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Chapter 5

Reconstruction of the propagation
and origin of gravitational waves

This chapter is based on:
Learning how to surf: Reconstructing the propagation and origin of gravitational waves
with Gaussian Processes
Guadalupe Cañas-Herrera, Omar Contigiani and Valeri Vardanyan.
(September, 2021), The Astrophysical Journal, 918, 20, arXiv:2105.04262.

5.1 Introduction
The first direct detection of gravitational waves (GWs) by (B. P. Abbott et al.,

2016) triggered a rapidly increasing interest in exploiting this new field for cosmo-
logical information. GWs alone are not particularly useful because the data provides
only a sky position and a measure of the luminosity distance to the source. However,
GW sources can serve as powerful cosmological probes when combined with electro-
magnetic (EM) data, from which redshifts can be extracted. This idea dates back to
(Schutz, 1986) and has two main variations.

The first, simplest, possibility is the observation of so-called standard sirens (Holz
& Hughes, 2005), GW sources with EM counterparts from which a redshift can be
observed. As an example, a population of binary neutron stars, such as the already
observed GW170817 (B. P. Abbott et al., 2017c), can be used to reconstruct the
luminosity-redshift function and constrain cosmological observables. In this context,
the aforementioned observation has already lead to promising results in constraining
the Hubble constant H0 = 100h km/s/Mpc (B. P. Abbott et al., 2017b; H.-Y. Chen,
Fishbach, & Holz, 2018).

The second possibility is to use dark sirens with a statistical counterpart. The
likely counterpart is identified using the rough sky-localization offered by current
GW detectors in combination with deep galaxy catalogs. This technique, sometimes
combined with the first, has also been used to extract a measurement of H0 (Soares-
Santos et al., 2019; B. P. Abbott et al., 2021) and a refined version of it is the focus
of this work. Assuming that both galaxies and the hosts of GW mergers are biased
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5.1. INTRODUCTION

tracers of the same cosmological structure, it is possible to measure a non-zero cross-
correlation signal between the two (see section 5.3). At the linear level, in particular,
the description of this signal is especially simple. It should be noted that this idea has
been explored by others before, sometimes using a different formalism (Namikawa,
Nishizawa, & Taruya, 2016; S. Mukherjee & Wandelt, 2018; Scelfo et al., 2018) and
that similar methods have already been employed to provide a measurement of H0
(Finke, Foffa, Iacovelli, Maggiore, & Mancarella, 2021).

In addition to these two methods, modelling of higher-order effects in the merger
dynamics or knowledge of intrinsic source distribution can also be used to extract
the luminosity distance-redshift relation from GW observations alone. Because GW
signals provide a measurement of the redshifted chirp-mass of the system, features
dependent only on the mass of the system (e.g. tidal effects) can be used to extract the
cosmological redshift present in the signal (Messenger & Read, 2012). Furthermore,
expected features in the source distribution, such as, e.g. the pair instability mass
gap (Farr, Fishbach, Ye, & Holz, 2019) or the peak of the star formation rate (Ye &
Fishbach, 2021) can also be used to extract this relation from catalogs of GW events.

We also mention that, in principle, the same idea can be used in the absence
of resolved events. Previous works, however, have shown that a detection of this
effect from a stochastic background signal is unlikely to happen soon due to the low
signal-to-noise ratio (SNR) attainable by current and proposed experiments covering
the optimal wavelength range (Cañas-Herrera et al., 2020; Alonso, Cusin, Ferreira, &
Pitrou, 2020).

In this chapter, we discuss the possibility of using the non-zero correlation between
the distribution of EM galaxies and resolved GW mergers to jointly extract informa-
tion about the two main quantities in the field of GW cosmology: the luminosity
distance as a function of redshift, describing the propagation of gravitational waves
across cosmic time, and the linear bias of GW sources with respect to the underlying
dark matter distribution of the Universe, describing their clustering properties. The
linear bias, in this context, is a multiplicative factor relating the spatial correlation
function of a source population to the correlation function of the matter distribution
of the Universe.

It is already established that GWs carry the potential of constraining the fun-
damental laws of gravity. This is the case because propagation of GWs in modified
gravity scenarios differs from predictions of the general theory of relativity (GR) in
multiple ways (Deffayet & Menou, 2007; Garoffolo, Tasinato, Carbone, Bertacca, &
Matarrese, 2020; Ezquiaga & Zumalacárregui, 2020). One of the clear signatures is
the speed of tensor modes which can be both sub- and superluminal as opposed to the
GR case, where GWs propagate at the speed of light. The tight constraints on speed
deviations imposed by the multimessenger observations of GW170817 (B. P. Abbott
et al., 2017a), for example, have ruled out a wide parameter space of otherwise viable
scalar-tensor theories of gravity (Pettorino & Amendola, 2015; Lombriser & Tay-
lor, 2016; Sakstein & Jain, 2017; Ezquiaga & Zumalacárregui, 2017; Creminelli &
Vernizzi, 2017; T. Baker et al., 2017). Similarly, implications for bi-gravity models
have also been demonstrated in the literature (Amendola, Könnig, Martinelli, Pet-
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torino, & Zumalacarregui, 2015; Max, Platscher, & Smirnov, 2017, 2018; Akrami,
Brax, Davis, & Vardanyan, 2018, June; Belgacem et al., 2019).

Another striking difference between modified gravity and GR is the modified fric-
tion of GWs (Amendola, Sawicki, Kunz, & Saltas, 2018; Belgacem, Dirian, Foffa, &
Maggiore, 2018). This feature arises in models with non-minimal coupling of a scalar
field and gravity which manifests itself as a redshift-dependent gravitational coupling.
As a result, the inferred luminosity distance to GW sources differs from the corre-
sponding EM luminosity distance. This interesting phenomenon has already been
constrained using the aforementioned multimessenger detection of GW170817 (Arai
& Nishizawa, 2018; Lagos, Fishbach, Landry, & Holz, 2019) and the mass distribution
of existing GW catalogs (María Ezquiaga, 2021). In this work, we will investigate the
possibility of testing this hypothesis using the spatial clustering of GW sources and
galaxies.

The discovery of the first LIGO-Virgo binary black hole has been used to moti-
vate alternative scenarios where the binary did not represent the endpoint of stellar
evolution, but originated either as a pair of primordial black holes (PBH) or some
exotic compact objects (Bird et al., 2016; Sasaki, Suyama, Tanaka, & Yokoyama,
2016; Bustillo et al., 2021). In particular, the last half-decade has seen a resurgence
in interest for PBHs (Clesse & García-Bellido, 2017; Sasaki et al., 2018; Raccanelli,
Kovetz, Bird, Cholis, & Munoz, 2016; Raccanelli, Vidotto, & Verde, 2018). The main
difference between the PBH and stellar evolution scenarios is the spatial distribution
of GW mergers, measurable both in the redshift and sky distribution of the sources.
In subsection 5.3.1 we expand on how to model this difference through the linear bias
and present our model.

In addition to presenting our formalism, we investigate a possible method to pre-
cisely reconstruct the redshift evolution of clustering and modified gravity effects in
the upcoming decades. Our study is based on Gaussian processes (GPs), a well-known
hyper-parametric regression method (Rasmussen & Williams, 2005). The structure
and implementation of this pipeline are presented in section 5.4.

GPs have been widely used in the literature to reconstruct the shapes of phys-
ical functions such as the dark energy equation of state w(z) (Shafieloo, Kim, &
Linder, 2012; Gerardi, Martinelli, & Silvestri, 2019), the primordial inflaton’s speed
of sound (Cañas-Herrera, Torrado, & Achúcarro, 2021) or the mass function of the
merging binary black hole systems (Li et al., 2021). GPs are very useful for such func-
tional reconstructions due to their flexibility and simplicity, relying only on a handful
of hyper-parameters. In general, binned reconstructions (Crittenden, Pogosian, &
Zhao, 2009; Crittenden, Zhao, Pogosian, Samushia, & Zhang, 2012; Zhao, Critten-
den, Pogosian, & Zhang, 2012), as well as parametric reconstructions with high-degree
polynomials are similar in spirit to GPs while also offering more flexibility in the ex-
trapolation (Colgáin & Sheikh-Jabbari, 2021). The chapter is organized as follows.
In section 5.2 we summarize the essential concepts concerning the GW propagation
in modified gravity models. In section 5.3 we detail the modelling of the clustering
correlations between the GW source population and galaxies. In section 5.4 we ex-
plain our reconstruction pipeline for the GW luminosity distance and the bias. Our
findings are presented in section 5.5 and further discussed in section 5.6.
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5.2. GRAVITATIONAL WAVE PROPAGATION

Unless stated otherwise, our fiducial cosmology is based on the best fit results
from Planck 2018 (Planck Collaboration, Aghanim, Akrami, Arroja, et al., 2020). In
our analysis, we use COLOSSUS (Diemer, 2018) and Astropy (Astropy Collaboration
et al., 2013, 2018) for cosmological calculations, sklearn (Scikit-learn 0.19.1 docu-
mentation: Gaussian Processes, 2018) for the GP implementation, emcee (Foreman-
Mackey et al., 2013) as our posterior sampler and GetDist (Lewis, 2019) to plot
the final contours. Our analysis pipeline is made publicly available, see (Vardanyan,
Cañas-Herrera, & Contigiani, 2021).

5.2 Gravitational wave propagation
In GR, and around a background Friedmann-Lemaitre-Robertson-Walker (FLRW)

metric, the amplitude of GWs evolves according to

h′′
α + 2Hh′

α − ∇⃗2hα = 0, (5.1)

where hα denotes the amplitude of either polarization (α ∈ [×, +]), primes denote
derivatives with respect to the conformal time, and H is the conformal Hubble func-
tion. In this equation, the prefactor of the Laplacian term controls the propagation
speed, which we have set to coincide with the speed of light in c = 1 units.

The second term is the standard cosmic friction term which causes the strain
amplitude to decay as hα(z) ∝ D−1

L (z), with DL being the FLRW luminosity distance:

DL(z) = (1 + z)
∫ z

0

dz̃

H(z̃) , (5.2)

where the Hubble function H(z) is given in terms of the Hubble constant H0, present-
day dark matter abundance Ωm and dark energy abundance ΩDE(z) as

H(z) = H0
[
Ωm(1 + z)3 + ΩDE(z)

]
. (5.3)

Throughout this chapter we assume a constant equation of state w0 for dark energy,
such that its energy density is given by

ΩDE(z) = (1− Ωm)(1 + z)3(1+w0). (5.4)

The standard ΛCDM cosmology corresponds to w0 = −1.
It is now established that modifications of GR can affect the propagation of GWs.

The important effect for us is the modified friction term with respect to the GR
expectation in equation (5.1),

h′′
α + [2 + αM(z)]Hh′

α − ∇⃗2hα = 0, (5.5)

where we have again imposed the GW speed to be unity as suggested by observa-
tions. The modified friction term introduces a new scaling hα(z) ∝ 1/DL,GW(z), with
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DL,GW(z) ̸= DL(z) for non-zero αM(z). The luminosity distance to GW events can be
written as:

DL,GW

DL,EM
(z) = exp

{
−1

2

∫ z

0
dz̃

αM(z̃)
(1 + z̃)

}
. (5.6)

In this work, we assume that the luminosity distance for EM sources DL,EM is unaf-
fected and is equal to the expression in equation (5.2). The function αM corresponds
to the running of the effective Planck mass, i.e.,

αM = d log(Meff/MP)2

d log a
, (5.7)

where MP is the Planck mass and Meff is its effective value at redshift z = 1/a −
1. This function encodes information about extensions of GR such as scalar-tensor
theories (Horndeski, 1974; Bellini & Sawicki, 2014) or, more broadly, quantum gravity
(Calcagni et al., 2019). The modified friction term is also a natural prediction of non-
local modifications of gravity (Dirian, Foffa, Kunz, Maggiore, & Pettorino, 2016)

From an effective field theory point of view αM(z) is a free function of order unity.
In practical studies of modified gravity and dark energy, however, αM is often assumed
to take simple parametric forms. The main guiding principle is the assumption that
its effects should be negligible in the early universe, which prompts to choose αM(z)
to be proportional either to the dark energy abundance or simply to some power of
the scale factor a.

Such parametrizations make it possible to find a closed form expression for the
ratio in equation (5.6) and have inspired a widely used parametrization of the ratio
as a monotonic deviation which goes to 1 at present day (Belgacem et al., 2018)

DL,GW

DL,EM
(z) = Ξ0 + 1− Ξ0

(1 + z)n
. (5.8)

In this expression, Ξ0 and n are two constant parameters, which are typically ∼ 1.

5.3 Angular power-spectra

5.3.1 GW sources
We consider GW mergers with a distribution in redshift written as

nGW(z) = n0

1 + z
, (5.9)

where n0 corresponds to the comoving number density of observed events as a func-
tion of redshift, and the term (1+z) takes into account the cosmological time dilation.
In our analysis, we use a constant value of n0 ≈ 3 × 10−6 h3Mpc−3 (with h denot-
ing the usual normalized Hubble constant), motivated by current LIGO constraints
(R. Abbott et al., 2021).
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5.3. ANGULAR POWER-SPECTRA

For a given selection of sources along the line of sight, the average number of
projected sources can be written using the comoving distance χ(z):

n̄gw =
∫ ∞

0
dz

χ2(z)
H(z) S(z)nGW(z). (5.10)

The function S encodes the selection and the scatter due to observational errors.
In this chapter, simple bins in a range [DL,min, DL,max] are used and we assume a
lognormal distribution with fixed scatter σln D for the individual sources (Oguri, 2016).
In this case, S can be written as:

S(z) = 1
2 [xmin(z)− xmax(z)] , (5.11)

with

xmin(z) = erfc
[

ln DL,min − ln DL,GW(z)√
2σln D

]
, (5.12)

and similarly for xmax. Including this effect makes S resemble a top-hat function with
damping tails dictated by σln D.

The angular power spectrum of these sources can be written using the Limber
approximation

CGW(ℓ) =
∫ ∞

0
dz

H(z)
χ2(z)W 2

GW(z)

b2
GW(z)P

(
ℓ + 1/2

χ(z) , z

)
,

(5.13)

where P (k, z) is the matter power-spectrum at redshift z and comoving scale k, bGW
is the bias of the GW sources, and the window function can be written as

WGW(z) = χ2(z)
H(z)

nGW(z)
n̄GW

S(z). (5.14)

For the purpose of illustration, we will make use of a few simple parametrization
for the GW bias. We will consider either a constant bias bGW with a value of order
unity or a more complex form:

bGW(z) = b0

(
1 + 1

D(z)

)
, (5.15)

where D(z) represents the growth factor. The first model, with its low constant value,
mimics a PBH origin for the mergers (Bird et al., 2016; Raccanelli et al., 2016), while
the second mimics the stellar evolution case by tracking the galaxy linear bias (Oguri,
2016).
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5.3.2 Galaxies
Similarly to the GW population, we again assume a constant comoving number

density of galaxies. Throughout our analysis we fix

ngal(z) = 10−3h3Mpc−3, (5.16)

and we write the autocorrelation signal of galaxies under the Limber approximation
as

Cgal(ℓ) =
∫ ∞

0
dz

H(z)
χ(z)2 W 2

gal(z)

b2
gal(z)P

(
ℓ + 1/2

χ(z) , z

)
.

(5.17)

In this expression the definition of Wgal is the same as WGW used in the previous
section except for using ngal(z), a different selection function, and bgal(z) is the linear
galaxy bias. In our analyses, we assume a known galaxy bias in the form of

bgal(z) = 1 + 1
D(z) . (5.18)

In general, this function is expected to be accurately measured from the galaxy au-
tocorrelation signal alone.

In this chapter, we employ a top-hat selection function for Wgal, which assumes no
uncertainty in galaxy redshift estimates. This choice mimics a spectroscopic galaxy
survey or a general redshift survey with negligible uncertainties. As an example,
another choice commonly found in the literature is a Gaussian distribution N (z, σgal),
where σgal should be much larger than the expected redshift uncertainty for each
individual galaxy.

By combining the distribution of GW sources and galaxies one can construct a
cross-correlation map. In our formalism, we write the cross-correlation between a
GW bin i and a galaxy bin j (fully specified by their respective window functions)
as:

Cij
× (ℓ) =

∫ ∞

0
dz

H(z)
χ2(z)W i

GW(z)W j
gal(z)

× bGW(z)bgal(z)P
(

ℓ + 1/2
χ(z) , z

)
.

(5.19)

We conclude this section by pointing out that the power spectra in equation (5.17),
(5.13) and (5.19) do not include relativistic terms and do not capture the effects of evo-
lution and lensing bias (see, e.g., (Scelfo et al., 2018; Scelfo, Boco, Lapi, & Viel, 2020)
for a detailed treatment). Specifically, while the effects of lensing are expected to be
negligible at the redshifts considered here (Oguri, 2016; Contigiani, 2020; S. Mukher-
jee et al., 2020b), the same is not true for relativistic effects. Therefore, we choose
not to consider small values of ℓ in our analysis since the signal at these large angular
scales is dominated by them.
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5.4. RECONSTRUCTING GW PHYSICS

5.4 Reconstructing GW physics
The primary goal of the chapter is to demonstrate how to reconstruct the prop-

erties of GW propagation and source clustering as a function of redshift. We do so
by showing how to recover an assumed fiducial model by using mock angular power
spectra with cosmic-variance or shot-noise limited uncertainties.

0.8 1.0 1.2 1.4 1.6
zgal

10 7

10 6

10 5

10 4
C

×
(

=
10

0)

0

0.6
1
1.4

Figure 5.1: The cross-correlation signal between GW sources at z = [0.9, 1.1] (shaded
area) and galaxies at different redshifts (zgal). If the luminosity distance ratio
DL,GW/DL,EM(z) in equation (5.8) is different from its GR assumption (Ξ0 ̸= 1),
the location of the predicted cross-correlation peak is also affected.

Our methodology hinges on the fact that by cross-correlating a GW luminosity
distance bin with multiple galaxy redshift bins we can determine the redshift of the
GW sources by matching the clustering properties of the two at the true redshift
(Oguri, 2016; Bera, Rana, More, & Bose, 2020).

We demonstrate this idea in Figure 5.1, where we have considered GW sources
located at redshift [0.9, 1.1] in a GR cosmology where DL,GW(z) = DL,EM(z). In this
figure, we show the expected cross-correlation signal between the angular distribution
of these sources and the angular distribution of galaxies located at various redshifts.
As expected, in GR (Ξ0 = 1) the signal peaks inside the correct redshift range (shaded
area). However, as we depart from the GW luminosity distance relation, the location
of this peak is affected.

5.4.1 Mock data and fiducial model
In this section, we describe the recipe used to generate the mock angular power

spectra (Cgal, CGW, and C×) that are fed into our reconstruction pipeline together with
their error covariance matrix. When describing real data, these angular power-spectra
are extracted from the autocorrelation and cross-correlation maps representing the
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5.4. RECONSTRUCTING GW PHYSICS

sky distribution of galaxies and GW sources. The recipe has three main ingredients:
the details of the fiducial model, a description of the instrumental configuration and
a definition of the dominant source of error.

The first ingredient is the fiducial model. Our decision in this case is based on the
results of (T. Baker & Harrison, 2021), where present-day constraints on the function
αM appearing in equation (5.6) are presented. As shown in (Belgacem et al., 2019),
the results of the αM ∝ a parametrization found in that work can be mapped to the
Ξ(z) function in equation (5.8). Using this transformation, we find that the 3σ upper
limit roughly corresponds to

Ξ0 ≲ 1.4, (5.20)

with n = 1. Thus, we assume a fiducial model with Ξfid
0 = 1.4 and nfid = 1, repre-

senting the limit of our present understanding.
The second ingredient of our forecast is the instrumental configurations. The

size of our data vector is given by the number of multipoles ℓ and window functions
that we include in our analysis. Since both are largely dictated by observational
considerations, in this work we assume an optimistic combination of a network of
three Einstein Telescopes (Maggiore et al., 2020; Hall & Evans, 2019) capable of a
log-scatter in measured DL,GW of σln D = 0.05, and a high-z redshift survey with large
sky coverage and negligible redshift uncertainties such as SKA (Weltman et al., 2020).

The range of angular scales that we consider is limited by two factors. On small
scales, large multipoles (ℓ > 100) are excluded due to the angular resolution of about
1 degree expected for our GW detector configuration of choice (Hall & Evans, 2019).
On large scales, we do not explore values of ℓ < 10 because our modelling does
not take into account the relativistic effects dominating the signal at these scales.
Nevertheless, we stress that these multipoles contribute relatively little information
compared to larger multipoles since they are dominated by cosmic variance.

Our window functions are distributed in the redshift range [0.1, 3]. We assume
Ngal = 12 galaxy bins equally spaced in redshift, and NGW = 8 GW luminosity
distance bins equally spaced in DL,GW. We mention in particular that this choice is
not completely arbitrary. The number of GW bins is motivated by forcing well-defined
bins such that their width is at least three times the luminosity distance uncertainty
σln D that we have assumed. Furthermore, we have also verified that the exact number
of galaxy bins does not dominate our results as long as Ngal > NGW.

As for the last ingredient, we assume cosmic-variance or shot-noise limited uncer-
tainties. In this case, we can write the covariance matrix of the auto-correlation and
cross-correlation signals defined in equation (5.13), (5.17) and (5.19) as the following:

Cov
[
Cij(ℓ)Cmn(ℓ′)

]
= δℓℓ′

(2ℓ + 1)fsky
×

(
C̃imC̃jn + C̃inC̃jm

)
,

(5.21)

where the indices i, j, m, n can represent both galaxy or gravitational wave bins. The
terms C̃im contain the shot-noise contribution when they represent the autocorrela-
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tions in the same bin:
C̃im(ℓ) = Cim(ℓ) + δim

n̄
, (5.22)

where n̄ is the average density of projected objects from equation (5.10). In this work,
we assume a survey covering a sky fraction equal to fsky = 0.5.

Let us point out that we do not use the cross-bin correlations for the bins of
the same type as a signal. However, we properly take into account the C̃im terms for
overlaps between two different GW bins. Similar terms for galaxy bins are completely
negligible as there are no overlaps between the spectroscopic redshift bins.

For the setup described in this section, we find a total SNR of the GW-gal and GW-
GW angular power-spectra of ∼ 37. This value is dominated by the GW-gal cross-
correlations since the GW-GW auto-correlations are not well measured (SNR≲ 6).

To generalize our choices, in subsection 5.5.2 we expand on how different combi-
nations of instrumental specifications can affect the precision of the reconstruction.

5.4.2 Reconstruction Pipeline
In this section, we describe how the mock data presented in the previous section

can be used to reconstruct DL,GW and bGW as a function of z. For ease of interpretation
and visualization, in our analysis we do not fit these functions directly, but instead
focus on the ratios DL,GW/DL,EM (z) and bGW/bgal (z). We point out that we do not
marginalize over different possibilities for bgal (z). This is because we are not interested
in exploring the properties of the galaxy population, which are expected to be very
well constrained by the galaxy-galaxy correlation signal alone.

As emphasized earlier, our approach makes use of a GP regression. This method
is often used when the function of interest is directly measured at certain redshifts.
These measurements are used as a training sample of the GP model, which then can
predict the values of the reconstructed function at redshifts lacking any direct mea-
surements (Belgacem, Foffa, Maggiore, & Yang, 2020; Renzi et al., 2021; P. Mukherjee
& Mukherjee, 2021; Levi Said, Mifsud, Sultana, & Zarb Adami, 2021; Perenon et al.,
2021).

However, this is not directly applicable for our current problem as neither the
DL,GW/DL,EM (z) nor the bGW/bgal (z) are directly observable. Instead, these functions
determine the auto- and cross-angular power spectra, which constitute our direct
observables. In order to use GPs for our problem, we consider a certain number of
redshift nodes for the two functions, referred to as training nodes with a slight abuse
of terminology. The amplitudes of the nodes are free and, given a node configuration,
we consider GPs which pass through all of these nodes exactly. To render our scenario
computationally feasible and not consider many functions for each node configuration,
we use the GPs regressor of the python package sklearn to output the best fit and
use this as our function.

Our use of GPs can be thought of as a binning of the functions of interest in
redshift space, and imposing a certain prior correlations between the bins. These
correlations are specified by the GP kernel function, which in our case is chosen to
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0.0 0.5 1.0 1.5 2.0 2.5 3.0
z
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2.0
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GW
/D

L,
EM

L = 0.2
L = 0.7

Figure 5.2: Example of GP reconstruction. The function DL,GW/DL,EM (z) is con-
structed using 4 nodes at fixed redshifts (filled black dots). By varying the amplitudes
of the nodes and the correlation length (L), it is possible to obtain different functional
forms. The dashed lines represent a few possible realizations, while the thick lines
represents the GP best fit from sklearn used in our sampling. Larger correlation
lengths produce smoother lines.

be

κ(zi, zj; L) ∝ exp


−

1
2

(
|zi − zj|

L

)2


 , (5.23)

where L is the so-called correlation length. This kernel is flexible enough for our
purposes, and we do not expect the detailed choice to have any significant impact on
our results. For computational purposes, we generate the GPs using a baseline around
DL,GW/DL,EM (z) = 1. This baseline makes the GPs reconstruction to efficiently
return to DL,GW/DL,EM (z) = 1 when not pushed towards other values by the training
nodes.

This process is described in Figure 5.2 for two values of correlation length L. While
pictured in this example, for physical reasons in our analysis we exclude negative-
valued functions when exploring DL,GW/DL,EM (z) and bGW/bgal (z), and also non-
monotonic realizations of DL,GW (z).

The goal of our statistical analysis is to explore the possible constraints on the
shape of both DL,GW/DL,EM (z) and bGW/bgal (z). For that, we aim to sample the
posterior distributions of the amplitudes of the nodes as well as the cosmological
parameters. The correlation length L can in principle be fixed based on theoretical
priors. Lacking such priors in our case, we only impose a wide uniform prior on L
and consider it as a free parameter (see Table 5.1).

Each step of the sampling process consists of producing two GP curves – one
for each DL,GW/DL,EM (z) and bGW/bgal (z) – given the current set of training node

109



5.5. RESULTS

Parameter Prior
Node amplitudes [0, 11] (Uniform)

Correlation length (L) [1, 10] (Uniform)
Ωm 1% (Gaussian)
h 1% (Gaussian)
w0 5% (Gaussian)

Table 5.1: Summary of the priors imposed before reconstructing bGW/bgal (z) and
DL,GW/DL,EM (z) using 4 nodes each. The GP hyper-parameters (i.e., the 2 corre-
lation lengths and the 4 × 2 amplitudes) are explored independently. The fiducial
model is given by Ξ0 = 1.4, n = 1, Ωm = 0.31, h = 0.67, w0 = −1.

amplitudes. The curves are used in the calculation of theoretical auto- and cross-
correlation power spectra described in section 5.3. The theoretical power spectra
enter the Gaussian likelihood together with the generated mock data. The theoretical
predictions are computed using our python code which is interfaced with the emcee
sampler. The typical runs with varying cosmology take approximately 10 hours on a
modern machine.

After obtaining the posterior distribution of the nodes, we reverse-engineer the
problem to obtain confidence contours for each DL,GW/DL,EM (z) and bGW/bgal (z).
For all the sampled node amplitudes we generate the corresponding GP profiles on
finite but sufficiently many redshift points and calculate the 68% and 95% confidence
intervals at each redshift using the statistical python package GetDist.

To assess the impact of different cosmological backgrounds and clustering prop-
erties, we include in our reconstruction three nuisance parameters: the dark matter
abundance Ωm, the Hubble constant H0 and the dark energy equation of state pa-
rameter w0. A summary of our model parameters and priors used in this work is
presented in Table 5.1.

We would like to point out that upcoming galaxy surveys will measure these pa-
rameters with very high precision. While GWs alone might be able to provide com-
petitive constraints, the focus of our analysis is not in constraining them. Rather, we
would like to quantify how accurately the GW luminosity distance and source proper-
ties can be measured. These properties are not accessible to generic redshift surveys
and can only be measured with the use of GW-specific observables. This reasoning
justifies our tight Gaussian priors on the aforementioned cosmological parameters.

5.5 Results

5.5.1 Reconstructions
In our reconstructions, we always impose the DL,GW/DL,EM (z) to become unity

at redshift zero by placing a fixed node at z = 0 with an amplitude of 1. Besides
this fixed node, we have 4 nodes for each of the reconstructed functions. We have
arrived at this number by gradually increasing the number of nodes and monitoring
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Figure 5.3: Confidence intervals (68%, in black, and 95%, in lighter grey) of the
jointly reconstructed functions DL,GW/DL,EM (z) and bGW/bgal (z). Together with the
assumed fiducial model, we also plot the expectation for different models (see text for
more details). The vertical lines mark the fixed location of the nodes used in the GP
reconstruction.

the goodness of fit. In practice, we have monitored the AIC information criterion for
1-, 2- and 3- node setups for the GW luminosity distance. Our experiments suggest
that, as expected, the 1-node configuration is significantly worse than the presented
4-node setup. The 2- and 3- node setups have similar performance compared to the
4-node case, but the latter still outperforms the former two. We then use the same
number of nodes for the bias reconstruction.

In our main analysis, the redshift positions zi of the nodes are fixed. We have,
however, performed an experimental run to assess the impact of letting them free in
reduced uniform prior ranges. The result of this experimentation is that the node
locations remain unconstrained, and the final posterior of e.g. DL,GW/DL,EM (z) does
not change when the node redshift locations are being sampled as free parameters.
This implies that the exact locations of the GP notes are unimportant given they are
uniformly distributed in the redshift range of interest.

It is worth emphasizing that when applying our methodology to real data, the
number of nodes, as well as their exact redshift placements, should be constrained
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by performing similar, but more systematic experiments. Particularly, more accurate
measures, such as the Bayesian evidence ratios, should be employed. Also, if enough
data is used, some possible constraints could be found by letting the training nodes
be completely free in the entire redshift range of interest. As the resulting posteriors
are expected to be multimodal, this should be investigated using nested sampling
algorithms.

As mentioned earlier, we also explore the GP correlation lengths both for the bias
and the luminosity distance. On physical grounds, we are interested in smooth GP
functions and have imposed the minimum of the uniform prior range for L to be of
the order of the inter-node distance so that the smoothness is maintained. We find
that, as expected, both of the correlation lengths remain unconstrained within the
imposed wide prior ranges.

The results of our joint reconstruction is presented in Figure 5.3. In the same
Figure, we also compare these constraints to different theoretical models. In the case
of DL,GW/DL,EM(z), we use the parametrization αM(z) = α0

[
H0

H(z)

]2
where we use the

equation (5.3) with w0 = −1 to obtain the plotted lines (Belgacem et al., 2019). On
the other hand, for bGW/bgal (z) we plot the lines corresponding to constant values of
bGW (z), while keeping the galaxy bias fixed to the expression in equation (5.18).

In principle, the output of our sampling can also be used to reconstruct the func-
tion αM(z) by calculating the numerical derivative of DL,GW/DL,EM (z). For the pur-
poses of this chapter, however, we chose not to do this. The kernel in equation (5.23)
can be interpreted as a smoothness prior and the value of αM(z) is directly affected
by it. Because of this, if one is interested in inferring αM(z), GPs should be used to
sample this function directly.

As expected, we observe how the fiducial models for both DL,GW/DL,EM (z) and
bGW/bgal (z) are well encoded within the reconstructed confidence contours in both
panels of Figure 5.3. The constraints at higher redshift (z ≈ 3) for both reconstruc-
tions are broader. This is an effect that could not be seen if a parametric function
was used for DL,GW/DL,EM (z), for instance, as the parametrization would have fixed
the behaviour similarly at low and higher redshifts. Finally, in Figure 5.4 we show
the correlation between these functions. We observe weak but non-zero correlations
between the GW bias and the luminosity distance. In general, parametric models
might induce non-physical correlations. GPs are expected to behave better in this re-
gard, but they can still induce spurious correlations due to finite correlation lengths.
For consistency, we have also performed a reconstruction using a redshift binning
approach and concluded that we can recover a very similar correlation structure with
both of the methods.

5.5.2 Signal-to-Noise scaling
The constraining power of our method crucially depends on a number of obser-

vational specifications. The most relevant parameters are 1) the angular sensitivity,
specified by the maximum multipole ℓmax of the angular power spectra; 2) the number
of GW sources, which is specified by the comoving number density nGW; and 3) the
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Figure 5.4: Correlation matrix for the reconstructed functions bGW/bgal (z) and
DL,GW/DL,EM (z). The figure displays how mild, but non trivial correlations can
arise from a joint reconstruction.

precision of the GW luminosity distance measurements σln D. In the case of nGW, we
adjust the value of n0 in equation (5.9) as a way to explore different values of the
total number of observed GW events, N = 4πfskyn̄GW. This, in principle, should
include selection effects not captured by our formalism. Obviously, for a given ex-
perimental configuration the mentioned three variables are not independent, but it is
still interesting to find the dependence of our results on each one of them separately.
This allows us to reach conclusions without relying on specific experiments, and to
suggest potential design guidelines for future GW detectors.

To attain such insights, in this subsection we consider constraints on the para-
metric expression in equation (5.8), as well as the parametric GW bias given by
equation (5.15). For simplicity, we fix n = 1 and only constrain the parameter Ξ0.

When varying ℓmax and N we keep the rest of the configuration (including the
luminosity distance binning) fixed. Each case of σln D, on the other hand, is accom-
panied by an adjustment in the number of luminosity distance bins. This is done to
be consistent with our binning strategy, namely that the luminosity distance width
of each bin is at least O(3) times wider than σln D.

Our results are summarized in Figure 5.5, where we plot the anticipated uncer-
tainties in Ξ0 (upper panel) and b0 (lower panel) as a function of the SNR of the
cross-correlation in equation (5.19).
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Figure 5.5: Scaling of the observed constraints with the cross-correlation SNR. Using a
parametrized model for bGW/bgal (z) and DL,GW/DL,EM (z) we explore the constraining
power of our method as a function of the number of observed GW sources N =
[0.7, 4, 7, 13, 20] × 104, angular resolution ℓmax = [20, 40, 60, 80, 100] and luminosity
distance uncertainty σln D = [0.5, 0.3, 0.2, 0.075, 0.05]. As visible from the figure, the
data SNR completely captures the effect on the observed uncertainties ∆b0 and ∆Ξ0
in the first two cases. In the case of σln D, we observe that the increase in constraining
power for DL,GW/DL,EM (z) is steeper due to the larger number of window functions
that we can build to sample DL,GW (z).

For a fixed σln D the constraining power on Ξ0 and b0 is almost completely de-
termined by the cross-correlation SNR. This fact suggests that no matter how the
given SNR is realized (either by increasing the number of sources or by improving
the angular sensitivity), the expected constraints will be the same. This implies that
the results presented in this chapter can be easily scaled to different configurations.
Unsurprisingly, we find that the constraints scale as 1/SNR.

The situation is somewhat different for the case of varying σln D (and the number
of luminosity distance bins). The constraints on the bias still follow the same form
(see the lower panel), but the scaling of the Ξ0 constraints, on the other hand, is
much steeper than in the cases of varying ℓmax and nGW, roughly 1/SNR3. This
fact can be qualitatively understood by remembering the importance of the relative
positions of GW and galaxy window functions demonstrated in Figure 5.1. Sampling
this relation with a larger number of window functions increases the precision of our
reconstruction.
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The results presented in this section quantify the importance of accurate luminos-
ity distance measurements and demonstrate the benefit that smaller values of σln D

can bring to a binned approach.

5.6 Discussion and Conclusions
In this chapter, we have shown how the combination of GW observations and

redshift surveys can be exploited in the era of GW cosmology. We have identified
two essential quantities that characterize this new research field: 1) the luminosity
distance relation, a clear imprint of modifications to the propagation of tensor modes
(see section 5.2), and 2) the bias of the sources, regulating their spatial distribution
and betraying their origin.

Proposed GW detectors such as the Einstein Telescope (Maggiore et al., 2020)
or Cosmic Explorer (Reitze et al., 2019) are expected to probe a sizeable fraction of
the visible Universe and produce large statistical samples. In this context, we point
out that the number of sources assumed for our main analysis, 2 × 105, is particu-
larly conservative and differs from expectations by at least an order of magnitude
(Maggiore et al., 2020). This difference is primarily due to our assumption of a con-
stant comoving density of events. While we do not explore other assumptions for
the distribution of GW sources over cosmic time, we have investigated similar effects
in subsection 5.5.2, where we have shown how our results can be rescaled to other
instrument configurations or number of observed sources.

Our formalism, based on binned angular power-spectra and sky maps, is optimal
for a large number of sources with no known counterpart. Its main advantages are
related to the simple modelling of the theoretical signals and their data covariance
matrix. Because no reconstruction of the underlying density field is necessary, the
predictions display a clear separation of scales. For example, the angular scales that
we have considered hare are all within the linear regime (k ≲ 0.1 Mpc−1). Further-
more, because this formalism is well established, our shot-noise limited covariance
matrix can be easily generalized to include additional sources of (co-)variance.

Although a comprehensive comparison between multiple approaches is outside the
scope of this work, it is worth discussing how our results compare to others found in
the literature. We preface this by saying that one-to-one comparisons, however, are
often complicated either by significantly different assumptions or the impossibility of
directly translating these assumptions from one prescription to another. Despite this,
here we draw a parallel between our method and two other methods.

The first method is the one used in (S. Mukherjee, Wandelt, & Silk, 2021),
which has also been shown to be extremely successful in measuring both bGW (z)
and DL,GW (z) using parametric models. Similarly to this work, the information is
also extracted from the cross-correlation with redshift sources, but no binning of the
GW data is performed. In this case, we have verified that such methods perform
significantly better than our map-based approach in the case of a low number density
of GW sources and large uncertainty in the measured DL,EM (z). These features, in
particular, make it especially useful for near-future samples of a few tens of objects.
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The second promising method to measure DL,GW (z) that has been proposed in
the literature is offered by GW sources with known counterparts. Such observations
give direct access to DL,GW as a function of redshift and can be combined with sim-
ilar measurements in the EM spectrum to obtain DL,GW/DL,EM (z). The analysis
of (Belgacem et al., 2020) is based on this methodology and, similarly to ours, also
employs GPs to reconstruct this ratio from an Einstein Telescope sample with ∼ 102

sources.
Ultimately, we expect this counterpart-based formalism and the one described in

this work to be complementary: a direct measure of DL,GW (z) can be used to break
the degeneracy between bias and luminosity distance shown in Figure 5.4. However,
because the fraction of events with known counterparts that will be observed is heavily
dependent on both the GW source distribution and multiple instrumental setups, we
do not attempt to combine the two methods here.

In conclusion, the combination of GW resolved events and the clustering of galax-
ies is expected to improve our current knowledge of the physical properties of the
Universe. Our work shows how to reconstruct these properties as a function of red-
shift in a generic way, and highlights the need for accurate and precise measurements
of DL,GW. This will require control over the instrument calibration uncertainties
(Cahillane et al., 2017), but also the degeneracy between the inclination of the source
and its luminosity distance (Ghosh, Del Pozzo, & Ajith, 2016). In the future, we aim
to apply our current analysis pipeline to the next generation of large scale structure
surveys and incoming GW observations.
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