factors were able to explain a large part of the variability in 

AM plant distribution, the model predictions tended to overestimate AM abundances 

in tropical zones (mainly central Africa) and underestimate abundances in temperate 

zones (Figure 2.1a and Figure 2.1d). These mismatches may be related to the higher 

proportion of facultative AM plants in northern latitudes (Hempel et al. 2013, Menzel 

et al. 2016, Bueno et al. 2017) which suggest a differentiation in the environmental 

requirements between obligate and facultative AM plants. Also, the evolutionary and 

biogeographic history influenced by past geological and climatic episodes (such as 

tectonic movements, uplift of mountain ranges, climatic stability in different periods) 

and past human-induced changes (Kreft and Jetz 2007), may influence the global 

distribution patterns of mycorrhizal vegetation and their correlation with 

environmental factors (e.g., different phylogenetic groups may have different 

adaptations to similar environments which could lead to a weaker correlation with 

environmental factors). Recent research also suggests that the ability of certain AM 

fungal species to colonize leaf litter may contribute to a higher abundance of this 

association in organic soils (Bunn et al. 2019).  Incorporating information about 

specific fungal functional traits and host identities will be key in future studies aimed 

to better understand AM plant biogeographical patterns.  

2.4.2. Environmental predictors of EcM plants distribution 

EcM plants relative abundance was mainly explained by temperature-related factors, 

but showed trends opposite to those of AM. EcM plants showed preferences for 

moderately cold climates, which is consistent with their greater abundance in Northern 

temperate and boreal zones (Soudzilovskaia et al. 2019). This climatic range possibly 

relates to the physiological adaptations of EcM plants present in boreal–temperate 

ecotones and their fungal partners to tolerate cold temperatures and frost periods 

(Sakai and Weiser 1973, Strimbeck et al. 2008, Kilpeläinen et al. 2016). Consequently, 

a temperature rise can also have serious consequences for EcM plant distributions.  
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Within the three mycorrhizal plant types studied, EcM plant distribution predictions 

by the model had the lowest accuracy. The model reflects the EcM distribution 

patterns in the northern hemisphere well, although with a tendency to underestimate 

its relative biomass; see Figure 2.1e. In contrast, EcM abundance in tropical areas is 

not well represented, with a clear underestimation (Figure 2.1b and Figure 2.1e). This 

is especially visible in certain regions of central Africa where the EcM monodominant 

stands cannot be predicted by climatic and soil properties. This area of the Africa 

continent is mainly dominated by EcM plants of the subfamily Detarioideae (family 

Fabaceae) (de la Estrella et al. 2017, Tedersoo 2017). These species are suggested to 

proliferate in nutrient-poor and acidic soils (Campbell 1996) where specific traits of 

ectomycorrhizal fungal communities (e,g. the ability to obtain N from organic sources) 

may give them advantage over AM associations (Alexander and Högberg 1986, 

Högberg 1986).  However, our model does not support this hypothesis since 

differences in soil fertility were not able to explain EcM plant distribution in these 

areas. It is likely that a combination of specific fungal and plant traits (e.g., high host 

specificity, poor seed dispersal, shade tolerance) create positive feedbacks resulting in 

a higher proportion of EcM plant abundance in these tropical areas (Peh et al. 2011). 

Another potential reason of a poor predictive power of our models in tropics is the 

limited amount of information about EcM plants in tropical areas. Therefore the EcM 

distribution map is likely to have higher uncertainties in these regions.  

Altogether, with respect to EcM plant abundance, our results indicate that, although 

climatic conditions and soil properties play an important role in explaining EcM plant 

distribution, other complex ecological interactions between EcM fungal communities, 

their host plants and other non-EcM plants may influence the biogeography of EcM 

associations at a global scale. Increasing the information about distribution of EcM 

plants in tropical areas is crucial for getting a better understanding of the biogeography 

of this association. 

2.4.3. Environmental predictors of ErM plants distribution 

The distribution of ErM plants has been traditionally associated with harsh 

environments, characterized by nutrient-poor and acidic soils (Read 1991). This has 
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been related to the ability of ErM fungi to produce hydrolytic and oxidative enzymes 

(Cairney and Burke 1998) that would increase the fitness of their symbiont in these 

environments. However, our results suggested that, at a global scale, the abundance of 

plants capable to form ErM association is influenced mainly by temperature-related 

factors (Table 2.1). The strong contribution of temperature to explaining the 

distribution of ErM plants may be a reflection of their physiological adaptations to 

tolerate frost events (Marian et al. 2004) and therefore to survive in extreme 

temperatures where other plants are unable to establish.   

Unexpectedly, soil conditions were only weakly correlated to the abundance of ErM 

plants (Table 2.1). The fact that soil properties were not a good proxy for ErM plants 

abundances could indicate the complexity and heterogeneity of strategies of ErM fungi 

to use organic substrates as a resource of nutrients. However, little information is 

available about ErM fungal traits or Ericaceae niche preferences that allow a deeper 

exploration of these results. 

2.5. Concluding remarks  

Our results point at temperature-related factors as the main predictors – instead of soil 

properties - for the global distribution of the three most abundant mycorrhizal plant 

types. The observed lack of importance of soil drivers contradicts the traditional view 

of climate-driven soil properties, such as the rate of organic matter decomposition and 

nutrient availability as the ultimate mechanisms explaining the latitudinal distribution 

of mycorrhizal plant types (Read and Perez-Moreno 2003, Smith and Read 2008, 

Phillips et al. 2013, Steidinger et al. 2019). In contrast, our findings support the role 

of temperature as a main driving force affecting the global distribution of plant 

ecological strategies (Moles et al. 2014), and reinforces the view that mycorrhizal type 

constitutes an important part of these strategies. We suggest that the latitudinal 

transition between AM, EcM and ErM plants is likely to be associated with ecological 

mechanisms that involve direct effects of climate on plant and fungi performance and 

survival. In line with this hypothesis, the indirect effects of climate on decomposition 

and nutrient availability would play a secondary role at large scale.   
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Given that our results point to climate as the main force shaping the distribution of 

AM, EcM and ErM host plants at the global scale, and taking into account the 

importance of mycorrhizas on ecosystem functioning (Phillips et al. 2013), we suggest 

that climate change can significantly alter the distribution of mycorrhizal host plants, 

with subsequent impact on the functioning of terrestrial ecosystems and provisioning 

of associated ecosystem services. However, an accurate prediction of changes in 

mycorrhizal vegetation abundances under future climatic scenario will require 1) 

higher resolution data of mycorrhizal plants distribution and 2) higher quality soil data 

and 3) to increase the knowledge of mycorrhizal associations in plant species that have 

not been investigated yet to extend the analysis beyond the dominant species. This will 

allow to account for the large heterogeneity of soil properties and to evaluate the 

importance of smaller-scale processes that could not be considered in this work.  
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The data used in this research is compiled by joining publically available datasets:  

 Mycorrhizal abundance maps: 

https://www.biorxiv.org/content/10.1101/331884v2; DOI: 10.1101/331884 

 Climatic data: WorldClim database, Version2 

(http://worldclim.org/version2) 

 Annual Global Potential Evapotranspiration (Global-PET):  

https://cgiarcsi.community/category/data/ 

https://www.biorxiv.org/content/10.1101/331884v2
https://cgiarcsi.community/category/data/
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 Soil data:  

o Harmonized World Soil Database (HWSD): http://dare.iiasa.ac.at/ 

o Available water Capacity, Total C, Total N:  ISRIC-WISE gridded 

database (https://www.isric.org/explore/wise-databases) 

o Phosphorus content: Global Soil Dataset for use in Earth System 

Models (GSDE) (http://globalchange.bnu.edu.cn/research/soilw) 

2.9. Supporting information 

2.9.1. Assembly of mycorrhizal vegetation maps 

Soudzilovskaia et al, 2019  constructed the maps the biomass fractions of different 

mycorrhizal plant types, assigning values of mycorrhizal biomass fractions to in all 

possible combinations of continents, 98 Bailey’s ecological regions and 38 land cover 

types (from here onwards referred to as ‘’combination’’). The estimated fraction of 

each mycorrhizal type and of each growth form within each combination was based 

on the dominant plant species occurring in combinations, based on vegetation records 

(using for this purpose 1,568 sources of vegetation surveys, conducted in each 

combination). The maps construction process generally consisted of four steps 

(summary of which is provided below; for more information please consult 

Soudzilovskaia et al, 2019). 

Step 1. Assigning mycorrhizal association to the dominant species within each 

combination. This information was extracted from a large database on the presence 

and type of mycorrhizal colonization of vascular plant species (36,303 plant species by 

site records) (http://biorxiv.org/cgi/content/short/717488v1). This information was 

provided by published reviews, data compilations, previously neglected or recent case 

studies on the type of mycorrhizal colonization (1,565 sources). By assembling the 

database classification of mycorrhizal type for a given species was performed following 

definitions of Brundrett and Tedersoo (2018) and based on the description of 

morphological criteria provided by the authors of a respective publication. Plant 

http://dare.iiasa.ac.at/
https://www.isric.org/explore/wise-databases
http://globalchange.bnu.edu.cn/research/soilw
http://biorxiv.org/cgi/content/short/717488v1
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records where the presence of intracellular arbuscules, coils or pelotons was 

corroborated were classified as AM, ErM or Orchid Mycorrhiza (OM), respectively. 

For EcM, the presence of a Hartig net or a well-developed mantle (>1 hyphal layer) 

was required. All plants of the families Diapensiaceae and Ericaceae were considered 

ErM, except for Enkianthus (AM), Arbuteae, Pyroleae, Monotropeae and 

Pterosporeae (all subtypes of EcM). 

Because of multiple incorrect reports and alternative definitions for mycorrhizal types,  

plants were considered to belong to a given mycorrhizal type, only when this was 

supported by multiple independent studies and the proportion of conflicting reports 

was <50%. In other cases, the plant species were considered to feature a mixed type 

of colonization (for instance to be AM/EcM). Non-mycorrhizal species were assigned 

according to Brundrett, 2009 & 2017. While misdiagnosis of mycorrhizal type might 

be a problem in general  (Bueno et al. 2019, Sun et al. 2019, Tedersoo et al. 2019) it 

is unlikely to have majorly affected our current analysis as the underlying maps were 

based on pre-dominant species only for which more consensus on mycorrhizal 

associations tends to exist, as such species  are typically studied more extensively.   

Step 2. Assigning growth form to each dominant species. This was done based on the 

vegetation records for each combination.    

Step 3. Estimation of fractions of living biomass of each plant growth form within each 

combination. In these estimates, the following coefficients to translate information of 

plant growth forms into biomass fractions of plants were used:  

- in forests that consist of two vegetation layers (trees and herbaceous/dwarf 

shrub understory vegetation), trees contribute 90±5% of the biomass, and 

the understorey vegetation comprises 5-10% of biomass;  

- in forests that encompass a dense layer of shrubs, trees contribute 70±15% 

of the biomass, shrubs constitute 20±10% of biomass and understorey 

herbaceous/dwarf shrub layer constitutes 20±10%.  

- In shrublands, shrubs account for 90±5% of the biomass, and herbaceous 

vegetation 10±5% of the biomass.  
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- Savannahs and forested steppes to harbor 30±10% of the biomass in trees, 

30±10% of the biomass in shrubs, and the remaining biomass in herbaceous 

vegetation.  

Step 4. Calculation of biomass fractions of mycorrhizal types and mapping those. The 

estimated proportion of a given mycorrhizal type per growth form was combined with 

the estimated growth forms biomass fractions to calculate the average biomass fraction 

of EcM, AM, ErM and non-mycorrhizal associations for each combination.  

Finally, by overlaying the raster map of Bailey ecoregions, provided by the Oak Ridge 

National Laboratory Distributed Active Archive Center (10 arcmin), with the raster 

ESA CCI land cover dataset, spatially aggregated to 10 arcmin and a polygon map of 

continents, rasterized at 10 arcmin, global maps of mycorrhizal type association were 

created. 

The maps were validated using four independent datasets: (i) forest biomass structure 

for Eurasia, (ii) a global dataset of forest biomass structure used for an analysis of 

mycorrhizal impacts on carbon vs nitrogen dynamics, (iii) estimates of mycorrhizal 

associations in the USA based on remote sensing, and (iv) West Australian map of 

mycorrhizal root abundance (Soudzilovskaia et al, 2019).  

The maps of mycorrhizal vegetation have been assembled based on multiple 

published datasets, using a number of conversion factors. These conversions, as well 

as the fact that the plant species distribution data originates from multiple sources, 

constitute important uncertainty sources in the dataset. The average uncertainty of the 

biomass fractions of mycorrhizal plants per grid cell is 15-20% (Soudzilovskaia et al. 

2019).  
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2.9.2. Environmental predictors 

Table S2.1: List of bioclimatic variables included in the final dataset 

Abbreviation Meaning 

BIO1 Annual Mean Temperature 

BIO2 Mean Diurnal Range (Mean of monthly (max temp - min temp)) 

BIO3 Isothermality (BIO2/BIO7) (* 100) 

BIO4 Temperature Seasonality (standard deviation *100) 

BIO5 Max Temperature of Warmest Month 

BIO6 Min Temperature of Coldest Month 

BIO7 Temperature Annual Range (BIO5-BIO6) 

BIO8 Mean Temperature of Wettest Quarter 

BIO9 Mean Temperature of Driest Quarter 

BIO10 Mean Temperature of Warmest Quarter 

BIO11 Mean Temperature of Coldest Quarter 

BIO12 Annual Precipitation 

BIO13 Precipitation of Wettest Month 

BIO14 Precipitation of Driest Month 

BIO15 Precipitation Seasonality (Coefficient of Variation) 

BIO16 Precipitation of Wettest Quarter 

BIO17 Precipitation of Driest Quarter 

BIO18 Precipitation of Warmest Quarter 

BIO19 Precipitation of Coldest Quarter 
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Table S2.2: List of soil physicochemical properties included in the final dataset obtained from the Harmonized World Soil Database 

(HWSD), the ISRIC-WISE gridded database and the Global Soil Dataset for use in Earth System Models (GSDE). 

Source Soil properties Abbreviation Units 
Original grid 

cell size 
Comments 

HWSD 

Sand Fraction Sand % wt. 
30 by 30 arc-

seconds 
 

Silt Fraction Silt % wt. 
30 by 30 arc-

seconds 
 

Clay Fraction Clay % wt. 
30 by 30 arc-

seconds 
 

Bulk density Bulk density kg/dm3 
30 by 30 arc-

seconds 

Calculated with the Equations developed 

by (Saxton et al. 1986) 

Reference bulk 

density 

Ref bulk 

density 
kg/dm3 

30 by 30 arc-

seconds 
SOTWIS Bulk Density estimation 

Organic carbon Org C % weight 
30 by 30 arc-

seconds 
 

pH pH 
(H2O) -

log(H+) 

30 by 30 arc-

seconds 
pH measured in a soil-water solution 

Cation exchange 

capacity 
Cat exc cmol/kg 

30 by 30 arc-

seconds 
 

Base saturation Base sat % 
30 by 30 arc-

seconds 
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Total exchangeable 

bases 

Total exc 

bases 
cmol/kg 

30 by 30 arc-

seconds 
 

Calcium carbonate 

content 
CaCO3 % weight 

30 by 30 arc-

seconds 
 

Electrical 

conductivity 
Conductivity dS/m 

30 by 30 arc-

seconds 
 

ISRIC-

WISE 

Available Water 

Capacity 
TAWC c/m 

5 by 5 arc-

minutes 
 

Total Carbon Total C g/kg 
5 by 5 arc-

minutes 
 

Total Nitrogen Total N g/kg 
5 by 5 arc-

minutes 
 

C/N ratio C/N  
5 by 5 arc-

minutes 
 

GSDE 

Bray Phosphorus Bray P ppm 
30 by 30 arc-

seconds 

The amount of phosphorous using the 

Bray1 method 

Total Phosphorus Total P % 
30 by 30 arc-

seconds 
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2.9.3. Statistical analysis 

Table S2.3: Pearson correlation matrix of climatic factors. Numbers in red indicate predictors with correlation >0.6 

 
Evapo

T 

bio

1 

bio

2 

bio

3 
bio4 bio5 bio6 bio7 bio8 bio9 

bio 

10 

bio 

11 

bio 

12 

bio 

13 

bio 

14 

bio 

15 

bio 

16 

bio 

17 

bio 

18 

bio 

19 

Evapo

T 
1,00 

0,9

5 

0,6

4 

0,8

7 

-

0,79 
0,94 0,88 

-

0,71 
0,82 0,87 0,94 0,90 0,14 0,26 

-

0,37 
0,39 0,23 

-

0,31 

-

0,01 

-

0,12 

bio1  
1,0

0 

0,4

2 

0,9

1 

-

0,89 
0,88 0,97 

-

0,84 
0,82 0,93 0,93 0,98 0,29 0,38 

-

0,21 
0,30 0,35 

-

0,15 
0,10 0,05 

bio2   
1,0

0 
0,42 

-

0,21 
0,66 0,27 

-

0,07 
0,40 0,36 0,55 0,33 -0,31 

-

0,18 

-

0,56 
0,43 

-

0,21 

-

0,54 

-

0,30 

-

0,43 

bio3    1,00 
-

0,95 
0,71 0,94 

-

0,90 
0,71 0,86 0,75 0,95 0,42 0,50 

-

0,09 
0,24 0,47 

-

0,03 
0,24 0,14 

bio4     1,00 
-

0,62 

-

0,96 
0,98 

-

0,65 

-

0,86 
-0,69 

-

0,96 
-0,50 

-

0,55 
0,00 

-

0,15 

-

0,52 

-

0,07 

-

0,28 

-

0,23 

bio5      1,00 0,77 
-

0,54 
0,78 0,83 0,98 0,79 -0,01 0,10 

-

0,41 
0,36 0,07 

-

0,36 

-

0,15 

-

0,14 

bio6       1,00 
-

0,94 
0,75 0,93 0,83 1,00 0,42 0,48 

-

0,07 
0,20 0,45 

-

0,01 
0,20 0,18 

bio7        1,00 
-

0,59 

-

0,82 
-0,62 

-

0,92 
-0,53 

-

0,56 

-

0,07 

-

0,09 

-

0,54 

-

0,14 

-

0,31 

-

0,29 

bio8         1,00 0,63 0,82 0,77 0,24 0,37 
-

0,20 
0,37 0,34 

-

0,15 
0,23 

-

0,12 

bio9          1,00 0,86 0,93 0,25 0,31 
-

0,18 
0,21 0,28 

-

0,12 

-

0,01 
0,17 

bio10           1,00 0,85 0,07 0,18 
-

0,33 
0,34 0,15 

-

0,29 

-

0,07 

-

0,08 

bio11            1,00 0,40 0,48 
-

0,11 
0,24 0,45 

-

0,05 
0,19 0,14 

bio12             1,00 0,94 0,60 
-

0,21 
0,96 0,66 0,86 0,66 
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bio13              1,00 0,39 0,07 0,99 0,45 0,84 0,47 

bio14               1,00 -0,78 0,43 0,99 0,57 0,81 

bio15                1,00 0,02 
-

0,76 
-0,16 

-

0,62 

bio16                 1,00 0,49 0,85 0,50 

bio17                  1,00 0,61 0,84 

bio18                   1,00 0,44 

bio19                    1,00 
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Table S2.4: Pearson correlation matrix of soil predictors and the first two principal components of climatic factors. Numbers in red 

indicate pairs of predictors with correlation >0.6 

 

Sa

nd 

Sil

t 

Cl

ay 

Bulk 

density 

Ref bulk 

density 

Or

g C 

p

H 

Cat 

exc 

Bas

e sat 

Total 

exc 

bases 

Ca

CO

3 

Condu

ctivity 

TA

WC 

Tot

al C 

Tot

al N 

C/

N 

Bra

y P 

Tot

al P 

PC1_cl

imatic 

PC2_cl

imatic 

Sand 
1,

00 

-

0,

82 

-

0,

70 

0,38 0,83 

-

0,2

2 

-

0,

10 

-

0,5

0 

-

0,14 
-0,47 

-

0,07 
-0,02 

-

0,19 

-

0,11 

-

0,18 

0,

11 

0,1

7 

-

0,0

9 

-0,04 0,16 

Silt  
1,

00 

0,

16 
-0,33 -0,47 

0,2

5 

0,

11 

0,4

6 
0,19 0,37 0,02 0,02 0,31 0,18 0,26 

0,

05 

-

0,1

1 

0,1

7 
-0,29 -0,20 

Clay   
1,

00 
-0,24 -0,85 

0,0

8 

0,

03 

0,2

8 
0,00 0,35 0,09 0,01 

-

0,06 

-

0,03 

-

0,02 

-

0,

25 

-

0,1

5 

-

0,0

5 

0,43 -0,02 

Bulk 

density 
   1,00 0,29 

-

0,8

1 

0,

23 

-

0,6

7 

0,15 -0,29 0,06 0,01 
-

0,43 

-

0,46 

-

0,40 

-

0,

25 

0,1

2 

0,0

6 
0,09 0,22 

Ref bulk 

density 
    1,00 

-

0,1

3 

-

0,

10 

-

0,3

7 

-

0,11 
-0,40 

-

0,12 
-0,02 

-

0,02 

-

0,01 

-

0,05 

0,

25 

0,1

6 

-

0,0

4 

-0,28 0,06 

Org C      
1,0

0 

-

0,

26 

0,8

2 

-

0,14 
0,34 

-

0,11 
-0,03 0,44 0,56 0,47 

0,

36 

-

0,1

1 

-

0,1

1 

-0,18 -0,17 

pH       
1,

00 

0,0

6 
0,87 0,54 0,57 0,14 

-

0,26 

-

0,20 

-

0,12 

-

0,

46 

0,1

9 

0,3

2 
-0,11 0,50 

Cat exc        
1,0

0 
0,14 0,67 0,04 0,00 0,39 0,44 0,41 

0,

19 

-

0,1

0 

0,0

5 
-0,22 -0,07 
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Base sat         
1,0

0 
0,56 0,42 0,10 -0,22 -0,13 -0,06 

-

0,3

6 

0,2

5 

0,3

2 
-0,18 0,47 

Total 

exc bases 
         1,00 0,42 0,07 0,14 0,15 0,18 

-

0,1

5 

0,0

1 

0,2

0 
-0,16 0,21 

CaCO3           1,00 0,15 -0,13 -0,13 -0,11 

-

0,3

1 

0,0

1 

0,1

2 
0,02 0,30 

Conducti

vity 
           1,00 -0,04 -0,03 -0,03 

-

0,0

7 

0,0

3 

0,0

4 
0,00 0,09 

TAWC             1,00 0,67 0,65 
0,5

0 

-

0,0

5 

-

0,0

3 

-0,33 -0,32 

Total C              1,00 0,92 
0,5

6 

-

0,1

1 

-

0,1

2 

-0,22 -0,18 

Total N               1,00 
0,4

7 

-

0,1

0 

-

0,0

5 

-0,26 -0,17 

C/N                
1,0

0 

-

0,1

2 

-

0,2

2 

-0,33 -0,36 

Bray P                 
1,0

0 

0,1

6 
-0,09 0,23 

Total P                  
1,0

0 
-0,22 0,11 

PC1_cli

matic 
                  1,00 0,00 

PC2_cli

matic 
                   1,00 
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Table S2.5: Set of variables included in the 18 competing models for AM plant distribution 

and resulting BIC of the models. Model highlighted in yellow represents the selected model 

with lower BIC. 

  

 

 

 

 

 

AM  

Model Variables BIC 

1 Clay Total exc bases pH TAWC C/N Bray P Total P PC1_climatic -3054.7 

2 Clay Total exc bases pH Total C C/N Bray P Total P PC1_climatic -3063.5 

3 Clay Total exc bases pH Total N C/N Bray P Total P PC1_climatic -3107.9 

4 Clay Total exc bases Base sat TAWC C/N Bray P Total P PC1_climatic -3048.2 

5 Clay Total exc bases Base sat Total C C/N Bray P Total P PC1_climatic -3043.3 

6 Clay Total exc bases Base sat Total N C/N Bray P Total P PC1_climatic -3078 

7 Ref bulk density Total exc bases pH TAWC C/N Bray P Total P PC1_climatic -3052 

8 Ref bulk density Total exc bases pH Total C C/N Bray P Total P PC1_climatic -3043.5 

9 Ref bulk density Total exc bases pH Total N C/N Bray P Total P PC1_climatic -3090 

10 Ref bulk density Total exc bases Base sat TAWC C/N Bray P Total P PC1_climatic -3100.4 

11 Ref bulk density Total exc bases Base sat Total C C/N Bray P Total P PC1_climatic -3079.3 

12 Ref bulk density Total exc bases Base sat Total N C/N Bray P Total P PC1_climatic -3116.5 

13 Sand Total exc bases pH TAWC C/N Bray P Total P PC1_climatic -3029.5 

14 Sand Total exc bases pH Total C C/N Bray P Total P PC1_climatic -3043.5 

15 Sand Total exc bases pH Total N C/N Bray P Total P PC1_climatic -3090 

16 Sand Total exc bases Base sat TAWC C/N Bray P Total P PC1_climatic -3100.4 

17 Sand Total exc bases Base sat Total C C/N Bray P Total P PC1_climatic -3079.3 

18 Sand Total exc bases Base sat Total N C/N Bray P Total P PC1_climatic -3116.5 
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Table S2.6: Set of variables included in the 6 competing models for EcM plant distribution 

and resulting BIC of the models. Model highlighted in yellow represents the selected model 

with lower BIC. 

 

Table S2.7: Set of variables included in the 2 competing models for EcM plant distribution 

and resulting BIC of the models. Model highlighted in yellow represents the selected model 

with lower BIC. 

 

 

 

 

 

 

EcM 

Model Variables BIC 

1 Ref bulk density Total exc bases pH TAWC C/N PC1_climatic 3010.3 

2 Ref bulk density Total exc bases pH Total C C/N PC1_climatic 3155.6 

3 Ref bulk density Total exc bases pH Total N C/N PC1_climatic 3130.6 

4 Ref bulk density Total exc bases Base sat TAWC C/N PC1_climatic 2562.7 

5 Ref bulk density Total exc bases Base sat Total C C/N PC1_climatic 2608.8 

6 Ref bulk density Total exc bases Base sat Total N C/N PC1_climatic 2560.1 

ErM 

Model Variables BIC 

1 Total C C/N PC1_climatic -6086 

2 Total N C/N PC1_climatic -6230 
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Figure S2.1: Principal component analysis ordination plot of climatic variables. Black arrows 

represent climatic variables mainly related to temperature factors and grey arrows represent 

climatic variables mainly related to precipitation factors 
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Figure S2.2: Principal component analysis ordination plot of edaphic variables.   
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2.9.4. Spatial autocorrelation  

 

Figure S2.3: Moran’s I correlogram of AM (a), EcM (b) and ErM (c) model residuals.  

To evaluate whether the presence of SAC in the final model altered the final 

conclusion of this work, the complete dataset (n=270353) was subsetted according to 

two distance filters. In a first filter, we included only points that at least 250km apart 

from each other, resulting in 2337 data points. In a second filter, we included points 
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separated at least by 750km, resulting in 182 data points. The election of the distances 

is based on Moran’s I correlogram (Figure S3) and correspond to distances at which 

the majority vs. virtually all spatial autocorrelation had disappeared.  

The reduced model showed that, even when the distance between points is increased, 

climatic variables had the highest contribution in model R
2

 (see Tables S8 and S9). 

Table S2.8: Predictors, GAMLSS-estimated degrees of freedom (edf), t-value, p-values, 

Pseudo-R
2

 of the final model for each mycorrhizal plant type and the Pseudo-R
2

 that is 

attributed to each individual variable included in the final model at a minimum distance of 

250km. 

 Predictor edf 
t 

value 

p-

value 

Pseudo-

R
2

 

Contribution to Pseudo-

R2* 

 

AM 

Bulk density 2 -8.37 <0.001 
 

0.48 

0.02 

PC1 climatic 

factors 
1 39.33 <0.001 0.38 

EcM 

Base saturation 2 -8.13 <0.001 

0.31 

0.05 

PC1 climatic 

factors 
2 -24.6 <0.001 0.25 

ErM 

TOTN 2 5.99 <0.001 

0.43 

0.01 

PC1 climatic 

factors 
3 -33.8 <0.001 0.37 
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Table S2.9: Predictors, GAMLSS-estimated degrees of freedom (edf), t-value, p-values, 

Pseudo-R
2

 of the final model for each mycorrhizal plant type and the Pseudo-R
2

 that is 

attributed to each individual variable included in the final model when including points at a 

minimum distance of 750km. 

 Predictor edf 
t 

value 

p-

value 

Pseudo-

R
2

 

Contribution to Pseudo-

R2* 

 

AM 

TOTN 2 -6.35 <0.001 
 

0.43 

0.03 

PC1 climatic 

factors 
1 12.35 <0.001 0.35 

EcM 

TOTN 2 4.58 <0.001 

0.20 

0.05 

PC1 climatic 

factors 
2 -8.05 <0.001 0.15 

ErM 
PC1 climatic 

factors 
2 0.23 <0.001 0.33 0.33 

 


