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Let B be a C∗-algebra, X a Hilbert C∗-module over B and M, N ⊂ X a pair 
of complemented submodules. We prove the C∗-module version of von Neumann’s 
alternating projections theorem: the sequence (PNPM )n is Cauchy in the ∗-strong 
module topology if and only if M ∩N is the complement of M⊥ + N⊥. In this case, 
the ∗-strong limit of (PMPN )n is the orthogonal projection onto M ∩N . We use this 
result and the local-global principle to show that the cosine of the Friedrichs angle 
c(M, N) between any pair of complemented submodules M, N ⊂ X is well-defined 
and that c(M, N) < 1 if and only if M ∩N is complemented and M + N is closed.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

0. Introduction

In this note we offer a new and general approach to the two projection problem in Hilbert C∗-modules. 
As an application we extend and improve upon several of the main results in the recent work of [12] by 
giving new proofs that allow for the removal of a key hypothesis.

Briefly, we begin by proving the Hilbert C∗-module version of von Neumann’s alternating projections 
theorem, which computes the projection onto M ∩ N for a concordant pair of complemented submodules 
M, N (see below). We then proceed to use this result to define the Friedrichs angle between an arbitrary 
pair of complemented submodules. The angle is realised as a function on the space of representations of 
the coefficient algebra of the module. The properties of the Friedrichs angle give necessary and sufficient 
conditions for the sum and intersection of two complemented submodules to again be complemented. We 
now give a little more detail on these results.
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Given two closed subspaces M, N of a Hilbert space H there is an orthogonal direct sum decomposition

H = (M ∩N) ⊕ (M⊥ + N⊥). (0.1)

A fundamental result of von Neumann, the method of alternating projections, states that the projection 
PM∩N onto M ∩N can be obtained as the ∗-strong limit

PM∩N = s–limn→∞(PMPN )n = s–limn→∞(PNPM )n.

The (cosine) of the Friedrichs angle between M and N is the quantity

c(M,N) := ‖PMPN − PM∩N‖,

and the subspace M + N is closed if and only if c(M, N) < 1, [4].
In this paper we consider a pair (M, N) of complemented submodules of a Hilbert C∗-module X over 

a C∗-algebra B. It is well-known that closed submodules of Hilbert C∗-modules need not be orthogonally 
complemented. This one technical constraint necessitates the discussion of adjointable endomorphisms and 
regular (unbounded) operators for these modules, [6,11].

The complementability issue does not arise for finite dimensional vector spaces of course, but already in 
the case of finite rank, locally trivial vector bundles on compact Hausdorff base spaces we see examples of 
non-complementability of intersections. Classically the issue gives rise to the notion of a strict homomor-
phism of vector bundles [1, Section 1.3], and we relate the vector bundle situation to the complementability 
problem in Remarks 1.11, 3.8 and 3.17 below.

In Theorem 2.1 we show that the pair (M, N) induces a direct sum decomposition like (0.1) of the 
Hilbert C∗-module X if and only if von Neumann’s theorem on alternating projections is valid for this 
pair of submodules. We call such pairs concordant and characterise them in terms of their Hilbert space 
localisations in Theorem 1.8. Our results have implications for the Hilbert module version of the two 
projection problem, [12]. The Hilbert space version first gained prominence in the work of Halmos [8], and 
has since had numerous incarnations and applications: for a recent survey see [2].

In [12], the Friedrichs angle between complemented submodules has been defined under the constraint 
that M ∩N is complemented. In Section 3 of this note we remove this hypothesis and extend the definition 
of the Friedrichs angle to arbitrary pairs of complemented submodules via the local-global principle of [16]. 
We interpret the Friedrichs angle as a function on the space B̂ of irreducible representations of B and 
prove that c(M, N) = c(M⊥, N⊥). We deduce that c(M, N) < 1 if and only if the sequence (PNPM )n is 
Cauchy for the operator norm if and only if M +N is closed, and in this situation M ∩N is automatically 
complemented.

Notation. For a Hilbert C∗-module X over a C∗-algebra B we denote by End∗
B(X) the unital C∗-algebra 

of adjointable operators on X and by K(X) ⊂ End∗
B(X) the ideal of compact operators. For a closed 

submodule M ⊂ X we write M⊥ for its orthogonal complement. We say that M ⊂ X is a complemented 
submodule if X = M + M⊥, that is, if M is orthogonally complemented. The symbols ⊗alg

B , ⊗̂B and ⊗B

denote the balanced algebraic, projective and C∗-module tensor products, respectively.

Acknowledgements. We thank Marcel de Jeu for helpful conversations and Michael Frank for valuable corre-
spondence. We are grateful to the anonymous referees for their careful reading and constructive comments.

1. Concordant submodules

Let X be a Hilbert C∗-module over the C∗-algebra B. Given two complemented submodules M and N
of X, we write PM , PN respectively for the corresponding projections in End∗

B(X). The intersection M ∩N

is a closed submodule of X, and there is an inclusion
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M⊥ + N⊥ ⊂ (M ∩N)⊥.

The submodule M⊥ + N⊥ need not be closed, but since (M ∩N)⊥ is closed,

M⊥ + N⊥ ⊂ (M ∩N)⊥,

as well. In case X is a Hilbert space there is an equality (see ([5, Theorem 4.6.4])

M⊥ + N⊥ = (M ∩N)⊥, (1.1)

and thus the projections PM∩N and PM⊥+N⊥ exist and satisfy 1 − PM∩N = PM⊥+N⊥ .
In general, the projections do not exist unless the submodules are complemented. To our knowledge, it 

is an open question whether the intersection of complemented submodules is again complemented. In [12, 
Section 3] it was shown that even in case all the projections exist, (1.1) need not hold (see Remark 1.2
below).

Definition 1.1. Let M and N be complemented submodules of a Hilbert C∗-module X. The pair (M, N) is 
concordant if X = (M ∩N) ⊕ (M⊥ + N⊥). If the pair (M, N) is not concordant, we say it is discordant.

The pair (M, N) is concordant if their intersection M ∩ N is complemented and its complement is 
M⊥ + N⊥.

Remark 1.2. The pair (M, N) being concordant is strictly stronger than the requirement that M ∩ N be 
complemented. In [12, Section 3] it is shown that for X = B = C([0, π2 ], M2(C)), the submodules

M = Ran
(

1 0
0 0

)
, N = Ran

(
cos2 t sin t cos t

sin t cos t sin2 t

)
,

satisfy M ∩N = 0, which is complemented, whereas M⊥ + N⊥ �= X so (M, N) is not concordant.

Remark 1.3. Note that (M, N) is harmonious in the sense of [12, Definition 4.1] if each of the submodules

M + N, M + N⊥, M⊥ + N, M⊥ + N⊥

is complemented. In this case the respective complements are

M⊥ ∩N⊥, M⊥ ∩N, M + N⊥, M ∩N,

as explained in the discussion after [12, Definition 4.1]. Thus (M, N) is harmonious if and only if each of 
the pairs (M, N), (M, N⊥), (M⊥, N) and (M⊥, N⊥) is concordant.

Remark 1.4. If M + N is closed, then by [13, Proposition 4.6] M⊥ + N⊥ is closed and X = (M ∩ N) ⊕
(M⊥ +N⊥). In particular, M +N is closed if and only if M⊥ +N⊥ is closed and in this case both (M, N)
and (M⊥, N⊥) are concordant (see Corollary 3.14 below).

Remark 1.5. In [17] it was shown that the universal C∗-algebra C∗(p, q) generated by two projections p and 
q admits the following concrete model

C∗(p, q) 	 {A(t) ∈ C([0, π/2],M2(C)) : A(0) and A(π/2) diagonal} ,
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with the isomorphism is determined by

p �→ P :=
(

1 0
0 0

)
, q �→ Q :=

(
cos2 t sin t cos t

sin t cos t sin2 t

)
.

From this point of view, the counterexample of [12, Section 3] discussed in Remark 1.2 above arises from 
the universal example. This shows that specific properties such as being concordant or harmonious hold in 
some representations of C∗(p, q), but not in all of them.

We will now characterise concordant pairs by looking at their Hilbert space localisations. Let
π : B → B(Hπ) be a representation of B on the Hilbert space Hπ and write Xπ := X ⊗B Hπ. There 
is a representation

π̂ : End∗
B(X) → B(Xπ), T �→ T ⊗ 1. (1.2)

Write Mπ := M ⊗B Hπ ⊂ X ⊗B Hπ, and similarly for N . Then Mπ and Nπ are closed subspaces of the 
Hilbert space Xπ and we have PMπ

:= π̂(PM ) = PM ⊗ 1, as well as PNπ
:= π̂(PN ) = PN ⊗ 1. Since the 

subspace Mπ ∩Nπ is closed, there is a projection PMπ∩Nπ
∈ B(Xπ) that projects onto Mπ ∩Nπ. In general, 

the equality Mπ ∩Nπ = (M ∩N)π need not hold, even if M ∩N is complemented. We recall the following 
fact.

Proposition 1.6 (Local-global principle for complemented submodules [16]). Let Ω ⊂ X be a closed submodule. 
Then Ω is complemented if and only if for every irreducible representation π : B → B(Hπ) there is an equality 
(Ωπ)⊥ = (Ω⊥)π.

Proof. By [16, Corollaire 1.17], we have that X = Ω ⊕Ω⊥ if and only if for every irreducible representation 
π : B → B(Hπ) there is an equality

Xπ = X ⊗B Hπ = (Ω ⊕ Ω⊥) ⊗B Hπ = Ω ⊗B Hπ ⊕ Ω⊥ ⊗B Hπ = Ωπ ⊕ (Ω⊥)π.

Since (Ω⊥)π ⊂ (Ωπ)⊥, this holds if and only if (Ω⊥)π = (Ωπ)⊥. �
A weaker form of this result was proved independently, though several years later, in [9]. There, the local 

side of the equivalence involved all representations of the C∗-algebra B. The two results are equivalent 
because the proof of the implication ⇒ in Proposition 1.6 holds verbatim for an arbitrary representation of 
the C∗-algebra B, see [10]. We will use both instances of the result.

Lemma 1.7. Let X be a Hilbert C∗-module over B, M, N complemented submodules and π : B → B(Hπ) a 
representation. Then there is an equality of closed subspaces

(Mπ)⊥ + (Nπ)⊥ =
(
M⊥ + N⊥

)
π
.

Proof. The inclusion of subspaces

(M⊥)π + (N⊥)π ⊂
(
M⊥ + N⊥

)
π

shows that we have an inclusion of closed linear subspaces

(M⊥)π + (N⊥)π ⊂
(
M⊥ + N⊥

)
.

π
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The subspace (M⊥ + N⊥) ⊗alg
B Hπ is dense in ( M⊥ + N⊥ )π and since

(M⊥ + N⊥) ⊗alg
B Hπ ⊂ (M⊥)π + (N⊥)π ⊂ (M⊥)π + (N⊥)π ⊂

(
M⊥ + N⊥

)
π
,

it follows that (M⊥)π + (N⊥)π =
(
M⊥ + N⊥

)
π
. Since M and N are complemented we have (Mπ)⊥ =

(M⊥)π and (Nπ)⊥ = (N⊥)π and thus (Mπ)⊥ + (Nπ)⊥ =
(
M⊥ + N⊥

)
π
. �

Theorem 1.8. Let X be a Hilbert C∗-module over B and M and N complemented submodules. Then the pair 
(M, N) is concordant if and only if for every irreducible representation π : B → B(Hπ) there is an equality 
of closed subspaces Mπ ∩Nπ = (M ∩N)π.

Proof. Suppose that M and N are concordant so that

X = (M ∩N) ⊕
(
M⊥ + N⊥

)
.

Therefore Proposition 1.6 and Lemma 1.7 give

((M ∩N)π)⊥ = ((M ∩N)⊥)π = (M⊥ + N⊥)π = (Mπ)⊥ + (Nπ)⊥.

Taking orthogonal complements we find (M ∩N)π =
(
(Mπ)⊥ + (Nπ)⊥

)⊥
= Mπ ∩Nπ.

Conversely, suppose that Mπ ∩Nπ = (M ∩N)π for all irreducible representations π. By Lemma 1.7 and 
Equation (1.1) we have

(M⊥ + N⊥)π = (Mπ)⊥ + (Nπ)⊥ = (Mπ ∩Nπ)⊥,

and we deduce that

(M ∩N)π ⊕ (M⊥ + N⊥)π = (Mπ ∩Nπ) ⊕ (Mπ ∩Nπ)⊥ = Xπ.

By Proposition 1.6 we conclude that X = (M ∩N) ⊕M⊥ + N⊥. �
In line with the local-global principle, Proposition 1.6, we obtain the same result when we consider all 

representations of the base algebra B.

Corollary 1.9. Let X Hilbert C∗-module over B and M and N complemented submodules. Then (M, N) is 
concordant if and only if for every representation π : B → B(Hπ) there is an equality of closed subspaces 
Mπ ∩Nπ = (M ∩N)π.

Proof. The proof of ⇒ in Theorem 1.8 shows that Mπ ∩Nπ = (M ∩N)π for every representation whenever 
(M, N) is concordant. �

Theorem 1.8 allows to retrieve part of [13, Proposition 4.6].

Corollary 1.10. Let X Hilbert C∗-module over B and M and N complemented submodules. If M⊥ +N⊥ is 
closed in X then (M, N) is concordant. In particular M ∩N is complemented with complement M⊥ +N⊥.

Proof. Since M⊥ + N⊥ is closed, it is complemented. Therefore

(M ∩N)π ⊂ Mπ ∩Nπ = (M⊥
π + N⊥

π )⊥ = ((M⊥ + N⊥)⊥)π ⊂ (M ∩N)π,
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from which we conclude that (M ∩N)π = Mπ ∩Nπ so (M, N) is concordant by Theorem 1.8. In particular 
M ∩N is complemented with complement M⊥ + N⊥. �
Remark 1.11. Consider B = C([0, π2 ]), X = C([0, π2 ], C2) and consider the submodules

M = Ran
(

1 0
0 0

)
, N = Ran

(
cos2 t sin t cos t

sin t cos t sin2 t

)
.

We have M ∩N = 0 and for the irreducible representations given by t ∈ [0, π/2] we have

Mt ∩Nt =
{

0 t �= 0
C t = 0,

so (M, N) is discordant by Theorem 1.8.

2. Von Neumann’s theorem of alternating projections

Let P, Q ∈ End∗
B(X) be projections

P ∗ = P 2 = P, Q∗ = Q2 = Q.

The submodules Ran P and Ran Q are complemented in X, and every complemented submodule is the 
range of an adjointable projection. As noted before, it is an open question whether the intersection Ω :=
Ran P ∩ Ran Q, which is a closed submodule, is complemented. In case B = C and X is a Hilbert space 
this is true and thus there is a projection PΩ with Ran PΩ = Ω. For n ≥ 0, write

(P,Q)n := · · ·PQPQ, the product of exactly n alternating factors ending in Q.

Von Neumann proved the following well-known theorem.

Theorem 2.1 ([15, Lemma 22]). Let H be a Hilbert space, M, N ⊂ H closed subspaces and Ω := M ∩N . Let 
P = PM and Q = PN be the orthogonal projections onto M and N respectively. The orthogonal projection 
PΩ onto Ω can be obtained as the strong limit of any of the sequences

(PQ)n, (QP )n, (P,Q)n, (Q,P )n, (2.1)

or any of their subsequences.

In a Hilbert C∗-module X, the analogue of the ∗-strong topology is defined by the seminorms

‖T‖x := max{‖Tx‖, ‖T ∗x‖}, x ∈ X,

and we refer to this topology as the ∗-strong module topology. On bounded sets the ∗-strong module topology 
coincides with the strict topology on End∗

B(X) relative to the ideal K(X), [14, Proposition 5.5.9]. The 
following fact is well-known.

Lemma 2.2. The ∗-strong module topology is complete on bounded sets.
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Proof. Let Tn ∈ End∗
B(X) be a sequence that is Cauchy for the seminorms ‖ · ‖x, x ∈ X. By the Uniform 

Boundedness Principle, the operators

Tx := lim
n→∞

Tnx, and T ∗x := lim
n→∞

T ∗
nx,

are well-defined, bounded and mutually adjoint. �
Lemma 2.3. Let P, Q ∈ End∗

B(X) be projections. Then (PQ)n and (QP )n are ∗-strongly Cauchy if and only 
if (PQP )n and (QPQ)n are ∗-strongly Cauchy if and only if (P, Q)n and (Q, P )n (as defined in (2.1)) are 
∗-strongly Cauchy. The same statement holds for the norm topology.

Proof. Since

(P,Q)n =
{

(PQ)n
2 n even

(QPQ)n−1
2 n odd, (Q,P )n =

{
(QP )n

2 n even
(PQP )n−1

2 n odd,

it suffices to prove that (PQ)n and (QP )n are ∗-strongly Cauchy if and only if (PQP )n and (QPQ)n are 
∗-strongly Cauchy. The same holds for the norm topology.

Any projection P satisfies 〈Px, Px〉 ≤ 〈x, x〉 and Q(PQ)n = (QPQ)n so that

〈(PQ)nx, (PQ)nx〉 = 〈(Q(PQ)n + (1 −Q)(PQ)n)x, (Q(PQ)n + (1 −Q)(PQ)n)x〉

≥ 〈(QPQ)nx, (QPQ)nx〉

= 〈(P (QPQ)n + (1 − P )(QPQ)n)x, (P (QPQ)n + (1 − P )(QPQ)n)x〉

≥ 〈(PQ)n+1x, (PQ)n+1x〉. (2.2)

Now for m > n we have

(PQ)n − (PQ)m = (PQ)n(1 − (PQ)m−n), ((QPQ)n − (QPQ)m) = (QPQ)n(1 − (QPQ)m−n),

which, together with (2.2) gives

〈((PQ)n − (PQ)m)x, ((PQ)n − (PQ)m)x〉 = 〈(PQ)n(1 − (PQ)m−n)x, (PQ)n(1 − (PQ)m−n)x〉

≥ 〈(QPQ)n(1 − (PQ)m−n)x, (QPQ)n(1 − (PQ)m−n)x〉

= 〈((QPQ)n − (QPQ)m)x, ((QPQ)n − (QPQ)m)x〉

= 〈(QPQ)n(1 − (QPQ)m−n)x, (QPQ)n(1 − (QPQ)m−n)x〉

≥ 〈(PQ)n+1(1 − (QPQ)m−n)x, (PQ)n+1(1 − (QPQ)m−n)x〉

≥ 〈((PQ)n+1 − (PQ)m+1)x, ((PQ)n+1 − (PQ)m+1)x〉.

This proves that (PQ)n is pointwise Cauchy if and only if (QPQ)n is pointwise Cauchy. Thus (PQ)n and 
(QP )n are both ∗-strongly Cauchy if and only if (PQP )n and (QPQ)n are both ∗-strongly Cauchy. The 
statements for the norm topology follow from the same inequalities. This completes the proof. �
Proposition 2.4. Suppose that (PQ)n is ∗-strongly Cauchy. Then so are (QP )n, (PQP )n, (QPQ)n, (Q, P )n
and (P, Q)n. The ∗-strong limit of these sequences is a projection PΩ with range Ω := Ran P ∩ Ran Q. In 
particular Ω is complemented.



8 B. Mesland, A. Rennie / J. Math. Anal. Appl. 516 (2022) 126474
Proof. Since ((PQ)n)∗ = (QP )n, the first statement follows from Lemma 2.3. We will prove that 
s–limn→∞(PQP )n = s–limn→∞(QPQ)n and that this operator is a projection PΩ with range Ω. It then 
follows that Ω is complemented and that

PΩ = s–limn→∞(P,Q)n = s–limn→∞(Q,P )n,

since (PQP )n is a subsequence of (Q, P )n and (QPQ)n is a subsequence of (P, Q)n. Then (PQ)n and (QP )n
are subsequences of (P, Q)n and (Q, P )n, respectively it follows that

PΩ = s–limn→∞(PQ)n = s–limn→∞(QP )n,

as well.
By Lemma 2.2 the ∗-strong limit P̃ := lim(PQP )n exists, is self-adjoint and ‖P̃‖ ≤ 1. To prove that P̃

is a projection let x ∈ X and ε > 0. Choose N such that for all k ≥ N we have

‖P̃ x− (PQP )kx‖ < ε.

Now consider

‖P̃ 2x− P̃ x‖ = ‖P̃ (PQP )kx− P̃ x‖ + ‖P̃ (P̃ − (PQP )k)x‖

≤ ‖P̃ (PQP )kx− P̃ x‖ + ‖(P̃ − (PQP )k)x‖

< ‖P̃ (PQP )kx− P̃ x‖ + ε

= lim
n→∞

‖(PQP )n+kx− P̃ x‖ + ε = ε,

and as ε was arbitrary, it follows that P̃ 2x = P̃ x.
To prove that Ran P̃ = Ω, first observe that if x ∈ Ω then

x = Px = Qx = PQPx,

so P̃ x = x and Ω ⊂ Ran P̃ .
For the reverse inclusion we will show that P̃ = PP̃ = QP̃ . The equalities

PP̃x = P̃ x, and PQP̃x = P̃ x,

hold by construction. Now for any x ∈ X we have

〈Px, Px〉 ≤ 〈x, x〉, 〈Qx,Qx〉 ≤ 〈x, x〉,

from which we deduce that

〈P̃ x, P̃ x〉 = 〈PQP̃x, PQP̃x〉 ≤ 〈QP̃x,QP̃x〉 ≤ 〈P̃ x, P̃ x〉.

Therefore 〈QP̃x, QP̃x〉 = 〈P̃ x, P̃ x〉 and 〈(1 − Q)P̃ x, (1 − Q)P̃ x〉 = 0. It follows that (1 − Q)P̃ x = 0 so 
QP̃x = P̃ x. This shows that QP̃ = P̃ and thus Ran P̃ ⊂ Ω. Therefore the submodule Ω is complemented 
and PΩ = P̃ = s–lim(PQP )n in the ∗-strong module topology. By exhanging the rôles of P and Q, we find 
that PΩ = s–lim(QPQ)n as well. �
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In order to address the appropriate converse to Proposition 2.4, we need a description of the Banach 
space dual X∗ := B(X, C) of bounded linear functionals on a Hilbert C∗-module X. To this end we first 
recall the dual or conjugate C∗-module.

The space of compact operators K(X, B) from X to B is a left B-module via (b · K)(x) := bK(x) and 
carries a natural left B 	 K(B, B) valued inner product 〈K, L〉 := KL∗. The conjugate module X◦ is defined 
to be the set X with the conjugate C-vector space structure, and we write elements of X◦ as x with x ∈ X. 
The left B-module structure and inner product

b · x := xb∗, 〈x, y〉 := 〈x, y〉.

These left Hilbert C∗-modules over B are isomorphic, by the following well-known theorem [11, page 13].

Proposition 2.5 (Riesz-Fréchet theorem for Hilbert C∗-modules). The map

T : X◦ → K(X,B), x �→ Tx, Tx(y) := 〈x, y〉, x, y ∈ X,

is a unitary isomorphism of left Hilbert C∗-modules over B.

The dual Banach space of the C∗-algebra B, B∗ := B(B, C), is a right Banach B-module via

(ϕ · b)(a) := ϕ(ba), a, b ∈ B.

Lastly, for a right Banach B-module V and a left Banach B-module W , we denote by V ⊗̂BW the balanced 
Banach space projective tensor product of V and W . We are now ready to recall the following result of 
Schweizer, [21, Proposition 3.1], giving a complete description of the dual Banach space X∗ of the module X.

Proposition 2.6. Let X be a Hilbert C∗-module, X◦ 	 K(X, B) the conjugate module and X∗ = B(X, C) the 
dual Banach space of X. The map ψ : B∗⊗alg

B X◦ → X∗ given by

ψ(φ⊗ y)(x) := φ(〈y, x〉), φ ∈ B∗, x, y ∈ X,

extends to an isometric isomorphism B∗⊗̂BX
◦ → X∗ of Banach spaces.

For a Banach space W , the weak topology on W is the locally convex topology defined by the seminorms 
‖w‖ϕ := ‖ϕ(w)‖. In general the weak topology is not complete, that is, weak Cauchy sequences need 
not have a weak limit in X. However, we do have the following fundamental result for weakly convergent 
sequences.

Theorem 2.7 ([20, Chap II, Section 38]). Let W be a Banach space and C ⊂ W a convex set. Then the weak 
closure of C coincides with the norm closure of C. In particular, if wj → w in the weak topology, then there 
exists a sequence of convex combinations yj :=

∑nj

k=j tjwj such that ‖yj − w‖ → 0.

In the sequel we will freely use the following computational tool.

Lemma 2.8. Let P, Q ∈ End∗
B(X) be projections such that Ω := Ran P ∩ Ran Q is complemented. Then for 

all k ≥ 1 we have

(PQ− PΩ)k = (PQ)k − PΩ, (QP − PΩ)k = (QP )k − PΩ,

(PQP − PΩ)k = (PQP )k − PΩ, (QPQ− PΩ)k = (QPQ)k − PΩ.
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Proof. The statement holds for k = 1. Since PΩ = PΩP = PPΩ = PΩQ = QPΩ we have

(PQ)k+1 − PΩ = (PQ− PΩ)((PQ)k − PΩ), (QP )k+1 − PΩ = (QP − PΩ)((QP )k − PΩ),

and

(PQP )k+1 − PΩ = P ((QP )k+1 − PΩ), (QPQ)k+1 − PΩ = Q((PQ)k+1 − PΩ),

so the result follows by induction on k. �
We are now ready to prove our main theorem.

Theorem 2.9. Let M, N be complemented submodules of a Hilbert C∗-module X. Then (M, N) is a concor-
dant pair if and only if the sequence (PNPM )n is Cauchy in the ∗-strong module topology on End∗

B(X).

Proof. We write P = PM , Q = PN and Ω := M ∩N .
⇐ In Proposition 2.4 it was proved that Ω is complemented and lim(PQ)nx = PΩx. Now if π : B → B(Hπ)

is an irreducible representation then

PMπ∩Nπ
(x⊗ h) = lim

n→∞
(PMπ

PNπ
)n(x⊗ h) = lim

n→∞
π̂(PMPN )n(x⊗ h)

= lim
n→∞

((PQ)nx) ⊗ h = PΩx⊗ h = π̂(PΩ)(x⊗ h),

so PMπ∩Nπ
= π̂(PΩ) and thus Ωπ = Mπ ∩Nπ, so (M, N) is concordant by Theorem 1.8.

For the converse, assume that (M, N) is concordant and write PΩ for the projection onto Ω. By Lemma 2.3
it suffices to prove that (PQP )nx → PΩx and (QPQ)nx → PΩx for all x ∈ X.

We first prove that (PQP )nx converges to PΩx in the weak topology on X. To this end observe that since 
‖(PQP )n‖ ≤ ‖PQP‖n ≤ 1 the sequence (PQP )nx is bounded in norm. Therefore, by Proposition 2.6 it 
suffices to show that (φ ⊗y)((PQP )nx) → (φ ⊗y)(PΩx) for all φ ∈ B∗ and y ∈ X, as such functionals generate 
the weak topology. Since every bounded linear functional on the C∗-algebra B is a linear combination of 
four states (see [22, page 91]), we may restrict ourselves to states σ ∈ B∗. In the universal representation 
Hu of B, every state σ arises as a vector state associated to a unit vector hσ ∈ Hu. Denote by πσ the 
GNS-representation associated to the state σ. Then by Theorem 2.1 we find

(σ ⊗ y)((PQP )nx) = σ(〈y, (PQPn)x〉) = 〈hσ, 〈y, (PQP )nx〉hσ〉

= 〈y ⊗ hσ, (PQP )nx⊗ hσ〉 → 〈y ⊗ hσ, PΩπσ
(x⊗ hσ)〉.

By Corollary 1.9, Mπσ
∩Nπσ

= Ωπσ
so PΩπσ

= PΩ ⊗ 1 = π̂σ(PΩ), and (PQP )nx ⊗ hσ → PΩx ⊗ hσ in the 
Hilbert space X ⊗B Hu. Therefore (PQP )nx → PΩx weakly in X.

By Theorem 2.7, there is a sequence of convex combinations yk =
∑nk

i=k ti(PQP )ix such that yk → PΩx

in norm in X. Since for all n we have

PΩ(PQP )n = (PQP )nPΩ = PΩ, (PQP )m ≤ (PQP )n, m ≥ n,

we can estimate

〈(yk − PΩ)x, (yk − PΩ)x〉 =
〈(

nk∑
ti(PQP )i − PΩ

)
x,

(
nk∑

ti(PQP )i − PΩ

)
x

〉

i=k i=k
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=
〈(

nk∑
i=k

ti(PQP )i − PΩ

)2

x, x

〉

=
〈⎛⎝ nk∑

i,j=k

titj(PQP )i+j − PΩ

⎞⎠x, x

〉

≥
〈⎛⎝ nk∑

i,j=k

titj(PQP )2nk − PΩ

⎞⎠x, x

〉

= 〈((PQP )2nk − PΩ)x, x〉
= 〈((PQP )nk − PΩ)x, ((PQP )nk − PΩ)x〉,

where the last step follows using Lemma 2.8. Therefore it follows that the subsequence (PQP )nk is such 
that for all x ∈ X we have norm convergence (PQP )nkx → PΩx as k → ∞. Since for any m ≥ n we have

〈((PQP )n − PΩ)x, ((PQP )n − PΩ)x〉 ≥ 〈((PQP )m − PΩ)x, ((PQP )m − PΩ)x〉,

we find that

‖((PQP )n − PΩ)x‖ ≥ ‖((PQP )m − PΩ)x‖.

Thus it follows that limn→∞ ‖((PQP )n − PΩ)x‖ → 0. By swapping the rôles of P and Q we find that 
limn→∞ ‖((QPQ)n − PΩ)x‖ → 0 as well. This completes the proof. �
Remark 2.10. For B = C([0, π2 ]) and X = C([0, π2 ], C2), the submodules

M = Ran
(

1 0
0 0

)
, N = Ran

(
cos2 t sin t cos t

sin t cos t sin2 t

)
,

are discordant (see Remark 1.11), so that we conclude from Theorem 2.9 that PMPN does not converge to 
0 in the ∗-strong topology. This observation was made in [7, Example 4.1] as well, using a different method.

3. Angle, sum and intersection

We now consider the applications of our main result to various problems concerning pairs of complemented 
submodules of Hilbert C∗-modules.

3.1. The Friedrichs angle between complemented submodules

In [12], the following definition for the Friedrichs angle between complemented submodules was given, 
which we now recall. Let M, N ⊂ X be complemented submodules such that M ∩N is complemented and 
write PM , PN and PM∩N respectively for the corresponding projections. The quantity

c(M,N) := ‖PMPN (1 − PM∩N )‖ = ‖PMPN − PM∩N‖, (3.1)

is called the (cosine of the) Friedrichs angle between M and N .
For the above definition, the existence of the projection PM∩N seems necessary. This is undesirable and 

ideally the angle should be an invariant associated to any pair (M, N) of complemented submodules. We 
propose the following generalisation, based on Hilbert space localisation.
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Definition 3.1. Let M, N ⊂ X be complemented submodules and π : B → B(Hπ) a representation of B on 
the Hilbert space Hπ. The quantity

cπ(M,N) := c(Mπ, Nπ) = ‖PMπ
PNπ

(1 − PMπ∩Nπ
)‖ = ‖PMπ

PNπ
− PMπ∩Nπ

‖, (3.2)

is called the (cosine of the) local Friedrichs angle between M and N at π.

Proposition 3.2. Suppose that π : B → B(Hπ) is faithful. Then

1. If (M, N) is concordant, then cπ(M, N) = c(M, N);
2. If (M, N) is discordant, then cπ(M, N) = 1.

In particular the (cosine of the) local Friedrichs angle cπ(M, N) is independent of the choice of faithful 
representation π.

Proof. Suppose (M, N) is concordant, so that by Corollary 1.9 we have Mπ ∩ Nπ = (M ∩ N)π and 
PMπ∩Nπ

= π̂(PM∩N ). Since π is faithful, the representation End∗
B(X) → B(Xπ) is faithful and hence 

isometric. Therefore

cπ(M,N) = ‖π̂(PNPM − PM∩N )‖ = ‖PNPM − PM∩N‖ = c(M,N),

which proves 1.
Clearly 0 ≤ cπ(M, N) ≤ 1, so suppose that cπ(M, N) < 1 and write P = PM and Q = PN . We will show 

that the sequence (PQ)n is Cauchy for the norm topology. Then by Theorem 2.9, (M, N) is concordant, 
which proves 2. So for m ≥ n recall the representation π̂ from Equation (1.2) and consider

‖(PQ)n − (PQ)m‖ = ‖π̂((PQ)n − (PQ)m)‖
≤ ‖π̂(PQ)n − PMπ∩Nπ

‖ + ‖π̂(PQ)m − PMπ∩Nπ
‖

= ‖(PMπ
PNπ

)n − PMπ∩Nπ
‖ + ‖(PMπ

PNπ
)m − PMπ∩Nπ

‖
= ‖(PMπ

PNπ
− PMπ∩Nπ

)n‖ + ‖(PMπ
PNπ

− PMπ∩Nπ
)m‖ (by Lemma 2.8)

≤ ‖PMπ
PNπ

− PMπ∩Nπ
‖n + ‖PMπ

PNπ
− PMπ∩Nπ

‖m

= cπ(M,N)n + cπ(M,N)m → 0,

since cπ(M, N) < 1. This completes the proof. �
For future reference we record the following corollary to the proof of Proposition 3.2.

Corollary 3.3. Let M , N be complemented submodules of a Hilbert C∗-module X over B and π : B → B(Hπ)
a faithful representation. If cπ(M, N) < 1, then (PMPN )n is Cauchy for the norm topology on End∗

B(X), 
M ∩N is complemented and PM∩N = limn→∞(PNPM )n.

We denote by B̂ the space of unitary equivalence classes of irreducible representations of the C∗-algebra 
B, by P(B) the pure state space of B and by πσ the GNS-representation associated to the state σ. We 
can view the local Friedrichs angles as a function B̂ → [0, 1] and via the composition P(B) → B̂, also as a 
function on P(B).

Corollary 3.4. Suppose that M ∩ N is complemented. The Friedrichs angle (3.1) and the local Friedrichs 
angles (3.2) are related by c(M, N) = sup ̂ cπ(M, N) = supσ∈P(B) cπσ

(M, N).
π∈B
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Proof. The representations Ĥ =
⊕

π∈B̂ Hπ and HP :=
⊕

σ∈P(B) Hπσ
are faithful. �

In view of Proposition 3.2 and Corollary 3.4, we define the Friedrichs angle between an arbitrary pair of 
complemented submodules to be c(M, N) := cπ(M, N), with π faithful. It was shown in [12] that

c(M,N) = c(M⊥, N⊥), (3.3)

provided that M ∩ N and M⊥ ∩ N⊥ are complemented. In particular, the equality holds for any pair of 
subspaces of a Hilbert space, [4, Theorem 2.16]. We will now show that the equality (3.3) holds for an 
arbitrary pair of complemented submodules. In particular we obtain an extension, and a different proof, of 
[12, Theorem 5.12].

Theorem 3.5. Let X be a Hilbert C∗-module and M, N ⊂ X complemented submodules. Then c(M, N) is 
well-defined and c(M, N) = c(M⊥, N⊥).

Proof. For any representation π : B → B(Hπ) there is an equality of submodules (Mπ)⊥ = (M⊥)π whenever 
M is complemented. Moreover Equation (3.3) holds for the subspaces Mπ, Nπ of the Hilbert space Xπ. Thus 
by Proposition 3.2 we have

c(M,N) = cπ(M,N) = c(Mπ, Nπ)

= c((Mπ)⊥, (Nπ)⊥) = c((M⊥)π, (N⊥)π)

= cπ(M⊥, N⊥) = c(M⊥, N⊥),

as claimed. �
Now we further analyse the properties of the local Friedrichs angles as a function on B̂.

Proposition 3.6. Suppose (M, N) is concordant. Then the map

B̂ → [0, 1], π �→ cπ(M,N),

is lower semi-continuous. If X is full and B̂ is Hausdorff, π �→ cπ(M, N) is continuous.

Proof. Let J := 〈B,B〉 and B̂ → Ĵ the restriction map, which is continuous. The C∗-algebras J and K(X)
are Morita equivalent, so by the Rieffel correspondence [19] the map π �→ π̂ is a homeomorphism Ĵ → ̂K(X). 
Since K(X) ⊂ End∗

B(X) is an essential ideal, there is a continuous inclusion ̂K(X) → ̂End∗
B(X), see

[3, Section 2]. When (M, N) is concordant the map π �→ cπ(M, N) can be written as a composition

π �→ π̂ �→ ‖π̂(PMPN − PM∩N )‖,

and is thus lower semicontinuous by [18, Lemma A.30]. For X full and B̂ Hausdorff, continuity follows by 
[18, Lemma 5.2]. �
Corollary 3.7. Suppose X is full, B is unital, B̂ is Hausdorff and (M, N) is concordant. Then c(M, N) < 1
if and only if cπ(M, N) < 1 for every irreducible representation π.

Proof. Since B̂ is compact Hausdorff and the Friedrichs angle is continuous, the pointwise estimate 
cπ(M, N) < 1 implies that c(M, N) = sup ̂ cπ(M, N) < 1. �
π∈B
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Remark 3.8. In Proposition 3.6, the condition that (M, N) be concordant cannot be relaxed. Consider 
B = C([0, π2 ]), X = C([0, π2 ], C2) and consider the submodules

M = Ran
(

1 0
0 0

)
, N = Ran

(
cos2 t sin t cos t

sin t cos t sin2 t

)
.

For t ∈ [0, π/2] we write ct(M, N) for the Friedrichs angle at t. For 0 < t ≤ π
2 we have Mt ∩ Nt = {0}

whereas at t = 0 we have M0 = N0. We thus have

ct(M,N)2 = ‖PMt
PNt

‖2 =
∥∥∥∥(cos2 t sin t cos t

0 0

)∥∥∥∥2

= cos2 t < 1, 0 < t ≤ π

2 ,

and ct(M, N) = | cos t|, whereas c0(M, N) = 0. Thus the angle is discontinuous at 0 and in particular we 
conclude once more that (M, N) is discordant. This is another instance where the universal example (see 
Remark 1.5) provides a counterexample to a specific property.

3.2. Sum and intersection

With our extended definition of the Friedrichs angle we now examine the case c(M, N) < 1 in more detail. 
Our results are inspired by and independently recover several results in [12], where complementability of 
M∩N is an assumption. We first recall the following well-known fundamental result and a relevant corollary.

Theorem 3.9. Let T ∈ End∗
B(X), then

Ran(T ) = Ran(TT ∗),

and T has closed range if and only if T ∗ has closed range. If T has closed range then

Ran(T ) = Ran(TT ∗),

and Ran(T ) is a complemented submodule of X with Ran(T )⊥ = kerT ∗.

Proof. See [11, Theorem 3.2, Proposition 3.7]. �
Corollary 3.10 ([12], Remark 5.8). Let P, Q be adjointable projections on a Hilbert C∗-module X, then

Ran(P ) + Ran(Q) = Ran(P + Q).

In particular Ran(P ) + Ran(Q) is closed if and only if Ran(P + Q) is closed and in that case

Ran(P ) + Ran(Q) = Ran(P + Q),

which is a complemented submodule of X.

Proof. By the following well-known observation(
0 0
0 P + Q

)
=

(
0 0
P Q

)
·
(

0 P
0 Q

)
=

(
0 0
P Q

)
·
(

0 0
P Q

)∗
,

as operators on X ⊕ X, it follows that Ran(P + Q) = Ran(P ) + Ran(Q) by Theorem 3.9. Therefore, 
Ran(P ) + Ran(Q) is closed if and only if Ran(P ) + Ran(Q) = Ran(P + Q) is closed. �
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Lemma 3.11. Let P, Q be adjointable projections on a Hilbert C∗-module X, then

ker(1 − PQ) = ker(1 −QP ) = Ran P ∩ Ran Q.

Proof. It is clear that Ran P ∩Ran Q ⊂ ker(1 −PQ) ∩ker(1 −QP ). We prove the reverse inclusion. Suppose 
that x ∈ ker(1 − PQ), so that x = PQx. Then clearly x = Px and

〈Qx,Qx〉 = 〈PQx, PQx〉 + 〈(1 − P )Qx, (1 − P )Qx〉 ≥ 〈PQx, PQx〉 = 〈x, x〉,

and thus (1 −Q)x = 0 so x = Qx. By reversing the roles of P and Q this shows that

ker(1 − PQ) = ker(1 −QP ) = {x ∈ X : x = Px = Qx} = Ran P ∩ Ran Q,

as claimed. �
We now characterise closedness of M + N in terms of our extended definition of c(M, N), as well as in 

terms of properties of the operators 1 − PMPN and 1 − PNPM .

Proposition 3.12. Let X be a Hilbert C∗-module over a C∗-algebra B, and M and N complemented submod-
ules. Then the following are equivalent:

1. c(M, N) < 1;
2. The sequence (PMPN )n is Cauchy for the operator norm;
3. M ∩N is complemented and ‖PMPN − PM∩N‖ = ‖PNPM − PM∩N‖ < 1;
4. M ∩N is complemented and the operators

1 − PMPN , 1 − PNPM : (M ∩N)⊥ → (M ∩N)⊥,

are bijective;
5. Ran(1 − PMPN ) and Ran(1 − PNPM ) are closed;
6. X = (M ∩N) ⊕ (M⊥ + N⊥);
7. M⊥ + N⊥ is closed;
8. X = (M⊥ ∩N⊥) ⊕ (M + N);
9. M + N is closed.

Proof. We write P = PM , Q = PN and Ω := M ∩N .
1. ⇒ 2. This was shown in the proof of Proposition 3.2 and Corollary 3.3.
2. ⇒ 3. By Theorem 2.9, Ω is complemented and (PQ)n → PΩ in norm. By Lemma 2.3, (QPQ)n → PΩ

in norm as well. Thus for n sufficiently large ‖(QPQ)2n − PΩ‖ < 1. Then applying Lemma 2.8 and the 
C∗-identity we find

‖(QPQ)2
n − PΩ‖ = ‖(QPQ− PΩ)2

n‖ = ‖QPQ− PΩ‖2n

,

and it follows that ‖QPQ − PΩ‖ < 1. Now, again by the C∗-identity,

‖PQ− PΩ‖2 = ‖(QP − PΩ)(PQ− PΩ)‖ = ‖QPQ− PΩ‖,

so we find that ‖PQ − PΩ‖ < 1.
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3. ⇒ 4. Since ‖PQ − PΩ‖ < 1. We find that the series

∞∑
n=0

(PQ− PΩ)n = PΩ +
∞∑

n=0
((PQ)n − PΩ) (by Lemma 2.8),

is norm convergent to (1 + PΩ − PQ)−1. Since Ω = ker(1 − PQ) by Lemma 3.11, 1 + PΩ − PQ is bijective 
and commutes with PΩ, it follows that it maps Ω⊥ bijectively onto itself. The same argument applies to 
QP .

4. ⇒ 5. Since X = Ω ⊕ Ω⊥ and, by Lemma 3.11, Ω = ker(1 − PQ) = ker(1 −QP ) it follows that

Ran(1 − PQ) = Ran(1 −QP ) = Ω⊥,

is closed.
5. ⇒ 6. Since Ran(1 − PQ) and Ran(1 −QP ) are closed, they are complemented by Theorem 3.9. Since 

(1 − PQ)∗ = 1 −QP , we have

Ran(1 −QP ) = ker(1 − PQ)⊥ = Ω⊥ = ker(1 −QP )⊥ = Ran(1 − PQ),

and by Lemma 3.11 Ω = ker(1 − PQ) = ker(1 −QP ). Since

1 − PQ = (1 − P )Q + 1 −Q, 1 −QP = (1 −Q)P + 1 − P,

it follows that

Ω⊥ = Ran(1 − PQ) ⊂ Ran(1 − P ) + Ran(1 −Q) ⊂ Ω⊥.

Therefore

Ω⊥ = Ran(1 − P ) + Ran(1 −Q) = M⊥ + N⊥.

6. ⇒ 7. Since Ω⊥ is closed, M⊥ + N⊥ is closed.
7. ⇒ 1. Since M⊥ + N⊥ is closed, Ω = M ∩ N is complemented with complement M⊥ + N⊥ by 

Corollary 1.10. Thus PΩ exists and we observe that 0 ≤ PQP − PΩ ≤ 1, so that by positivity,

1 + PΩ − PQP is invertible ⇔ ‖PΩ − PQP‖ < 1.

By the C∗-identity ‖PΩ − PQP‖ = ‖PΩ − PQ‖2, so

1 + PΩ − PQP is invertible ⇔ c(M,N) < 1.

We will prove that 1 + PΩ − PQP is invertible.
Suppose that (1 + PΩ − PQP )x = 0. Then x = PQPx − PΩx so in particular x = Px and PΩx = 0, so 

P (1 −Q)Px = 0. Then

〈(1 −Q)Px, (1 −Q)Px〉 = 〈P (1 −Q)Px, x〉 = 0,

so (1 − Q)Px = 0 and thus x = Px = QPx ∈ Ω. Since PΩx = 0 it follows that x = 0, so 1 + PΩ − PQP

is injective. We prove that it has closed range as well, so that by self-adjointness, Theorem 3.9 shows it is 
surjective whence invertible. Since
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(1 + PΩ − PQP )PΩ = PΩ(1 + PΩ − PQP ) = PΩ,

it suffices to show that 1 − PQP has closed range. We show that P (1 −Q)P has closed range so that, by 
orthogonality,

1 − PQP = (1 − P ) + P (1 −Q)P

has closed range. By Theorem 3.9 it suffices to show that (1 −Q)P has closed range. Suppose that xn ∈ X

is a sequence with

(1 −Q)Pxn = Pxn −QPxn → x.

Since Ran (P + Q) = Ran P + Ran Q is closed and Ran (1 −Q) is closed as well, there exist y, z ∈ X for 
which x = (P + Q)y = (1 −Q)z. Thus

x = (1 −Q)x = (1 −Q)(P + Q)y = (1 −Q)Py,

so Ran (1 −Q)P is closed. Hence Ran P (1 −Q)P is closed as well and thus 1 − PQP has closed range. It 
follows that 1 + PΩ − PQP is invertible and ‖PΩ − PQ‖ < 1, so c(M, N) < 1.

1. ⇔ 8. Since c(M, N) = c(M⊥, N⊥) this follows by applying 1. ⇔ 6. to (M⊥, N⊥).
1. ⇔ 9. Since c(M, N) = c(M⊥, N⊥) this follows by applying 1. ⇔ 7. to (M⊥, N⊥). �

Remark 3.13. We obtain further equivalent statements by replacing (M, N) with (M⊥, N⊥) in 2-5 of Propo-
sition 3.12. We will not formulate these explicitly.

As an immediate corollary, we now fully recover the following remarkable result from [13], through a 
new, independent proof.

Corollary 3.14 ([13, Proposition 4.6]). Let M, N ⊂ X be complemented submodules of a Hilbert C∗-module 
X. Then M + N is closed if and only if M⊥ + N⊥ is closed if and only if c(M, N) < 1. In particular, if 
M + N is closed then both M ∩ N and M⊥ ∩ N⊥ are complemented and both (M, N) and (M⊥, N⊥) are 
concordant.

Furthermore we conclude that closedness of the sum M + N can be detected locally.

Corollary 3.15. Let M, N ⊂ X be complemented submodules of a Hilbert C∗-module X over the C∗-algebra 
B. Then M + N is closed if and only if Mπ + Nπ is closed for every representation π : B → B(Hπ) if and 
only if Mπ + Nπ is closed for some faithful representation π : B → B(Hπ).

Proof. From Propositions 3.12, 3.2 and Corollary 3.4 we deduce that the sum M + N is closed if and 
only if c(M, N) < 1 if and only if cπ(M, N) = c(Mπ, Nπ) < 1 for every representation if and only if 
cπ(M, N) = c(Mπ, Nπ) < 1 for a faithful representation. Therefore M +N is closed if and only if Mπ +Nπ

is closed for every representation if and only if Mπ + Nπ is closed for some faithful representation. �
In [12, Lemma 5.11], several of the equivalences in Proposition 3.12 were proved under the assumption 

that M ∩N be complemented. For completeness, we deduce the remaining equivalent statement from [12, 
Lemma 5.11] without assuming that M ∩N is complemented.

Corollary 3.16. Let M, N ⊂ X be complemented submodules. Then c(M, N) < 1 if and only if M ∩ N is 
complemented and (M ∩N)⊥ ∩M + (M ∩N)⊥ ∩N is closed.
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Proof. First suppose that M ∩N is complemented. Writing Ω = M ∩N , we have that

PM − PΩ = (1 − PΩ)PM = PM (1 − PΩ), PN − PΩ = (1 − PΩ)PN = PN (1 − PΩ),

are projections such that

Ran (PM − PΩ) = (M ∩N)⊥ ∩M, Ran (PN − PΩ) = (M ∩N)⊥ ∩N,

from which we conclude that

Ran (PM − PΩ) ∩ Ran (PN − PΩ) = {0}.

Furthermore

(PM − PΩ)(PN − PΩ) = PMPN − PΩ,

so that

c((M ∩N)⊥ ∩M, (M ∩N)⊥ ∩N) = c(M,N). (3.4)

⇒ Now assume that c(M, N) < 1. Then by Corollary 3.3 M ∩ N is complemented. Thus Equation (3.4)
holds and c((M ∩N)⊥ ∩M, (M ∩N)⊥ ∩N) < 1. Therefore, by Proposition 3.12 we have that

(M ∩N)⊥ ∩M + (M ∩N)⊥ ∩N,

is closed.
⇐ Conversely, if M ∩N is complemented and (M ∩N)⊥∩M +(M ∩N)⊥∩N is closed, Proposition 3.12

gives that c((M ∩ N)⊥ ∩ M, (M ∩ N)⊥ ∩ N) < 1. By Equation (3.4) above, the Friedrichs angles satisfy 
c(M, N) = c((M ∩N)⊥ ∩M, (M ∩N)⊥ ∩N) < 1 as desired. �
Remark 3.17. Let E and F be vector bundles over a compact Haursdorff space Y . In [1, Definition 1.3.2] a 
vector bundle morphism ϕ : E → F is called strict if the map y �→ dim kerϕy is continuous, hence locally 
constant, on Y . By [1, Proposition 1.32], if ϕ is strict then 

⋃
y∈Y kerϕy is a subbundle of E, and thus its 

module of sections is complemented.
As in Remarks 1.11 and 3.8 consider B = C([0, π2 ]), X = C([0, π2 ], C2) and consider the submodules

M = Ran
(

1 0
0 0

)
, N = Ran

(
cos2 t sin t cos t

sin t cos t sin2 t

)
.

We obtain two globally trivial rank one vector bundles over [0, π/2] whose modules of sections are M and 
N respectively. The vector bundle homomorphism ϕ : X → X defined by ϕ := (1 − PMPN ) is not strict 
since

kerϕt = ker(1 − PMt
PNt

) = Mt ∩Nt,

so t �→ dim kerϕt is discontinuous at 0 by Remark 1.11.

For a commutative unital C∗-algebra B the following corollary to Proposition 3.12 corresponds to the 
situation where cosine of the angle between the corresponding sub-vector bundles is < 1 in which case the 
bundle endomorphism 1 − PMPN is strict.
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Corollary 3.18. If the C∗-algebra B is unital and X is finitely generated and projective over B, then for 
any pair M, N ⊂ X of complemented submodules with c(M, N) < 1 both M ∩ N and M + N are finitely 
generated projective B-modules.

Proof. If X is finitely generated and projective over the unital algebra B, then any complemented submodule 
is finitely generated and projective, so in particular M ∩N is. Since M +N is finitely generated and closed 
in X, it is a Hilbert C∗-module and hence is projective by [14, Theorem 1.4.6]. �
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