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Catalysis is central to today’s society. It is the key to producing 
fertilizers that support nearly half of the world’s population, 
converting oil into gasoline that fuels our cars and cleaning 

pollutants from the air we breathe1. Looking forward, catalysis will 
also be critical in the transition to a more environmentally sustain-
able world while seeking or maintaining a high standard of living2. 
More efficient catalysts that make use of renewable resources to pro-
duce carbon-neutral fuels, chemical building blocks and harmless 
products in waste streams are needed. To develop effective catalysts 
for these applications an understanding of the way that they carry out 
reactions and the variables that govern their performance is needed3.

Computational studies, particularly those that employ density 
functional theory (DFT), are invaluable in developing our under-
standing of heterogeneous catalysis4. These studies have demon-
strated that, although catalytic rates depend on the reaction and 
transition state energies of a number of elementary steps, the ener-
getics of each elementary step are not independent5,6. Therefore, 
complex rate expressions can be simplified to the point that one or 
two variables, termed descriptors, can describe the rate of reaction7. 
Understanding the variation of descriptor values between catalysts 
allows us to build intuition about which catalysts are most effective 
for a given reaction and why the design of new catalysts that surpass 
their activity is challenging. Computational studies also describe 
the relationships between catalyst descriptor values and their elec-
tronic structure, which offers a physical explanation of why catalysts 
behave the way they do8.

Given this success, DFT has become increasingly common in 
studies of heterogeneous catalysis. Although DFT is employed in 
many ways, perhaps the most common is as a tool to explain the 
experimentally measured performance of a new catalyst formula-
tion. However, the connections between the insights extracted from 
DFT calculations and experimental rates are often tenuous.

Here we survey the ways in which computational and experimen-
tal studies are combined in catalysis and suggest opportunities to 

strengthen the connections between the two. We focus on electroca-
talysis as this field is less mature than thermochemical catalysis, and 
because reactions in electrochemical environments pose unique 
challenges for DFT calculations. We suggest that these connections 
may be improved through experiments that measure the intrinsic 
kinetic behaviour of the catalyst and provide clear insights into the 
structure and composition of active sites. Computational studies 
that accurately treat the active site and its environment should be 
used to calculate parameters that have straightforward relationships 
with measured rates. We expect that enhancing the way that DFT 
calculations and experimental measurements are used in concert 
could maximize the insights derived from both tools and advance 
our understanding of heterogeneous catalysis (Fig. 1).

Considerations for measuring catalytic rates
DFT allows us to calculate the energies of adsorbates on a cata-
lyst surface and the energies of transition states that connect these 
adsorbed species. It can therefore describe the energetics of elemen-
tary steps that control the rate of catalytic reactions. This ability has 
led to the widespread application of DFT calculations in electroca-
talysis to attempt to explain the activity of a new catalyst formulation.

As DFT does not simply output a rate, decisions need to be 
made about what parameters to calculate and what connection 
these parameters have with measured experimental rates. However, 
before discussing how DFT calculated parameters can be more inti-
mately connected with experimental data, several criteria must be 
fulfilled for any relationship to exist between the calculations and 
experiments.

To compare with DFT calculations, catalytic rates must be mea-
sured under experimental conditions in which reaction kinetics, 
rather than mass transport, control the performance9. Furthermore, 
catalytic rates must be normalized by the number of active sites. 
DFT calculations only provide information about the intrinsic 
kinetic behaviour of catalytic sites10.
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These points have caused considerable misunderstanding in 
electrocatalysis about the behaviour of catalytic materials. For exam-
ple, extensive research has been done to develop Earth-abundant 
catalysts to replace platinum for the hydrogen evolution reaction 
(HER)11,12. Based on activity metrics that do not account for the 
number of catalytic sites, for example, the overpotential required to 
reach a geometric current density of 10 mA cm–2, many researchers 
concluded that these catalysts are similarly active to Pt. However, 
the intrinsic activity of these catalysts, defined by the catalytic rate 
per active site, or turnover frequency (TOF), still lags 3–4 orders 
of magnitude behind that of Pt (Fig. 2a)13,14. Furthermore, recent 
studies demonstrated that even these values probably underestimate 
the intrinsic activity of Pt, based on the ubiquity of mass transport 
limitations for this highly active catalyst13. This implies meaningful 
progress remains to be made in the development of active and inex-
pensive HER catalysts.

In the development of catalysts for the electrochemical reduc-
tion of carbon dioxide (CO2R), intensive research has been done 
to modify copper catalysts to improve their ability to produce mul-
ticarbon hydrocarbons and alcohols15. However, analysis of these 
catalysts shows that, on normalization by their active surface area 
or number of sites, none significantly outperform the standard Cu 
catalysts (Fig. 2b)15–17. This conclusion is valid whether the compari-
son is based on total CO2 reduction rates or on rates of multicarbon 
product formation17,18. Although extensive research efforts have 
aimed to evaluate the role of particular active sites in nanostruc-
tured Cu catalysts (for example, subsurface oxygen atoms and grain 
boundary defects), the analysis shown here suggests that, if pres-
ent, these sites do not have an exceptional activity19. As we showed 
previously, it is likely that high Faradaic efficiencies to multicarbon 
products over these catalysts are related to low surface-area normal-
ized rates of hydrogen evolution, rather than to high intrinsic rates 
of multicarbon product formation17.

Although transport limitations may be present in a practical 
device, to include these in studies aimed to understand the behav-
iour of a catalyst confuses interpretation. Under transport limita-
tions, the conditions under which the catalyst operates (reactant and 
product concentrations, temperature and pH) differ significantly 

from their well-defined values in the bulk of the electrolyte. The 
magnitude of these deviations depends both on the rate of reaction 
at the catalyst surface and on the reactor hydrodynamics. Recent 
studies quantified these effects using multiphysics simulations20,21. 
Testing catalysts under these non-standard and ill-defined condi-
tions prevents an accurate comparison with other catalysts.

Similarly, although increasing catalyst loading without improv-
ing the per-site activity could be an effective strategy to improve the 
performance of a practical device, care must be taken in catalyst dis-
covery studies to not conflate this with an enhanced intrinsic activ-
ity. Therefore, in studies that aim to understand or discover new 
catalytic materials, and combine experimental insights with com-
putational studies, activity measurements that are not influenced by 
transport phenomena and account for the number of catalytic sites 
are critical.

Choosing a model for the active site
An important decision that we must make when performing a  
DFT calculation is how to model the catalytic active site and its 
environment. The utility of the information DFT provides is deter-
mined by how closely this model reflects reality22. Although other 
sources of error exist in DFT, these errors can be quantified and 
are more important for calculating absolute rates than for compar-
ing differences in rate from one catalyst to the next23,24. Conversely, 
the errors introduced by an active site model that does not reflect 
the real system are difficult or impossible to quantify and can vary 
between catalysts.

To develop an accurate model for a catalytic active site is non- 
trivial. Even simple metal surfaces have a diversity of possible active 
sites, and although a given atomic configuration may be the most 
stable or abundant, this does not guarantee that it is the catalyti-
cally relevant site25,26. The number of possible active sites grows rap-
idly when considering metal alloy or compound catalytic materials 
(oxides, nitrides, phosphides and carbides)27.

Even if we accurately describe the structure of the catalyst in 
its resting state, additional complexities may still exist. The struc-
ture and composition of the active site may change under reaction 
conditions and the environment that surrounds the active site may 
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have an important influence on reactivity. For instance, a reac-
tive metal exposed to oxygen-containing species may oxidize. The 
newly formed oxide surface may have a different reactivity to that of 
the parent metal surface. These surface composition changes were 
observed for catalysts that form metal oxides, hydrides, (oxy)nitrides 
and (oxy)carbides under reaction conditions28. Furthermore, high 
coverages of the reaction intermediates may also lead to reconstruc-
tion of the catalyst as it attempts to minimize the surface energies in 
the presence of the adsorbates29. The influence of adsorbate cover-
age on reaction energetics should also be considered, as the binding 
of adsorbates to a populated catalyst surface is often significantly 
weakened relative to that of a clean surface30,31.

In electrocatalysis, perhaps the most important consideration 
when selecting an active site model is how to treat the electrochemi-
cal environment that surrounds the catalyst and how to accurately 
include the electrode potential. The computational hydrogen elec-
trode provides a simple method to calculate electrochemical reac-
tion energetics without an explicit treatment of electrons and ions 
in solution32. Instead, the chemical potential of the proton–electron 
pair is dictated by its equilibrium with molecular hydrogen. This 
model has therefore been very successful in assessing the reac-
tion thermodynamics for chemistries that involve proton-coupled 
electron-transfer steps, and in predicting new materials based on 
these thermodynamics3. However, evaluating the reaction kinetics 
or chemistries in which these proton and electron transfer steps are 
decoupled complicates modelling33. In the computational hydrogen 
electrode, simulations are conducted at a constant number of elec-
trons. This results in a change in the potential of the electrode surface 
along the reaction path. Conversely, in experiments, the electrode 
potential sets the chemical potential of electrons, and the number of 
electrons adjusts continuously in response. The change in interfacial 
charge density, and therefore the associated errors, can be mitigated 
using cell extrapolation schemes34–37. Alternatively, grand canoni-
cal DFT calculations mimic the experimental condition, with the 
chemical potential of electrons being fixed, rather than their num-
ber38. In addition to accurately modelling the electrode potential, a 
complete description of the reaction kinetics requires inclusion of 
the reaction environment in the computational model. The pres-
ence of a liquid solvent, electrolyte ions and interfacial fields have all 
been experimentally shown to have a direct impact on the surface 
chemistry39–45. For instance, the choice of electrolyte cation mark-
edly impacts the performance of catalysts in the electrochemical  

reduction of CO2 and O2, whereas hydrogen evolution activity var-
ies by orders of magnitude as the electrolyte pH is changed39,40,44,45. 
Physical models have been proposed to explain these behaviours—
we suggested, for example, that cation effects are the result of an 
electric field stabilization of polarizable intermediates—but general-
izable explanations are still lacking40,41. Thus, it is important to con-
sider what elements of the electrochemical environment are treated 
computationally, and what effect model simplifications may have on 
the computational results. Although a full discussion of these effects 
is beyond the scope of the current work, several discussions on the 
topic were recently published46–48.

The complex and dynamic nature of electrocatalytic interfaces 
highlights the usefulness of experimental studies on well-defined 
catalytic materials49. Single-crystal surfaces reduce the complex-
ity in computationally describing the active site, which facilitates 
comparisons with the calculated parameters. Using single crystals 
to validate computational models can enhance our confidence in 
subsequent calculations over more complicated catalytic materials. 
In situ or operando measurements that describe the structure and 
composition of dynamic catalytic materials under the working con-
ditions are also valuable for forming accurate computational mod-
els. Together, these experiments can reduce the risk of confirmation 
bias. As the number of choices available in simply selecting a model 
for the active site expands, the likelihood that one model will align 
with a given conclusion also increases. Thus, we must always be cau-
tious against bias towards an analysis that fits our preconceptions 
and seek experimental evidence to guide our decisions50.

Calculated parameters and their connection to measured 
rates
Once we have selected an appropriate model for the active site and 
its surroundings, we must decide which parameters to calculate and 
what connection these parameters have with the measured experi-
mental rates. One of the simplest parameters of potential value in 
describing rate differences in one catalyst with respect to another 
is the adsorption energy of a chosen molecule. In some cases, a 
detailed analysis was conducted that linked the adsorption energy 
of a descriptor molecule to the overall reaction rates using a Sabatier 
analysis or complete microkinetic model7. Generally, however, the 
relationship between the adsorption energy and the rate of reaction 
is non-trivial. A degree of rate-control analysis can describe the rela-
tionship between changes in adsorption energy of the intermediates  
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and the rates, but this analysis is rare in electrocatalysis51,52. 
Therefore, in most cases, the computational results only agree in 
direction: a new catalyst should outperform a standard catalyst 
because the adsorption energy increases or decreases. However, the 
magnitude of the predicted changes in rates and the experimentally 
measured ones may have discrepancies of several orders of magni-
tude. In less favourable situations, there is no explicit connection 
between the adsorption energies and measured rates. For instance, 
a study may find that a novel Cu-based CO2 reduction catalyst has 
an enhanced ethanol selectivity relative to that of polycrystalline Cu, 
but a straightforward relationship between the intrinsic rate of etha-
nol production (and not that of other multicarbon products) and the 
adsorption energy of an intermediate is lacking53. Adsorption ener-
gies may also reflect catalytically irrelevant spectator species or poi-
sons, as they are based on the most stable adsorption site. Adsorbates 
in less stable sites may have a lower coverage but dominate measured 
rates54. Finally, in electrocatalysis research, calculated adsorption 
energies are rarely directly verified by experimental methods, such 
as temperature-programmed desorption, adsorption calorimetry or 
kinetic analysis that extracts equilibrium constants. Adsorption ener-
gies extracted from gas-phase techniques could yield useful insights 
for electrocatalytic systems, but care must be taken to understand the 
influence of the solvent on measured values55.

A second potential parameter that is often calculated is the acti-
vation energy for some reaction elementary step. To form a clear 
relationship between an activation energy and measured rates, some 
assumption of the kinetic relevance of the elementary step chosen 
is required. In some well-studied reactions, a rate-limiting step for 
the formation of a certain product may be known. In these circum-
stances, it is common for studies to compare a standard and novel 
catalyst on the basis of the activation barrier for this elementary 
step, and conclude that the lower barrier on the novel catalyst sup-
ports the higher experimental rates observed. Again, however, it is 
rare that a quantitative comparison is shown. If a sole rate-limiting 

step is present (that is, a certain elementary step has a kinetic degree 
of rate control equal to one), the change in rate of reaction with a 
change in activation energy is given by:

∂ ln r = ∂
(

−ΔGTS
i

RT

)

ΔGTS
j ̸=i ,ΔGn

(1)

where r is the reaction rate, ΔGTS
i  is the free energy of activation of 

the elementary step of interest, R is the gas constant, T is the tem-
perature in K and ΔGTS

j̸=i,ΔGn are the activation and reaction ener-
gies of all the other elementary steps52.

As discussed previously, calculating activation barriers with 
DFT in electrochemistry presents considerable computational chal-
lenges. In favourable cases, DFT can calculate the activation ener-
gies for electrochemical reactions with an intrinsic error of ~0.2 eV. 
For this change in barrier, a three-orders-of-magnitude change in 
rate is predicted for an electrochemical reaction conducted at room 
temperature18,52. Therefore, researchers should be cautious when 
asserting agreement between computational and experimental 
work if the magnitude of the observed rate enhancements are not 
commensurate with these predictions. As with adsorption energies, 
it is also rare that activation energies are measured experimentally 
for comparison with calculated values56,57. We note that measure-
ments of activation barriers may be corrupted by mass-transport 
limitations, and thus care should be taken to ensure the measure-
ments are done under kinetic control.

DFT calculations provide information on the enthalpy of 
adsorption or activation, but simple approximations to the adsorp-
tion potential are generally used to account for entropic terms. For 
instance, under the harmonic approximation, a molecule can lose 
a large fraction of its translational degree of freedom upon adsorp-
tion. For some systems these approximations provide sufficient 
accuracy. However, entropic effects can often have considerable 
impacts on catalytic rates, which introduces additional sources 
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of uncertainty. Compensation effects between the entropy and 
enthalpy of activation are common, in which a decrease in barrier is 
accompanied by a decrease in entropy of the transition state58,59. As 
rates depend exponentially on both terms, overcompensation could 
result in qualitatively inaccurate predictions about the relation-
ship between rates and barrier heights. More detailed estimates of 
pre-exponential factors can be calculated using statistical mechan-
ics, with assumptions derived from the results of DFT calculations60.

Phenomenological descriptions of electrochemical rates
Classic electrochemical kinetics are also often applied in an attempt 
to understand the activity of electrocatalytic materials. The Butler–
Volmer equation is a phenomenological description of the rate of an 
electrochemical reaction, in which rates increase exponentially as a 
function of potential away from the equilibrium potential. For some 
arbitrary electrode reaction:

A ⇆ B+ e− (2)

It can be written as

j = k0aexp
[

αaF(E−E0)
RT

]

[A]− k0cexp
[

−αcF(E−E0)
RT

]

[B] (3)

where j is the current density, k0a and k0c are the standard anodic and 
cathodic rate constants, αa and αc are the anodic and cathodic trans-
fer coefficients, E0 is the equilibrium potential, E is the potential of 
the working electrode, [A] and [B] are the species bulk concentra-
tions, and F is Faraday’s constant. The current is related to the cur-
rent density as I = jA, where A is the electrode area.

Tafel analysis, used in the regime in which one redox reaction 
dominates, entails plotting ln|I| versus E to extract the slope, which 
is related to the transfer coefficient. Often, so-called Tafel slopes are 
defined with units of mV per decade of current as:

Tafel slope = 2.3 RT
αaF (4)

Cardinal values of the Tafel slope were calculated for several 
important electrocatalytic reactions61. Different kinetically rel-
evant steps give rise to different values of the Tafel slope, so many  

studies compare experimental measurements with cardinal values 
to attempt to extract mechanistic insight. However, this analysis can 
be muddied by several factors. To obtain cardinal values, analysis 
typically assumes limiting coverage values (nearly empty surface or 
full adsorbate coverage). Changes in coverage with potential give 
rise to non-linear Tafel behaviour, even for reactions with a single 
rate-limiting step and non-interacting adsorbates62. The presence 
of mass transport limitations, multiple kinetically relevant steps or 
non-Langmuirian adsorption behaviour adds further ambiguity to 
this analysis63,64. As recently mentioned, even the determination of 
an appropriate potential region for Tafel analysis is non-trivial, and 
can bias analysis towards the expected values65.

Enhancing the connection between computation and 
experiments
With these limitations in mind, we now consider what opportuni-
ties exist to more effectively use computational methods to under-
stand the performance of new electrocatalysts. We have noted that 
calculations of simple parameters, such as adsorption energies or 
activation energies, do not always have straightforward relation-
ships to measured rates. Similarly, it is difficult to extract insights 
about reaction mechanisms using a phenomenological Tafel analy-
sis in even the simplest cases66.

By performing a more complete set of calculations, however, more 
direct comparisons can be made between predicted and measured 
rates. The development of a microkinetic model involves propos-
ing a sequence of elementary steps, and writing an expression that 
is consistent with this mechanism and relates rates to the energet-
ics of reaction intermediates and transition states67–69. The energies 
of all the intermediates and transition states can then be calculated 
using DFT. Pre-exponential factors can be estimated using statisti-
cal mechanics. Prior knowledge of a rate-limiting elementary step is 
not required, although it is unlikely that all the steps are kinetically 
relevant. This procedure can also be employed to assess various 
potential mechanisms against one another. Microkinetic models can 
provide computationally predicted rate versus potential informa-
tion that can be directly compared to experimental measurements.

But a microkinetic model can provide additional useful infor-
mation that can be compared with experiments besides rates67–69.  
A solved microkinetic model provides the coverages of adsorbed 
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species and can identify those that are most abundant. It is worth 
noting that these coverages can differ from those used in the initial 
calculation, so an iterative approach in which energetics are recal-
culated at predicted coverages is most accurate68. DFT-informed 
microkinetic models can also assess how adsorbate coverages 
change as a function of applied potential. In situ spectroscopic 
probes, such as infrared or Raman spectroscopy, can be compared 
with these predictions. Further, the identification of adsorbed spe-
cies through a comparison of calculated and experimental vibra-
tional frequencies can be useful in assessing reaction mechanisms 
and active-site models70.

The rate expressions derived from microkinetic models also 
predict values that are testable through kinetic analysis. Reaction 
orders, or the sensitivity of reaction rate to reactant or product feeds, 
are predictable using a microkinetic model. Experimental measure-
ments of reaction orders can help discriminate between competing 
mechanisms. Kinetic tests that use isotopically labelled molecules 
can also be used to assess the validity of the hypothesized mecha-
nism. Measurements of isotope exchange rates can assess the revers-
ibility of a chemical step, and measurements of the kinetic isotope 
effect (the ratio of rates using one isotopically labelled molecule ver-
sus another) can assess the kinetic relevance of a particular reaction 
step71. Experimental studies that feed reaction intermediates can 
also be used to glean information about the reaction mechanism 
and validate the proposed microkinetic model72.

Microkinetic models that use reaction and transition-state ener-
gies derived from DFT have been used to understand electrocata-
lytic reactions, such as the oxygen reduction reaction, the oxygen 
evolution reaction, the reduction of carbon dioxide and the borohy-
dride oxidation reaction62,69,73–75. They have also been applied widely 
in thermochemical catalysis67,68. Below, to illustrate their utility, we 
examine example studies on the oxygen reduction and HER45,73.

Microkinetic models for oxygen reduction
The oxygen reduction reaction over Pt(111) has been the subject 
of extensive computational and experimental study. In the work of 
Hansen et al. a DFT-based microkinetic model was developed73. 
The following sequence of elementary steps was considered:

O2 + ∗ → O∗

2 (5)

O∗

2 +H+

+ e− → OOH∗ (6)

OOH∗

+H+

+ e− → O∗

+H2O (7)

O∗

+H+

+ e− → OH∗ (8)

OH∗

+H+

+ e− → H2O+ ∗ (9)

The reaction was proposed to follow a series of proton-coupled 
electron–transfer steps that sequentially reduce O2 to OOH* (where 
OOH* denotes an adsorbed OOH species), O*, OH* and finally lib-
erate water as a product. No assumption of the rate-limiting step is 
needed a priori. The study also considered alternative pathways: the 
chemical dissociation of O2 to form two O*, and the chemical dis-
sociation of OOH* to OH* and O*. Figure 3a shows the free energy 
diagrams for these various pathways in which the energies are 
derived from DFT calculations. For Pt(111), the reduction of OH* 
to form water is the rate-limiting step. The model also accounts for 
selectivity between the four-electron reduction of oxygen to give 
water, and the two-electron pathway to give hydrogen peroxide.  
We note that the inaccuracies associated with calculating activation 

barriers lead to challenges in predicting selectivity from microki-
netic analysis18. This is an important consideration for reactions in 
which selectivity is an issue or there are many possible products, 
such as in the reduction of CO2 (refs. 15,16). Figure 3b,c shows that 
the microkinetic model can be used to directly predict rate ver-
sus potential information and Tafel slopes. As mentioned above, 
however, outputs such as adsorbate coverages and reaction orders  
(Fig. 3d,e) can also be obtained from the solved microkinetic model 
and can fortify the link between experimental and computational 
measurements. Having developed this robust connection between 
a computational model and experimental measurements, the per-
formance of a new catalyst formulation can be understood. Figure 
3f shows that the enhanced performance of Pt overlays on CuPt 
near-surface alloys (denoted Cu/Pt(111)) can be understood using 
the microkinetic model76. This overlayer structure reduces the 
adsorption energy of OH* to the Pt active site, which results in a 
more facile reduction of the OH* to form water.

Combining computation and experiments for hydrogen 
evolution
In acidic media, the HER can occur via two main mechanisms. In 
both, the first step, termed the Volmer step, involves the adsorption 
of a proton from solution coupled with an electron transfer to form 
adsorbed hydrogen:

H+

+ e− + ∗ → H∗ (10)

Here the * denotes a surface site and H* is an adsorbed hydrogen 
atom. The two mechanisms differ in how hydrogen is formed after 
this step. In the Tafel step, molecular hydrogen is produced by a 
surface reaction of two adsorbed hydrogen atoms. This Langmuir–
Hinshelwood type of mechanism is termed the Volmer–Tafel 
mechanism:

H∗

+H∗

→ H2 + 2∗ (11)

Alternatively, molecular hydrogen can be formed by a direct 
attack on the adsorbed hydrogen by a proton from the solution, 
coupled with an electron transfer. This Eley–Rideal type of reaction 
is termed the Volmer–Heyrovsky mechanism:

H∗

+H+

+ e− → H2 + ∗ (12)

In alkaline media, in which the proton (or hydronium) concen-
tration is low, water becomes the source of protons for HER. The 
Volmer step can therefore be written as:

H2O+ e− + ∗ → H∗

+OH− (13)

The difficulty of this step relative to the Volmer step in acidic 
media has been posited as the reason why HER rates are roughly 
two orders of magnitude lower for Pt catalysts in alkaline media 
than they are in acidic media. Consistent with this, studies have 
demonstrated that decorating Pt catalysts with clusters of oxophilic 
metals, such as Ni, Rh or Ru, can enhance the HER rates, presum-
ably by lowering the barrier for water dissociation77,78. The differ-
ences in HER rates in acid and base have also been explained by 
changes in interfacial electric fields, water reorganization energies 
or hydrogen binding energies with pH44,79,80.

To understand these effects, recent work used a combination 
of experimental measurements and DFT calculations to examine 
stepped Pt single crystals decorated by metals of varying oxophi-
licity (Mo, Re, Ru, Rh and Ag)45. In this system, hydrogen binding 
energies are fixed as it is assumed that hydrogen adsorbs only on 
Pt terraces and is unaffected by the presence of the transition met-
als at the steps. This study found that decorating the Pt steps with 
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these metals enhanced the HER rates in alkaline media, with the 
trends in activity described by the adsorption energy of hydroxide 
on the transition metal adatom (Fig. 4). This correlation does not 
imply, however, that adsorbed hydroxide is an intermediate of the 
reaction that directly influences the reactivity for all these cata-
lysts. Instead, DFT calculations demonstrated that the activation 
energy for water dissociation, which is kinetically relevant, is lin-
early correlated with the hydroxide adsorption energy whether the 
final state involves adsorbed hydroxide (OH*)) or solvated hydrox-
ide (OH−) as a product (Fig. 4). This trend can be understood as a 
Brønsted–Evans–Polanyi relationship in which stabilization of the 
final state linearly reduces the transition state energy. Hydroxide is 
only directly involved as an intermediate on oxophilic metals (for 
example, Pt–Ru alloys), for which its desorption can be kinetically 
relevant. The combination of DFT studies with experimental work 
on well-defined catalytic materials has allowed the description of 
the reactivity of catalysts for alkaline HERs and provided new guid-
ance for rational catalyst design. Namely, these studies show that 
both hydrogen and hydroxide binding strengths must be optimized 
for optimal catalyst performance.

Outlook
DFT calculations have played an important role in developing our 
understanding of heterogeneous catalysis. This role is likely to 
only increase as computational techniques become more powerful. 
However, to maximize the utility of these techniques, strong connec-
tions between experimental measurements and computed parameters 
are needed. These connections can be enhanced by experimentally 
measuring electrocatalytic rates that reflect the intrinsic activity of 
catalytic active sites, and by providing detailed information about the 
nature of these sites. In this sense, well-defined single-crystal mate-
rials can provide simplified and unambiguous information to help 
understand more complex catalysts. However, understanding the 
active site in its resting state is not always sufficient to rationalize cat-
alytic performance. The surrounding medium can have a profound 
effect on reactivity, either by directly participating in the reaction 
or by influencing the structure and composition of the catalyst. 
Including these complexities into computational models is an ongo-
ing challenge. Once models that accurately represent the active site 
are determined, discernment must be used to ensure that links exist 
between what is calculated and what is measured experimentally. We 
hope that this Perspective highlights opportunities as to how these 
connections can be made effectively.
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