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As the popularity of Location-based Social Networks increases, designing accurate models for Point-
of-Interest (POI) recommendation receives more attention. POI recommendation is often performed by
incorporating contextual information into previously designed recommendation algorithms. Some of the
major contextual information that has been considered in POI recommendation are the location attributes
(i.e., exact coordinates of a location, category, and check-in time), the user attributes (i.e., comments, reviews,
tips, and check-in made to the locations), and other information, such as the distance of the POI from user’s
main activity location and the social tie between users. The right selection of such factors can significantly
impact the performance of the POI recommendation. However, previous research does not consider the
impact of the combination of these different factors. In this article, we propose different contextual models
and analyze the fusion of different major contextual information in POI recommendation. The major
contributions of this article are as follows: (i) providing an extensive survey of context-aware location
recommendation; (ii) quantifying and analyzing the impact of different contextual information (e.g., social,
temporal, spatial, and categorical) in the POI recommendation on available baselines and two new linear and
non-linear models, which can incorporate all the major contextual information into a single recommendation
model; and (iii) evaluating the considered models using two well-known real-world datasets. Our results
indicate that while modeling geographical and temporal influences can improve recommendation quality,
fusing all other contextual information into a recommendation model is not always the best strategy.
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1 INTRODUCTION AND MOTIVATIONS

With the ever-increasing number of smartphone users, Location-based Social Networks
(LBSNs), such as Foursquare,! Swarm,” and Yelp® are growing. LBSNs allow users to check-in
through their smartphones at a location or Point-of-Interest (POI) such as restaurants, malls,
or movie theaters. Users’ check-in data often include geographical information, i.e., latitude and
longitude, and the check-in timestamp. With thousands of potential POIs in the vicinity of each
user, the process of choosing a POI by a user becomes overwhelming. POI recommendation al-
gorithms strive to address this issue by filtering through a large variety of options available and
returning those that are most likely to be of the user’s interest. In recent years, Matrix Factoriza-
tion (MF), as a linear technique, and Neural Network (NN), as a non-linear one, have proven to
offer promising solutions to the problem of designing efficient filtering algorithms for recommen-
dation systems [1, 42, 61, 62, 83]. The main difference between MF and NN lies in their approach of
modeling the relation between users and POlIs in a linear or non-linear way [4, 31, 58]. In general,
POI recommendation suffers from two well-known problems, namely, data sparsity and cold start.
Given a large amount of POIs and the user’s ability to visit only a few of them, the user-POI in-
teraction matrix becomes very sparse. This makes it very hard to model collaborative interactions
between users and POIs. This problem is referred to as data sparsity. However, the cold-start prob-
lem refers to recommending POIs to those users who have very limited or no interaction records.
Also, POIs with very limited or no interaction records are considered as cold items, and the mod-
els often fail to recommend these items effectively [23, 35, 42, 70]. To address the data sparsity
issue, more recently, Context-Aware Recommender Systems (CARSs) have gained popularity
as many researchers in different disciplines such as recommender systems, information retrieval,
and data mining have recognized the importance of contextual information [2, 5, 12, 42, 57, 65]. A
CARS should provide a user with recommendations taking into consideration the user’s current
context. The context of a user can be defined as a set of factors and limitations that impact users’
perception and acceptance of a particular item. Various definitions of context exist in the litera-
ture [9, 42, 60, 63], from which the most popular contextual factors for POI recommendation can
be listed as follows: the time of check-in, weather, location, prices, or even the users’ friendships.

Figure 1 shows a typical check-in record in an LBSN. Based on such records, four important
and effective contextual information are typically considered for POI recommendation, namely,
geographical, temporal, social, and categorical information [9, 42, 47, 59]. Among various con-
textual factors, finding the right combination of contextual information for a specific user is of
great importance, as it affects both the effectiveness and efficiency of the models. Previous stud-
ies have shown that incorporating all available contextual factors is not always beneficial [9, 42].
In addition to the extra data processing load, using all contextual information will not necessar-
ily lead to an improvement in recommendation accuracy [9]. Furthermore, the effect of different
contextual factors and their combinations on linear and non-linear algorithms performances has

Thttps://www.foursquare.com.
https://www.swarmapp.com.
Shttps://www.yelp.com.
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Fig. 1. llustration of a typical check-in in LBSN.

not been studied in depth [9, 42, 45]. Yet, Liu et al. [42] studied the different POI recommendation
methods that have been proposed, and Baral and Li [9] exploited the impact of contextual infor-
mation only on the PageRank algorithm. Indeed, a careful selection of such factors, while taking
into account the characteristics of the recommender model, can significantly impact the effective-
ness of the system. Therefore, the main challenge is to identify which contextual information or
which combination of them should be incorporated into a POI recommendation system to improve
recommendation quality. To create an accurate POI recommender system, we need to be able to
answer questions such as What might be the impact of using temporal information instead of geo-
graphical information? or What is the impact of using social and categorical information instead of
geographical and temporal information? Moreover, users in an LBSN have different behavior; for
instance, a user might prefer to visit the same POIs again and again, while another user may pre-
fer to discover new and unvisited locations. Therefore, analyzing the impact of users’ behavioral
biases on the performance of the models and the effectiveness of each contextual factor is of high
importance. Such an analysis would enable systems to take different strategies for different groups
of users. For instance, geographical context might be more effective for users who tend to regu-
larly visit POIs, while social context might be more beneficial for users who tend to discover new
POIs more often. With this knowledge, a recommender system would be able to employ separate
strategies for each case.

In this work, we seek to provide a more comprehensive understanding of contextual factors’
impact on a set of representative POI recommendation models. Therefore, our main research ques-
tions can be summarized as follows:

e RQ1: How effectively do different models incorporate multiple contextual factors in recom-
mendation? (cf. Section 5.1)

e RQ2: How can different evaluation metrics capture the effect of contextual information on
various models? (cf. Section 5.2)

e RQ3: How can we incorporate different contextual factors in linear and non-linear models?
(cf. Section 5.3)

e RQ4: How do models incorporating contextual information perform for users with different
behavior? (cf. Section 5.4)

To answer these research questions, we consider several baseline models previously proposed
to prove the lack of deep consideration of contextual models. Also, we define different contextual
models that can be used in a POI recommendation system and fuse them into the MF and NN
recommendation approaches. Next, we analyze the impact of major influential contexts for POI
recommendation by combining different contextual information on creating fused models. In
particular, we are not aiming to justify the effect of any contextual information on any model.
Instead, our goal is to characterize and provide a structured review of the impact of context
on these two specific models. To the best of our knowledge, the impact of users’ behavior on
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contextual models’ performance in POI recommendation has not been extensively studied before.
We intend to fill this gap via a detailed analysis defining different factors on users’ behavior such
as geographical distance, check-ins density, and exploration. Our aim is to identify a selection of
contextual factors that perform best and the impact of considering a combination of multiple
factors (e.g., a combination of social and temporal factors or spatial and temporal factors). We
analyze the results based on two different datasets to see how much the results can be generalized.
This analysis can help select contextual factors that are suitable for implementation in real systems.
Based on our findings, we see that neural networks-based models are more accurate than matrix
factorization. Moreover, in most cases, temporal information has a greater effect than others. Also,
the combination of temporal and geographical information helps the recommendation algorithms
achieve better performance. Finally, to enable the results’ reproducibility, we have made our
codes, datasets, and analysis publicly available in open source.*

The rest of this article is organized as follows. We review the relevant studies on POI recom-
mendations in Section 2. Our proposed experimental framework and our analysis approach are
presented in Section 3, followed by experimental evaluation in Section 4. Finally, Sections 5 and 6
discuss and conclude this article.

2 RELATED WORK

This section will discuss similar papers that tried to reproduce and examine multiple POI recom-
mender models and analyze them. Then, we will review the different proposed contextual POI
recommendations.

Previously some researchers reproduced and examined multiple POI recommendation models
to analyze and discuss the impact of different contextual information in POI recommendation. In
this regard, the first study was done by Liu et al. [42] in 2017. The authors of this work reproduce
and provide a comprehensive evaluation of 12 state-of-the-art POI recommendation models pro-
posed by different researchers. Then, they compare them based on different evaluation metrics
such as Precision, Recall, and nDCG (Section 4.2 shows the formula for each metric). In another
work, Stepan et al. [65] incorporate spatial, temporal, and social information in their recommen-
dation model. They analyze the impact of their contextual information on the proposed model by
adding them separately. However, they do not consider the impact of the combination of contextual
information. Baral and Li [9] exploited different contextual information in POI recommendation
employing PageRank as a raking model. More recently, Sanchez [63] discusses the impact and the
importance of evaluating contextual information in a POI recommendation model. They propose
using evaluation metrics based on different contextual information to see the impact of contextual
information on the performance of models. In addition, Rendle et al. [58] compare the performance
of matrix factorization when it uses dot product and Multi-Layer Perceptron (MLP).> They con-
clude that simple and traditional dot product archives better results, and MLP is too costly to use
for recommendation in production environments. Our work is in line with the earlier mentioned
studies performed by Liu et al. [42], Stepan et al. [65], Baral and Li [9], and Sanchez [63]. However,
there are some major differences between our study and these works. The experimental research
of Liu et al. [42] studies several POI recommendation models and compares their performance in
terms of precision, recall, and nDCG. In contrast, we propose two extensible models, one based
on Matrix Factorization and the other based on Neural Networks, that can easily incorporate con-
textual information. By doing so, we are able to analyze the importance of contextual information
both on a linear and non-linear model. Furthermore, the study presented in Reference [42] only

4https://rahmanidashti.github.io/ContextsPOI/.
5This approach is often referred to as neural collaborative filtering.
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compares the individual, geographical and social components of the models (see Section 5.3 in Liu
et al. [42]). In this article, we additionally study the categorical context. We also perform a much
broader set of comparisons, going beyond comparing only social components or geographical com-
ponents of different models, as done in Reference [42], but also study the performance of models
based on differences in user behaviors. The study of Stepan et al. [65] considers fusing all different
contextual information into one single model. At the same time, we analyze the impact of having
a different selection of contextual information in creating fused models. The study of Baral and
Li [9] considers different fused models of contextual information. Still, they applied them into a
single ranking model based on the PageRank algorithm that is a linear model. This study does not
consider the analysis of performance by changing the underlying ranking model. We will, how-
ever, study the performance achieved by linear and non-linear models. The study of Sanchez [63]
implements some traditional POI recommendation systems by incorporating contextual informa-
tion to show that the study and evaluation of different contextual information are important in
the domain of POI recommendation without actually performing the analysis. In comparison, our
article provides a detailed analysis of the impact of different contextual factors in POI recommen-
dation. In fact, to evaluate different combinations of the contextual information in different fused
models, we analyze the impact of different contextual information in two commonly used models
in POI recommendation, i.e., matrix factorization and neural networks, representing linear and
non-linear models. To the best of our knowledge, none of the existing recommendation models
incorporated these aspects in a linear and non-linear manner to the best of our knowledge.

Since different approaches use these two models in different settings, it is important to know
which one is better and in which situation. In what follows, we will provide an overview of non-
contextual and contextual-based POI recommendation systems and review relevant previous stud-
ies in each category. Table 1 shows a summary of the related studies.

2.1 Non-contextual Information

2.1.1 Interaction (I). Most traditional recommendation systems make recommendations for
items such as movies or music using explicit ratings. In an LBSN, explicit ratings are rare, and
usually, the check-in frequency (i.e., the interaction of users with POIs without any contexts such
as geographical or temporal) implicitly reflects users’ preferences for POIs. Hence, to produce
POI recommendations, several earlier studies [11, 20, 48, 51, 73] adopted traditional recommen-
dation models to infer users’ personalized preference for POI by mining the check-in patterns of
users. With the available check-in information, existing recommendation approaches (e.g., user-
based and item-based Collaborative Filtering (CF)) can be employed for POI recommendation in
LBSNs by treating POIs as items. By taking this approach, Ye et al. [72] was the first research to
provide location recommendations services in LBSNs that proposed user-based and item-based
POI recommendation algorithms. The proposed approach assumes that similar users have sim-
ilar tastes for locations and make POI recommendations based on most similar neighbors’ opin-
ions. However, this item-based POI recommendation approach assumes that users are interested in
similar POIs.

2.2 Contextual Information

2.2.1 Geographical Information (G). Incorporating geographical information is one of the most
important factors that distinguish a POI recommendation from a conventional item recommen-
dation. Tobler’s First Law of Geography (1970) states that “everything is related to everything
else, but near things are more related than distant things” In fact, analysis of users’ check-in
data shows that a user’s check-ins happen in geographically constrained areas [16, 66, 73] and
thus follow this general rule. This reflects the users’ interest in visiting nearby POIs rather than
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Table 1. Summary of POl Recommendation Papers in the Related Works in Relation to the Use of
Interaction (i.e., check-ins) and Contextual Information

Related work Interaction | Geographical | Temporal | Social | Categorical
Ye et al. [73] X X
Ference et al. [24]
Cheng et al. [16]
Rahmani et al. [54]
Aliannejadi et al. [3]
Zhang and Chow [80]
Cheng et al. [17]

Li et al. [35]

Guo et al. [28]
Griesner et al. [27]
Gao et al. [25]

Li et al. [36]

Cho et al. [19]

Bao et al. [6]

Gibson et al. [26]
Rahmani et al. [56]
Baral and Li [9]
Stepan et al. [65]
Cheng et al. [18]
(8]

Baral and Li [8

Baral et al. [10]

Liu and Xiong [39]

Yin et al. [74]

Hu and Ester [32]

Yin et al. [75]

Xie et al. [69]

Rahmani et al. [55]

Chen et al. [15]

Baral et al. [7]

Pan et al. [52]

Zheng et al. [86]

Lim et al. [38]

Zhou et al. [87]

Zhang et al. [82]

Zhang and Chow [81]
Manotumruksa et al. [46]
Manotumruksa et al. [47]
Manotumruksa et al. [48]
Chang et al. [13]

Lim et al. [38]

Ma et al. [43]

Zhou et al. [87]

I N N N N N N N N N I S N N N N N N N N N N N N 2 NENENENEN

AX XX XXX ANAX XX XXX XAAXAAAAXAAX XAAAX X X XANAX XSS

AAANAAXAAAXAXAANAANAANAXASNAARNAXX XX XX X AANANASSNASNNASN
XX AXANAX XAXAX XX ACNAAAAXAALAAAAX X X AX A X X X X X X X X
XX XX XXXAX XXX XXXXXXXXXAUAUXXAALALAX X X X X X X X X XXX
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distant ones. Several studies [16, 24, 73, 84] attempt to employ such geographical information to
improve POI recommendation systems. Ye et al. [73] showed that users’ check-in behavior follows
a power-law distribution. They proposed a unified POI recommendation system by incorporating
this geographical information to address the data sparsity problem. Ference et al. [24] took into
consideration user preference, geographical proximity, and social information for out-of-town POI
recommendation. Cheng et al. [16, 17] proposed a Multi-center Gaussian model to capture users’
movement patterns as they assumed users’ check-ins happen around several centers. Lian et al.
[37] proposed a POI recommendation approach based on weighted matrix factorization. They ex-
plicitly model the geographical users’ “activity area” and “the influence” area of POIs. Li et al. [35]
modeled the POI recommendation task as a ranking-based approach, where they incorporated
the geographical information into the pairwise ranking model. The geographical information is
modeled by defining an extra factor matrix.

Conversely, Zhang and Chow [80] argued that geographical information should be considered
for each user separately. To this end, a model was proposed based on kernel density estimation
of the distance distributions between POIs checked-in by each user. Rahmani et al. [54] modeled
this geographic information from two different perspectives: the user’s and the location’s. They
showed that the recommendation model’s performance could be improved by incorporating the
impact of the neighboring POIs. Similarly, Yuan et al. [77] addressed the data sparsity problem,
assuming that users tend to show more interest in POIs that are geographically closer to the one
that they have already visited. Guo et al. [28] proposed a location neighborhood-aware weighted
matrix factorization model to exploit the location perspective, incorporating geographical distance
among POIs. More recently, Aliannejadi et al. [3] proposed a two-phase collaborative ranking al-
gorithm for POI recommendation that takes into account the geographical information of POIs lo-
cated in the same neighborhood. Manotumruksa et al. [46] capture the complex relations between
users and POIs using a deep recurrent collaborative filtering method. They apply a pairwise rank-
ing function with the aim of capturing check-ins in the form of sequences of observed feedback
using a multi-layer perceptron and a recurrent neural network architecture. In particular, their
method can learn complex user and POI features using element-wise and dot products as well
as the concatenation of latent factors. Chang et al. [13] proposed a graph neural network-based
method inspired by the idea that consecutive check-ins at two POIs indicate a greater geographical
influence between them. They designed a model to incorporate user preferences using a user-POI
graph and geographical influences using a POI-POI graph in which edges of the POI-POI graph
are weighted based on the frequency of users’ consecutive visits. Ma et al. [43] address the chal-
lenge of modeling more complex user-POI interactions from the sparse implicit feedback using
an autoencoder-based approach that is a combination of a self-attentive encoder and a neighbor-
aware decoder. Their self-attentive encoder adopts a multi-dimensional attention mechanism to
differentiate between user preference degrees. They also incorporate the geographical context in-
formation using the neighbor-aware decoder to make users’ reachability higher on the similar and
nearby neighbors of checked-in POIs. This is achieved by the inner product of POI embeddings
together with the radial basis function kernel.

2.2.2  Temporal Information (T). Temporal constraints can result in specific user check-in pat-
terns. Users’ temporal check-in behaviors in LBSNs typically exhibit a periodic pattern. For in-
stance, it is observed that users visit places around their office or home area on weekdays and
spend time in shopping malls on weekends. There are hourly patterns observed in check-ins. For
instance, user check-ins at restaurants typically happen during lunchtime, whereas check-ins at
nightclubs happen, naturally, at night. Capturing such temporal information is of vital importance
for POI recommendation.
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Many researchers have previously studied the effect of temporal information on users’ prefer-
ences by proposing different models to improve the POI recommendation accuracy [22, 42, 78, 84].
Griesner et al. [27] proposed an approach to integrate temporal information into weighted ma-
trix factorization. They propose an approach to change the values of each POI’s influence area
through accounting for the time spent by a user to go from the current POI to the next. Gao et al.
[25] divided users’ check-ins into different hourly time slots. Next, to train a user-based CF model,
they compute the similarity between users based on their temporal overlap in visits to the same
POIs. Zhao et al. [85] proposed a latent ranking method that explicitly models the interactions be-
tween users, POIs, and time. In particular, they proposed to build upon a ranking-based pairwise
tensor factorization framework. Li et al. [36] proposed a time-aware personalized model adopting
a fourth-order tensor factorization-based ranking, enabling the model to capture short-term and
long-term preferences. Yao et al. [71] matched users’ temporal regularity with the popularity of
POIs to create a factorization-based algorithm. Also, Yuan et al. [78] preserved the similarity of
personal preferences in consecutive time slots by considering different latent variables at each
time slot for each user. Moreover, Manotumruksa et al. [47] proposed a contextual attention recur-
rent architecture model called CARA based on the success of recurrent neural network models in
modeling sequential patterns. Their model incorporates contextual information related to users’
sequence of check-ins (e.g., time of the day) to effectively capture the users’ dynamic preferences.

2.2.3  Social Information (S). It has been observed that other users can socially influence a user’s
movements. The effect of social information has been studied to enhance POI recommendation
based on the assumption that friends in LBSNs share more common interests than non-friends.
Modeling social information has been explored in traditional recommendation systems [33, 67],
and most of the existing work in POI recommendation is inspired by ideas taken from traditional
recommendation systems. The analysis of Cho et al. [19] shows that around 10-30% of human
movements can be socially influenced. Also, using the Gowalla dataset, they show an improve-
ment in the accuracy of recommendation by considering the influence of friendships on users’ mo-
bility (estimated to be around 61%) and the influence of mobility on new friendships (24%). Qiao
et al. [53] present SocialMix, a hybrid model that considers (i) user’s familiarity and (ii) preference
similarity for POI recommendation. To calculate users’ familiarity score, they use three features:
number of mutual friends, Jaccard similarity (based on user’s friend list), and cosine similarity
(based on user’s check-in history). The weight of each feature is determined through maximum
likelihood estimation. The preference similarity that shows users’ similarity in terms of their pref-
erence in visited POIs is calculated based on the cosine similarity of user-location check-in data.
Zeng et al. [79] consider creating vectors representing user check-ins in 24-hour time-slots. They
consecutively calculate the user similarities by measuring the cosine similarity of these vectors.
Conversely, Ye et al. [72] showed on a dataset of Foursquare check-ins that 96% of users share
less than 10% of the commonly visited places, 87% of people share nothing at all. However, to
incorporate social information, they proposed a friend-based CF method to recommend POIs to
users based on the commonly visited POIs. Moreover, Gao et al. [25] assumed that people share
their friends’ check-in activities. Their model used the Hierarchical Pitman-Yor language model to
represent the check-in pattern with effective results.

2.2.4 Categorical Information (C). Category information of POIs provides a strong indication
of the activities that can be performed in them. It is shown that users have distinct biases on
the categories of POIs they check-in to. In LBSNs, POI categories are typically organized in a
hierarchical category tree. Foursquare offers a three-level category hierarchy. The top-most level
consists of nightlife, food, while the lowest level, consisting of bars, pubs, Japanese food, or cafes.
Considering such information in the analysis of check-in data can reflect users’ preferences on the
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corresponding category. In Reference [41], the authors propose a category-aware recommendation
to model the user’s preference transition among POIs over their categories of each POL Finally,
they recommend POIs to a user based on the categories that the user prefers. Bao et al. [6] model
the preference of users based on their social opinions using Hypertext Induced Topic Search
(HITS) (Gibson et al. [26]). HITS regards an individual’s visit to a POI as a directed link from
the user to that POL Each user has a hub score denoting their knowledge of a POI, and each
location is associated with an authority score indicating its interest level. The target is to obtain a
mutually reinforcing relationship between a user’s knowledge and the interest level of a POL The
users’ location history is categorized according to the POI’s type (such as shopping or restaurants).
A user-location matrix is used to identify the local experts who have a higher affinity toward a
POI category, and such experts’ social opinions were used in the recommendation. More recently,
Rahmani et al. [56] proposed a category-aware POI embedding model that considers both the
users’ sequence of check-ins and the category information of POIs. To this end, they made use of
Word2Vec [50] to generate a high-dimensional representation of the sequence of check-ins and
POI categories.

2.2.5 Fusion Models. Contextual information has proven to be beneficial in improving the per-
formance of POI recommendation models [14, 21, 49, 68]. A class of studies tried to incorporate
different contextual information in a single model [40, 44, 64, 76]. Baral and Li [8] proposed a
multi-aspect POI recommendation system using geographical, temporal, categorical, and social
information. They model a graph where each node corresponds to a location, and each user-time
tuple is regarded as an attribute of the location node that shows the transition of a user between
locations. For recommendation, they use the Top-Sensitive PageRank model [29], an extension of
the PageRank algorithm, to rank each location for each user. Liu and Xiong [39] propose a topic
and location-aware POI recommendation system by exploiting textual and contextual information.
They exploit an aggregated Latent Dirichlet Allocation model to learn users’ interest topics and
find interesting POIs by mining textual information associated with them. Then, they utilized this
contextual information for POI recommendation in combination with probabilistic matrix factor-
ization. Zhang and Chow [81] proposed GeoSoCa, which incorporates three different contextual
factors, namely, geographical, social, and categorical information. GeoSoCa models geographical
influence based on a check-in probability distribution over a two-dimensional space using a Ker-
nel Density Estimation (KDE) method. To model the social and categorical influences, GeoSoCa
considers the check-in frequency of a user’s friends on a POI and the power-law distribution of
all users’ categorical check-in frequency, respectively. Baral et al. [10] proposed a multi-aspect
model based on the weighted matrix factorization. They incorporated geographical, temporal, cat-
egorical, and social aspects into the model. The intuition behind using the category information
is that locations with the same category may have similar visits. For modeling the temporal in-
formation, they consider check-ins that happened simultaneously on POI as temporal popularity.
Also, to model geographical information, they consider the user’s activity area (or influence area),
which is defined as the region where the user frequently appears. Yin et al. [74] use POIs’ content
information such as item tags and category keywords to link the content-similar spatial items.
Their model learns each user’s interest and the local preference of each city by capturing item co-
occurrence patterns and exploiting item contents to produce the top item recommendations. Hu
and Ester [32] used topic modeling to exploit user posts’ spatial and textual aspects. Cheng et al.
[18] considered the users’ movement constraints, i.e., moving around a localized region, and pro-
posed a successive personalized POI recommendation model using a matrix factorization method
that embedded personalized Markov chains and localized regions. Yin et al. [75] proposed a prob-
abilistic generative model that exploited geographical, temporal, word-of-mouth, and semantic
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information. Zhang et al. [82] proposed a fusion method that considers geographical, temporal,
and social influences. They model the geographical influence using a two-dimensional check-in
probability distribution using KDE. The social influence is modeled based on the friendship re-
lation of users. In contrast, the temporal influence is modeled by mining location sequences on
location-location transition graph of all users and dividing the transition counts between every
pair of POIs by the outgoing counts of each node. Also, Xie et al. [69] used geographical, tempo-
ral, and semantic aspects in their heterogeneous graph embedding model. They use a time decay
method claimed to be an efficient predictor for the user’s latest preferences. Moreover, Rahmani
et al. [55] proposed a joint model of geographical and temporal information. To this end, they first
find users’ activity centers based on different temporal states and then recommend to users the un-
visited POIs located in these areas to the users. Lim et al. [38] proposed a graph attention network
using the spatial-temporal-preference data of users. Their method is able to exploit personalized
user preferences and explore new POIs in global spatial-temporal-preference neighborhoods at the
same time, while allowing users to learn from other users selectively. In addition, using a random
walks approach, their method can mask a self-attention option to leverage the spatial-temporal-
preference graph and find a new higher-order POI neighbor during exploration. Zhou et al. [87]
proposed an adversarial model called APOIR to learn the distribution of user latent preferences
of certain POIs to others. APOIR includes two major components: a recommender and a discrim-
inator. The recommender module maximizes the probabilities of POIs that are unvisited based
on the learned distribution to insert them in recommendation. The discriminator distinguishes
the recommended POIs from the true check-ins and provides gradients to guide and improve the
recommendation module in a reward framework.

3 EVALUATION FRAMEWORK

In this section, we describe how we designed our experiments to study contextual information for
POI recommendation to answer the research questions posed in the introduction (Section 1). We
outline what can be learned from each experiment, focusing on different contextual information
and how their differences can be quantified. To this end, we propose an analytical and experimental
evaluation framework in which we examine each contextual piece of information’s effect. One of
the important advantages of this framework is that it enables us to fuse every contextual model,
either those proposed by ourselves or others.

To make use of contextual information, two tasks need to be performed. To show the ability
to fuse previously proposed contextual information into our experimental framework, in the first
task, we consider evaluating the contextual information that is incorporated into the previous POI
recommendation systems.® Next, in the second task, to show the ability to incorporate any new
contextual models, we model each piece of contextual information and fuse them in different ways
into our analytical framework.” Therefore, in this work, we consider two types of models: (i) We
consider three state-of-the-art and well-known context-aware POI recommendation algorithms and
analyze them within our proposed analytical and experimental evaluation framework, and (ii) we
also propose different contextual models and apply them into our proposed analytical framework.
In our framework, to model (i), we have selected three state-of-the-art context-aware POI rec-
ommendation systems, namely, GeoSoCa [81], FCFKDEAMC (or LORE) [82], and PEMMGM [16].
These POl recommendation systems are well known by the community for being able to make use
of various contextual information. We will demonstrate how these contextual models will be incor-
porated into our proposed experimental framework. To show how new contextual information will

6In this article, we refer to them as baselines.
"In this article, we refer to them as proposed models.
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be incorporated into the experimental framework, to model (ii), we consider matrix factorization
(linear) and neural networks (non-linear) approaches to create contextual models for each piece of
contextual information (geographical, social, temporal, and categorical information). Next, these
contextual models will be fused by aggregation into matrix factorization and neural networks.
Moreover, different users follow various behavior; for instance, some users prefer to visit nearby
POIs rather than distant ones. Thus, different behavior impacts the modeling and the performance
of different contextual information. Therefore, we conduct additional experiments to study the
impact of users’ behavior on contextual information. To this end, first, we categorize users based
on three behavioral parameters in visiting different POIs, namely, geographical distance, check-ins
density, and exploration. Furthermore, we study each model’s performance by the different con-
textual models for each user category and compare the effect of contextual information for these
user groups. In the following, we first introduce the baseline algorithms, contextual models, and
then we present our analytical framework.

3.1 Baseline Algorithm Analysis

Here, we describe the three selected baseline algorithms that can incorporate different contextual
information to improve the performance of the POI recommendation. These are GeoSoCa [81],
FCFKDEAMC [82], and PFMMGM [16].

GeoSoCa performs recommendation by exploiting geographical (Geo), social (So), and categor-
ical (Ca) correlations among users and POIs. GeoSoCa models geographical influence based on a
check-in probability distribution over a two-dimensional space using a KDE method. To model
the social influence, GeoSoCa considers the check-in frequency of users’ friends on a POI to
compute the social check-in frequency or rating between users and POIs. GeoSoCa computes
a power-law distribution over users’ categorical check-in frequency to incorporate the categor-
ical information. FCFKDEAMC fuses temporal information based on sequential patterns (AMC),
two-dimensional check-in probability distributions as geographical (KDE) information, and so-
cial (FCF) information. To model the geographical influence, similar to GeoSoCa, FCFKDEAMC
considers a two-dimensional check-in probability distribution using KDE. It models the social in-
fluence using a Friend-based Collaborative Filtering (FCF) approach that allows making POI
recommendations based on similar friends. Moreover, FCFKDEAMC incrementally mines location
sequences of all users and represents the sequential patterns as a dynamic location-location transi-
tion graph. Then, transition probabilities can be dynamically calculated by dividing the transition
counts on the location-location transition graph by the outgoing counts of each node. PFMMGM
fuses the Probabilistic Matrix Factorization Model (PFM) and the Multi-center Gaussian
Model (MGM), which models user check-ins based on a user’s geographical centers to predict the
probability of a user visiting a POL

We have selected these methods for our experiments mainly for two reasons: (i) They have
successfully modeled all the contextual factors that we plan to study in this work, and (ii) they
have been recognized as state-of-the-art by a significant number of works in the literature [42].

Our experiments on the baseline models are defined as follows. We carry out two different
experiments on baseline models to consider both the impact of different contextual information
and the evaluation metrics for analysis. Table 2 shows the notations that we use to specify a dif-
ferent combination of baselines. The first column (i.e., Notation) shows the different contextual
information parts of the proposed models (see Section 3.2). The second column (i.e., Information)
shows which pieces of information are captured by the notations. To refer to the baseline models,
we will use Baseline-(Contexts) notations where Baseline indicates the model name (i.e., GeoSoca,
FCFKDEAMC, or PEMMGM), and Contexts shows which contexts are included in the model. For
instance, to refer to GeoSoCa, when we only consider the geographical and categorical parts, we
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Table 2. Notation of Proposed Models

Notation Information

M Matrix Factorization (interaction-based)

N Neural Network (interaction-based)

G Geographical Information

T Temporal Information

S Social Information

C Categorical Information

MG Matrix Factorization and Geographical Information
GT Geographical and Temporal Information

GS Geographical and Social Information

GC Geographical and Categorical Information

TS Temporal and Social Information

TC Temporal and Categorical Information

SC Social and Categorical Information

GTS Geographical, Temporal, and Social Information
GTC Geographical, Temporal, and Categorical Information
GSC Geographical, Social, and Categorical Information
TSC Temporal, Social, and Categorical Information

GTSC Geographical, Temporal, Social, and Categorical Information

The Notation column show the contextual information that are parts of the proposed models.
The Information column shows which pieces of information is captured by the notation.
Interaction-based means no context, when only check-ins information is considered.

use the notation GeoSoCa-(GC). We will use these notations to refer to the combination of baselines
later in the experiment (Section 5).

3.1.1 Experiment 1: Focus on Contexts. In the first experiment, to answer RQ1, we study and
analyze the impact of each contextual information separately. Also, we consider different combina-
tions to evaluate the combined use of contextual information in the recommendation process. To
this end, we report each model’s results while keeping only the mentioned contextual information
and removing the ones that are not mentioned. This enables us to understand better how each of
the contextual factors, as well their combinations, would affect each of the models. Given that a
diverse set of combinations of contextual information is possible by selection from four pieces of
information, this allows us to characterize the impact of different contextual factors more carefully.

3.1.2  Experiment 2: Focus on Metrics. In this experiment, we aim to answer RQ2 by studying
the results of different evaluation metrics that we use in our analytical framework to evaluate the
proposed models and compare them on the use of contextual information. To this end, we consider
the three most commonly used evaluation metrics in information retrieval and recommender sys-
tem domains, namely Precision, Recall, and nDCG. Then, we evaluate the effect of each contextual
information and of their different combinations using the evaluation metrics mentioned above.
This experiment helps us see how different evaluation metrics can capture the effect of contextual
information on various models. For example, if precision shows that a model using geographical
information outperforms one using social information, then is it the same based on Recall?

3.2 Contextual Model Analysis

We selected matrix factorization as the linear approach to model the relation between users and
POIs. Neural networks are instead selected as the non-linear way of capturing such a relation.
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Table 3. Definition of Terms Used in the Article

Terms Definition

The set of users in the dataset

The set of POIs in the dataset

The set of all POI categories

A sample user in U

A sample POI'in L

The dimension of latent features

The user latent-factor matrix of matrix factorization

The POI latent-factor matrix of matrix factorization

The user latent-factor matrix of neural network

The POI latent-factor matrix of neural network

The user-POI frequency matrix

The social links matrix

The categorical popularity for user u on POI [

The number of check-ins of user u’s friends on POI [

B, The frequency of user u visiting the POIs that belong to category ¢
H.; The check-in frequency of all users on POI [ in category ¢

FRELADORRIRTE QT

Cy The number of check-ins by user u
Qu The total number of unique visited POIs by user u
POIs (m) k
m
—_—
(=
2 P~ n X k
o
]
=
User-POI frequency matrix Users’ latent matrix prggll;ct POls’ latent matrix

Fig. 2. Matrix factorization model.

Different contextual information can be fused and used in combination with matrix factorization
and neural networks. This section presents our proposed linear and non-linear models, followed
by the contextual information models. Table 3 presents the terms and notations used in the rest of
this article.

3.2.1 Matrix Factorization. To model the user’s preferences based on check-in data, we ap-
ply matrix factorization, a popularly used linear model [42, 54, 78]. Since user feedback in POI
recommendation is implicit feedback, we use a probabilistic factor model to efficiently deal with
check-in data by defining a Poisson distribution on the frequency [16, 17].

As shown in Figure 2, the goal of matrix factorization is to find two low-rank matrices U €
RX*IUland £ € R based on the frequency matrix R such that R ~ UT L, where ~ denotes
“approximately equal to.” The predicted probability of a user u, on a POI [, is determined by

Ppp,, , Uy L (1)
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Training
Output layer Score | %, 7@ Target

Layer X
Neural layers ‘
Layer 2
Layer 1
Embedding layer ‘ User Latent Vector ‘ ‘ Item Latent Vector ‘
Input layer (Sparse) |0|0.0|0|0|0|...| |0|0|0|0.0|0|...|
User (u) Item (i)

Fig. 3. Neural network model.

which can be obtained by solving the following optimization problem that places Beta distributions
as priors on the latent matrices U and £ while defining a Poisson distribution on the frequency:

Ul ¥
mingas, £ig) = ) > (0% = 1) In(Uix/pr) = Use/ pr)

i=1 k=1
IL] K

+ 0> ((or = D In(Lie/pr) = Lik! pre)
j=1 k=1
Ul |L]

+ (Rij In(UT L)i; — (UT L)j) + 2), (2)
i=1 j=1

where 0 = {oy,...,0x} and p = {py,. .., px} are parameters for the Beta distributions, and z is a

constant.

3.2.2  Neural Network. To model a neural network of CF, as shown in Figure 3, we consider a
multi-layer representation of a user—POI interaction, similarly to He et al. [31].

The bottom input layer consists of user v{ and POI vlL feature vectors that describe user u
and POI [, respectively. Above the input layer is the embedding layer, a fully connected layer that
projects the sparse representation to a dense vector. The user and POI embeddings are then fed into
a multi-layer neural architecture to map the latent vectors to prediction scores. The final output

layer is the predicted score y that predicts if the user u visit a POI [ or not:
P, = f(E"0Y.Q"0f|6.Q.0). 3)

where & € RVl and Q € R**ILI denote the latent factor matrix for users and POIs, respectively;
while 0 denotes the model parameters of the interaction function f" Since the function f is defined
as a multi-layer neural network, it can be formulated as

f(STU,S],QTUIL) = ﬁout(ﬁx(...ﬂz(ﬁl(STvg,QTvlL))...)), (4)
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where &,,; and &x respectively denote the mapping function for the output layer and xth neural
layer when there are X neural layers in total.

With the above two models, we can take into account all the different types of context that we
have seen in Section 1. In what follows, we provide a formal definition of these contextual factors.

3.2.3 Geographical Information. Different models use geographical information to generate a
more accurate recommendation for each user based on the POI's and the user’s location. Most of
them are based on the distance between users and POIs. Some studies [81, 82] show that modeling
geographical information leads to more recommendations as each user has different behavior. Here,
we model a check-in probability distribution over a two-dimensional space using kernel density
estimation [81]. Then, we add a user-dependent variable for check-ins to make the geographical
modeling more personalized. The geographical probability of visiting a new POI [ by a user u is
then estimated based on its location on the check-in probability distribution:

1 n
Pous = 7o > Ru, - Kh(l = 1)), )
i=1

where uy is the number of check-ins by user u, R shows the user-POI check-ins frequency matrix,
and Kh(l — [;) is the normal kernel function with a user-dependent variable.

3.24 Social Information. Zhang and Chow [81] show that users’ social check-ins follow a
power-law distribution. We take this same approach to model social information. Therefore, in
this case, the social link check-in frequency for user u on POI [ is the check-in frequency on POI
I by user u’s friends. Then, we use the cumulative of the power-law distribution as the social
information in recommendations as follows:

Ps,, =1=(1+xu)'7, (©)
where f is estimated by the check-in matrix R and social link matrix S as follows:

-1
Z Zln(l + Z Suwwr .Run,,,)] , 7)

uwelUl'el u”elU

p=1+UJL|

in which Y} ,»cyy Sw. w7 .Rur, 1 is the social check-in frequency or rating of the friends u” of user u’
on POII” and x,, ; is the aggregation of the check-in frequency of u’s friends on the POI /, given

by
Xu,l = Z Su,u’Ru’,l’ ®)
u' el
where S, . is a binary matrix that indicates whether there exists a social link between users u and
u’ or not.

3.25 Temporal Information. To model temporal information, we employ an Additive Markov
chain [82] that exploits the sequential transition pattern between users and POIs. The temporal
probability of a user u visiting a POI [ is based on the transition probability between all the user’s
visited POIs and the target POI, that is,

PTu,l = Zf(ln+1,li’n +1- l)’ (9)
i=1

where n is the number of POIs and f(I,,+1, l;, n + 1 — i) derive the sequential probability of visiting
a new location conditioned on the sequence of visits based on the additive Markov chain that is
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calculated as
W(l;) - TP(l; = lpi1)

W)

flps, liyn+1-140) = (10)
in which W(l;) = 27%("=)) represents the sequence decay weight with the decay rate parameter
a > 0and TP(l; — l,41) = %ﬁ;‘(’l[:;“ is the transition probability that OCount(l,) is the
outgoing count of /; as a transition predecessor to other POIs. Also, TCount(l,, l,,+1) indicates the

number of transitions between [, and [,,;.

3.2.6 Categorical Information. To model the categorical information, inspired by Zhang and
Chow [81], we estimate a power-law distribution for users’ categorical check-in frequency. This
denotes the check-in frequency of user u on all the POIs of category c. The cumulative distribution
of the users’ categorical check-in frequency is used as categorical information in recommendations
as follows:

Pe, =1-(1+g.0)", (11)
where y > 1and g1 = Ycccr Bu,c - He1. Here, CT is the set of all POI categories, B, . is the
frequency of user u visiting POIs that belong to the category ¢, and H, ; is the check-in frequency
of all users on POI [ in category c. Therefore, g, ; shows the categorical popularity of user u on
POI I based on the set of categories and y is calculated as

PP +gu,,z'>} : (12)

uweUl'el

y =1+|U|IL|

3.2.7 Experiment 3: Focus on Contextual Models. To answer RQ1, this experiment considers two
well-known linear and non-linear methods: matrix factorization and neural networks. To answer
RQ2, we evaluate the different combinations of our proposed contextual information on these
two models. Finally, to integrate the proposed models with the contextual information given by
Equations (1), (3), (5), (9), (6), and (11) into a unified preference score, score(u,I), for user u to
unvisited POI [, we use the following sum rule:

score(u,1) = My, + Cy1s (13)

where M, ; is equal to Py, , for the matrix factorization based models or Py, , for the neural
networks models. Also, C,,; = [P, ,, P, Ps, ;» Pc, ] that is any sum combination of contextual
models. The top-n POIs [ with the highest score score(u, [) are recommended to user u. It is worth
mentioning that the sum rule has been widely used to fuse different factors for POI recommenda-
tions in previous works [16, 54, 80, 81] and has shown high robustness.

As one can see in Table 2, each proposed model is denoted by a capital letter. To refer to the
proposed models, we will use Model-(Contexts) notations that Model indicates the model name
(i.e., M or N) and Contexts shows which contexts are included in the model. For instance, to refer
to the combination of matrix factorization with geographical and categorical context, we use the
notation M-(GC). We will use these notations to refer to the combination of models later in the
experiment (Section 5).

Finally, to answer RQ3, we study the results of the proposed models based on the selected
evaluation metrics, and we compare the results of different models on those metrics.

3.3 Users Behavior Analysis

Users have different behaviors based on the different contextual information. In this section, we
define three different analyses to study the users’ behavior. For instance, a user tends to visit the
same POIs repeatedly, but another user might, differently, prefer to visit different POIs and never
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Fig. 4. User behavior aspects correlation.

visit the same POI twice. Moreover, based on each context, users have different behavior. There-
fore, we perform three experiments to consider user behavior, namely, (i) geographical distance,
(ii) temporal check-in density, and (iii) exploration.

3.3.1 User Behavior on Geographical Distance. To model the users’ behavior based on geograph-
ical information, we categorize users’ geographical behavior. Users who tend to stay in a small
neighborhood are different from those who move a lot. Thus, the geographical categorization dis-
tinguishes users by considering the range of consecutive check-ins’ geographical distance.

3.3.2  User Behavior on Temporal Check-in Density. Similarly to geographical distance, we inves-
tigate how users’ density of check-ins impacts the performance of models. To this end, we consider
the time between consecutive user check-ins at POIs. In this way, we distinguish between users
who perform multiple check-ins on the same day for those who check in over several days. We con-
sider the temporal density of user check-ins and, therefore, the temporal distance of consecutive
check-ins.

3.3.3  User Behavior on Exploration. We also define a new metric to measure how much a spe-
cific user wants to explore new POlIs, instead of revisiting POIs. We define Q,, as the total number
of unique visited POIs by user u and C, as the total number of check-ins by the user. As denoted
in Equation (14), the user exploration factor is calculated simply by dividing the total number of
unique visited POIs by the total number of check-ins. Therefore, if the exploration factor equals 1,
then all the user’s check-ins are to new POIs, and the user never visits a POI twice. Indeed, lower
values mean that the user tends to visit the same POIs again and again. We categorize the users by
the following exploration factor and analyze the performance of the models in relation to that:

EF, = Qu

c. (14)

3.4 Behavior Correlation

In this section, we aim to show whether the three different aspects of user behavior that we study
correlate with each other. One may argue that each of these variables depends on the others and,
therefore, their values correlate. To test this, we compute the pairwise correlations between these
three factors based on Pearson’s R to analyze their relationship. These results are presented in
Figure 4. Overall, we observe a low correlation between these aspects/variables, supporting our
assumption to consider them independently. Moreover, we see a negative correlation between the
temporal and exploration aspects (Pearson’s R: —0.33). This suggests that the more time between
consecutive user check-ins, the less exploration the user carries out. Furthermore, from Figure 4(a),
one can see that we found a low positive correlation between geographical distance and users’ check-
in exploration (Pearson’s R: 0.12). This indicates that the users that stay in the same neighborhoods
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Table 4. Characteristics of the Evaluation Dataset Used in the Experiments

Datasets  |U] L] I Icul |cT| S| % H %Sparsity
Yelp 7,135 16,621 301,753 285,608 595 46,778 159.42 6843  99.94%
Gowalla 5,628 31,803 620,683 378,968 — 46,001 110.28 1951  99.78%

|U| is the number of users, |L| the number of POIs, |C| is the number of check-ins, |CU | the number of unique
check-ins, |CT | the number of category, and |S| the number of social links.

tend to visit the same places, while when the geographical distance increases (e.g., visiting a new
city or place that is far from their home location), they are more likely to go and explore more
places. However, in none of the cases, we observe a considerable correlation between the variables.
Therefore we conclude that even though there might be some dependencies among these variables
(like those that we mentioned), the effect of those dependencies is negligible.

3.4.1 Experiment 4: Focus on Users Behavior. In this experiment, we aim to answer RQ4 by
studying the users’ behavior based on different contexts. We consider three different behavioral
habit experiments based on geographical, temporal, and user preference information.

4 EVALUATION METHODOLOGY

In this section, we present the experimental settings, including the datasets, the evaluation metrics,
and the experimental setup we employed.

4.1 Datasets

We use two real-world check-in datasets from Yelp and Gowalla. They are commonly used by
other papers as they have provided a lot of check-in information. Yelp dataset includes all the con-
textual information we needed (geographical coordinates, POI category, friendship information,
and check-in timestamp). The Yelp dataset provided during the Yelp dataset challenge® round 7
(access date: February 2016) includes data from 10 metropolitan areas across two countries. From
this dataset, we eliminate those users with fewer than 10 check-in POIs and those POIs with fewer
than 10 visitors to consider enriched users and POIs and avoid the cold-start problem. The Gowalla
dataset, however, does not include the POI category information. This dataset includes check-in
data from February 2009 to October 2010. Before using this dataset, we filter out users with fewer
than 15 check-ins and POIs with fewer than 10 visitors. The statistics of the datasets are provided
in Table 4.

4.2 Evaluation Metrics

To evaluate the performance of the proposed experiments, we used three evaluation metrics
commonly used for assessing the performance of location-based recommendation: Precision at K
(Pre@K), Recall at K (Rec@K), and Normalized Discounted Cumulative Gain at N (nDCG@K), with
K € {10, 20}. Given the top-K returned POIs for user u, Pre@K is defined as

tpu

Pre@K = ———, 15
tpu + fpu 19
while Rec@K is defiend as
tpy
Rec@K = ———, 16
ec@ tpy +tny (16)

8https://www.yelp.com/dataset/challenge.
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where tp,, is the number of recommended POIs visited by u (i.e., correct recommendations); fp,, is
the number of recommended POIs that are not visited by u (i.e., incorrect recommendations); and
tn, is the number of POIs visited by u, which are not in the top-K recommendations.

Finally, we have the measure nDCG@XK evaluating the ranking quality of the recommendation
models. For each user, nDCG@K is defined as

DCG@K
IDCG@K’

where DCG@K = Z£1 li;‘;lﬁ IDCG@K is the DCG@N value when the recommended POlIs are
ideally ranked, and rel; refers to the graded relevance of the result ranked at position i. nDCG@K
is in the range 0 to 1, and higher values mean better results. In the experiments, the average nDCG

values of all users are reported.

nDCG@K = (17)

4.3 Experimental Setup

In this article, we use the critical difference diagram based on the Wilcoxon-Holm method to detect
pairwise significance and to compare the ranking of contextual models where we evaluated them
on all of the evaluation metrics. We use critical difference diagrams to present the overall ranking
of methods. In this diagram, a thick horizontal line groups a set of models that are not significantly
different. We partition each dataset into training, validation, and test sets. We first sort the check-
ins of each user based on their timestamp, then for each user, we use the top 70% of check-ins as
training data, the following 20% of check-ins as test data, and the remaining 10% as validation data.
To apply the significant difference, we first check the distribution of the datasets, and we observed
that the datasets follow the normal distribution. Therefore, we determine the statistically signif-
icant differences between contextual models in terms of Pre@K, Rec@K, and nDCG@K where
K € {10, 20} using a two-tailed paired t-test at a 95% confidence interval (p < 0.05). To evaluate
the performance of neural network-based models, we need to add negative samples of check-ins,
i.e., unvisited POlIs, for each user into the datasets to prevent biasing of models. To this end, we
add negative samples by first counting each user’s unique visited POIs and next adding the same
number of unvisited POIs for the same user [30, 31]. For the test set, we consider 1,000 negative
samples for each user. We implement our methods with Python and Tensorflow.” For the baseline
algorithms, the parameters are initialized as reported in the corresponding papers [16, 42, 80-82].
We set the latent factors parameter of K to 30 for M and PFMMGM models. For the N model, we
set user’s and POI's embedding size to 30 and initialized them by latent factors that were extracted
from matrix factorization. Finally, we optimized the model with mini-batch Adam optimizer [34]
and we employ two hidden layers for neural layers with size 128 — 64. Similarly, the choice of
these parameters is based on literature [31].

5 RESULTS AND ANALYSIS

This section presents the results obtained from the experiments outlined in Section 3.

5.1 Experiment 1: Focus on Contexts (RQ1)

Here, our goal is to analyze the contribution of the contextual information and their different
combinations on the POI recommendation’s performance. In Tables 5 and 6, we show the results of
a different combination of contextual models in baselines on the Gowalla and Yelp datasets. As the
Gowalla dataset does not include categorical information, we cannot experiment with categorical
information-based models on this dataset; thus Table 6 has fewer number rows by removing the

https://www.tensorflow.org/.
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Table 5. Performance Comparison in Terms of Precision@K, Recall@K, and nDCG@K for
K € {10, 20} on Yelp
Baselines Contexts | Pre@10 Pre@20 Rec@10 Rec@20 nDCG@10 nDCG@20
e 0.0108°°P 0.0106°°P 0.0167°°P 0.0324%¢fop 0.0108¢°P 0.0107°°P
bs 0.01274¢°P 0.0113¢°P 0.0154¢°P 0.0267¢°P 0.01304¢°P 0.01204¢°P
cC 0.0017 0.0017 0.0025 0.0047 0.0018 0.0018
GeoSoCa 4Gs 0.01694b¢<fop 0.01424b<f op 0.0194%b<f op 0.0329</op 0.01784bcdfop | o 01579bcfop
€GC 0.0156%0<fop 0.01422b¢f op 0.02302b¢dfer | 0,04249b<f9oP | 0,0160%0¢S P 0.0149%b<fop
fsc 0.01214¢°P 0.0114¢°P 0.0149¢°P 0.0276°P 0.01269¢°P 0.01209¢°P
9GSC 0.01834bcefop | 0,015090¢/ 0P 0.0214%b<f op 0.0340</op 0.0195¢b¢efop | 0.01682b¢¢fop
T T T G [ oo108r T T T 001037 | 0.0163%7 | 0.0311°°7 | ( 0.01087 | 0.0104%F
is 0.01569b<fhop | 0,0129%b<f hop 0.01779b¢fhop 0.02834b¢f hop 0.01629b¢fhop | 0.01439b<f hop
jT 0A0158abcfhnp 0‘0145abcfhiop 0.0229"176]%[01’ OAO406abcfhiklnop (lOléS""bthlop 0A0154abcfhop
FCFKDEAMC | ksG 0.0170%b<fhop | 0.01469b</iop | 0. 0192eb<fhopa | ,03299b¢cfTorg 0.0179%b<f hop 0.0160%b<f hiop
IsT 0.01749b<fh 0.0148b¢fhiopa | 0 01959b<fhopa | 0 p3219b¢fiopq 0.01859b¢fhiop | 0 01647b<f hiopg
mGT 0.01987- (") 0.01737 0.02847 0.04877 0.02037- 17} 0.01847- (")
"SGT 0.01827-dgkim} | g g1562beefhiopq | o o2032bcefhiopa | o 03342bcefhopa | 001957~ Idgkim] | 01737~ {dgkim)
T T T T M ] 00089 T T | 0.0076¢ | 0.0104° | 0.0181¢ | 0.0086” | 0.0078°
PFMMGM rG 0.0075¢ 0.0072¢ 0.0113¢ 0.0216%° 0.0074¢ 0.0072¢
IMG 0.0160"7 0.0132"°P 0.0241"0r 0.0398"ior 0.0172"°P 0.0149"°P

The superscripts letters (a—q) denote significant improvements compared to the other models (p < 0.05). The notation T
shows the set of all the letters, and the best result of a different combination of contexts of baselines are shown in bold.

Table 6. Performance Comparison in Terms of Precision@K, Recall@K, and nDCG@K for
K € {10, 20} on Gowalla

Baselines Contexts | Pre@10 Pre@20 Rec@10 Rec@20 nDCG@10 nDCG@20
aG 0.0149 0.0151 0.0180F 0.0363F 0.0151 0.0151
GeoSoCa bg 0.020794k 0.01819¢k 0.02129k 0.0355F 0.0213%¢ 0.019344k
°GS 0.0215%¢ 0.0195%¢ 0.025324 0.044924 0.02224¢ 0.0206%¢
7777777777 4G 00159 Jo.0152 [00191F " 00355 " |0.0159 | o00155
€S 0.0297abedklm | ( g24pabedklm | ¢ 2834 0.0441¢ 0.0318abedkim | ¢ gp74abedkim
U 0.050271# 0.04207 17 0.04707 1% 0.07817-11) 0.0536" 1"} | 0.04697 11
FCFKDEAMC 9SG 0'0334abcdeklm 0'0273abcdeklm 0.0321ubcd6k1m 0.0501ubcd6k1m 0.0355ubcd6k1m 0.0306ude6klm
hsT 0.0466 U1 | 0.0360T- VU | 0.0420T- YU | 0.06127- U | 0.0516T U | 0.04287 1)
iGT 0.04797 /) 0.04047- /) 0.04597- /7 0.07617~ 0.05127- U1 | 0.0450T~ /)
JSGT 0.0450T~Uhi}b | 0034871/ Rl | 0.0403T- U Rl | 0.0590T- R} | 0,0498T- R} | 0 04137 i)
I kM o068 ] 00142 | 00149 | 00254 | 0.0202% | 0.0173%d
PFMMGM el 0.0187¢ 0.0169F 0.0210% 0.0364% 0.019294 0.0178%4
mMG 0.02382k! 0.02082k! 0.02572k! 0.04422bk! 0.0256%k! 0.02292b¢k!

The superscripts letters (a—m) denote significant improvements compared to the other models (p < 0.05). The notation
T shows the set of all the letters and the best result of different combination of contexts of baselines are shown in bold.

models with categorical context. The first column of Table 2 shows the notation that we use to refer
to different combinations of contextual information in baselines algorithms [16, 81, 82]. Below we
summarise the conclusions we can draw from these tables.

Temporal information plays a pivotal role among all combinations of contextual models. As seen,
on both datasets displayed in Tables 5 and 6, by using temporal context, FCFKDEAMC-(T) is
achieving higher performance against all models that include only a single contextual information
(GeoSoCa-(G), GeoSoCa-(S), GeoSoCa-(C), FCFKDEAMC-(S), FCFKDEAMC-(G), FCFKDEAMC-(T),
PEFMMGM-(M), and PFMMGM-(G)). The location-based social networks capture the user’s
trajectory in the form of a sequence of visited locations. Our results show the importance of
capturing such temporal information to model users’ behavior. After FCFKDEAMC-(T), the
results of GeoSoCa-(S) and FCFKDEAMC-(S) are close and, in some cases, even better than all
geographical information, namely, GeoSoCa-(G), FCFKDEAMC-(G), and PFMMGM-(G). Moreover,
temporal information is one of the most important contexts when combined with other contextual
information. Table 5 shows FCFKDEAMC-(GT) achieves the best results among all models, which
include temporal information.
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Considering geographical information per user on an individual basis is a more effective ap-
proach than creating universal distribution for all users. The results of GeoSoCa-(G), FCFKDEAMC-
(G), and PEMMGM-(G) show that among the models using geographical information (G), overall
FCFKDEAMC-(G) achieves the most stable results on both datasets. As we can see in Tables 5 and
6, PFMMGM-(G) exhibits better results than GeoSoCa-(G) and FCFKDEAMC-(G) on the Gowalla
dataset. However, on the Yelp dataset we see an opposite trend, where GeoSoCa-(G) archives the
best results. We see that on both datasets, even though less effective, FCFKDEAMC-(G)’s perfor-
mance is comparable with the other two models. Moreover, we observe a considerable difference in
the performance of PFMMGM-(G) and GeoSoCa-(G) on the two datasets, where the models perform
well on one dataset while failing on the other. Given that FCFKDEAMC-(G) models the geograph-
ical component per user, while the two other models (i.e., PFPMMGM-(G) and GeoSoCa-(G)) learn
a universal geographical distribution, and FCFKDEAMC-(G) exhibits a more robust performance
on both datasets, we can conclude that utilizing a user-based individual geographical distribution
leads to a more effective and robust geographical model.

Considering categorical information alone will not lead to improving the performance. However, its
impact is significant when combined with geographical information. Table 5 shows that the GeoSoCa-
(C) model is performing worse than all 16 other models in terms of all performance metrics. This
could be due to the lack of consideration of relevant geographical context. For example, consider a
situation of having POIs with the same category in different locations; users would prefer to visit
nearby POIs rather than distant ones. Moreover, the result in Table 5 on GeoSoCa-(GC) shows that
a combination of GeoSoCa-(G) and GeoSoCa-(C) is significantly more effective than either of them
separately.

Among different combinations of contextual information, the importance of geographical and tem-
poral information is obvious. As shown in Tables 5 and 6, FCFKDEAMC-(GT) achieves the best
performance in comparison with the other combinations of contextual information across 16 of
17 models on the Yelp dataset and 11 of 13 models on the Gowalla dataset. Moreover, one can see,
when we add geographical information or temporal information to the models, they improve the
performance of the models.

Considering all contextual information in a model will not necessarily improve the performance.
The comparison of FCFKDEAMC-(GT) with FCFKDEAMC-(SGT) shows that across 12 compar-
isons based on 6 evaluation metrics on two datasets, FCFKDEAMC-(GT) beats the FCFKDEAMC-
(SGT) even when using fewer combinations of contextual information. It is worth noting that
FCFKDEAMC-(SGT) is the final model that Zhang et al. proposed [82], but FCFKDEAMC-(ST), even
with fewer contexts, outperforms FCFKDEAMC-(SGT).

In summary, our main findings related to RQ1 are as follows:

e Temporal contextual information plays a pivotal role among all combinations of contextual
models.

e Categorical information alone will not lead to improvement in performance.

e Considering all the available contextual information in a model will not necessarily improve
the performance.

e Among different combinations of contextual information, the importance of geographical
and temporal information is clear.

5.2 Experiment 2: Focus on Metrics (RQ2)

As seen in Tables 5 and 6, the performance of models varies when compared based on different
evaluation metrics. For example, in terms of precision on both datasets GeoSoCa-(S) performs more
effectively compared with GeoSoCa-(G). However, the results on recall exhibit different behavior.
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7 6 5 4 3 2 1 7 6 5 4 3 2 1
L 1 | 1 1 1 1 1 1 1 1 1 1 L 1 1 1 | 1 L 1 1 ] 1 ]
GeoSoCa-(C) 42463 1 36842 GeoSoCa-(GC) GeoSoCa-(C) 44672 i 38057 GeoSoCa-(GSC)
GeoSoCa-(S) 39281 38836 GeoSoCa-(GSC) GeoSoCa-(G) 39959 38671 GeoSoCa-(GS)
GeoSoCa-(SC) 3.9237 39145 GeoSoCa-(GS) GeoSoCa-(S) 39886 38929 GeoSoCa-(GC)
GeoSoCa-(G) 391% GeoSoCa-(SC) 39826
(a) Performance on Rec@20 (b) Performance on nDCG@20

Fig. 5. Ranking of different combination of contextual information of GeoSoCa model on (a) Rec@20 and
(b) NDCG@20.

We see that on recall, GeoSoCa-(G) performs better than GeoSoCa-(S), suggesting that geographical
information has more impact when focusing on recall. When we compare the results of PFMMGM-
(M) and PFMMGM-(G), which are respectively interaction-based and geographical-based models,
we observe that PFMMGM-(G) significantly outperforms PFMMGM-(M) on recall. On the contrary,
PEMMGM-(M) achieves better results than PFMMGM-(G) on the two other metrics, precision and
nDCG.

Considering these differences, to have an idea of the overall ranking of the models based on each
performance metric, in Figure 5 we present a critical difference diagram that allows comparing the
statistical ranking of different models. In these graphs, the horizontal lines annotated by numbers
show the ranking of models and, the thick horizontal lines group a set of models that are not signif-
icantly different. In Figure 5, we plot the ranking of a different combination of contextual models
proposed in GeoSoCa [81] based on two different evaluation metrics. As one can see in Figure 5(a),
the combination of geographical and categorical information achieve the best result based on the
recall, while in Figure 5(b), that shows the performance on nDCG, GeoSoCa-(GC) ranked third and
GeoSoCa-(SG) is better. The difference is explained by the fact that these metrics measure different
things. nDCG considers the ranking of the POIs when we recommend a list of POIs based on users’
interests and behaviors, while the precision and recall only compare the list of recommended POIs
and test set of users. One important fact to consider here is that these metrics are traditional met-
rics that are not designed for evaluating the quality of contextual information captured fully. There
are currently no metrics that can assess the performance of recommendation with respect to the
consistency of temporal, social, or geographical information. For instance, in evaluating the geo-
graphical context, we would ideally want to check if the recommended POIs are actually located
near the user. Similarly, for evaluating a model incorporating temporal context, the sequence of vis-
its or time of check-ins should be considered in the evaluation process and based on the users in the
test set.

In summary, in relation to RQ2, we can observe different contrasting effects on traditional evalu-
ation metrics of the use of context in POI recommendation models. For instance, one model might
outperform other models on one metric like nDCG, while on other metrics such as precision and
recall, the results might be completely different. The reasons for such behavior might be related to
the different nature of these evaluation metrics. Thus, we need to propose new evaluation metrics
based on contextual information.

5.3 Experiment 3: Focus on Contextual Models (RQ3)

After comparing how contextual information is modeled in baselines, we turn to compare our
proposed models (based on matrix factorization and neural networks) using a similar combination
of contextual information. In the rest of this section, we will refer to these models like the M and
N models, respectively. We compare the performance of the models earlier presented in Table 2,
and we report detailed results in terms of Pre@K, Rec@K, and nDCG@K where K € {10, 20} in
Tables 7, 8, 9, and 10. Also, in Figures 6 and 7, we plot the ranking of the contextual information in
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Table 7. Performance Comparison on Matrix Factorization Based POl Recommendation in Terms of
Precision@K, Recall@K, and nDCG@K for K € {10, 20} on Yelp

Model | Contexts Pre@10 Pre@20 Rec@10 Rec@20 nDCG@10 nDCG@20
4No Context | 0.0080 0.0066 0.0081 0.0133 0.0077 0.0068
RIC 0.02847- T = 1700241771 " " [ 0.04117 T " 7 70.06907-FY | 0.02977-1HT T 7| 0.02637 (R}
°s 0.01784¢ 0.0160%¢ 0.02184¢ 0.03804¢ 0.0185%¢ 0.01704¢
dr 0.02219¢¢ 0.0195%¢ 0.03084¢ 0.0537%/tjop 0.02324¢ 0.0211%%
eC 0.0075 0.0072 0.0071 0.0148 0.0074 0.0072
I 0.02149°¢ ~ ~ 7| 0.0181%°¢ [ 0.02487¢€ ~ | 0.04129°¢ [ 0.0229%¢ | 0.0201%°¢
IGT 0.0253T-hin} | 0.0219T- 1 hint | 0037171/ hin) | 0. 06177- U hin) | 002647~ hint | 0023771 hin)
M hGe 0.02897 /1 | 0.02467- V1 | 0.04a187 V) | 0.07017 V) | 0.02077- 1 | 0.0265 /)
iST 0.0195%¢ 0.0166%¢ 0.02244¢ 0.03694¢ 0.02034¢ 0.01814¢
jsc 0.01849¢ 0.0165%¢ 0.02219¢ 0.03829¢ 0.01929¢ 0.0176%¢
kTC 0.02319¢ 0.02029¢ 0.03229¢ 0.0564%¢ 0.02439¢ 0.02209¢
[IGST | 0.0204%¢ ] 0.0172%€ ~ [ 0.0239% | ¢ 0.03829¢ | 0.0213%¢ | ( 0.01889¢
mGSC 0.02194¢ 0.0186%¢ 0.02534¢ 0.04179¢ 0.02324¢ 0.0205%¢
"GTC 0.02627-\bhgl | 0,0225T-bhg} | 0.0382T~1bhg} | 0.0640T~1bh9} | 0.0273T-{bh9} | 002457 b9}
°STC 0.01974¢ 0.0170%¢ 0.0225%¢ 0.03784¢ 0.0205%¢ 0.01854¢
[PGSTC ~ ~ ~[0.0207%¢~ ~ ~ 7 0.0175%¢ ~ ~ [ 0.0240%¢" ~ ~ | 0.03899¢ ~ ~ " [ 0.0216%¢ ~ | 0.01919¢ ~ ~

The superscripts letters (a—p) denote significant improvements compared to the other models (p < 0.05). The notation T
shows the set of all the letters. The best result between all models and the best result between different numbers of
combinations are shown in bold and italic, respectively.

Table 8. Performance Comparison on Matrix Factorization Based POl Recommendation in Terms of
Precision@K, Recall@K, and nDCG@XK for K € {10, 20} on Gowalla

Model | Contexts Pre@10 Pre@20 Rec@10 Rec@20 nDCG@10 nDCG@20
%No Context | 0.0168 0.0142 0.0149 0.0254 0.0202 0.0173
RIC 0.0377%¢ "~ ] 0.0326%°¢ [ 0.0404%¢¢ ~ [ 0.0680%°¢ | 0.04029° | 0.03599¢
S 0.0261¢ 0.0219¢ 0.0242¢ 0.0399¢ 0.0290¢ 0.0252¢
Mo LT | 0.0542" (1) | 0.0442' () | 0.0517"71%) | 0.08267"1%/1 | 0.0583771%/] | 0.05017 ()
€GS 0.0372¢4¢ 0.0295%¢ 0.0360%¢ 0.05439¢ 0.04079¢ 0.034349¢
fGT 0.0503%b¢egh | 0.04109bcedh | .0493bcegh | g.0789abcegh | g p5382bceh | g 04639bcegh
9ST 0.04714bcegh | 0.03669bcegh | 0.04132bce 0.0617%bce 0.05182bceh | 0.04319bceh
| EGST [ 0.0440%P¢¢ ™ 7| 0.0338%6¢¢ ~ [ 0.03969P%¢~ [ 0.05794b¢¢ " " | 0.04824P¢¢ "~ | 0.03984P¢¢ ~

The superscripts letters (a—h) denote significant improvements compared to the other models (p < 0.05). The notation T
shows the set of all the letters. The best result between all models and the best result between different numbers of
combinations are shown in bold and italic, respectively.

combination with matrix factorization and neural networks, respectively. We can summarise the
following observations using these comparisons:

The M and N models are more effective in all evaluation metrics on the Gowalla dataset while
performing poorly on the Yelp dataset. Tables 7, 8, 9, and 10 show the results of the M and N models
are much better on the Gowalla dataset. As seen in Table 4, while the sparsity of the two datasets
is the same, there is a major difference in the ratio between the number of users and check-ins.
In Yelp, there are far fewer check-ins per user. We also observed the same results on the Baselines
models in Tables 5 and 6.

The N model achieves better performance compared to the M model. This is supported by the
results on Tables 9 and 10. This shows that by modeling non-linear relations, the neural network
can capture the latent relations between users and POIs better. We also see that all models have
lower performance on Yelp than on Gowalla. This can be due to the fact that Gowalla has more
check-ins, which is essential when you want to train a neural network-based model.
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Table 9. Performance Comparison on Neural Network-based POl Recommendation in Terms of
Precision@K, Recall@K, and nDCG@XK for K € {10, 20} on Yelp

Model | Contexts Pre@10 Pre@20 Rec@10 Rec@20 nDCG@10 nDCG@20
9No Context | 0.0662797Tmnp 1 0 055107 9hnlmnp {7 0g49bTghnlmnp 1" 14057 9hnTmnp | 06g78f9hnlmnp 1 0 0604P ghnImnp
(¢~ | 0.0526 | ( 0042 | 0.0599 [ 0.0934 0059 | 0.0497
S 0.11047{ctjo} 0.08637~cijo} 0.14127—¢ijol 0.21237—cijol 0.12057—¢ijol 0.10087—{¢ijo}
aT 0.0683¢f9hnimnp | ¢ 05650fghnimnp | o oggebefghnimnp | o 14470fghnlmnp | g 07427~ (cdijko} | 06427~ {cdijko)
€C 0.06430hnfglmnp | o o548bhnfglmnp | o 0gas5bhnfglmnp | o 1419bhnfglmnp | o 06650hn 9 0.0594bhnf glmnp
[7gs 100563~ 7 | 0.0449"m "~~~ 1 0.0644Pmm " " " " [0.1PAnT T T T 7 0.0623"7 ~ 7 T 0.05259" T T
IGT 0.0528 0.0421 0.0602 0.0936 0.0597 0.0501
N el 0.0521 0.0418 0.0588 0.0916 0.0576 0.0487
ST 0.11157~teijol 0.08687—{ci/et | (14337 {cijo} 0.21447¢ijol 0.12227-cijol 0.10197~{¢ije}
isc 0.11157~{etjo) 0.08637 ¢t} 0.14227~eijo) 0.21287~eijo) 0.12137~leijo) 0.10097~teijo)
kTC 0.06642fghimnp | 0 0558bfghlmnp | o og57bfghlmnp | o 1451bfghlmnp | o 0e9gbfghlmnp | ¢ 0615bf9himnp
IGST ~ | o0.0564 ~ 7 0.0457" [ 0.0646P97" ~ ~ " [ 0.1003P97" ~ = 7| 0.0625"" [ 0.0527"% "
mGSC 0.05697"" 0.0451°"7 0.0657"" 0.0994h1 0.0627"" 0.0527""
"GTC 0.0523 0.0419 0.0592 0.0919 0.058 0.049
°STC 0.11247{ciik} 0.08677¢tik} 0.14397 ¢k} 0.21467- ¢k} | 0,1225T-{lik} | ¢ 10177 ciik)
[ PGSTC ~ | 0.057PFn~ =~ 7~ 0.0451°77 ~ 7 7 0.0651P" T~ " [ 0.0998PR" © 7 0.0628""" [ 0.0528""

The superscripts letters (a—p) denote significant improvements compared to the other models (p < 0.05). The notation T
shows the set of all the letters. The best result between all models and the best result between different numbers of

combinations are shown in bold and italic, respectively.

Table 10. Performance Comparison on Neural Network-based POl Recommendation in Terms of
Precision@K, Recall@K, and nDCG@XK for K € {10, 20} on Gowalla

Model | Contexts Pre@10 Pre@20 Rec@10 Rec@20 nDCG@10 nDCG@20

aNo Context | 0.1142 0.0874 0.1 0.1461 0.1312 0.1074
K< 0.1366%4 "~ ~ | 0.102899 ~ | 0.1154%¢ "~ | 0.1643%9 | 0.15514 | 0.125994 ~

s 0.17679bdefh | ¢ 13ebdefh 0.1558%bdefh | g 21279bdefh | 1979abdefh | o 159abdehf

N T 01174 10089 101032 101497 101351 ] 01105
€GS 0.15694Pdf 0.11459%41 0.13024P4f 0.1774%b41 0.1765%P4F ~ | 0.14129b4f"
fGT 0.137394 0.103294 0.1161%4 0.164944 0.1564%4 0.126994
9ST 0.17734bdefh | 9,13039bdefh | 0,1566904¢fh | g.21334abdefh | g 199abdefh | o 159gabdefh
FGST [ 0157194~ 7 0.11469P9 ~ | 0.1306% ~ | 0.17769P4F ~ | 0.17739P4 ~ | 0.14179b4f ~

The superscripts letters (a—h) denote significant improvements compared to the other models (p < 0.05). The notation T
shows the set of all the letters. The best result between all models and the best result between different numbers of

combinations are shown in bold and italic, respectively.

Fused models exhibit better performance compared with the simple check-in frequency-based mod-
els on M and N models. In Tables 7 and 9, we can see that the quality of POI recommendation
relies on the number of contextual information fused. As one can see from Figures 6 and 7, all of
the contextual information and their combination have an impact on the performance of matrix
factorization-based methods (by having a higher rank than the model with no context). However,
for neural network-based methods, this depends on the incorporated contextual information: there
are combinations of contextual information that can degrade the performance of recommendation
(e.g., GC and GST).

Consideration of all available contextual information is not the best option for neither of the M and
N models. In both Figures 6 and 7, the combination of all contextual information does not produce
accurate results and can adversely lead to poor performance. The reason can be the operator rule
(shown in Equation (13)) that is used to fuse them. For example, in this article, we consider the sum
rule based on previous research [16, 80, 81], but there are some other aggregation operators, such as
the product rule, which can help to improve the different combinations of contextual information.
We leave the further investigation of the effect of different ways of fusion (i.e., product, sum, mean
rule, etc.) for future work.
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Fig. 6. Ranking of the contextual information in combination with matrix factorization.
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Fig. 7. Ranking of the contextual information in combination with neural network.

The geographical or temporal information is more effective than other contextual information in
improving the M model. The results of the M model in Tables 7 and 8 on both datasets show that if
an additional context to interaction or check-in frequency is needed, then it will be better to select
geographical or temporal information.

Social information has a high impact on improving the N model. The combination of N and S
is overall better than other combinations of different contextual information. Figure 7 shows the
results of S model where we see that social information improves the performance of the POI
recommendation model. Therefore, it can help different models to provide better and more accurate
results.

Temporal and categorical information appears to be the best contextual information in improving
performance among the M and N models. Figures 6 and 7 show that on the N and M models, the
temporal and categorical information aspects have more impact on the user’s behavior and are bet-
ter incorporated. This can be because of the importance of considering users’ sequential transition
between the POIs in different temporal states and the category of POIs at the same time.

The combination of geographical and categorical information is the best case to model users’ behav-
ior on the M model. Figure 6 shows the combination of the G and C models with M outperforming
other combinations and archives the highest rank between the different contextual information.
It shows that the synergy of geographical and categorical information on the user’s preference
works. The second best combination involves geographical and temporal information, which is
the best combination on the Gowalla dataset, since we do not have categorical information for
that dataset.

The categorical information has the worst results among contextual models on the M model. This
might be due to the fact that the M-(C) model is ignorant of geographical context. Two POIs may
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have the same category, but distant POIs would be less likely to be visited. Although categorical

information does not perform well alone, it seems to complement other information very well.
On datasets with a few check-ins per user, the M model in combination with geographical informa-

tion works best. This conclusion is based on our analysis of two datasets with different levels of

check-ins (see Table 4). It can be observed (in Table 7) that the M-(T) model does not perform well,

and its performance is lower than the M-(G) model. However, the M-(T) model performs better

without the combination with other contextual information on the Gowalla dataset (see Table 8).
In summary, our findings related to RQ3 are as follows:

e The ratio of the number of users and check-ins in datasets has a significant impact on the
performance of the models.

e Neural network-based models overall perform better than matrix factorization based models.
This can be due to the fact that non-linear models achieve a higher-order representation of
users and POIs relation.

e In both matrix factorization and neural network approaches, the fusion of contextual infor-
mation exhibits better performance.

e The combination of all contextual information does not necessarily produce accurate results
and can adversely lead to poor performance.

e On datasets with a few check-ins per user, the matrix factorization model in combination
with geographical information works best.

e Among both matrix factorization and neural networks, temporal and geographical informa-
tion appears to be the best contextual information in improving the performance of models.

e Overall, the categorical information has the worst results among contextual models on
models.

5.4 Experiment 4: Focus on Users Behavior (RQ4)

Inthis section, we report and analyze the results of geographical behavior, temporal behavior, and
exploration factor based on the nDCG@20 evaluation measure. The objective is to answer RQ4,
studying how different models perform for recommending POI to users with different behavior.
We plot the results according to different categories of models, including baselines, matrix factor-
ization, and neural network-based models, as well as contextual-based models (i.e., geographical,
temporal, social). Notice that due to space considerations, we only report the results on the Gowalla
dataset, since we observed similar results on the Yelp dataset. Also, for better visibility and to avoid
over-crowding the plot, we select and present only the models based on their performance on differ-
ent combinations of contextual information from Tables 8 and 10. For example, in Table 6, between
the different combinations of the GeoSoCa, the GeoSoCa-(GS) achieves the best performance on the
Gowalla dataset thus, we select it for visualization. Also, in Figure 8(a) only the best baselines with
respect to nDCG@20 from Table 8(a) are shown. We plot the rest of the graphs on the same basis.

5.4.1 Impact of Geographical Distance. Figure 8 show the results of geographical behavior. In
the graphs, on the x-axis, we present the geographical distance in kilometers between consecutive
visits. The five values presented on the x-axis are extracted from the distribution of check-ins in
the dataset. Here, we analyze the impact of users’ behavior on the accuracy of recommendation.
As seen in Figure 8(a), (b), and (c), the accuracy of recommendation is higher for users that stay in
smaller neighborhoods. This could be due to the fact that a user with a higher movement range
will have more options compared to users with limited movement range and thus the task of
recommendation is more difficult for them.

This agrees with the conclusions of previous studies that characterized users’ geographical
behavior [54, 73]. We see that for M-(GT), PFMMGM-(MG), M-(T), FCFKDEAMC-(T), and

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 88. Publication date: March 2022.



A Systematic Analysis on the Impact of Contextual Information 88:27

0.055
0.05
0.050
0.04
—e— FCFKDEAMC-(T)
—— GeoSoCa-(GS)

—e— PFMMGM-(MG)

o
°
£
&

—— M-(T)
— M-(GT)

nDCG@20

o
>
£
S

002 0.035

nDCG@20
o o
o o
2 &

0.030

6.53 30.23 77.18 130.9 180.1 6.53 3023 77.18 130.9 180.1
Geographical Difference Geographical Difference

(a) Top baseline models from Table 6 (b) Top M models from Table 8

0.175

0.150

0.125

— N

—— GeoSoCa-(GS)

nDCG@20
e 2 o o o
s o 5 &5 =

o
—— N-(GST) '@ 0.100 ~—— PFMMGM-(MG)
—— N-(S) 3 —— M(GT)
¥ NA(ST) 2 0.075 —— N-(GST)
0.050 —\
0.025
0.08
6.53 30.23 77.18 130.9 180.1 6.53 30.23 77.18 130.9 180.1
Geographical Difference Geographical Difference
(c) Top N models from Table 10 (d) Top models with geographical information
0.18 0175
016 0.150
0.14 0.125
- —e— FCFKDEAMC-(T) o —— GeoSoCa-(GS)
& 0.12 —— M-(T) P N-(GST)
l‘%o 10 —_wien go'm —_ NiES) '
a —— N-(GST) a
< < 0.075 —o— N-(ST)
0.08 —— N-(ST)
0.06 0.050
- —\ 0025 \\
6.53 30.23 77.18 130.9 180.1 6.53 30.23 77.18 130.9 180.1
Geographical Difference Geographical Difference
(e) Top models with temporal information (f) Top models with social information

Fig. 8. Analysis of recommendation performance as a function of geographical behavior of users on Gowalla.

GeoSoCa-(GS), larger distances between consecutive check-ins lead to poorer performance of the
models. Figure 8(b) shows on matrix factorization-based methods, large distances between con-
secutive check-ins cause a sparser user-POI matrix; thus, the recommendation accuracy decreases.
This effect is more evident for non-neural models where results heavily depend on geographical
information. However, neural models seem to cope better with different geographical distances
because of their capacity to model non-linearity. As one can see in Figure 8(c), there is a peak per-
formance around a certain distance (i.e., around 30) for neural networks-based models. This hap-
pens for models that incorporate social information and indicates that the optimal performance
is achieved for users with a consecutive check-in distance of 30 km. Finally, Figure 8(c) shows the
results of neural network-based models. Neural network models that only use check-in frequency
(i.e., N) perform slightly better than models based on matrix factorization. In neural network mod-
els, we consider just users’ check-in frequency without any contextual information. Moreover,
neural network-based methods show that there are differences in incorporating linearity and non-
linearity when considering consecutive check-ins of users’ behavior.

5.4.2  Impact of Temporal Check-in Density. In Figure 9 we show the results of temporal behav-
ior. We plot the results based on nDCG@20 and the distribution of the temporal distance between
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Fig. 9. Analysis of recommendation performance as a function of temporal behavior of users on Gowalla.

consecutive check-ins. In these figures, on the x-axis, five values are presented, dividing users
based on the distribution of check-in timestamps. These figures show that the performance of rec-
ommendation decreases as the users’ consecutive check-ins become more distant in time. This is
consistently observed for all models, and temporal models are no exception either. This can be due
to the lack of check-in information for users whose check-ins have higher temporal differences.
Furthermore, as the time between check-ins increases, the age of recommendation information
increases, making recommendations less relevant.

5.4.3 Impact of Exploration. In Figure 10, we show the results of our experiments on studying
the impact of the exploration factor on users’ behavior. In the graphs, on the x-axis, we present the
exploration factor. The five values presented on the x-axis are extracted from the users’ exploration
factor that is calculated using Equation (14).

We see that all models perform worse as users tend to explore more. Higher exploration, in this
case, means that users tend to visit different POIs (i.e., visiting more POIs but with less frequency).
Therefore, it is harder for models to predict which novel POIs users would visit next. It is interesting
to see that neural network-based approaches (i.e., Figure 10(c)) are performing more effectively
compared to the rest of the models. This is not in line with what we can usually expect from neural
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Fig. 10. Analysis of recommendation performance as a function of exploration factor of users on Gowalla.

models. They are supposed to learn high-dimensional embeddings of users and POIs, enabling
them to better match users with unknown venues. This suggests that the tested neural models
cannot learn such representations effectively and instead gain performance improvement mainly
on users with more repeated check-ins (i.e., lower exploration value).

Based on our categorization of models presented in Figure 10(d), (e), and (f), we see the effect
of using different contextual information on user groups. While geographical and social models
(i.e., Figure 10(f) and (d)) are affected similarly, we see that temporal models (i.e., Figure 10(e)) are
affected differently. This could be due to the existence of some latent relation between exploration
and temporal behavior of users that help the models in some cases to perform better. We leave the
further investigation of this effect for future work.

Between the contextual models, T, G, and their combination improve the performance more
than the other contextual information and combination in terms of all three evaluation metrics.
As we can see from the baselines and M models (i.e., Figure 10(a) and (b)), one of the most impor-
tant factors to improve recommendation accuracy is the temporal factor. We can see in Figure 10
that when we consider temporal factors, the models’ performance improves significantly. On
the contrary, in the N models (i.e., Figure 10(c)), social information is one of the most effective
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contextual information. Neural network-based models have better results than matrix factorization
ones due to their capability to model non-linear information related to users and item (Figure 10(c)
and (b)).

We can also see that a simple combination of the N model with contextual models achieves better
results than different M models. In fact, Figure 10(c) shows that N-(ST) gives the best performance
among all models. These results indicate that the non-linearity of neural networks obtain users’
preference in a better way than linear models such as matrix factorization.

In summary, our main findings related to RQ4 are as follows:

e The analysis on the geographical distance indicates the accuracy of recommendation is bet-
ter when users stay in smaller neighborhoods.

e The recommendation task gets more difficult when the users display a higher movement
range that causes low accuracy.

e Non-linear models are better at modeling the consecutive check-ins behavior of users.

e The performance of recommendation decreases as the users’ consecutive check-ins become
more distant in time.

e In general, POI recommendation models perform worse as users tend to explore more.

6 CONCLUSIONS AND FUTURE WORK

Inthis article, we analyzed and extensively evaluated the role of contextual information on POI
recommendation systems. We initially provided an extensive survey of POI recommendation,
categorized and compared the approaches used so far in modeling contextual information (i.e.,
geographical, temporal, social, and categorical). Next, with experiments on two benchmark
datasets, we analyzed the performance of POI recommendation from different perspectives using
well-adopted evaluation metrics in the field of information retrieval. First, we studied how the
performance of recommendation is affected by the combinations of contextual information incor-
porated. To do so, we compared the performance of three prominent baseline methods selected
from the literature, confirming that there is indeed a difference in how different combinations
of contextual information impact the performance. Second, we examined the importance of each
piece of contextual information and assessed their priorities when incorporated in a different set
of models (i.e., linear and non-linear) in POI recommendation. For this goal, we used the two most
widely-used linear and non-linear models, namely, matrix factorization and neural networks.
Third, we also analyzed if and how the quality of POI recommendation systems is affected by
different user behaviors, represented in the geographical distance between check-ins, temporal
check-in density, and exploration.

Our findings show that fusing all contextual information into a recommendation model is not the
best strategy and one needs first to evaluate the impact of different combinations of proposed con-
textual information and the method used for fusing them (e.g., some models such as FCFKDEAMC
achieved better results when the social context is removed). Moreover, our results further show
that the impact of geographical and temporal information is more than social and categorical infor-
mation. More importantly, we showed that different information retrieval evaluation metrics such
as precision, recall, and nDCG yield different results for a proposed contextual recommendation
model. For instance, using precision, a geographical model outperforms a temporal model, while
recall indicates the superiority of the temporal model. However, by looking only at the list of rec-
ommended POIs, none of these metrics evaluates if the recommendation lists retain the temporal
and geographical context.

Finally, there are many interesting future directions worthy of exploration. Other factors and
pieces of information can be incorporated into POI recommendation models, for instance, those
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extracted from comments, tips, or images available from a POL Also, for generalization purposes,
the analysis of different datasets with sufficient information (e.g., users, POIs, categories) is very
important. Evaluating contextual information shows inconsistent results using different metrics.
One future direction of work could be proposing different evaluation metrics to test the quality of
contextual information in context-aware recommender systems (see, for example, Reference [63]).
Moreover, our study suggests that the usage of contextual information leads to different levels of
improvement on the two datasets. This can be due to various factors that are dependent on each
dataset’s characteristics, such as sparsity. Thus, we plan to extend our study to various datasets
of certain characteristics and perform a thorough investigation on the impact of different dataset
characteristics on performance.
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