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The recent deep cross-modal hashing (DCMH) has achieved superior performance in effective and
efficient cross-modal retrieval and thus has drawn increasing attention. Nevertheless, there are still
two limitations for most existing DCMH methods: (1) single labels are usually leveraged to measure the
semantic similarity of cross-modal pairwise instances while neglecting that many cross-modal datasets
contain abundant semantic information among multi-labels. (2) several DCMH methods utilized the
multi-labels to supervise the learning of hash functions. Nevertheless, the feature space of multi-
labels suffers the weakness of sparse, resulting in sub-optimization for the hash functions learning.
Thus, this paper proposed a multi-label modality enhanced attention-based self-supervised deep
cross-modal hashing (MMACH) framework. Specifically, a multi-label modality enhanced attention
module is designed to integrate the significant features from cross-modal data into multi-labels feature
representations, aiming to improve its completion. Moreover, a multi-label cross-modal triplet loss
is defined based on the criterion that the feature representations of cross-modal pairwise instances
with more common categories should preserve higher semantic similarity than other instances. To
the best of our knowledge, the multi-label cross-modal triplet loss is the first time designed for
cross-modal retrieval. Extensive experiments on four multi-label cross-modal datasets demonstrate the
effectiveness and efficiency of our proposed MMACH. Moreover, the MMACH also achieved superior
performance and outperformed several state-of-the-art methods on the task of cross-modal retrieval.
The source code of MMACH is available at https://github.com/SWU-CS-MediaLab/MMACH.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

With the advent and prevalence of Web 3.0, more and more
multi-modal data, such as graphics, texts, videos, images, and so
on, have been accumulated in the social network. As data from
distinct modalities may represent an identical object or event, it
is beneficial to bridge semantically relevant data from different
modalities to implement massive multi-modal instances match-
ing, fusing, and retrieval. Therefore, cross-modal retrieval [1,2] is
proposed to retrieve semantically related data from one modality
while the query data is from a distinct modality. Because data
in different modalities have different distributions and dissimilar
feature spaces, efficiently and effectively minimizing the semantic
gaps between these large-scale yet heterogeneous data and ac-
curately calculating the semantical similarity of cross-modal data
are still big challenges for cross-modal retrieval.
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Generally, a large number of existing cross-modal retrieval
methods, including topic models [3-5], subspace learning [6-11],
and deep models [12-20], project original features of cross-modal
instances into a common real-valued subspace and measure the
semantic similarities in the common real-valued subspace. How-
ever, due to the rapid increment of the amount and scale of the
multi-modal data, real-valued-based cross-modal retrieval meth-
ods usually suffer the weakness of high computation costs and
low retrieval accuracy. Thus, hashing-based cross-modal retrieval
(also called cross-modal hashing (CMH)) methods are proposed
to map high-dimensional data from each modality into compact
binary codes and calculate the semantic relevance of cross-modal
pairwise instances with an efficient XOR operation. Thus, CMH
has been a prevalent research topic in recent years because of
the significant strengths of low data storage and high similarity
measurement.

Depending on whether category labels are leveraged during
the training stage, existing cross-modal hashing methods can
be further divided into unsupervised and supervised manners.
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Unsupervised cross-modal hashing methods [21-27] transform
the original modality data to homogeneous binary codes by calcu-
lating the similarities of different modality data representations
while preserving the semantic relevance without the guidance of
data labels. By contrast, supervised cross-modal hashing meth-
ods [28-35] encode the heterogeneous cross-modal instances
into compact hash codes and keep the cross-modal semantic
similarities with the supervised information of class labels. Com-
pared to unsupervised manners, supervised cross-modal hash-
ing methods can fully use semantic relations of cross-modal
instances by utilizing semantic labels and thus significantly boost
the performance of cross-modal retrieval.

In the past few years, deep neural networks (DNNs) have been
proposed and applied to many tasks such as sentence recognition,
object detection, image caption, etc. Without exception, deep
neural networks based cross-modal hashing are widely inves-
tigated. Pairwise relationship guided deep hashing (PRDH) [36]
integrates several different pairwise constraints to protect the se-
mantic similarity of pairwise instances from both intra-modalities
and inter-modalities. Deep cross-modal hashing (DCMH) [37]
utilizes two deep neural networks to learn hash functions for
image and text-modality data representations, respectively. Self-
supervised adversarial hashing (SSAH) [38] regards the multi-
labels of each image-text pair as a single modality and from which
a hash projection function is learned to supervise the training
of hash mapping functions for the image-modality as well as
the text-modality. Due to the remarkable feature learning ability,
deep cross-modal hashing methods can more effectively cap-
ture the correlation across different modalities than hand-crafted
methods.

In most of the existing deep cross-modal hashing methods,
two cross-modal pairwise instances are regarded as semanti-
cally similar only if they have at least one common category.
They usually neglect the fact that if two cross-modal pairwise
instances have more common labels than another cross-modal
pairwise instance, then the semantic similarity of the former
should be higher than the latter (As shown in Fig. 1). There-
fore, most of the existing deep cross-modal hashing methods
neglect the abundant semantic information in multiple-labels
of cross-modal datasetsfresulting in inaccurately evaluating the
semantic relevance of cross-modal pairwise instances and weakly
optimization of the learned cross-modal hash functions. Fur-
thermore, a few deep cross-modal hashing methods introduce
self-supervised learning into deep cross-modal hashing, which
regard the multi-labels of original instances as a signal modality
and learn a hash function to supervise the training of other
modalities. This self-supervised-based deep cross-modal hashing
can enhance the performance of cross-modal retrieval. How-
ever, as the original multi-label matrix is very sparse, the multi-
label-based self-supervised learning strategy shows only a lim-
ited enhancement of the learned cross-modal hash projection
functions.

To further boost the robustness of cross-modal hashing, we
propose a multi-label modality enhanced attention-based self-
supervised deep hashing (MMACH) for high-performance cross-
modal retrieval. Specifically, a multi-label modality enhanced
attention (MMEA) module is firstly defined to overcome the
sparsity of the multi-label matrix in the self-supervised learning-
based deep cross-modal hashing. The MMEA utilizes three en-
coders to transfer each original instance (including original image
features, original text features, and corresponding multi-labels)
into a latent feature space and then normalizes them to increase
their discrimination. Afterward, the normalized feature represen-
tations from the original image and text modality are fused into
the feature representations from the corresponding multi-labels
by a self-attention mechanism, respectively. Secondly, a multi-
label cross-modal triplet loss (MCTL) is designed to measure the
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Fig. 1. This figure is the demonstration of three image-text instances with
multiple labels. In previous deep cross-modal hashing approaches, the semantic
similarity of the image-text instances in (a) and (b) is regarded as 1, because they
have at least one common categories, i.e., sky, cloud. Analogously, the semantic
similarity of the image-text pairs in (a) and (c) is regarded as 1, because they
have several common categories sunset, water, sky, cloud. In fact, the semantic
similarity of the image-text pairs in (a) and (c) is higher than that of the image-
text pairs in (a) and (b), because the former pairs share more common categories
than the latter pairs.

semantic similarity of multi-label cross-modal instances. Suppose
that we have a triplet of instances (a, b, c) and each instance
has its corresponding multi-labels. If instance a and instance b
have more common categories than instance a and instance c,
thus a and b are more semantically relevant to each other than
a and c, meanwhile, the learned features of a and b should be
more similar than the learned features of a and c. Inspired by
this, a multi-label cross-modal triplet loss is designed based on
the fact that if two cross-modal instances have more categories
in common than other instances, the similarity of the learned
features should also be higher than others. The proposed modules
of MMEA and MCTL are further integrated into a self-supervised
learning-based deep cross-modal hashing framework for high-
performance cross-modal retrieval. The main contributions of our
work are three-fold:

1. A novel multi-label modality enhanced attention (MMEA)
module is designed to address the sparsity of the multi-labels-
based similarity matrix in the self-supervised learning-based
deep cross-modal hashing framework. Three encoders are firstly
employed to transform the original image-text pairwise instances
and their corresponding multi-labels into latent feature represen-
tations. The significantly useful semantic information of text and
image feature representations are fused into their corresponding
feature representations of multi-labels, respectively. The fusion
process is based on a self-attention mechanism, which could
effectively improve the completion of the multi-labels-based
similarity matrix. 2. A robust multi-label cross-modal triplet
loss (MCTL) is designed to measure the semantic similarity of
multi-label cross-modal instances more correctly. The MCTL is
constructed based on the observation that the feature represen-
tations of cross-modal pairwise instances with more common
categories should also preserve higher semantic similarity than
other cross-modal pairwise instances. To the best of our knowl-
edge, the multi-label cross-modal triplet loss is the first time
designed for the task of cross-modal retrieval.

3. The multi-label modality enhanced attention-based self-
supervised deep cross-modal hashing (MMACH) is proposed. The
MMACH integrated the designed multi-label modality enhanced
attention (MMEA) module and the multi-label cross-modal triplet
loss (MCTL) to improve the performance of cross-modal retrieval.
Extensive experiments conducted on four well-known cross-
modal datasets demonstrated the effectiveness of our MMACH.
The comparison with several state-of-the-art baselines also shows
the superiority of MMACH.

The rest of the paper is organized as follows. Section 2 de-
scribes the related work. Section 3 presents details of our multi-
label modality enhanced attention-based self-supervised deep
cross-modal hashing (MMACH) framework. The learning produce
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of MMACH is discussed in Section 4. Section 5 shows the eval-
uation as well as comparison experimental results on several
datasets of MMACH. Section 6 concludes the MMACH in this

paper.
2. Related work
2.1. Deep cross-modal hashing

Previous cross-modal hashing methods are shallow
architecture-based methods that first extract hand-crafted fea-
tures and then utilize these hand-crafted features to learn hash
functions. These methods are based on a two-stage architecture
where the two stages may not be optimally compatible, result-
ing in suboptimal performance. By contrast, deep cross-modal
hashing methods benefit from the significant feature extraction
capabilities of deep neural networks. Thus, they can better ex-
plore and exploit the correlations across different modalities in
an end-to-end manner. As a result, deep cross-modal hashing
retrieval has attracted increasing attention. Representative meth-
ods are deep cross-modal hashing (DCMH) [37], pairwise relation
guided deep hashing (PRDH) [36], correlation hashing network
(CHN) [39], cross-modal hamming hashing (CMHH) [40], and
self-supervised adversarial hashing (SSAH) [38]. DCMH effectively
projects image-text pairs into corresponding hash codes by using
an end-to-end deep neural network framework. PRDH exploits
intra-modal and inter-modal constraints of different pairwise
instances to generate discriminative hash codes with a united
deep learning framework. CHN defines a cosine max-margin loss
to enhance the quality of the learned hash codes. CMHH uses
an exponential focal loss to significantly penalize similar cross-
modal pairs with Hamming distances larger than the Hamming
radius threshold. SSAH introduces self-supervised learning to
cross-modal hashing and learns the hash function (LabelNet) on
the multi-label modality to supervise other modalities. Nonethe-
less, these methods either leverage single labels to calculate the
semantic similarity of cross-modal pairwise instances or regard
the semantic similarity of cross-modal pairwise instances with
multiple labels as one when they have at least one common
category. However, the fact that many cross-modal datasets have
multiple labels containing abundant semantic information is ne-
glected in these methods. Specifically, suppose two cross-modal
instances have more common categories than some other cross-
modal pairwise instances. In that case, the semantic similarity of
the former pair is higher than the semantic similarity of the latter
pair. Moreover, existing self-supervised-based deep cross-modal
hashing methods often suffer from inferior performance because
the hash function learned on the sparse multi-labels has a weak
capacity to supervise the training of the hash functions of other
modalities.

2.2. Attention mechanism

An attention mechanism [41-44] is first introduced and widely
applied in natural language processing, which considers neigh-
boring words when extracting features from one word. Sub-
sequently, the attention mechanism is introduced to various
computer vision tasks, where it is trained to identify what the
model should concentrate on when performing a particular task.
To date, only a few methods combine cross-modal hashing re-
trieval with an attention mechanism. Attention-aware deep ad-
versarial hashing (DAH) [45] introduces an attention mechanism
to cross-modal hashing and generates adaptive attention masks
that divide the feature representations into attended and unat-
tended feature representations. In our proposed method, the
image and text modality feature representations are fused into
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the feature representations of multi-labels modality based on a
novel self-attention mechanism. It could effectively improve the
completion of a multi-label similarity matrix and supervise the
training of hash functions for different modalities.

2.3. Multi-label learning

Multi-label learning pays attention to the issue that an in-
stance is associated with several labels simultaneously [46,47].
Generally, instances with multi-labels contain more semantic
information than instances with single labels. Adequately mining
the semantic information in multi-labels to accurately calculate
the semantic similarities between instances is still a challenge. To
this end, [48] proposes a distance metric learning algorithm for
multi-label classification, which integrates a pairwise multi-label
similarity constraint and a Jaccard Distance into multi-label learn-
ing and achieves competitive performance. This paper defines a
multi-label cross-modal triplet loss to better explore the semantic
information in multi-labels and further preserve the multi-labels
similarity, especially preserving the multi-label similarities of
cross-modal instances.

3. Proposed method

In this section, we describe our proposed multi-label modal-
ity enhanced attention-based self-supervised deep cross-modal
hashing (MMACH) method with the following subsections: no-
tations and problem formulation, modal encoders, multi-label
enhanced attention module, hash representations learning, and
hash codes generation. For the sake of clarity, in the following,
we always assume that each data instance has three modali-
ties (i.e., an image-modality, a text modality, and a multi-label
modality). The framework of MMACH is shown in Fig. 2.

3.1. Notation and problem formulation

To better understand the task of CMH, we firstly give a formal
definition of notations and problem formulations. For a given
training set of n instances 0 = {{L;}},, {T;}l,, {Li}]_,}, where
Iy € R, T; € R% and L; € R% are the original image features, the
original text features as well as the multi-labels of the ith training
instance. If the ith training instance is assigned to the jth class,
then the jth component of L; equals 1 (i.e,, L = 1), otherwise
L; = 0.

' With the provided training set and semantic similarity ma-
trices, the goal of cross-modal hashing is to learn three hash
functions to project the original images, the original texts and
the original multi-labels modality data into compact hash codes,
meanwhile, effectively preserve semantic similarities of these
cross-modal instances. To achieve this goal, the original instances
of three modality data are encoded into c-dimensional feature
vectors with pre-trained deep neural networks, i.e., {}L,, {Ti};
and {L;}!", are projected into {FF}"_,, {GE}!_| and {HF}! |, respec-
tively. As the original multi-labels are pretty sparse,a multi-label
modality enhanced attention mechanism is designed to com-
pensate for this weakness. The multi-label enhanced feature
vectors are denoted as {H/} ,. Afterwards, three deep neural
networks are utilized to project {FF}! ,, {GF ;':A and {H} ?:}1 into
k-dimensional hash representations {Fl.hr Lo AGTYE and (H"}T .,
respectively, i.e., F'" = f(FF, 6'), G = g(GE, 0T), H" = h(HA, 61),
where f(.,0"), g(.,87) and h(., 6*) are hash representation learn-
ing functions for the image-modality, the text-modality and the
multi-label modality, respectively. 8!, T and 6" are parameters
of the three deep neural networks, respectively. Finally, a sign
function is used to generate united hash codes matrix B € R™
from the learned hash representations.
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Fig. 2. This figure demonstrates the framework of our proposed MMACH method. The MMACH contains three modules: (1) The first module is a modal encoder
part (E;, E; and Er), it is composed of three deep neural networks to extract the features from the original instances of the image modality, the text modality, and
the multi-label modality, respectively. (2) The second module is a multi-label modality enhanced attention module. It utilizes an attention mechanism to extract
semantically relevant information from the image and text modality and subsequently fuses them to the sparse multi-label modality. (3) The third module is a hash
representation learning and hash codes generation part. It aims to ensure that semantically similar pairs of cross-modal instances have similar hash codes. The ©
represents the dot product, while ® represents the element-wise product, and @ denotes element-wise adds.

3.2. Modal encoders

In order to effectively extract discriminative features from the
original instances, three encoders E;, Er and E; are used to encode
each original image I;, text T;, and multi-label L; modality data into
c-dimensional feature vectors FF, Gf and HF, respectively.

Ff = Ei(l)
GF = Er(Ty) (1)
Hf = E(L)

3.3. Multi-label modality enhanced attention module

Many benchmark datasets for the task of cross-modal hashing
retrieval (e.g., MIRFLICKR-25K [49] and NUS-WIDE [50], etc.) con-
tain multi-labels. Nevertheless, most previous methods merely
regard a pair of two cross-modal instances as similar if they
share at least one common category. The abundant semantic
information in multi-labels is neglected and thus cannot accu-
rately evaluate the pairwise semantic relevance of cross-modal
instances. As a result, the learned cross-modal hash projection
functions have suboptimal performance. To solve this issue, a
multi-label-based self-supervised learning strategy is designed
to guide the learning of cross-modal hash projection functions.
Because the original multi-label matrix suffers the weakness of
sparse, a multi-label-based self-supervised learning strategy can
only obtain a limited enhancement for the learned cross-modal
hash projection functions. For this purpose, in this subsection,
a multi-label modality enhanced attention module (MMEA) is
proposed to improve the completion of the multi-label matrix.
Specifically, for a given training image-text pair with multi-labels
{I;, T;, L;}, MMEA firstly utilizes the encoders in Section 3.2 to
transfer them into c-dimensional feature vectors Ff, Gf and Hf,

then an attention mechanism is introduced to fuse these relative
semantic information of Ff and Gf into Hf. The corresponding
formulations are as follows:

o F Hf

attention = —L— . —L
I EE LI HE

attention™ = —-— . —L
G I Hf

Where attention' and attention™ are semantic affinities of Ff and
HE, and G and Hf, respectively. || . || denotes a normalization on
a feature vector.

H! = HF + attentionFf + attention™ Gt ®3)

Where H# is the multi-label modal enhanced feature vector for
the original multi-label L;. By using Egs. (2) and (3), we can
compensate the sparsity of multi-label L; with the abundant
semantic information contained in I; and T;, and employ a self-
supervising learning manner to better guide the training of deep
neural networks for the image and the text modalities.

3.4. Multi-label cross-modal triplet loss

Suppose that we have a cross-modal triplet (I;, Tp1, Tp2), where
image I; is more semantically similar to text T,; than to text
Tpy. Their respective hash representations F", G and G can
be easily learned with the respective hash mappmg funct1ons
F'" = f(FE,o"), cgq = g( pl,GT) and G’;E = g(GE 2 7). T
preserve the semantic similarity during the hash representatlon
learning procedure, the similarity of /" and G should be higher
than the similarity of F’" and Gg’. Therefore, inspired by [51-53],
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we define the multi-label cross-modal triplet loss (MCTL) as fol-
lows:

JIT(Iia Tp]y sz)

2 2

= Y max(O, | F" =G I, — I K" =G I, +») (4)
I Tp1. T2

Where || - ||, is the L, norm, and y is a positive margin. Eq. (4)

means that the L, distance of a more semantically similar multi-
label cross-modal pair is smaller than the L, distance of a less se-
mantically similar multi-label cross-modal pair by a margin of y.
By this manner, the multi-label cross-modal semantic similarity
can be adequately protected during stage of hash representation
learning.

3.5. Hash representations learning

During the stage of hash representation learning, the learned
multi-label modal enhanced feature vectors {HI.A i, the feature
vectors for the image-modality {FF}" ,, and the feature vectors
for the text-modality {GF}", are forward into the deep neural
network for the multi-label modality, the deep neural network
for the image-modality, and the deep neural network for the
text-modality, respectively. To preserve the semantic similarity
of cross-modal instances during the hash representation learning
stage, we introduce the multi-label cross-modal triplet loss in
Section 3.4 into our method. Specifically, for cross-modal triplets
(HY, Fyy, Fy), (FF HY HD), (HY, Gy, Gry), and (G, HY,, HYy), we
define the following semantic similarity preserving loss func-
tions:

]"’
= J"M(HE, Fpy, Fp) + JM(FE, Hyy Hyy)
2 2
= > max(O, | H" —F} Il — I H" = F}5 1l + ) (5)
HA ,prl A,F‘fz
2 2
+ ) max(O, | K" —H I, — " = HJj [l + v2)
FE ,Hgl ,H{}z

Where J is the cross-modal semantic similarity preserving loss
for the image-modality and the multi-label modality. The multi-
label semantic similarity of H and FpE] is higher than the multi-
label semantic similarity of Hf and Fy,, and the multi-label se-
mantic similarity of FiE and H{}] is higher than the multi-label
semantic similarity of F and H/,. And y; and y; are two positive
margins.

]TL
=J"(H}, Gy, Gy) +J™(GE L HYy L HYY)
2 2
= Y max(0, | H" =Gl I, — Il H" = G IS + v3) ©
HA.GE,.GE
2 2
+ Y max(0, | G —HJ Il — | G — HIS Il + va)
GI.E,Hgl,H;‘Z

Where J™ is the cross-modal semantic similarity preserving loss
for the text-modality and the multi-label modality, and the multi-
label semantic similarity of H{* and G, is higher than the multi-
label semantic similarity of H* and Gr,, and the multi-label se-
mantic similarity of Gf and Hlﬁ is higher than the multi-label
semantic similarity of G; and H,. And y3 and y; are two positive
margins.
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3.6. Hash codes generation

In Section 3.5, we described how we can acquire the hash
representations {F/"}"_, {GM"}'_, and {H"}", for the original
images {I;}]_,, texts {T;}\_;, and multi-labels {L;}]_,, respectively.
However, the goal of cross-modal hashing is to map multi-modal
data into compact hash codes. To this end, we utilize a sign func-
tion to approximately generate the hash codes from the learned

hash representations:

h h h
Fi r + Gi r + Hi r
3
Where B; € RF is the hash codes for the ith instance. To mini-
mize the information loss in Eq. (7), we firstly squeeze the hash

representations from a real-valued space into [—1, 1] with the
following tanh function:

B; = sign( ) (7)

F" = tanh(F™)
GI" = tanh(G") (8)
H" = tanh(H™)

Where tanh(x) = g;g:ﬁ.
Moreover, to further decrease the information loss in Eq. (7),

the following quantization loss is also introduced:

2 2
o Xl B FTIE 1 B — G I+ 1 Bi— HIT 1)
quantization — 3Ink

(9)

Where n and k are the number of training instances and the
length of hash codes, respectively.

Combining the cross-modal semantic similarity preserving
losses with the quantization loss together, the complete loss
function can be obtained as follows:

T o T n
J= T] + T.[ + a]quantization (10)
n;; k ng k
Where « is a hyper-parameter to balance the cross-modal seman-
tic similarity preserving losses and the quantization loss. ny is
the number of cross-modal triplets from the image-modality and
the multi-label modality, and ny; is the number of cross-modal
triplets from the text-modality and the multi-label modality.

3.7. Hash representations learning networks

For the image-modality, we fine-tune the multi-scale (MS)
fusion based TxtNet in SSAH [38] (¢ — MS — 4096 —
512 — k) to learn the corresponding hash representations from
the encoded features.

For the text-modality, the TxtNet in SSAH is fine-tuned (¢ —
MS — 4096 — 512 — k) and utilized to learn the corresponding
hash representations from the encoded features.

For the multi-label modality, a deep neural network with three
fully-connected layers (¢ — 8192 — k) is introduced to learn the
hash representations from the encoded features.

4. Learning algorithm of MMACH

To learn the optimized 6/, 67, 8* and B, an alternating strategy
is introduced to update one of 6!, 07, 6! and B, while keeping
the other three fixed. The detailed execution and optimization
schema for MMACH are given in Algorithm 1.
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4.1. Optimize 6" with 6', 67 and B unchanged

While we keep 6/, T and B unchanged, the parameters 6° of
the DNN for the multi-label modality can be learned by stochastic
gradient descent (SGD) and back-propagation (BP). Detailedly, in
each iteration, four training batches of cross-modal triplets are
randomly selected to execute our algorithm. For each selected
multi-label enhanced feature vector H{‘, the gradient is computed
as follows:

3] 2

_ hr hr hr hr
9H"hr _ﬁ( Z (Fpz — Fp1) + Z (Hp1 — Hp))
: L™ pa FELFE FEHA HA

2 h h h h
S0 2 (GE-G+ D (H—H)
HA.GE,.GE) Gf Hpy HE,

203 (Bi—H")

1

3nk
(11
Afterwards, =% can be calculated from -4 by applying the
chain rule. Finally, the #* can be optimized ﬁsing a% and back-

propagation.
4.2. Optimize 6" with 6%, 67 and B unchanged

While we keep 67, 6! and B unchanged, the parameters 6' of
the DNN for the image modality can be optimized by SGD and BP.
During each epoch, two training batches of cross-modal triplets
are randomly selected to run our method. For each selected image
feature vector Ff , the gradient is calculated as follows:

9 2 hr_ ph h h
SFhr :ﬂ( Z (F1 — Fp2) + Z (Hp> = Hp1))
' LR R, i Hy Hy (12)
203, (B —F")
3nk

Furthermore, 2% can be calculated from =% by applying the

chain rule. Finally, the #' can be optimized by using a% and
back-propagation.

4.3. Optimize 8T with 6', 6 and B unchanged

When we keep 6/, 6* and B unchanged, the parameters 67 of
the DNN for the text modality can be optimized by SGD and BP.
During each epoch, two training batches of cross-modal triplets
are randomly selected to execute our algorithm. For each selected
text feature vector Gf, the gradient is calculated as follows:

H7Gp1 G Gi'-Hp1-Hy (13)
2030, (Bi—G)
3nk
Afterwards, - can be calculated from -2 by using the chain

" 90T aGhr
rule. Finally, the #T can be optimized by using 3% and back-
propagation.

4.4. Optimize B with 6, 8T and 6" unchanged

When we keep 6, T and 6" unchanged, the hash codes B can
be optimized with Eq. (7).
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Algorithm 1 MMACH: Multi-Label Modality Enhanced Attention
based Self-Supervised Deep Cross-Modal Hashing.

Input:
training instances: 0 = {{l;}}_, (T}, {Li}] )
the maximal epochs of the algorithm is max_epoch.
mini-batch size npqecp = 128.

Output:
Deep neural networks parameters are 6!, 67 and 6L for hash representation
learning, and the hash codes matrix B.

1: Encoding the original instances {;}iL_;, {T;}i_;, {Li}[L; to c-dimensional features
(FEYL |, (GEYL_, and (HE}T, with Eq. (1).

2: Learning the multi-label enhanced feature vectors {HI.A}?=1 from {HiE}?:] with
Egs. (2) and (3).

3: Generating nj (HzA*F51'F£2) (the triplets set is named Triplety) and ny
(Ff,HI';‘l,HSZ) (the triplets set is named Triplet;;) from {HA}® | and {FE}I

generating npp (H{*,G}E],Gf;z) (the triplets set is named Tripletr;) and npp

(GE, HI’}], Hﬁz) (the triplets set is named Triplet;7) from {HA}!_; and {GF}},.
4: Initialize the deep neural network parameters 6!, 67, 6, hash representations
{F!”}Ll, {G?’}{’:l, {Hl.hr}:f‘= , hash codes matrix B, and the epoch numbers
batchnum; = [(ny + n7r)/(2npaien)], batchnum; = [np/Npaeen], batchnump =

[n7L/Npatch1-

5: repeat

6: for j=1 to batchnum; do

7: Randomly select npqp triplets from Triplety;, npgeen triplets from Triplety; |
Npaech triplets from Tripletr;, and npgeep triplets from Triplet;t to construct
the respective four mini-batches.

8: For each feature vector H in the mini-batches, calculate H™ = h(HA, 01
by forward propagation.

9: Update {Hihr};';l'

10: Compute the derivative of 8L using Eq. (11).

11: Utilize back-propagation to update the network parameters L.

12: end for

13:  for j =1 to batchnum; do

14: Randomly select npqeep triplets from Triplety and npgep triplets from
Triplet;; to construct the respective two mini-batches.

15: For each feature vector FF in the mini-batches, calculate FI" = f(FE, o)
by forward propagation.

16: Update {Fi”r};.’:l.

17: Compute the derivative of 8! using Eq. (12).

18: Utilize back-propagation to update the network parameters 6!.

19:  end for

20:  for j=1 to batchnumr do

21: Randomly select npqep triplets from Tripletyy and npgep triplets from
Triplet;T to construct the respective two mini-batches.

22: For each feature vector Gf in the mini-batches, calculate Gf" = g(Gf, GT)
by forward propagation.

23: Update {GI"}_|

24: Compute the derivative of 67 using Eq. (13).

25: Utilize back-propagation to update the network parameters 67.

26:  end for

27:  Optimize B by utilizing Eq. (7).
28: until the max epoch number max_epoch

4.5. Complexity analysis

The time complexity of the overall loss function (Eq. (10))
of MMACH can be calculated as follows: O(nj )+O(ng )+0(n x
k)~0(n), as k < n and k, ny, ny; are of the same magnitude as n.

5. Experiments

In order to validate the performance of our proposed MMACH
method and compare it with several state-of-the-art cross-modal
hashing methods, we conducted extensive experiments on four
benchmark datasets.

5.1. Datasets

MIRFLICKR-25K [49]: the original MIRFLICKR-25K dataset is
made up of 25,000 image-text pairs from the Flickr website.
In our experiment, instances that have at least 20 textual tags
are selected and thus 20,015 image-text pairs with multi-labels
remain, where each of the selected instances is assigned to at
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Hyper-parameter o on MIRFLICKR-25K dataset.
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Hyper-parameter a on NUS-WIDE dataset

0.685

0.665
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Fig. 3. Sensitivity analysis of the hyper-parameter « on MIRFLICKR25K and NUS-WIDE datasets.

Table 1

Detailed settings of experimental datasets.
Dataset Used Train Query Retrieve Tag dimension Labels
MIRFLICKR-25K 20,015 10,000 2,000 18,015 1,386 24
NUS-WIDE 190,421 10,500 2,100 188,321 1,000 21
MS COC02014 122,218 10,000 5,000 117,218 2,026 80
IAPRTC-12 19,999 10,000 2,000 17,999 1,251 275

least one of the 24 given labels. For our experiments, we encode
each textual tag into a 1386-dimensional BOW (bag-of-words)
feature.

NUS-WIDE [50]: the original NUS-WIDE dataset contains
269,468 image-text pairs. We first abandon the data without
categories, then choose data classified by the 21 most-frequent
categories to construct a subset, which has 190,421 image-text
pairs. For our experiments, we encode each textual tag into a
1000-dimensional BOW feature.

Microsoft COC02014 [54]: the original Microsoft COC02014
dataset comprises two parts: training set with 82,785 images,
and validation set with 40,504 images. Each image contains 5
captions (which is regarded as a text modality). We first abandon
instances that have no captions, then we combine the training
set and validation set together to construct a subset with 122,218
image-text pairs, and each instance is annotated with at least one
of the 80 classes. The text of each instance is represented as a
2026-dimensional BOW feature.

IAPRTC-12 [55]: the original IAPRTC-12 dataset is composed
of 20,000 image-text pairs. In our experiment, we first eliminate
instances without tags and then construct a subset of 19,999
image-text pairs with 275 categories. The text of each instance
is encoded into a 1251-dimensional BOW feature.

Furthermore, the detailed information, including number of
used instances, number of training set, number of query set,
number of retrieval set, dimension of tags for each instance,
and categories for the four experimental datasets are listed in
Table 1. [56] provides more detailed information for experimental
settings.

5.2. Evaluation metrics

For cross-modal hashing retrieval, two of the most prevalent
leveraged retrieval protocols are Hamming ranking and hash
lookup. Specifically, the Hamming ranking protocol ranks the
retrieval results in ascending order of the Hamming distance
for given a query instance. The hash lookup protocol returns
retrieval instances within a certain Hamming radius from the
query instance. In practical applications, Mean Average Precision
(MAP), topN precision curves (topN Curves) and precision recall

curves are three substitutions of the above two retrieval proto-
cols. Thus, Mean Average Precision, Mean Average Precision and
precision-recall curves are used as evaluation metrics to validate
the performance of our proposed MMACH method and in the
comparison with several state-of-the-art baseline methods.

5.3. Baselines and implementation details

Several CMH methods, including hand-crafted based CMH
methods CMSSH [57], SePH [58], SCM [31] and GSPH [20] and
deep feature based CMH methods DCMH [37], PRDH [36], CMHH
[40], CHN [39], SSAH [38] and MLSPH [56] are chosen as baseline
methods in our experiments. The source codes of GSPH, SePH,
SCM, CMSSH, SSAH, DCMH and MLSPH have been released and
we cautiously implement them. For other methods, we cautiously
implement them by ourselves.

By using the open source deep learning framework pytorch,
our experiments are executing on an NVIDIA GTX Titan XP GPU
server. During the training stage, each multi-label cross-modal
triplet (a, b, c) is generated by using the following rule: a and b
are instances from the first modality, while instance c is from an-
other modality. Moreover, a and b have more common categories
than a and c. In our experiments, the modal encoders E; and
Er employ the universal sentence encoder [59] to encode each
original text or original multi-label text into 512-dimensional fea-
ture vectors, and the modal encoder E; utilizes ResNet34 [60] to
extract the features of each original image. We acquire the output
of the global average pool and resize it to a 512-dimensional
feature vector. In our experiments, the maximum training epoch
is set to 200, the learning rate is initialized to 10~ and gradually
lowered to 10~° in 200 epochs. For all experiments, I — T rep-
resents the cases when using a querying image while returning
text, while T — I represents the cases when using a querying
text while returning an image. Source code will be released at:
https://github.com/SWU-CS-MediaLab/MMACH.

5.4. Performance comparisons and discussion
5.4.1. Hyper-parameters experiment

In this subsection, experiments are conducted on two datasets,
i.e., MIRFLICKR-25K and NUS-WIDE. The length of hash codes is
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Dataset Query Image MMACH: Retrieval texts MLSDCH: Retrieval texts
1. maldives fuvahmulah kulhi mangrove sunset sunrise atoll 1. maldives fuvahmulah kulhi mangrove sunset sunrise atoll
gnaviyani pond wetland land swim reflation nikon red sky blue gnaviyani pond wetland land swim reflation nikon red sky blue
MIRFLICKR- r:lillzero d300 boy ] inillzero d300 boy .
2. trees sunset naturesfinest 2. trees sunset naturesfinest
25K 3. crane gru sunset hdr tramonto cielo sky ray raggi light luci 3. boracay philippines sunset
chdk milano soe flickrsbest 4. roady photo photograph digital jlbrown jumpinjimmyjava
Damniwishidtakenthat canon40d roadart darksky thefunhouse
4. okmulgee oklahoma sunset red drippingspringslake tree water
reflection blueribbonwinner abigfave explore
. fish angelfish 1. fish angel boat ship tank angelfish
. tropicalfish cichlid angelfish 2. tropicalfish cichlid angelfish
NUS-WIDE . fish yellow zoo angelfish 3.2005 beauty rock mexico angelfish
4. fish aquarium blue angelfish 4. pink woman girl lady female bed pattern dress legs polkadots
mauve knees shins angelfish lowcontrast patterned cocktaildress
lowbrightness heartbreaktohate
1. aman on a horse in a flat pasture; a second horse behind him 1. aman on a horse in a flat pasture; a second horse behind him
on the left; on the left;
2. three people are riding on brown horses in the foreground; 2. a grey statue of a man on a horse on a base made of marmol,
. three red houses with a brown thatched roofand lila flowers with | with a fence in front of it and trees behind it;
Microsoft green leaves behind it; a white sky in the background; 3. four tourists are riding on brown horses on a gravel road; a
coco 3. adark and a light brown horse with red saddles are standing on | green slope with a few bushes in the background;
a path in the foreground; high grass and a wooded hill behind it; 4. four people riding on horses; two foals next to the horses; a
4. a group of people is riding on brown horses on a green creek with a brown rock face and forest in the background;
meadow; grey clouds in the background;
1. a fountain and cobbled walkway in the foreground, a pink and 1. a fountain and cobbled walkway in the foreground, a pink and
white buidling with many arches in the background; trees on the white buidling with many arches in the background; trees on the
right right
2. a white building with lots of columns and arches, a neat lawn 2. a white building with lots of columns and arches, a neat lawn
and neatly cut trees and bushes in the foreground: the flag of and neatly cut trees and bushes in the foreground; the flag of
Paraguay is waving at the top of the building; there is a flower Paraguay is waving at the top of the building; there is a flower
IAPRTC-12 bed on the left; bed on the left;
3. avery modern building; stairs are leading up to the entrance; 3. alarge building on the left, a palm tree in centre of picture,
the walls are entirely made of glass; one red huge column is (mostly) white cars in the street at a junction, some of them
supporting the big roof; rails in the foreground:; a green tree on turning left, others going straight; there are red umbrellas ina
the left; park on the right; people are walking through the park, others are
4. Several flagpoles with waving flags on a green lawn in the crossing the road in the foreground;
foreground; a large grey and black building behind it; a huge 4. Front view of a huge dam; water is flowing through one tiny
column with a football on top on the left; a blue sky with white spot; backwater is flowing off on the left; green reed in the
clouds in the background; foreground;
(a) Image-to-text retrieval
Dataset Query Text MMACH: Retrieval images MLSDCH: Retrieval images
maldives fuvahmulah
kulhi mangrove
sunset sunrise atoll
MIRFLICKR | gnaviyani pond
-25K wetland land swim
reflation nikon red
sky blue millzero
d300 boy
NUS-WIDE . fish angelfish
. a man on a horse ina
Microsoft flat pasture; a second
€0C02014 | 15r5c behind him on
the left;
. a fountain and
c‘fhlf)_led walkway il':nk
weRTC-12 [ R ding
with many arches in
the background; trees
on the right

(b) Text-to-image retrieval

Fig. 4. Examples of top 4 cross-modal retrieval results by MMACH and MLSDCH on four datasets. For (a) using images to retrieve texts, the matching texts are in
blue. For (b) using texts to retrieve images, the purple number in each image is the ranking order, and the blue frames indicate the matching image.

set to 64 to find out the best value of hyper-parameter «. The
MAPs of our proposed MMACH method under different o are
recorded and then depicted in Fig. 3. From this figure, it is obvious
that our proposed MMACH method can achieve better perfor-
mance when o = 0.6. Therefore, in the subsequent experiments,
we set « = 0.6 for MMACH.

5.4.2. Validation of the effectiveness of multi-label modality en-
hanced attention

In this subsection, we examine the effectiveness of our pro-
posed multi-label modality enhanced attention module. Con-
cretely, we first remove the multi-label modality enhanced
module in our proposed MMACH (i.e., we set H* = HE in Fig. 2)
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Dataset Query Image MMACH: Retrieval texts MMACH-MSE: Retrieval texts
1. maldives fuvahmulah kulhi mangrove sunset sunrise atoll 1. contraluz pandorga perico playa puestassol puntaumbria fab
gnaviyani pond wetland land swim reflation nikon red sky blue amazingcolors
millzero d300 boy 2. ravenelle second life torley solo piano kenny bumby sweet
MIRFLICKR- 0 teE § - i . S
2. trees sunset naturesfinest mermaids romance moonlight craig altman animations dancing
25K 3. crane gru sunset hdr tramonto cielo sky ray raggi light luci cats explore enjoy love youguys areverylucky
chdk milano soe flickrsbest 3. kelowna bc canada ubcokanagan
Damniwishidtakenthat 4. aldoaldoz fochi fuochi san giovanni firenze florence italia italy
4. okmulgee oklahoma sunset red drippingspringslake tree water toscana tuscany ialia florencia
reflection blueribbonwinner abigfave explore
1. fish angelfish 1. fish angelfish tropicalfish denmarksaquarium
2. tropicalfish cichlid angelfish 2. fish animal angelfish bermudaaquariumandzoo
NUS-WIDE 3. fish yellox_v zoo angelfish 3. philippines scuba diving underwater angelfish
4. fish aquarium blue angelfish 4. ocean school sea fish water georgia aquarium scales angelfish
striped
1. aman on a horse in a flat pasture; a second horse behind him 1. people is riding on brown horses on a green meadow; grey
| on the left; clouds in the background;
2. three people are riding on brown horses in the foreground; 2. a woman and other people are riding on horses on a grey, deep
. three red houses with a brown thatched roof'and lila flowers with | sandy trail through a forest with green trees
Microsoft green leaves behind it; a white sky in the background; 3. many people are riding on brown horses on a light brown dune
coco 3. adark and a light brown horse with red saddles are standing on | in the shade; dark bushes behind them; a light blue sky in the
a path in the foreground; high grass and a wooded hill behind it; background;
4. a group of people is riding on brown horses on a green 4. a cattle herd on a pasture with mainly white cows and two
meadow; grey clouds in the background; black ones
1. a fountain and cobbled walkway in the foreground, a pink and 1. an inner courtyard with a fountain and flower pots in the
white buidling with many arches in the background; trees on the centre; several arches surround the courtyard on two levels in
right front of the red building with a blue entrance; more flower pots
2. a white building with lots of columns and arches, a neat lawn below the arches
and neatly cut trees and bushes in the foreground; the flag of 2. . a fountain and cobbled walkway in the foreground, a pink
Paraguay is waving at the top of the building; there is a flower and white building with many arches in the background; trees on
IAPRTC-12 bed on the left; the right
3. avery modern building; stairs are leading up to the entrance; 3. a swimming pool in the foreground; behind it a bar with chairs
the walls are entirely made of glass; one red huge column is and two people, and a bench with one person lying on it; upper
supporting the big roof; rails in the foreground; a green tree on level with doors and a blue rail
the left; 4. a large building on the left, a palm tree in centre of picture,
4. Several flagpoles with waving flags on a green lawn in the (mostly) white cars in the street at a junction, some of them
foreground; a large grey and black building behind it; a huge turning left, others going straight; there are red umbrellas in a
column with a football on top on the left; a blue sky with white park on the right; people are walking through the park, others are
clouds in the background; crossing the road in the foreground
(a) Image-to-text retrieval
Dataset Query Text MMACH: Retrieval images MMACH-MSE: Retrieval images
maldives fuvahmulah
kulhi mangrove
sunset sunrise atoll
MIRFLICKR gnaviyani pond
-25K wetland land swim
reflation nikon red
sky blue millzero
d300 boy
NUS-WIDE | el
. a man on a horse ina
Microsoft flat pasture; a second
€0co2014 horse behind him on
the left;
. a fountain and
:hobltlled walkway iz_xﬂk
wpRTC-12 [ o e
with many arches in
the background; trees
on the right

(b) Text-to-image retrieval

Fig. 5. Examples of top 4 cross-modal retrieval results by MMACH and MMACH-MSE on four datasets. For (a) using images to retrieve texts, the matching texts are
in blue. For (b) using texts to retrieve images, the purple number in each image is the ranking order, and the blue frames indicate the matching image.

and keep other parts unchanged, and we name this variation as
MLSDCH. Afterward, we compare MLSDCH with MMACH on the
four datasets MIRFLICKR-25K, NUS-WIDE, Microsoft COC02014,
and IAPRTC-12. The corresponding MAPs under the different hash
code lengths of 16, 32, and 64 are shown in Table 2.

From the MAPs in Table 2, it demonstrates that in most cases,
the MAPs of MMACH is higher than that of MLSDCH, showing
that our proposed multi-label enhanced attention module can
improve the performance of cross-modal hashing retrieval, which
is partly because the multi-label modality enhanced attention
module compensates for the sparse feature space. In addition,
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Table 2

Performance of MMACH compared to MLSDCH in terms of MAPs on four datasets: MIRFLICKR-25K, NUS-WIDE, Microsoft COC02014 and IAPRTC-12. The best MAP

scores are shown in boldface.

Task Method MIRFlickr-25K NUS-WIDE MS COCO IAPRTC-12
16bits 32bits 64bits 16bits 32bits 64bits 16bits 32bits 64bits 16bits 32bits 64bits
I>T MLSDCH 0.8024 0.8186 0.8278 0.6330 0.6577 0.6851 0.6826 0.7182 0.7306 0.5218 0.5433 0.5730
MMACH 0.8085 0.8235 0.8348 0.6489 0.6679 0.6847 0.6989 0.7322 0.7540 0.5421 0.5752 0.6031
Tosl MLSDCH 0.7796 0.8010 0.8115 0.6371 0.6613 0.6718 0.6989 0.7164 0.7280 0.4962 0.5297 0.5501
MMACH 0.7872 0.8011 0.8162 0.6450 0.6653 0.6758 0.6913 0.7245 0.7515 0.5316 0.5619 0.5866
Table 3

Performance of MMACH compared to MMACH-MSE in terms of MAPs on four datasets: MIRFLICKR-25K, NUS-WIDE, Microsoft COCO2014 and IAPRTC-12. The best

MAP scores are shown in boldface.

Task Method MIRFlickr-25K NUS-WIDE MS COCO IAPRTC-12
16bits 32bits 64bits 16bits 32bits 64bits 16bits 32bits 64bits 16bits 32bits 64bits
[T MMACH-MSE 0.8006 0.8158 0.8282 0.6215 0.6533 0.6692 0.6912 0.7168 0.7364 0.5286 0.5450 0.5795
MMACH 0.8085 0.8235 0.8348 0.6489 0.6679 0.6847 0.6989 0.7322 0.7540 0.5421 0.5752 0.6031
T MMACH-MSE 0.7714 0.7952 0.8065 0.6362 0.6573 0.6698 0.6531 0.6882 0.6971 0.5026 0.5190 0.5485
MMACH 0.7872 0.8011 0.8162 0.6450 0.6653 0.6758 0.6913 0.7245 0.7515 0.5316 0.5619 0.5866
Table 4
Comparison to baselines in terms of MAP on four datasets: MIRFLICKR-25K, NUS-WIDE, Microsoft COC02014, IAPRTC-12, respectively. The best accuracy is shown in
boldface.
Task  Method MIRFlickr-25K NUS-WIDE MS COCO IAPR TC-12
16bits 32bits 64bits 16bits 32bits 64bits 16bits 32bits 64bits 16bits 32bits 64bits
CMSSH [57] 0.5600 0.5709 05836 03092 03099 03396 0.5439 0.5450 0.5410 0.3049 0.3074 0.3130
Hand-crafted SePH [58] 0.6740 0.6813 0.6803 0.4797 0.4859 0.4906 04295 04353 04726 04186 04298 0.4315
methods SCM [31] 0.6354  0.6407 0.6556 0.4626 0.4792 0.4886 0.4252 0.4344 04574 0.3887 0.3945 0.4068
GSPH [20] 0.6068 0.6191 0.6230 0.4015 04151 04214 0.4427 04733 04840 03716 03921 0.4015
DCMH [37] 07316  0.7343 0.7446 05445 05597 0.5803 0.5228 0.5438 0.5419 0.4536 0.4727 0.4919
I>T PRDH [36] 0.6952 07072 07108 05919 0.6059 0.6116 0.5238 0.5521 0.5572 0.4761 0.4883  0.4925
Deen methods CMHH [40] 07334 07281 0.7444 0.5530 0.5698 0.5559 0.5463 0.5676 05674 0.4903 05074 0.5152
p CHN [39] 0.7504 0.7495 0.7461 0.5754 0.5966 0.6015 0.5763 0.5822 05805 04962 05070 0.5241
SSAH [38] 0.7745 0.7882 0.7990 0.6163 0.6278 0.6140 0.5127 0.5256 0.5067 0.5348 0.5619  0.5781
MLSPH [56] 0.8076  0.8235 0.8337 0.6405 0.6604 0.6734 0.6557 0.7011 0.7271 05342 05721 0.5994
MMACH 0.8085 0.8235 0.8348 0.6489 0.6679 0.6847 0.6989 0.7322 0.7540 0.5421 0.5752 0.6031
CMSSH [57] 05726 05776 05753 03167 03171 03179 03793 0.3876 0.3899 0.3189 0.3282  0.3229
Hand-crafted SePH [58] 07139 07258 0.7294 0.6072 0.6280 0.6291 0.4348 04606 05195 04667 0.4857  0.4936
methods SCM [31] 0.6340 0.6458 0.6541 04261 04372 04478 04118 04183 0.4345 0.3824 0.3897  0.4002
GSPH [20] 0.6282 06458 0.6503 04995 05233 0.5351 0.5435 0.6039 0.6461 0.4177 0.4452 0.4641
DCMH [37] 0.7607  0.7737 07805 0.5793 0.5922 0.6014 0.4883 04942 05145 04851 04976 0.5171
T=1 PRDH [36] 0.7626 0.7718 0.7755 0.6155 0.6286  0.6349 0.5122 0.5190 0.5404 0.5112 0.5283 0.5403
Deen methods CMHH [40] 07320 07183 0.7279 0.5739 0.5786 0.5639 0.4884 0.4554 04846 04790 0.4951 0.4963
p CHN [39] 0.7776 ~ 0.7775 07798 0.5816 0.5967 0.5992 0.5198 0.5320 05409 04994 05370 0.5397
SSAH [38] 0.7860 0.7974 0.7910 0.6204 0.6251 0.6215 0.4832 0.4831 0.4922 0.5265 0.5594 0.5726
MLSPH [56] 0.7852 0.8041 08146 06433 0.6633 0.6724 0.6494 0.6955 0.7193 0.5252 0.5624 0.5938
MMACH 0.7872 0.8011 0.8162 0.6450 0.6653 0.6758 0.6913 0.7245 0.7515 0.5316 05619 0.5866

Fig. 4 presents the top 4 cross-modal retrieval results by MMACH
and MLSDCH on four datasets, and it can be observed that in
most cases, MMACH can retrieve more accurate candidates than
MLSDCH.

5.4.3. Validation of the effectiveness of multi-label cross-modal triplet
loss

In this part, we conduct experiments to verify the performance
of our proposed multi-label cross-modal triplet loss. Specifically,
we firstly utilize MSE (Mean Square Error) loss to replace our
proposed multi-label cross-modal triplet loss in our proposed
MMACH method and keep other parts fixed. We name this varia-
tion as MMACH-MSE. Subsequently, we compare MMACH with
MMACH-MSE on the four datasets MIRFLICKR-25K, NUS-WIDE,
Microsoft CO-C02014, and IAPRTC-12. The corresponding MAPs
under the distinct hash code lengths 16, 32, and 64 are shown in
Table 3.

From Table 3, we can see that the MAPs of MMACH are
always higher than that of MMACH-MSE. This demonstrates the
effectiveness of our proposed multi-label cross-modal triplet loss,
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which is partly because multi-label cross-modal triplet loss can
better preserve the multi-label semantic relevance compared to
MSE loss. Furthermore, Fig. 5 lists the top 4 cross-modal retrieval
results by MMACH and MMACH-MSE on four datasets. It can be
observed that in most cases, MMACH can retrieve more accurate
candidates than MMACH-MSE.

5.4.4. Comparison with state-of-the-art CMH methods

In this subsection, experiments are conducted further to in-
vestigate the performance of our proposed MMACH method.
Specifically, we compare MMACH with several state-of-the-art
cross-modal hashing methods in terms of MAP scores, precision-
recall curves, and topN-precision curves on four datasets (i.e.,
MIRFLICKR-25K, NUS-WIDE, IAPRTC-12, and Microsoft COC02014).

The MAPs of MMACH and baseline methods under distinct
hash code lengths 16, 32, and 64 are listed in Table 4. Based on
the experimental results, we have the following findings:

(1) Compared to both hand-crafted baseline methods and
deep neural networks-based baseline methods, our proposed
MMACH method can achieve higher MAP values in most cases.
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Fig. 7. Precision-Recall Curves on NUS-WIDE.

This demonstrates that MMACH can utilize the multi-label modal-
ity enhanced attention module, multi-label cross-modal triplet
loss, and self-supervised learning strategy to enhance the perfor-
mance of deep cross-modal hashing retrieval.

(2) Among the hand-crafted baseline methods, SePH has the
highest MAP values in most cases, which is partly because SePH
utilizes kernel logistic regression to learn hash projection func-
tions for each modality. Among deep neural network-based base-
line methods, MLSPH has the highest MAP values in most cases,
partly because MLSPH introduces a multi-label semantic preserv-
ing module and can compute the semantic relevance of original
data more precisely.

(3) Compared to hand-crafted methods, deep neural network-
based methods usually achieve higher MAP values, partly because

11

deep neural network-based methods make full use of the excel-
lent features learning capability of these deep neural networks.

(4) Both SSAH and MMACH leverage self-supervised learning
to supervise the training of hash projection functions for all
modalities. However, MMACH outperforms SSAH in all cases,
partly because MMACH defines a multi-label modality enhanced
attention module to compensate for the sparsity of multi-label
features. Moreover, MMACH utilizes multi-label cross-modal
triplet loss to select multi-label semantic similar triplets. Mean-
while, SSAH regards the semantic similarity of two instances
as 1, if there is at least one common category, neglecting the
differences between multi-labels.

To further compare MMACH with the baseline CMH meth-
ods, we compare the precision-recall curves of MMACH and all
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Precision-Recall Curves on Microsoft COC02014.
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Fig. 9. Precision-Recall Curves on IAPRTC-12.

baseline methods on four experimental datasets with different
hash codes length. Figs. 6-9 are the precision-recall curves of all
methods with different datasets and hash code length. From these
figures, we have the following observations:

(1) In most cases, the precision-recall curves of our proposed
MMACH method are higher than that of most baseline methods.
This demonstrates that MMACH can achieve better cross-modal
retrieval performance than most baseline methods.

(2) The precision-recall curves of all methods are approxi-
mately identical to the corresponding observations on the MAP
scores.

(3) In some cases, the precision-recall curves of MLSPH are
higher than that of MMACH. In contrast, in other cases, the
precision-recall curves of MMACH are higher than that of MLSPH.
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This is partly because MLSPH and MMACH both consider multi-
label semantic similarity. Meanwhile, MLSPH utilizes a ResNet
to extract the features of images. At the same time, MMACH
defines a multi-labels modality enhanced attention module to
supervise better the learning of hash projection functions with
a self-supervised style.

Moreover, topN-precision curves of MMACH and baseline
methods on datasets MIRFLICKR-25K, NUS-WIDE, Microsoft
C0C02014 and IAPRTC-12 with hash codes lengths of 16, 32, and
64 are depicted in Figs. 10-13. From these results, we can draw
the following conclusions:

(1) In most cases, the top-N precision curves of our proposed
MMACH method are higher than that of most baseline methods.
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Fig. 11. topN-precision curves on NUS-WIDE.

It shows that MMACH outperforms most baseline methods on
cross-modal retrieval.

(2) In all cases, MMACH achieves competitive performance
with MLSPH, partly because these two methods are both multi-
labels semantic protection-based methods.

(3) The top-N precision curves of all methods are nearly con-
sistent with the observed MAP values and precision-recall curves.

5.5. Heatmap visualization of the image modality
To verify the robustness of features extracted by the deep con-

volutional neural networks, we utilize the GRAD-CAM [61] to vi-
sualize the heatmaps of input images for our proposed MMACH as
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well as DCMH and SSAH on datasets IAPRTC-12 and MIRFLICKR-
25K. Figs. 14 and 15 show the corresponding heatmaps. From
these heatmaps, it is obvious that in most cases, our proposed
MMACH can more accurately correlate the corresponding seman-
tic categories compared to DCMH and SSAH, which demonstrates
the powerful multi-label semantic preserving capability of our
proposed MMACH.

5.6. Running time analysis
We further evaluate the running time of our proposed MMACH

method. Specifically, we record the running time of both MMACH
and three representative baseline methods (DCMH [37], PRDH
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[36], SSAH [38]). These methods are executed on an NVIDIA GTX Table 5 o '
Titan XP GPU server with the maximum epoch max_epoch = 200, rcr:’;gf;éfo“ of running time to some baseline
and the experimental dataset is MIRFLICKR-25K, and the length Running time
of hash code is 64. The results are presented in Table 5. In Table 5, DCMH %0
it can be observed that the running time of MMACH is higher PRDH 31h
than that of DCMH and PRDH, which is partly because that, com- SSAH 42 h
MMACH 38 h

pared with PRDH and DCMH, MMACH utilizes a self-supervised
learning style, which introduces a deep neural network for the
label modality. Meanwhile, the running time of MMACH is lower
than that of SSAH, which is partly because that SSAH further
introduces generative adversarial networks, which needs more
running time.

6. Conclusion

This paper introduces a prominent cross-modal hashing
method termed multi-label modality enhanced attention-based

14
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Fig. 14. Grad-CAM visualization of MMACH compared to SSAH and DCMH for a randomly selected image from multi-label dataset IAPRTC-12 with respect to different

ground-truth categories.

Category

Input Method |

people

sunset water hill

DCMH

SSAH

MMACH

Fig. 15. Grad-CAM visualization of MMACH compared to SSAH and DCMH for a randomly selected image from multi-label dataset MIRFLICKR-25K with respect to

different ground-truth categories.

self-supervised deep cross-modal hashing (MMACH). A novel
multi-label modality enhanced attention (MMEA) module is de-
signed in MMACH to compensate for the sparse feature rep-
resentations of multi-labels from multi-modal instances. Based
on these enhanced multi-labels, self-supervised learning is in-
troduced to supervise the training of hash functions of other

modalities. Furthermore, a multi-label cross-modal triplet loss
(MCTL) is defined in MMACH to ensure that the feature repre-
sentations of cross-modal pairwise instances with more common
categories should preserve higher semantic similarity than other
instances. Extensive experiments on several well-known cross-
modal benchmark datasets indicated the effectiveness of the

15
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proposed MMEA and MCTL. Meanwhile, the MMACH method
surpasses the performance of the baseline methods and acquires
competitive cross-modal retrieval performance.
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