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a b s t r a c t

The recent deep cross-modal hashing (DCMH) has achieved superior performance in effective and
efficient cross-modal retrieval and thus has drawn increasing attention. Nevertheless, there are still
two limitations for most existing DCMH methods: (1) single labels are usually leveraged to measure the
semantic similarity of cross-modal pairwise instances while neglecting that many cross-modal datasets
contain abundant semantic information among multi-labels. (2) several DCMH methods utilized the
multi-labels to supervise the learning of hash functions. Nevertheless, the feature space of multi-
labels suffers the weakness of sparse, resulting in sub-optimization for the hash functions learning.
Thus, this paper proposed a multi-label modality enhanced attention-based self-supervised deep
cross-modal hashing (MMACH) framework. Specifically, a multi-label modality enhanced attention
module is designed to integrate the significant features from cross-modal data into multi-labels feature
representations, aiming to improve its completion. Moreover, a multi-label cross-modal triplet loss
is defined based on the criterion that the feature representations of cross-modal pairwise instances
with more common categories should preserve higher semantic similarity than other instances. To
the best of our knowledge, the multi-label cross-modal triplet loss is the first time designed for
cross-modal retrieval. Extensive experiments on four multi-label cross-modal datasets demonstrate the
effectiveness and efficiency of our proposed MMACH. Moreover, the MMACH also achieved superior
performance and outperformed several state-of-the-art methods on the task of cross-modal retrieval.
The source code of MMACH is available at https://github.com/SWU-CS-MediaLab/MMACH.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

With the advent and prevalence of Web 3.0, more and more
ulti-modal data, such as graphics, texts, videos, images, and so
n, have been accumulated in the social network. As data from
istinct modalities may represent an identical object or event, it
s beneficial to bridge semantically relevant data from different
odalities to implement massive multi-modal instances match-

ng, fusing, and retrieval. Therefore, cross-modal retrieval [1,2] is
roposed to retrieve semantically related data from one modality
hile the query data is from a distinct modality. Because data

n different modalities have different distributions and dissimilar
eature spaces, efficiently and effectively minimizing the semantic
aps between these large-scale yet heterogeneous data and ac-
urately calculating the semantical similarity of cross-modal data
re still big challenges for cross-modal retrieval.

∗ Corresponding author.
E-mail address: songwuswu@swu.edu.cn (S. Wu).
ttps://doi.org/10.1016/j.knosys.2021.107927
950-7051/© 2021 Elsevier B.V. All rights reserved.
Generally, a large number of existing cross-modal retrieval
methods, including topic models [3–5], subspace learning [6–11],
and deep models [12–20], project original features of cross-modal
instances into a common real-valued subspace and measure the
semantic similarities in the common real-valued subspace. How-
ever, due to the rapid increment of the amount and scale of the
multi-modal data, real-valued-based cross-modal retrieval meth-
ods usually suffer the weakness of high computation costs and
low retrieval accuracy. Thus, hashing-based cross-modal retrieval
(also called cross-modal hashing (CMH)) methods are proposed
to map high-dimensional data from each modality into compact
binary codes and calculate the semantic relevance of cross-modal
pairwise instances with an efficient XOR operation. Thus, CMH
has been a prevalent research topic in recent years because of
the significant strengths of low data storage and high similarity
measurement.

Depending on whether category labels are leveraged during
the training stage, existing cross-modal hashing methods can
be further divided into unsupervised and supervised manners.

https://doi.org/10.1016/j.knosys.2021.107927
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2021.107927&domain=pdf
https://github.com/SWU-CS-MediaLab/MMACH
mailto:songwuswu@swu.edu.cn
https://doi.org/10.1016/j.knosys.2021.107927
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nsupervised cross-modal hashing methods [21–27] transform
he original modality data to homogeneous binary codes by calcu-
ating the similarities of different modality data representations
hile preserving the semantic relevance without the guidance of
ata labels. By contrast, supervised cross-modal hashing meth-
ds [28–35] encode the heterogeneous cross-modal instances
nto compact hash codes and keep the cross-modal semantic
imilarities with the supervised information of class labels. Com-
ared to unsupervised manners, supervised cross-modal hash-
ng methods can fully use semantic relations of cross-modal
nstances by utilizing semantic labels and thus significantly boost
he performance of cross-modal retrieval.

In the past few years, deep neural networks (DNNs) have been
roposed and applied to many tasks such as sentence recognition,
bject detection, image caption, etc. Without exception, deep
eural networks based cross-modal hashing are widely inves-
igated. Pairwise relationship guided deep hashing (PRDH) [36]
ntegrates several different pairwise constraints to protect the se-
antic similarity of pairwise instances from both intra-modalities
nd inter-modalities. Deep cross-modal hashing (DCMH) [37]
tilizes two deep neural networks to learn hash functions for
mage and text-modality data representations, respectively. Self-
upervised adversarial hashing (SSAH) [38] regards the multi-
abels of each image-text pair as a single modality and fromwhich
hash projection function is learned to supervise the training
f hash mapping functions for the image-modality as well as
he text-modality. Due to the remarkable feature learning ability,
eep cross-modal hashing methods can more effectively cap-
ure the correlation across different modalities than hand-crafted
ethods.
In most of the existing deep cross-modal hashing methods,

wo cross-modal pairwise instances are regarded as semanti-
ally similar only if they have at least one common category.
hey usually neglect the fact that if two cross-modal pairwise
nstances have more common labels than another cross-modal
airwise instance, then the semantic similarity of the former
hould be higher than the latter (As shown in Fig. 1). There-
ore, most of the existing deep cross-modal hashing methods
eglect the abundant semantic information in multiple-labels
f cross-modal datasets£resulting in inaccurately evaluating the
emantic relevance of cross-modal pairwise instances and weakly
ptimization of the learned cross-modal hash functions. Fur-
hermore, a few deep cross-modal hashing methods introduce
elf-supervised learning into deep cross-modal hashing, which
egard the multi-labels of original instances as a signal modality
nd learn a hash function to supervise the training of other
odalities. This self-supervised-based deep cross-modal hashing
an enhance the performance of cross-modal retrieval. How-
ver, as the original multi-label matrix is very sparse, the multi-
abel-based self-supervised learning strategy shows only a lim-
ted enhancement of the learned cross-modal hash projection
unctions.

To further boost the robustness of cross-modal hashing, we
ropose a multi-label modality enhanced attention-based self-
upervised deep hashing (MMACH) for high-performance cross-
odal retrieval. Specifically, a multi-label modality enhanced
ttention (MMEA) module is firstly defined to overcome the
parsity of the multi-label matrix in the self-supervised learning-
ased deep cross-modal hashing. The MMEA utilizes three en-
oders to transfer each original instance (including original image
eatures, original text features, and corresponding multi-labels)
nto a latent feature space and then normalizes them to increase
heir discrimination. Afterward, the normalized feature represen-
ations from the original image and text modality are fused into
he feature representations from the corresponding multi-labels
y a self-attention mechanism, respectively. Secondly, a multi-
abel cross-modal triplet loss (MCTL) is designed to measure the
2

Fig. 1. This figure is the demonstration of three image-text instances with
multiple labels. In previous deep cross-modal hashing approaches, the semantic
similarity of the image-text instances in (a) and (b) is regarded as 1, because they
have at least one common categories, i.e., sky, cloud. Analogously, the semantic
imilarity of the image-text pairs in (a) and (c) is regarded as 1, because they
ave several common categories sunset, water, sky, cloud. In fact, the semantic
imilarity of the image-text pairs in (a) and (c) is higher than that of the image-
ext pairs in (a) and (b), because the former pairs share more common categories
han the latter pairs.

emantic similarity of multi-label cross-modal instances. Suppose
hat we have a triplet of instances (a, b, c) and each instance
as its corresponding multi-labels. If instance a and instance b
ave more common categories than instance a and instance c ,
hus a and b are more semantically relevant to each other than
and c , meanwhile, the learned features of a and b should be
ore similar than the learned features of a and c. Inspired by

his, a multi-label cross-modal triplet loss is designed based on
he fact that if two cross-modal instances have more categories
n common than other instances, the similarity of the learned
eatures should also be higher than others. The proposed modules
f MMEA and MCTL are further integrated into a self-supervised
earning-based deep cross-modal hashing framework for high-
erformance cross-modal retrieval. The main contributions of our
ork are three-fold:
1. A novel multi-label modality enhanced attention (MMEA)

odule is designed to address the sparsity of the multi-labels-
ased similarity matrix in the self-supervised learning-based
eep cross-modal hashing framework. Three encoders are firstly
mployed to transform the original image-text pairwise instances
nd their corresponding multi-labels into latent feature represen-
ations. The significantly useful semantic information of text and
mage feature representations are fused into their corresponding
eature representations of multi-labels, respectively. The fusion
rocess is based on a self-attention mechanism, which could
ffectively improve the completion of the multi-labels-based
imilarity matrix. 2. A robust multi-label cross-modal triplet
oss (MCTL) is designed to measure the semantic similarity of
ulti-label cross-modal instances more correctly. The MCTL is
onstructed based on the observation that the feature represen-
ations of cross-modal pairwise instances with more common
ategories should also preserve higher semantic similarity than
ther cross-modal pairwise instances. To the best of our knowl-
dge, the multi-label cross-modal triplet loss is the first time
esigned for the task of cross-modal retrieval.
3. The multi-label modality enhanced attention-based self-

upervised deep cross-modal hashing (MMACH) is proposed. The
MACH integrated the designed multi-label modality enhanced
ttention (MMEA) module and the multi-label cross-modal triplet
oss (MCTL) to improve the performance of cross-modal retrieval.
xtensive experiments conducted on four well-known cross-
odal datasets demonstrated the effectiveness of our MMACH.
he comparison with several state-of-the-art baselines also shows
he superiority of MMACH.

The rest of the paper is organized as follows. Section 2 de-
cribes the related work. Section 3 presents details of our multi-
abel modality enhanced attention-based self-supervised deep
ross-modal hashing (MMACH) framework. The learning produce
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f MMACH is discussed in Section 4. Section 5 shows the eval-
ation as well as comparison experimental results on several
atasets of MMACH. Section 6 concludes the MMACH in this
aper.

. Related work

.1. Deep cross-modal hashing

Previous cross-modal hashing methods are shallow
rchitecture-based methods that first extract hand-crafted fea-
ures and then utilize these hand-crafted features to learn hash
unctions. These methods are based on a two-stage architecture
here the two stages may not be optimally compatible, result-

ng in suboptimal performance. By contrast, deep cross-modal
ashing methods benefit from the significant feature extraction
apabilities of deep neural networks. Thus, they can better ex-
lore and exploit the correlations across different modalities in
n end-to-end manner. As a result, deep cross-modal hashing
etrieval has attracted increasing attention. Representative meth-
ds are deep cross-modal hashing (DCMH) [37], pairwise relation
uided deep hashing (PRDH) [36], correlation hashing network
CHN) [39], cross-modal hamming hashing (CMHH) [40], and
elf-supervised adversarial hashing (SSAH) [38]. DCMH effectively
rojects image-text pairs into corresponding hash codes by using
n end-to-end deep neural network framework. PRDH exploits
ntra-modal and inter-modal constraints of different pairwise
nstances to generate discriminative hash codes with a united
eep learning framework. CHN defines a cosine max-margin loss
o enhance the quality of the learned hash codes. CMHH uses
n exponential focal loss to significantly penalize similar cross-
odal pairs with Hamming distances larger than the Hamming

adius threshold. SSAH introduces self-supervised learning to
ross-modal hashing and learns the hash function (LabelNet) on
he multi-label modality to supervise other modalities. Nonethe-
ess, these methods either leverage single labels to calculate the
emantic similarity of cross-modal pairwise instances or regard
he semantic similarity of cross-modal pairwise instances with
ultiple labels as one when they have at least one common
ategory. However, the fact that many cross-modal datasets have
ultiple labels containing abundant semantic information is ne-
lected in these methods. Specifically, suppose two cross-modal
nstances have more common categories than some other cross-
odal pairwise instances. In that case, the semantic similarity of

he former pair is higher than the semantic similarity of the latter
air. Moreover, existing self-supervised-based deep cross-modal
ashing methods often suffer from inferior performance because
he hash function learned on the sparse multi-labels has a weak
apacity to supervise the training of the hash functions of other
odalities.

.2. Attention mechanism

An attention mechanism [41–44] is first introduced and widely
pplied in natural language processing, which considers neigh-
oring words when extracting features from one word. Sub-
equently, the attention mechanism is introduced to various
omputer vision tasks, where it is trained to identify what the
odel should concentrate on when performing a particular task.
o date, only a few methods combine cross-modal hashing re-
rieval with an attention mechanism. Attention-aware deep ad-
ersarial hashing (DAH) [45] introduces an attention mechanism
o cross-modal hashing and generates adaptive attention masks
hat divide the feature representations into attended and unat-
ended feature representations. In our proposed method, the
mage and text modality feature representations are fused into
3

the feature representations of multi-labels modality based on a
novel self-attention mechanism. It could effectively improve the
completion of a multi-label similarity matrix and supervise the
training of hash functions for different modalities.

2.3. Multi-label learning

Multi-label learning pays attention to the issue that an in-
stance is associated with several labels simultaneously [46,47].
Generally, instances with multi-labels contain more semantic
information than instances with single labels. Adequately mining
the semantic information in multi-labels to accurately calculate
the semantic similarities between instances is still a challenge. To
this end, [48] proposes a distance metric learning algorithm for
multi-label classification, which integrates a pairwise multi-label
similarity constraint and a Jaccard Distance into multi-label learn-
ing and achieves competitive performance. This paper defines a
multi-label cross-modal triplet loss to better explore the semantic
information in multi-labels and further preserve the multi-labels
similarity, especially preserving the multi-label similarities of
cross-modal instances.

3. Proposed method

In this section, we describe our proposed multi-label modal-
ity enhanced attention-based self-supervised deep cross-modal
hashing (MMACH) method with the following subsections: no-
tations and problem formulation, modal encoders, multi-label
enhanced attention module, hash representations learning, and
hash codes generation. For the sake of clarity, in the following,
we always assume that each data instance has three modali-
ties (i.e., an image-modality, a text modality, and a multi-label
modality). The framework of MMACH is shown in Fig. 2.

3.1. Notation and problem formulation

To better understand the task of CMH, we firstly give a formal
definition of notations and problem formulations. For a given
training set of n instances O = {{Ii}ni=1, {Ti}

n
i=1, {Li}

n
i=1}, where

Ii ∈ RdI , Ti ∈ RdT and Li ∈ RdL are the original image features, the
original text features as well as the multi-labels of the ith training
instance. If the ith training instance is assigned to the jth class,
then the jth component of Li equals 1 (i.e., Lij = 1), otherwise
Lij = 0.

With the provided training set and semantic similarity ma-
trices, the goal of cross-modal hashing is to learn three hash
functions to project the original images, the original texts and
the original multi-labels modality data into compact hash codes,
meanwhile, effectively preserve semantic similarities of these
cross-modal instances. To achieve this goal, the original instances
of three modality data are encoded into c-dimensional feature
vectors with pre-trained deep neural networks, i.e., {Ii}ni=1, {Ti}

n
i=1

and {Li}ni=1 are projected into {F E
i }

n
i=1, {G

E
i }

n
i=1 and {HE

i }
n
i=1, respec-

tively. As the original multi-labels are pretty sparse,a multi-label
modality enhanced attention mechanism is designed to com-
pensate for this weakness. The multi-label enhanced feature
vectors are denoted as {HA

i }
n
i=1. Afterwards, three deep neural

networks are utilized to project {F E
i }

n
i=1, {G

E
i }

n
i=1 and {HA

i }
n
i=1 into

k-dimensional hash representations {F hr
i }

n
i=1, {G

hr
i }

n
i=1 and {Hhr

i }
n
i=1,

respectively, i.e., F hr
i = f (F E

i , θ I ), Ghr
i = g(GE

i , θ
T ), Hhr

i = h(HA
i , θ L),

where f (., θ I ), g(., θ T ) and h(., θ L) are hash representation learn-
ing functions for the image-modality, the text-modality and the
multi-label modality, respectively. θ I , θ T and θ L are parameters
of the three deep neural networks, respectively. Finally, a sign
function is used to generate united hash codes matrix B ∈ Rn×k

from the learned hash representations.
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Fig. 2. This figure demonstrates the framework of our proposed MMACH method. The MMACH contains three modules: (1) The first module is a modal encoder
art (EI , EL and ET ), it is composed of three deep neural networks to extract the features from the original instances of the image modality, the text modality, and
he multi-label modality, respectively. (2) The second module is a multi-label modality enhanced attention module. It utilizes an attention mechanism to extract
emantically relevant information from the image and text modality and subsequently fuses them to the sparse multi-label modality. (3) The third module is a hash
epresentation learning and hash codes generation part. It aims to ensure that semantically similar pairs of cross-modal instances have similar hash codes. The ⊙

epresents the dot product, while ⊗ represents the element-wise product, and ⊕ denotes element-wise adds.
t
s

s
s
n

3

i

.2. Modal encoders

In order to effectively extract discriminative features from the
riginal instances, three encoders EI , ET and EL are used to encode
ach original image Ii, text Ti, and multi-label Li modality data into
-dimensional feature vectors F E

i , G
E
i and HE

i , respectively.

F E
i = EI (Ii)
E
i = ET (Ti)

HE
i = EL(Li)

(1)

.3. Multi-label modality enhanced attention module

Many benchmark datasets for the task of cross-modal hashing
etrieval (e.g., MIRFLICKR-25K [49] and NUS-WIDE [50], etc.) con-
ain multi-labels. Nevertheless, most previous methods merely
egard a pair of two cross-modal instances as similar if they
hare at least one common category. The abundant semantic
nformation in multi-labels is neglected and thus cannot accu-
ately evaluate the pairwise semantic relevance of cross-modal
nstances. As a result, the learned cross-modal hash projection
unctions have suboptimal performance. To solve this issue, a
ulti-label-based self-supervised learning strategy is designed

o guide the learning of cross-modal hash projection functions.
ecause the original multi-label matrix suffers the weakness of
parse, a multi-label-based self-supervised learning strategy can
nly obtain a limited enhancement for the learned cross-modal
ash projection functions. For this purpose, in this subsection,
multi-label modality enhanced attention module (MMEA) is
roposed to improve the completion of the multi-label matrix.
pecifically, for a given training image-text pair with multi-labels
Ii, Ti, Li}, MMEA firstly utilizes the encoders in Section 3.2 to
ransfer them into c-dimensional feature vectors F E , GE and HE ,
i i i

4

hen an attention mechanism is introduced to fuse these relative
emantic information of F E

i and GE
i into HE

i . The corresponding
formulations are as follows:

attentionIL
=

F E
i

∥ F E
i ∥

·
HE

i

∥ HE
i ∥

attentionTL
=

GE
i

∥ GE
i ∥

·
HE

i

∥ HE
i ∥

(2)

Where attentionIL and attentionTL are semantic affinities of F E
i and

HE
i , and GE

i and HE
i , respectively. ∥ . ∥ denotes a normalization on

a feature vector.

HA
i = HE

i + attentionILF E
i + attentionTLGE

i (3)

Where HA
i is the multi-label modal enhanced feature vector for

the original multi-label Li. By using Eqs. (2) and (3), we can
compensate the sparsity of multi-label Li with the abundant
emantic information contained in Ii and Ti, and employ a self-
upervising learning manner to better guide the training of deep
eural networks for the image and the text modalities.

.4. Multi-label cross-modal triplet loss

Suppose that we have a cross-modal triplet (Ii, Tp1, Tp2), where
mage Ii is more semantically similar to text Tp1 than to text
Tp2. Their respective hash representations F hr

i , Ghr
p1 and Ghr

p2 can
be easily learned with the respective hash mapping functions,
F hr
i = f (F E

i , θ I ), Ghr
p1 = g(GE

p1, θ
T ) and Ghr

p2 = g(GE
p2, θ

T ). To
preserve the semantic similarity during the hash representation
learning procedure, the similarity of F hr

i and Ghr
p1 should be higher

than the similarity of F hr and Ghr . Therefore, inspired by [51–53],
i p2
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e define the multi-label cross-modal triplet loss (MCTL) as fol-
ows:
IT (Ii, Tp1, Tp2)

=

∑
Ii,Tp1,Tp2

max(0, ∥ F hr
i − Ghr

p1 ∥
2
2
− ∥ F hr

i − Ghr
p2 ∥

2
2
+ γ ) (4)

here ∥ · ∥2 is the L2 norm, and γ is a positive margin. Eq. (4)
eans that the L2 distance of a more semantically similar multi-

abel cross-modal pair is smaller than the L2 distance of a less se-
antically similar multi-label cross-modal pair by a margin of γ .
y this manner, the multi-label cross-modal semantic similarity
an be adequately protected during stage of hash representation
earning.

.5. Hash representations learning

During the stage of hash representation learning, the learned
ulti-label modal enhanced feature vectors {HA

i }
n
i=1, the feature

vectors for the image-modality {F E
i }

n
i=1, and the feature vectors

for the text-modality {GE
i }

n
i=1 are forward into the deep neural

network for the multi-label modality, the deep neural network
for the image-modality, and the deep neural network for the
text-modality, respectively. To preserve the semantic similarity
of cross-modal instances during the hash representation learning
stage, we introduce the multi-label cross-modal triplet loss in
Section 3.4 into our method. Specifically, for cross-modal triplets
(HA

i , F E
p1, F

E
p2), (F

E
i ,HA

p1,H
A
p2), (H

A
i ,GE

p1,G
E
p2), and (GE

i ,H
A
p1,H

A
p2), we

define the following semantic similarity preserving loss func-
tions:

J IL

= J IL(HA
i , F E

p1, F
E
p2) + J IL(F E

i ,HA
p1,H

A
p2)

=

∑
HA
i ,FEp1,FEp2

max(0, ∥ Hhr
i − F hr

p1 ∥
2
2
− ∥ Hhr

i − F hr
p2 ∥

2
2
+ γ1)

+

∑
FEi ,HA

p1,HA
p2

max(0, ∥ F hr
i − Hhr

p1 ∥
2
2
− ∥ F hr

i − Hhr
p2 ∥

2
2
+ γ2)

(5)

Where J IL is the cross-modal semantic similarity preserving loss
for the image-modality and the multi-label modality. The multi-
label semantic similarity of HA

i and F E
p1 is higher than the multi-

abel semantic similarity of HA
i and F E

p2, and the multi-label se-
mantic similarity of F E

i and HA
p1 is higher than the multi-label

semantic similarity of F E
i and HA

p2. And γ1 and γ2 are two positive
margins.

JTL

= JTL(HA
i ,GE

p1,G
E
p2) + JTL(GE

i ,H
A
p1,H

A
p2)

=

∑
HA
i ,GEp1,GEp2

max(0, ∥ Hhr
i − Ghr

p1 ∥
2
2
− ∥ Hhr

i − Ghr
p2 ∥

2
2
+ γ3)

+

∑
GEi ,HA

p1,HA
p2

max(0, ∥ Ghr
i − Hhr

p1 ∥
2
2
− ∥ Ghr

i − Hhr
p2 ∥

2
2
+ γ4)

(6)

Where JTL is the cross-modal semantic similarity preserving loss
for the text-modality and the multi-label modality, and the multi-
label semantic similarity of HA

i and GE
p1 is higher than the multi-

label semantic similarity of HA
i and GE

p2, and the multi-label se-
mantic similarity of GE

i and HA
p1 is higher than the multi-label

semantic similarity of GE
i and HA

p2. And γ3 and γ4 are two positive
margins.
5

3.6. Hash codes generation

In Section 3.5, we described how we can acquire the hash
representations {F hr

i }
n
i=1, {Ghr

i }
n
i=1 and {Hhr

i }
n
i=1 for the original

images {Ii}ni=1, texts {Ti}ni=1, and multi-labels {Li}ni=1, respectively.
However, the goal of cross-modal hashing is to map multi-modal
data into compact hash codes. To this end, we utilize a sign func-
tion to approximately generate the hash codes from the learned
hash representations:

Bi = sign(
F hr
i + Ghr

i + Hhr
i

3
) (7)

Where Bi ∈ Rk is the hash codes for the ith instance. To mini-
mize the information loss in Eq. (7), we firstly squeeze the hash
representations from a real-valued space into [−1, 1] with the
following tanh function:

F hr
i = tanh(F hr

i )

Ghr
i = tanh(Ghr

i )

Hhr
i = tanh(Hhr

i )

(8)

Where tanh(x) =
ex−e−x

ex+e−x .
Moreover, to further decrease the information loss in Eq. (7),

the following quantization loss is also introduced:

Jquantization =

∑n
i=1(∥ Bi − F hr

i ∥
2
2 + ∥ Bi − Ghr

i ∥
2
2 + ∥ Bi − Hhr

i ∥
2
2)

3nk
(9)

Where n and k are the number of training instances and the
length of hash codes, respectively.

Combining the cross-modal semantic similarity preserving
losses with the quantization loss together, the complete loss
function can be obtained as follows:

J =
1

n2
ILk

J IL +
1

n2
TLk

JTL + αJquantization (10)

here α is a hyper-parameter to balance the cross-modal seman-
tic similarity preserving losses and the quantization loss. nIL is
the number of cross-modal triplets from the image-modality and
the multi-label modality, and nTL is the number of cross-modal
triplets from the text-modality and the multi-label modality.

3.7. Hash representations learning networks

For the image-modality, we fine-tune the multi-scale (MS)
fusion based TxtNet in SSAH [38] (c → MS → 4096 →

12 → k) to learn the corresponding hash representations from
he encoded features.

For the text-modality, the TxtNet in SSAH is fine-tuned (c →

S → 4096 → 512 → k) and utilized to learn the corresponding
ash representations from the encoded features.
For the multi-label modality, a deep neural network with three

ully-connected layers (c → 8192 → k) is introduced to learn the
ash representations from the encoded features.

. Learning algorithm of MMACH

To learn the optimized θ I , θ T , θ L and B, an alternating strategy
s introduced to update one of θ I , θ T , θ L and B, while keeping
the other three fixed. The detailed execution and optimization
schema for MMACH are given in Algorithm 1.
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.1. Optimize θ L with θ I , θ T and B unchanged

While we keep θ I , θ T and B unchanged, the parameters θ L of
he DNN for the multi-label modality can be learned by stochastic
radient descent (SGD) and back-propagation (BP). Detailedly, in
ach iteration, four training batches of cross-modal triplets are
andomly selected to execute our algorithm. For each selected
ulti-label enhanced feature vector HA

i , the gradient is computed
as follows:

∂ J
∂Hhr

.

=
2

n2
ILk

(
∑

HA
i ,FEp1,FEp2

(F hr
p2 − F hr

p1 ) +

∑
FEi ,HA

p1,HA
p2

(Hhr
p1 − Hhr

p2))

+
2

n2
TLk

(
∑

HA
i ,GEp1,GEp2

(Ghr
p2 − Ghr

p1) +

∑
GEi ,HA

p1,HA
p2

(Hhr
p1 − Hhr

p2))

−
2α

∑n
i=1 (Bi − Hhr

i )
3nk

(11)

Afterwards, ∂ J
∂θL

can be calculated from ∂ J
∂Hhr

.
by applying the

hain rule. Finally, the θ L can be optimized using ∂ J
∂θL

and back-
ropagation.

.2. Optimize θ I with θ L, θ T and B unchanged

While we keep θ T , θ L and B unchanged, the parameters θ I of
he DNN for the image modality can be optimized by SGD and BP.
uring each epoch, two training batches of cross-modal triplets
re randomly selected to run our method. For each selected image
eature vector F E

i , the gradient is calculated as follows:

∂ J
∂F hr

·

=
2

n2
ILk

(
∑

HA
i ,FEp1,FEp2

(F hr
p1 − F hr

p2 ) +

∑
FEi ,HA

p1,HA
p2

(Hhr
p2 − Hhr

p1))

−
2α

∑n
i=1 (Bi − F hr

i )
3nk

(12)

urthermore, ∂ J
∂θ I

can be calculated from ∂ J
∂Fhr.

by applying the

hain rule. Finally, the θ I can be optimized by using ∂ J
∂θ I

and
ack-propagation.

.3. Optimize θ T with θ I , θ L and B unchanged

When we keep θ I , θ L and B unchanged, the parameters θ T of
he DNN for the text modality can be optimized by SGD and BP.
uring each epoch, two training batches of cross-modal triplets
re randomly selected to execute our algorithm. For each selected
ext feature vector GE

i , the gradient is calculated as follows:

∂ J
∂Ghr

·

=
2

n2
ILk

(
∑

HA
i ,GEp1,GEp2

(Ghr
p1 − Ghr

p2) +

∑
GEi ,HA

p1,HA
p2

(Hhr
p2 − Hhr

p1))

−
2α

∑n
i=1 (Bi − Ghr

i )
3nk

(13)

Afterwards, ∂ J
∂θT

can be calculated from ∂ J
∂Ghr.

by using the chain

ule. Finally, the θ T can be optimized by using ∂ J
∂θT

and back-
ropagation.

.4. Optimize B with θ I , θ T and θ L unchanged

When we keep θ I , θ T and θ L unchanged, the hash codes B can
be optimized with Eq. (7).
6

Algorithm 1 MMACH: Multi-Label Modality Enhanced Attention
based Self-Supervised Deep Cross-Modal Hashing.
Input:

training instances: O = {{Ii}ni=1, {Ti}
n
i=1, {Li}

n
i=1}.

the maximal epochs of the algorithm is max_epoch.
mini-batch size nbatch = 128.

Output:
Deep neural networks parameters are θ I , θT and θL for hash representation
learning, and the hash codes matrix B.

1: Encoding the original instances {Ii}ni=1 , {Ti}ni=1 , {Li}ni=1 to c-dimensional features
{FEi }

n
i=1 , {GE

i }
n
i=1 and {HE

i }
n
i=1 with Eq. (1).

2: Learning the multi-label enhanced feature vectors {HA
i }

n
i=1 from {HE

i }
n
i=1 with

Eqs. (2) and (3).
3: Generating nIL (HA

i , FEp1, F
E
p2) (the triplets set is named TripletIL) and nIL

(FEi ,HA
p1,H

A
p2) (the triplets set is named TripletLI ) from {HA

i }
n
i=1 and {FEi }

n
i=1 ,

generating nTL (HA
i ,GE

p1,G
E
p2) (the triplets set is named TripletTL) and nTL

(GE
i ,HA

p1,H
A
p2) (the triplets set is named TripletLT ) from {HA

i }
n
i=1 and {GE

i }
n
i=1 .

4: Initialize the deep neural network parameters θ I , θT , θL , hash representations
{Fhri }

n
i=1 , {Ghr

i }
n
i=1 , {Hhr

i }
n
i=1 , hash codes matrix B, and the epoch numbers

batchnumL = ⌈(nIL + nTL)/(2nbatch)⌉, batchnumI = ⌈nIL/nbatch⌉, batchnumT =

⌈nTL/nbatch⌉.
5: repeat
6: for j = 1 to batchnumL do
7: Randomly select nbatch triplets from TripletIL , nbatch triplets from TripletLI ,

nbatch triplets from TripletTL , and nbatch triplets from TripletLT to construct
the respective four mini-batches.

8: For each feature vector HA
i in the mini-batches, calculate Hhr

i = h(HA
i , θL)

by forward propagation.
9: Update {Hhr

i }
n
i=1 .

0: Compute the derivative of θL using Eq. (11).
1: Utilize back-propagation to update the network parameters θL .
2: end for
3: for j = 1 to batchnumI do
4: Randomly select nbatch triplets from TripletIL and nbatch triplets from

TripletLI to construct the respective two mini-batches.
5: For each feature vector FEi in the mini-batches, calculate Fhri = f (FEi , θ I )

by forward propagation.
6: Update {Fhri }

n
i=1 .

7: Compute the derivative of θ I using Eq. (12).
8: Utilize back-propagation to update the network parameters θ I .
9: end for
0: for j = 1 to batchnumT do
1: Randomly select nbatch triplets from TripletTL and nbatch triplets from

TripletLT to construct the respective two mini-batches.
2: For each feature vector GE

i in the mini-batches, calculate Ghr
i = g(GE

i , θT )
by forward propagation.

3: Update {Ghr
i }

n
i=1 .

4: Compute the derivative of θT using Eq. (13).
5: Utilize back-propagation to update the network parameters θT .
6: end for
7: Optimize B by utilizing Eq. (7).
8: until the max epoch number max_epoch

4.5. Complexity analysis

The time complexity of the overall loss function (Eq. (10))
of MMACH can be calculated as follows: O(nIL)+O(nTL)+O(n ×

k)≈O(n), as k ≪ n and k, nIL, nTL are of the same magnitude as n.

. Experiments

In order to validate the performance of our proposed MMACH
ethod and compare it with several state-of-the-art cross-modal
ashing methods, we conducted extensive experiments on four
enchmark datasets.

.1. Datasets

MIRFLICKR-25K [49]: the original MIRFLICKR-25K dataset is
ade up of 25,000 image-text pairs from the Flickr website.

n our experiment, instances that have at least 20 textual tags
re selected and thus 20,015 image-text pairs with multi-labels
emain, where each of the selected instances is assigned to at
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Fig. 3. Sensitivity analysis of the hyper-parameter α on MIRFLICKR25K and NUS-WIDE datasets.
Table 1
Detailed settings of experimental datasets.
Dataset Used Train Query Retrieve Tag dimension Labels

MIRFLICKR-25K 20,015 10,000 2,000 18,015 1,386 24
NUS-WIDE 190,421 10,500 2,100 188,321 1,000 21
MS COCO2014 122,218 10,000 5,000 117,218 2,026 80
IAPRTC-12 19,999 10,000 2,000 17,999 1,251 275
least one of the 24 given labels. For our experiments, we encode
each textual tag into a 1386-dimensional BOW (bag-of-words)
feature.

NUS-WIDE [50]: the original NUS-WIDE dataset contains
269,468 image-text pairs. We first abandon the data without
categories, then choose data classified by the 21 most-frequent
categories to construct a subset, which has 190,421 image-text
pairs. For our experiments, we encode each textual tag into a
1000-dimensional BOW feature.

Microsoft COCO2014 [54]: the original Microsoft COCO2014
dataset comprises two parts: training set with 82,785 images,
and validation set with 40,504 images. Each image contains 5
captions (which is regarded as a text modality). We first abandon
instances that have no captions, then we combine the training
set and validation set together to construct a subset with 122,218
image-text pairs, and each instance is annotated with at least one
of the 80 classes. The text of each instance is represented as a
2026-dimensional BOW feature.

IAPRTC-12 [55]: the original IAPRTC-12 dataset is composed
of 20,000 image-text pairs. In our experiment, we first eliminate
instances without tags and then construct a subset of 19,999
image-text pairs with 275 categories. The text of each instance
is encoded into a 1251-dimensional BOW feature.

Furthermore, the detailed information, including number of
used instances, number of training set, number of query set,
number of retrieval set, dimension of tags for each instance,
and categories for the four experimental datasets are listed in
Table 1. [56] provides more detailed information for experimental
settings.

5.2. Evaluation metrics

For cross-modal hashing retrieval, two of the most prevalent
leveraged retrieval protocols are Hamming ranking and hash
lookup. Specifically, the Hamming ranking protocol ranks the
retrieval results in ascending order of the Hamming distance
for given a query instance. The hash lookup protocol returns
retrieval instances within a certain Hamming radius from the
query instance. In practical applications, Mean Average Precision

(MAP), topN precision curves (topN Curves) and precision recall

7

curves are three substitutions of the above two retrieval proto-
cols. Thus, Mean Average Precision, Mean Average Precision and
precision–recall curves are used as evaluation metrics to validate
the performance of our proposed MMACH method and in the
comparison with several state-of-the-art baseline methods.

5.3. Baselines and implementation details

Several CMH methods, including hand-crafted based CMH
methods CMSSH [57], SePH [58], SCM [31] and GSPH [20] and
deep feature based CMH methods DCMH [37], PRDH [36], CMHH
[40], CHN [39], SSAH [38] and MLSPH [56] are chosen as baseline
methods in our experiments. The source codes of GSPH, SePH,
SCM, CMSSH, SSAH, DCMH and MLSPH have been released and
we cautiously implement them. For other methods, we cautiously
implement them by ourselves.

By using the open source deep learning framework pytorch,
our experiments are executing on an NVIDIA GTX Titan XP GPU
server. During the training stage, each multi-label cross-modal
triplet (a, b, c) is generated by using the following rule: a and b
are instances from the first modality, while instance c is from an-
other modality. Moreover, a and b have more common categories
than a and c. In our experiments, the modal encoders EL and
ET employ the universal sentence encoder [59] to encode each
original text or original multi-label text into 512-dimensional fea-
ture vectors, and the modal encoder EI utilizes ResNet34 [60] to
extract the features of each original image. We acquire the output
of the global average pool and resize it to a 512-dimensional
feature vector. In our experiments, the maximum training epoch
is set to 200, the learning rate is initialized to 10−1.5 and gradually
lowered to 10−6 in 200 epochs. For all experiments, I → T rep-
resents the cases when using a querying image while returning
text, while T → I represents the cases when using a querying
text while returning an image. Source code will be released at:
https://github.com/SWU-CS-MediaLab/MMACH.

5.4. Performance comparisons and discussion

5.4.1. Hyper-parameters experiment
In this subsection, experiments are conducted on two datasets,

i.e., MIRFLICKR-25K and NUS-WIDE. The length of hash codes is

https://github.com/SWU-CS-MediaLab/MMACH
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Fig. 4. Examples of top 4 cross-modal retrieval results by MMACH and MLSDCH on four datasets. For (a) using images to retrieve texts, the matching texts are in
blue. For (b) using texts to retrieve images, the purple number in each image is the ranking order, and the blue frames indicate the matching image.
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p
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set to 64 to find out the best value of hyper-parameter α. The
MAPs of our proposed MMACH method under different α are
ecorded and then depicted in Fig. 3. From this figure, it is obvious
hat our proposed MMACH method can achieve better perfor-
ance when α = 0.6. Therefore, in the subsequent experiments,
e set α = 0.6 for MMACH.
 m

8

.4.2. Validation of the effectiveness of multi-label modality en-
anced attention
In this subsection, we examine the effectiveness of our pro-

osed multi-label modality enhanced attention module. Con-
retely, we first remove the multi-label modality enhanced
odule in our proposed MMACH (i.e., we set HA

= HE in Fig. 2)
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Fig. 5. Examples of top 4 cross-modal retrieval results by MMACH and MMACH-MSE on four datasets. For (a) using images to retrieve texts, the matching texts are
in blue. For (b) using texts to retrieve images, the purple number in each image is the ranking order, and the blue frames indicate the matching image.
and keep other parts unchanged, and we name this variation as
MLSDCH. Afterward, we compare MLSDCH with MMACH on the
four datasets MIRFLICKR-25K, NUS-WIDE, Microsoft COCO2014,
and IAPRTC-12. The corresponding MAPs under the different hash
code lengths of 16, 32, and 64 are shown in Table 2.
9

From the MAPs in Table 2, it demonstrates that in most cases,
the MAPs of MMACH is higher than that of MLSDCH, showing
that our proposed multi-label enhanced attention module can
improve the performance of cross-modal hashing retrieval, which
is partly because the multi-label modality enhanced attention
module compensates for the sparse feature space. In addition,
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able 2
erformance of MMACH compared to MLSDCH in terms of MAPs on four datasets: MIRFLICKR-25K, NUS-WIDE, Microsoft COCO2014 and IAPRTC-12. The best MAP
cores are shown in boldface.
Task Method MIRFlickr-25K NUS-WIDE MS COCO IAPRTC-12

16bits 32bits 64bits 16bits 32bits 64bits 16bits 32bits 64bits 16bits 32bits 64bits

I→T MLSDCH 0.8024 0.8186 0.8278 0.6330 0.6577 0.6851 0.6826 0.7182 0.7306 0.5218 0.5433 0.5730
MMACH 0.8085 0.8235 0.8348 0.6489 0.6679 0.6847 0.6989 0.7322 0.7540 0.5421 0.5752 0.6031

T→I MLSDCH 0.7796 0.8010 0.8115 0.6371 0.6613 0.6718 0.6989 0.7164 0.7280 0.4962 0.5297 0.5501
MMACH 0.7872 0.8011 0.8162 0.6450 0.6653 0.6758 0.6913 0.7245 0.7515 0.5316 0.5619 0.5866
Table 3
Performance of MMACH compared to MMACH-MSE in terms of MAPs on four datasets: MIRFLICKR-25K, NUS-WIDE, Microsoft COCO2014 and IAPRTC-12. The best
MAP scores are shown in boldface.
Task Method MIRFlickr-25K NUS-WIDE MS COCO IAPRTC-12

16bits 32bits 64bits 16bits 32bits 64bits 16bits 32bits 64bits 16bits 32bits 64bits

I→T MMACH-MSE 0.8006 0.8158 0.8282 0.6215 0.6533 0.6692 0.6912 0.7168 0.7364 0.5286 0.5450 0.5795
MMACH 0.8085 0.8235 0.8348 0.6489 0.6679 0.6847 0.6989 0.7322 0.7540 0.5421 0.5752 0.6031

T→I MMACH-MSE 0.7714 0.7952 0.8065 0.6362 0.6573 0.6698 0.6531 0.6882 0.6971 0.5026 0.5190 0.5485
MMACH 0.7872 0.8011 0.8162 0.6450 0.6653 0.6758 0.6913 0.7245 0.7515 0.5316 0.5619 0.5866
Table 4
Comparison to baselines in terms of MAP on four datasets: MIRFLICKR-25K, NUS-WIDE, Microsoft COCO2014, IAPRTC-12, respectively. The best accuracy is shown in
boldface.
Task Method MIRFlickr-25K NUS-WIDE MS COCO IAPR TC-12

16bits 32bits 64bits 16bits 32bits 64bits 16bits 32bits 64bits 16bits 32bits 64bits

I→T

Hand-crafted
methods

CMSSH [57] 0.5600 0.5709 0.5836 0.3092 0.3099 0.3396 0.5439 0.5450 0.5410 0.3049 0.3074 0.3130
SePH [58] 0.6740 0.6813 0.6803 0.4797 0.4859 0.4906 0.4295 0.4353 0.4726 0.4186 0.4298 0.4315
SCM [31] 0.6354 0.6407 0.6556 0.4626 0.4792 0.4886 0.4252 0.4344 0.4574 0.3887 0.3945 0.4068
GSPH [20] 0.6068 0.6191 0.6230 0.4015 0.4151 0.4214 0.4427 0.4733 0.4840 0.3716 0.3921 0.4015

Deep methods

DCMH [37] 0.7316 0.7343 0.7446 0.5445 0.5597 0.5803 0.5228 0.5438 0.5419 0.4536 0.4727 0.4919
PRDH [36] 0.6952 0.7072 0.7108 0.5919 0.6059 0.6116 0.5238 0.5521 0.5572 0.4761 0.4883 0.4925
CMHH [40] 0.7334 0.7281 0.7444 0.5530 0.5698 0.5559 0.5463 0.5676 0.5674 0.4903 0.5074 0.5152
CHN [39] 0.7504 0.7495 0.7461 0.5754 0.5966 0.6015 0.5763 0.5822 0.5805 0.4962 0.5070 0.5241
SSAH [38] 0.7745 0.7882 0.7990 0.6163 0.6278 0.6140 0.5127 0.5256 0.5067 0.5348 0.5619 0.5781
MLSPH [56] 0.8076 0.8235 0.8337 0.6405 0.6604 0.6734 0.6557 0.7011 0.7271 0.5342 0.5721 0.5994

MMACH 0.8085 0.8235 0.8348 0.6489 0.6679 0.6847 0.6989 0.7322 0.7540 0.5421 0.5752 0.6031

T→I

Hand-crafted
methods

CMSSH [57] 0.5726 0.5776 0.5753 0.3167 0.3171 0.3179 0.3793 0.3876 0.3899 0.3189 0.3282 0.3229
SePH [58] 0.7139 0.7258 0.7294 0.6072 0.6280 0.6291 0.4348 0.4606 0.5195 0.4667 0.4857 0.4936
SCM [31] 0.6340 0.6458 0.6541 0.4261 0.4372 0.4478 0.4118 0.4183 0.4345 0.3824 0.3897 0.4002
GSPH [20] 0.6282 0.6458 0.6503 0.4995 0.5233 0.5351 0.5435 0.6039 0.6461 0.4177 0.4452 0.4641

Deep methods

DCMH [37] 0.7607 0.7737 0.7805 0.5793 0.5922 0.6014 0.4883 0.4942 0.5145 0.4851 0.4976 0.5171
PRDH [36] 0.7626 0.7718 0.7755 0.6155 0.6286 0.6349 0.5122 0.5190 0.5404 0.5112 0.5283 0.5403
CMHH [40] 0.7320 0.7183 0.7279 0.5739 0.5786 0.5639 0.4884 0.4554 0.4846 0.4790 0.4951 0.4963
CHN [39] 0.7776 0.7775 0.7798 0.5816 0.5967 0.5992 0.5198 0.5320 0.5409 0.4994 0.5370 0.5397
SSAH [38] 0.7860 0.7974 0.7910 0.6204 0.6251 0.6215 0.4832 0.4831 0.4922 0.5265 0.5594 0.5726
MLSPH [56] 0.7852 0.8041 0.8146 0.6433 0.6633 0.6724 0.6494 0.6955 0.7193 0.5252 0.5624 0.5938
MMACH 0.7872 0.8011 0.8162 0.6450 0.6653 0.6758 0.6913 0.7245 0.7515 0.5316 0.5619 0.5866
.

Fig. 4 presents the top 4 cross-modal retrieval results by MMACH
and MLSDCH on four datasets, and it can be observed that in
most cases, MMACH can retrieve more accurate candidates than
MLSDCH.

5.4.3. Validation of the effectiveness of multi-label cross-modal triplet
loss

In this part, we conduct experiments to verify the performance
f our proposed multi-label cross-modal triplet loss. Specifically,
e firstly utilize MSE (Mean Square Error) loss to replace our
roposed multi-label cross-modal triplet loss in our proposed
MACH method and keep other parts fixed. We name this varia-

ion as MMACH-MSE. Subsequently, we compare MMACH with
MACH-MSE on the four datasets MIRFLICKR-25K, NUS-WIDE,
icrosoft CO-CO2014, and IAPRTC-12. The corresponding MAPs
nder the distinct hash code lengths 16, 32, and 64 are shown in
able 3.
From Table 3, we can see that the MAPs of MMACH are

lways higher than that of MMACH-MSE. This demonstrates the
ffectiveness of our proposed multi-label cross-modal triplet loss,
10
which is partly because multi-label cross-modal triplet loss can
better preserve the multi-label semantic relevance compared to
MSE loss. Furthermore, Fig. 5 lists the top 4 cross-modal retrieval
results by MMACH and MMACH-MSE on four datasets. It can be
observed that in most cases, MMACH can retrieve more accurate
candidates than MMACH-MSE.

5.4.4. Comparison with state-of-the-art CMH methods
In this subsection, experiments are conducted further to in-

vestigate the performance of our proposed MMACH method.
Specifically, we compare MMACH with several state-of-the-art
cross-modal hashing methods in terms of MAP scores, precision–
recall curves, and topN-precision curves on four datasets (i.e.,
MIRFLICKR-25K, NUS-WIDE, IAPRTC-12, and Microsoft COCO2014)

The MAPs of MMACH and baseline methods under distinct
hash code lengths 16, 32, and 64 are listed in Table 4. Based on
the experimental results, we have the following findings:

(1) Compared to both hand-crafted baseline methods and
deep neural networks-based baseline methods, our proposed
MMACH method can achieve higher MAP values in most cases.



X. Zou, S. Wu, N. Zhang et al. Knowledge-Based Systems 239 (2022) 107927
Fig. 6. Precision-Recall Curves on MIRFLICKR-25K.
Fig. 7. Precision-Recall Curves on NUS-WIDE.
This demonstrates that MMACH can utilize the multi-label modal-
ity enhanced attention module, multi-label cross-modal triplet
loss, and self-supervised learning strategy to enhance the perfor-
mance of deep cross-modal hashing retrieval.

(2) Among the hand-crafted baseline methods, SePH has the
highest MAP values in most cases, which is partly because SePH
utilizes kernel logistic regression to learn hash projection func-
tions for each modality. Among deep neural network-based base-
line methods, MLSPH has the highest MAP values in most cases,
partly because MLSPH introduces a multi-label semantic preserv-
ing module and can compute the semantic relevance of original
data more precisely.

(3) Compared to hand-crafted methods, deep neural network-
based methods usually achieve higher MAP values, partly because
11
deep neural network-based methods make full use of the excel-
lent features learning capability of these deep neural networks.

(4) Both SSAH and MMACH leverage self-supervised learning
to supervise the training of hash projection functions for all
modalities. However, MMACH outperforms SSAH in all cases,
partly because MMACH defines a multi-label modality enhanced
attention module to compensate for the sparsity of multi-label
features. Moreover, MMACH utilizes multi-label cross-modal
triplet loss to select multi-label semantic similar triplets. Mean-
while, SSAH regards the semantic similarity of two instances
as 1, if there is at least one common category, neglecting the
differences between multi-labels.

To further compare MMACH with the baseline CMH meth-
ods, we compare the precision–recall curves of MMACH and all
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Fig. 8. Precision-Recall Curves on Microsoft COCO2014.
Fig. 9. Precision-Recall Curves on IAPRTC-12.
M

baseline methods on four experimental datasets with different
hash codes length. Figs. 6–9 are the precision–recall curves of all
methods with different datasets and hash code length. From these
figures, we have the following observations:

(1) In most cases, the precision–recall curves of our proposed
MMACH method are higher than that of most baseline methods.
This demonstrates that MMACH can achieve better cross-modal
retrieval performance than most baseline methods.

(2) The precision–recall curves of all methods are approxi-
mately identical to the corresponding observations on the MAP
scores.

(3) In some cases, the precision–recall curves of MLSPH are
higher than that of MMACH. In contrast, in other cases, the
precision–recall curves of MMACH are higher than that of MLSPH.
12
This is partly because MLSPH and MMACH both consider multi-
label semantic similarity. Meanwhile, MLSPH utilizes a ResNet
to extract the features of images. At the same time, MMACH
defines a multi-labels modality enhanced attention module to
supervise better the learning of hash projection functions with
a self-supervised style.

Moreover, topN-precision curves of MMACH and baseline
methods on datasets MIRFLICKR-25K, NUS-WIDE, Microsoft
COCO2014 and IAPRTC-12 with hash codes lengths of 16, 32, and
64 are depicted in Figs. 10–13. From these results, we can draw
the following conclusions:

(1) In most cases, the top-N precision curves of our proposed
MACH method are higher than that of most baseline methods.
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Fig. 10. topN-precision curves on MIRFLICKR-25K.
Fig. 11. topN-precision curves on NUS-WIDE.
It shows that MMACH outperforms most baseline methods on
cross-modal retrieval.

(2) In all cases, MMACH achieves competitive performance
with MLSPH, partly because these two methods are both multi-
labels semantic protection-based methods.

(3) The top-N precision curves of all methods are nearly con-
sistent with the observed MAP values and precision–recall curves.

5.5. Heatmap visualization of the image modality

To verify the robustness of features extracted by the deep con-
volutional neural networks, we utilize the GRAD-CAM [61] to vi-
sualize the heatmaps of input images for our proposed MMACH as
13
well as DCMH and SSAH on datasets IAPRTC-12 and MIRFLICKR-
25K. Figs. 14 and 15 show the corresponding heatmaps. From
these heatmaps, it is obvious that in most cases, our proposed
MMACH can more accurately correlate the corresponding seman-
tic categories compared to DCMH and SSAH, which demonstrates
the powerful multi-label semantic preserving capability of our
proposed MMACH.

5.6. Running time analysis

We further evaluate the running time of our proposed MMACH
method. Specifically, we record the running time of both MMACH
and three representative baseline methods (DCMH [37], PRDH
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[
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Fig. 12. topN-precision curves on Microsoft COCO2014.
Fig. 13. topN-precision curves on IAPRTC-12.
36], SSAH [38]). These methods are executed on an NVIDIA GTX
itan XP GPU server with the maximum epoch max_epoch = 200,

and the experimental dataset is MIRFLICKR-25K, and the length
of hash code is 64. The results are presented in Table 5. In Table 5,
it can be observed that the running time of MMACH is higher
than that of DCMH and PRDH, which is partly because that, com-
pared with PRDH and DCMH, MMACH utilizes a self-supervised
learning style, which introduces a deep neural network for the
label modality. Meanwhile, the running time of MMACH is lower
than that of SSAH, which is partly because that SSAH further
introduces generative adversarial networks, which needs more
running time.
14
Table 5
Comparison of running time to some baseline
methods.

Running time

DCMH 28 h
PRDH 31 h
SSAH 42 h
MMACH 38 h

6. Conclusion

This paper introduces a prominent cross-modal hashing
method termed multi-label modality enhanced attention-based
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Fig. 14. Grad-CAM visualization of MMACH compared to SSAH and DCMH for a randomly selected image from multi-label dataset IAPRTC-12 with respect to different
ground-truth categories.
Fig. 15. Grad-CAM visualization of MMACH compared to SSAH and DCMH for a randomly selected image from multi-label dataset MIRFLICKR-25K with respect to
ifferent ground-truth categories.
elf-supervised deep cross-modal hashing (MMACH). A novel
ulti-label modality enhanced attention (MMEA) module is de-
igned in MMACH to compensate for the sparse feature rep-
esentations of multi-labels from multi-modal instances. Based
n these enhanced multi-labels, self-supervised learning is in-
roduced to supervise the training of hash functions of other
15
modalities. Furthermore, a multi-label cross-modal triplet loss
(MCTL) is defined in MMACH to ensure that the feature repre-
sentations of cross-modal pairwise instances with more common
categories should preserve higher semantic similarity than other
instances. Extensive experiments on several well-known cross-
modal benchmark datasets indicated the effectiveness of the
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roposed MMEA and MCTL. Meanwhile, the MMACH method
urpasses the performance of the baseline methods and acquires
ompetitive cross-modal retrieval performance.
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