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Chapter 4

Cross-correlations of the
anisotropies of the Astrophysical
Gravitational-Wave Background
with Galaxy Clustering

This chapter is based on:
Cross-correlation of the astrophysical gravitational-wave background with galaxy clus-
tering
Guadalupe Cañas-Herrera, Omar Contigiani and Valeri Vardanyan.
(August, 2020), Physical Review D 102, 4, 043513, arXiv:1910.08353.

4.1 Introduction
Gravitational waves (GWs) are one of the striking predictions of the General The-

ory of Relativity (Einstein, 1916, 1918). The first indirect detection was obtained by
measuring the orbital decay of a pulsar binary system by Hulse and Taylor (Hulse &
Taylor, 1975) and, a century after they were conjectured, the GW signal of a merging
black hole binary was detected by the Laser Interferometer Gravitational-Wave Ob-
servatory (LIGO) (LIGO Scientific collaboration and VIRGO collaboration, 2016b).
Because the strain of GWs is less affected by distance compared to electromagnetic
radiation, they potentially contain important information about sources which would
be otherwise too dim to be observable. This discovery paved the way for a new multi-
messenger era in cosmology and opened a new window into the physics of compact
objects and gravity (Ezquiaga & Zumalacárregui, 2018).

Every GW signal observed so far has been emitted from bright sources resolved
as distinct events, such as low-redshift black hole (LIGO Scientific collaboration and
VIRGO collaboration, 2016a, 2017a, 2017b, 2017c) and neutron star binary mergers
(LIGO Scientific collaboration and VIRGO collaboration, 2017d). However, in ad-
dition to resolved events, one can expect the presence of a GW background (GWB)
produced by the superposition of unresolved compact binaries that are either too far
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away or too faint to be detected individually. In practical terms, these unresolved
sources form stochastic GWBs, which may differ in spectral shape and frequency
depending on the source population (Thrane et al., 2009).

For instance, supermassive black hole binaries form a stochastic background in
the nHz band, which is expected to soon be detected by the Pulsar Timing Array
(PTA) (S. R. Taylor et al., 2016; Arzoumanian et al., 2018; Mannerkoski, Johansson,
Pihajoki, Rantala, & Naab, 2019). While in the mHz band, the mergers of a similar
population of massive binaries are expected to be detected as resolved events by the
Laser Interferometer Space Antenna (LISA) (Wyithe & Loeb, 2003).

GWBs might also have a cosmological origin. Examples of such backgrounds
are those produced in the early Universe, such as during inflation (T. L. Smith et
al., 2006), or a phase transitions (Blanco-Pillado, Olum, & Siemens, 2018). More-
over, a hypothesized primordial black hole population (Sasaki, Suyama, Tanaka, &
Yokoyama, 2018) might also contribute to the total number of compact binaries in
the Universe. Many of these cosmological backgrounds are predicted to be isotropic
and they can extend over multiple frequency bands, from nHz up to GHz (Sousa,
Avelino, & Guedes, 2020; Wang, Huang, Li, & Liao, 2020).

In this chapter, we discuss the background due to solar-mass sized stellar remnants
(black hole or neutron star binaries). The astrophysical GWB resulting from their
inspiral and coalescence should be detectable not only in mHz band (Z.-C. Chen,
Huang, & Huang, 2019), but also in the Hz to kHz band. In this range, LIGO searches
of this background have already been performed (LIGO Scientific collaboration and
VIRGO collaboration, 2019).

While the experimental challenges associated with the detection of this GWB are
not the focus of this work, it is worth pointing out that fundamental obstacles persist
in both frequency ranges. In the mHz band, the reconstruction is hindered by the
presence of an additional low-frequency background induced by Galactic white dwarf
binaries (Amaro-Seoane et al., 2012). To address this complication, previous works
have shown that this background can be removed by exploiting the yearly modulation
of space-based GW observatories (Adams & Cornish, 2014). On the other hand, the
main obstacle in the Hz-kHz is represented by the large shot noise contribution.
Because the astrophysical GWB in this band is comprised of multiple unresolved
transient events, a low event rate induces a large theoretical uncertainty in the total
expected energy density. In particular, the contribution of this effect to the scale-
dependence of the signal has a divergent formal expression (Jenkins & Sakellariadou,
2019; Cusin, Dvorkin, Pitrou, & Uzan, 2018a).

None of these GWBs have been detected yet. Still, if ever observed, they would be
the direct analogues of electromagnetic backgrounds formed by the superposition of
multiple astronomical signals. Examples of this type of backgrounds are the cosmic
infrared background (CIB) (Hazumi et al., 2020), produced by stellar dust, and the
cosmic X-ray background (CXB) (Fabian & Barcons, 1992), formed by numerous
extragalactic X-ray sources.

The anisotropies of the astrophysical GWB have been extensively studied for years
(Thrane et al., 2009) and, more recently, two independent groups Cusin et. al. (Cusin,
Dvorkin, Pitrou, & Uzan, 2018b; Cusin, Pitrou, & Uzan, 2017) and Jenkins et. al.
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4.2. GRAVITATIONAL-WAVE ANISOTROPIES

(Jenkins & Sakellariadou, 2018; Jenkins, Sakellariadou, Regimbau, & Slezak, 2018)
obtained discrepant predictions for the scale-dependent signal (Cusin et al., 2018a;
Jenkins, Sakellariadou, et al., 2019). The main disagreements are related to the shape
of the angular power spectrum as well as the overall amplitude of the signal. The
difference in shape seems to be related to the treatment of non-linear scales (see also
section 4.2 of this chapter), whereas the difference in amplitude is due to the chosen
normalization. Here, let us mention that the main focus of their investigations so
far has been the study of the autocorrelation signal and its shot-noise component,
with further studies in this field being carried out also in (Cusin, Pitrou, & Uzan,
2018; Cusin, Dvorkin, Pitrou, & Uzan, 2020; Pitrou, Cusin, & Uzan, 2020; Cusin,
Durrer, & Ferreira, 2019). It is, however, worth pointing out that signals beyond
autocorrelation, such as the cross-correlation between GWB and galaxy clustering or
weak lensing convergence, have also been modelled to some extent (see e.g. (Cusin,
Dvorkin, Pitrou, & Uzan, 2019)).

Here, we study the cross-correlation between the anisotropies of the astrophysical
GWB and galaxy clustering (GC), and argue why it represents the ideal observable
to detect the background and measure its properties. There are three main reasons
for this choice. First, the distribution of compact mergers forming the GWB is
determined by the distribution of their host galaxies. This means that one should
expect a relatively large correlation between the two signals. Second, the cross-
correlation signal for diffuse backgrounds is expected to have a larger signal-to-noise
ratio compared to the autocorrelation signal, hence the former is likely to be detected
earlier (Ando, Benoit-Lévy, & Komatsu, 2014). Third, as presented in the next
section, our investigation shows that the autocorrelation signal of the astrophysical
GWB is very sensitive to small-scale structure, while the cross-correlation signal is
free from this problem. In a somewhat similar spirit, Refs. (S. Mukherjee, Wandelt, &
Silk, 2020b, 2020a; Calore, Cuoco, Regimbau, Sachdev, & Serpico, 2020) have recently
studied the cross-correlation of resolved GW sources with large scale structure and
lensed cosmic microwave background.

Our chapter is organized as follows. In section 4.2 we review the main aspects
of the GWB autocorrelation signal and highlight its limitations. In section 4.3, we
present the angular power spectrum of the cross-correlation signal and calculate the
expected shot-noise contamination (section 4.5). In section 4.4 we demonstrate how
the cross-correlation can be used to constrain the average power emitted by unresolved
GW sources as a function of redshift, and quantify the required signal-to-noise ratio
and angular resolution. To do this, we use a fiducial cosmology based on the best-
fit results of Planck 2018 (Planck Collaboration, Aghanim, Akrami, Ashdown, et
al., 2020b) and a toy model for the GWB. Finally, we present our conclusions in
section 4.5.

4.2 Gravitational-Wave anisotropies
In this section, we discuss the autocorrelation signal of the anisotropic GWB.

This signal, as well as the shot-noise contamination, have been extensively studied in
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previous works (Jenkins & Sakellariadou, 2019; Jenkins, Romano, & Sakellariadou,
2019; Cusin, Dvorkin, et al., 2019). Here, we review the main aspects of modelling
these and describe some particularities.

Our starting point is the definition of the dimensionless energy density of GWs
from a given direction of the sky r̂, per unit solid angle:

ΩGW(ν0, r̂) = ν0

ρc

dρGW(ν0, r̂)
dν0d2r̂

, (4.1)

where ρGW(ν0, r̂) is the present-day energy density in GWs, ν0 is the observed fre-
quency and ρc = 3H2

0 /8πG is the critical density of the Universe. Note that, from
now on, we suppress the frequency dependence. We model this signal as

ΩGW(r̂) ≡
∫

dr r2K(r)n(⃗r), (4.2)

where n(⃗r) is the galaxy density field in comoving coordinates r⃗, and K is the GW
kernel that encodes the average contribution of a galaxy to ΩGW as a function of
comoving distance r. In practice, this includes information about the star formation
history of the Universe and the properties of the emitting binary population. It
is instructive to rewrite equation (4.2) in terms of the galaxy overdensity δg(⃗r) ≡
n(⃗r)/n̄(r) − 1, with n̄(r) being the average number density of galaxies, defined as
n̄(r) ≡ ∫ d2r̂n(⃗r)/4π. With this notation we have

ΩGW(r̂) =
∫

dr r2K(r)n̄(r) (δg(⃗r) + 1) . (4.3)

From this point, the angular power spectrum of the anisotropic GWB CGW
ℓ can be

calculated to be
CGW

ℓ = 4π
∫ kmax

kmin

dk

k
|δΩℓ|2P(k) + BGW

ℓ . (4.4)

Here δΩℓ(k) is given by

δΩℓ(k) =
∫

dr r2K(r)n̄(r)Tg(k, r)jℓ (kr) , (4.5)

where Tg is the synchronous gauge transfer function relating the galaxy power spec-
trum to the primordial one P(k) = As (k/k∗)ns−1, and jℓ is the spherical Bessel
function of order ℓ. Note that the galaxy bias is implicitly absorbed in Tg. Note also
that in equation (4.5) we neglect relativistic corrections, as they are generally found
to be below cosmic variance (Bertacca et al., 2019).

The term BGW
ℓ in the power spectrum is the shot-noise bias term introduced

by the spatial and temporal shot-noise in the distribution of the individual events
forming the GWB. Following (Jenkins & Sakellariadou, 2019), we write the shot-
noise contribution in the kHz band as

BGW
ℓ =

∫
dr K2(r)n̄(r)r2

[
1 + 1 + z(r)

R(r)TO

]
. (4.6)
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Because of the low event rate in this frequency range, this noise contribution is in-
versely proportional to the average number of events per galaxy, written as the average
redshifted event rate (1 + z)/R(r) multiplied by the observing time TO. However, be-
cause the duration of the inspiral phase in the mHz band is much larger than any
reasonable observing time, the contribution of the term 1/(R(r)T0) is negligible in
this case.

The GWB discussed here is an integrated signal. Because of this, the low-redshift
objects might significantly contribute to the GWB. Indeed, the astrophysical models
of (Cusin, Dvorkin, et al., 2019) suggest that the combination

K̃(r) = K(r)n̄(r)r2 (4.7)

is not decaying to negligible values close to redshifts z ∼ 0. This introduces two
complications in the modelling.

The first is connected to the shot noise. To highlight this, we rewrite equation (4.6)
as

BGW
ℓ =

∫
dr
K̃2(r)
n̄(r)r2

[
1 + 1 + z(r)

R(r)TO

]
. (4.8)

From this expression, it is clear that the shot-noise has a divergent expression due
to low-redshift (low-r) contributions. To obtain a well-behaved prediction for the
autocorrelation signal, this divergence can be suppressed if local events are excluded
from the background. This is equivalent to setting a lower limit in the integral above
different from zero.

Second, there exist a complication derived from the scale dependent part of the
angular power spectrum (the first term in equation (4.4)), which is expected to re-
ceive non-negligible contributions from small, highly non-linear scales. To get some
intuition about this feature, let us simplify our expression for the GWB angular power
spectrum by using the so-called Limber approximation

jℓ(x)→
√

π

2α
δD (α− x) , (4.9)

where δD is the Dirac delta-function and α ≡ ℓ + 1/2. Using this in Eq. (4.5) and
neglecting the bias term we obtain

CGW
ℓ ≈ 2π2

α

∫ kmax

kmin

dk

k3 K̃
2
(

α

k

)
S2
(

k,
α

k

)
, (4.10)

S(k, r) ≡ Tg(k, r)P(k)1/2. (4.11)

What equation (4.10) demonstrates is that K̃(r) acts as a modified kernel and
selects a particular domain in the k-integral. This causes small scales to contribute
significantly to CGW

ℓ , unless K̃ is vanishing at the lower end of its argument or S̃2/k3 is
falling fast enough at large values of k. As the modelling of the galaxy power spectrum
at non-linear scales is highly uncertain, this feature is signalling a potential danger
of using the autocorrelation signal as a probe of GW merger history or cosmology.
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Figure 4.1: Left panel: Linear autocorrelation power spectra CGW
ℓ of the GWB of

a constant K̃(r) for a set of upper limits of the integral in equation (4.4), in units of
Mpc−1. Right panel: The same as in the left panel, but for the cross-correlation
between a galaxy sample (centered at z = 0.5) and the GWB, C×

ℓ . Both of the panels
are supposed to be understood as normalized with respect to the amplitude of the
fiducial GWB model, to be discussed in detail later.

To accurately assess the impact of the issue mentioned above, let us turn to the
results of exact numerical computations which do not rely on the Limber approx-
imation. Having in mind the speed requirements of our later parameter analysis,
we have developed a fast numerical procedure1 to compute the integrals in equa-
tions (4.4) and (4.5), given the dark matter transfer function Tm(k,r) calculated using
an Einstein-Boltzmann solver 2.

A technical remark is in order here. Given the rapidly-oscillatory nature of the
spherical Bessel functions in equation (4.5), we have precomputed the line-of-sight
integrals over these Bessel functions on bins of a fine r-grid. On the speed grounds,
the source terms are then inserted only on a much coarser grid, which is only justified
if these source functions do not vary significantly between two coarse-grid points.
While this assumption is well justified for the transfer functions, we can only use our
integrator if the kernel K(r) does not have rapid changes. In this chapter, we consider
only such smooth-enough kernels (and window functions – see the next sections). We
have verified the reliability of our integration procedure against a modified version of
the latest public version of CAMB (Lewis et al., 2000; Howlett et al., 2012).

Our results are illustrated in the left panel of Figure 4.1, where we have chosen
several values of kmax, the upper limit of the integral in equation (4.4), and calculated
the corresponding angular power spectra for the multipoles in the range ℓ = [2, 100].
Note in particular that the magnitude of the signal changes drastically with kmax,
meaning that the autocorrelation signal depends heavily on the shape of the low red-
shift power spectrum on non-linear scales. This is likely one of the causes behind the

1The codes used in this chapter are publicly available at https://github.com/
valerivardanyan/GW-GC-CrossCorr.

2In this chapter, we use the ΛCDM limit of the EFTCAMB code (Hu, Raveri, Frusciante, & Silvestri,
2014; Raveri, Hu, Frusciante, & Silvestri, 2014) for simplicity, as it is easier to output the required
transfer functions as a function of redshift.
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4.3. CROSS-CORRELATION WITH GALAXY CLUSTERING
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Figure 4.2: Fiducial model as a function of redshift z, of the GW source kernel
K̃(r(z)) in Eq. (4.7). In practice, we cut off the low-redshift sources with comoving
distances smaller than 150 Mpc (see the text for details). The galaxy clustering
window functions W1 and W2 are assumed to be Gaussian.

discrepancy between Jenkins et. al. and Cusin et. al. and suggests that an accurate
prediction of the autocorrelation signal should take into account not only the shot-
noise contribution (Jenkins, Romano, & Sakellariadou, 2019; Cusin, Dvorkin, et al.,
2019), but also the uncertainties due to baryonic effects in the matter distribution at
small scales (Debackere, Schaye, & Hoekstra, 2020; Schneider et al., 2019). We point
out, in particular, that the galaxy catalogue based on dark-matter-only simulations
of (Blaizot et al., 2005) and the halofit model of (Takahashi et al., 2012) are not
designed to consistently or accurately model this uncertainty. While not shown, we
point out that this problem is even more noticeable at high ℓ, where a larger value of
kmax ∼ 5 Mpc−1 is required for the integrals to converge (as highlighted in (Cusin et
al., 2018a)).

4.3 Cross-correlation with galaxy clustering
In this section, we introduce the main concepts necessary for modelling the cross-

correlation signal and discuss its advantages.
First of all, we define the observed overdensity of galaxies in the given direction r̂

per unit sold angle as
∆(r̂) =

∫
dr Wi(r)δg (⃗r), (4.12)

where Wi(r) is the probability density function of the galaxies’ comoving distances
(also referred to as the GC window function) and δg (⃗r) is the galaxy overdensity
defined earlier. Using equation (4.12), the angular power spectrum of GC, CGC

ℓ , can
be shown to be

CGC
ℓ = 4π

∫ dk

k
|∆ℓ(k)|2P(k) + 1

ni

, (4.13)
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where ∆ℓ(k) is given by

∆ℓ(k) =
∫

dr Wi(r)Ti(k, r)jℓ(kr). (4.14)

Ti(k, r) is the transfer function for the galaxy overdensity in the selected redshift
range Wi(r), jℓ(kr) is the spherical Bessel function of order ℓ and ni is the average
number of galaxies per steradian, also dependent on the specific redshift selection
Wi(r). This final quantity appears in the second term in equation (4.13) and dictates
the size of the shot-noise component of the power-spectrum.

Using equations (4.5) and (4.14), one can derive the angular power spectrum of
the cross-correlation C×

ℓ of the GWB and the GC maps, given by equation (4.2) and
(4.12). This is

C×
ℓ = 4π

∫ dk

k
δΩ∗

ℓ(k)∆ℓ(k)P(k) + Bℓ, (4.15)

where the shot-noise contribution Bℓ, derived in Appendix 4.5, can be shown to be

Bℓ =
∫

dr Wi(r)K(r). (4.16)

With these expressions in mind, we can now discuss how the cross-correlation signal
can be used to address the modelling challenges we have presented in the previous
section.

To address the first one, we notice that, while the 1/r2 divergence is still present
in the integral in equation (4.16), this integral is generally well behaved if the window
function Wi(r) decays fast enough at small redshifts. Notice that this is impossible
to do in the equivalent expression for the autocorrelation in equation (4.6).

With respect to the second issue, we compare in Figure 4.1 the effects of the small-
scale power spectrum on both the auto and cross-correlation. To explain the different
behaviour, we note that the equivalent of equation (4.10) for the cross-correlation is

C×
ℓ ≈

2π2

α

∫ kmax

kmin

dk

k3 Wi

(
α

k

)
K̃
(

α

k

)
S2
(

k,
α

k

)
. (4.17)

Because GC surveys allow for redshift-selection of the sources, the GC window func-
tion Wi(r) can be taken to be peaked at some non-zero redshift and quickly decaying
for larger or smaller values of r. equation (4.17) shows that this behaviour cuts off
the contribution from very large and very small scales, as shown in the right panel of
Figure 4.1.

4.4 Information content

4.4.1 Model set-up
In this section, our primary goal is to explore the sensitivity of the cross-correlation

signal to various parameters and estimate its information content. To this end, we
model the signal using simple, but representative assumptions about the GW and GC
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Figure 4.3: Effects of the model parameters bGWK0, z∗, Ωm and bGW on the cross-
correlation signal. The uncertainties are the cosmic variance defined in Appendix
4.5. Note particularly that in the case of both of the window functions W1 and
W2 the change in bGWK0 induces a significant change in the amplitude of the signal
(upper left panel), while when the combination bGWK0 is fixed, the signal is not
sensitive to the value of the GW bias bGW (lower left panel). Note that mostly the
high-ℓ multipoles are sensitive to changes in z∗ (upper right panel). Note also that
the change on Ωm modifies the tilt of the signal, without altering its overall amplitude
(lower right panel). All of the panels are supposed to be understood as normalized
with respect to the amplitude of the fiducial GWB model.

maps. This allows us to derive an upper limit on the constraining power by assuming
the theoretical minimum uncertainty due to cosmic variance.

We base our model for K̃(r) on the physically motivated one of Cusin et. al.
(Cusin, Dvorkin, et al., 2019), by noting that their function A(z) is the analogue of
our K̃(r) in redshift space. In this reference, in particular, it is shown that A(r) is
a slowly-evolving function of redshift, and has a similar shape over a wide range of
frequencies and assumptions about the source population (see their figures 19 and
13). Thus, we model the kernel as

K(r) = K0

2n̄(r)r2 {tanh [10(z∗(r)− z(r))] + 1} , (4.18)

where K0 is the amplitude of the kernel, z∗ is a cut-off redshift, and n̄(r) ≈ 10−1

Mpc−3 is the average comoving galaxy number density estimated using Figure 4 of
(Schaye et al., 2015). We do not implement a redshift dependence for this quantity
because its value is relevant only for the shot-noise component of the cross-correlation,
found to be negligible in the cases considered here. In our fiducial model, we assume
z∗ = 1 (see Figure 4.2), as it is known by Cusin et al. that the astrophysical kernel
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Figure 4.4: Effects of the model parameters bGWK0, z∗, Ωm and bGW on the auto-
correlation signal. The uncertainties are defined as in Figure 4.3. The curves should
be understood as normalized with respect to the amplitude of the fiducial GWB
model.

K(r)n̄(r)r2 is expected to decay around that value in redshift. Notice that, while
K0 should be dimensionful, its units are irrelevant to us because the cross-correlation
signal is proportional to its value. For the rest of the chapter, we call Kfid

0 the fiducial
value of this quantity.

In the next subsections, we study the cross-correlation between the GWB modelled
above and two galaxy catalogues centred at different redshifts. The two window
functions, W1 and W2, are assumed to be Gaussian distributions centered at z̄ =
{0.5, 1.5} and with widths of σz = {0.18, 0.6}. These values are picked so that the
two selections overlap with the constant portions of K̃(r).

Moreover, we model the transfer functions in equations (4.14) and (4.5) by using
a linear bias approximation (valid for large scales):

Ti(k) = biTm(k, r), (4.19)

and
Tg(k, r) = bGWTm(k, r), (4.20)

where Tm(k, r) is the transfer function for cold dark matter and the bX are known
as bias parameters. When varying our model, we freeze the bias of both galaxy cat-
alogues since it can be extracted from the clustering autocorrelation signal alone.
On the contrary, we treat the GW bias bGW as a free parameter and we assume it
to be a constant over redshift. While this is not necessarily true, in the absence of
shot-noise, only the combination bGWK̃(r) appears in the signal. This implies that a
more complex model can always capture any redshift dependence through the func-
tion K̃(r). Note, however, that breaking the degeneracy between the linear bias of
the GW population and the amplitude of the astrophysical kernel K(r) requires a full
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understanding of the GWB kernel and all ingredients (Scelfo, Bellomo, Raccanelli,
Matarrese, & Verde, 2018).

For the rest of the analysis, we focus on the mHz frequency band, and assume
that low-redshift events (below r = 150 Mpc) can be filtered. In our modelling,
as discussed in the previous sections, these assumptions are essential to obtain a
well-behaved signal which is not overwhelmed by noise. For reference, under these
assumptions we get the following relative noise values at ℓ̂ = 10:

BGW
ℓ̂

CGW
ℓ̂

≈ Bℓ̂

C×
ℓ̂

≈ 10−4. (4.21)

The first value is derived using the inspiral time of a solar mass black hole binary
starting from 1 mHz (Blanchet, Damour, Iyer, Will, & Wiseman, 1995), an observing
time of 1 year and a merger rate of 10−5 per year (B. P. Abbott et al., 2019).

As a summary of our model, Figure 4.2 contains the two window functions W1, W2
and the kernel K̃(r).

4.4.2 Behaviour of the cross-correlation
Before attempting to reconstruct the parameters of our model from mock data,

let us gain some insights into the response of the cross-correlation signal on various
parameters.

First, we explore the dependence of the signal on the kernel amplitude K0, or,
more precisely, the combination bGWK0. In the upper left panel of Figure 4.3 we can
see that in the case of both of the window functions W1 and W2 the change of the
amplitude induces a significant change in the signal. Note that here the bias itself is
fixed. In reality, the kernel amplitude K0 and the bias are perfectly degenerate with
each other since the two appear as proportionality constants to both cross-correlation
signals. To see this, in the lower left panel of Figure 4.3 we demonstrate the impact of
varying bGW on the signal when bGWK0 is held fixed. Note that a similar scaling with
the kernel amplitude is present also for the autocorrelation signal shown in Figure 4.4,
which is proportional to (bGWK0)2.

Second, we turn our attention to the dependence of the signal on the turnover
redshift z∗. In the upper right panel of Figure 4.3 we see that the change of z∗
induces a change in the shape of the signal. The signal with W2 is sensitive to z∗,
while in the case of W1 the signal is practically independent of it. A similarly small
effect is also visible in the autocorrelation signal in Figure 4.4.

Third, it is interesting to show the effect of Ωm on the signal. Specifically, in
the lower left panel of Figure 4.3, it is demonstrated that the effects of Ωm and K0
are qualitatively different from each other. Indeed, changing Ωm rotates the signal,
while K0 affects the amplitude of the signal. This rotation effect due to varying Ωm
is expected, as a similar effect is observed in the galaxy clustering autocorrelation
signal. Indeed, such a behaviour in the signal allows galaxy clustering to constrain
both Ωm and the normalization of the matter power spectrum σ8 (see e.g. (Euclid
Collaboration et al., 2020)).
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Finally, we point out that the scale-dependent power spectra discussed in this
sections do not have a clear peak for any value of ℓ and practically do not show any
sign of decaying power for small scales. This is in contrast to the naive expectations
based on galaxy clustering result. This difference is due to the interplay between
projected scales and redshift selection described in section 4.2, together with the use
of relatively wide effective window functions (K̃(r), W1 and W2).

4.4.3 Constraining K(r)
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Figure 4.5: Posterior distributions for the cases of ℓmax = 10 (orange) and ℓmax = 100
(black), with Planck-2018-like Gaussian prior on Ωm (shown in red dashed line).
Contours represent the 68% and 95% confidence regions. We can clearly see that
K0bGW is constrained even in the case of the limited angular resolution, while bGW
is never separately constrained. The turn-over redshift z∗ is unconstrained for the
low-resolution case, while it is tightly constrained for the case of ℓmax = 100. Finally,
Ωm is prior dominated for the low-resolution case, while it beats the prior in the high-
resolution scenario. Also noteworthy are the degeneracies between Ωm and K0bGW,
as well as between z∗ and K0bGW.

The goal of this section is to understand the constraining power of the cross-
correlation signal by studying how precisely the astrophysical model can be inferred
from a noisy Cℓ measurement.
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Figure 4.6: Constraints on the GWB parameters (bGW,K0, z∗) and cosmology (Ωm)
obtained using the cross-correlation signal with two window functions as a function
of the maximum multipole included in the analysis. Cosmic-variance limited mea-
surements are assumed for all the constraints, so these should be understood as the
best-case scenario results. Larger values of the signal-to-noise ratio (S/N) correspond
to better angular resolution (see Eq. 4.22). We have explored the effect of Ωm on these
constraints by either fixing its value (left panel), or setting a Planck-2018-like Gaus-
sian prior (right panel). Remarkably, the combination bGWK0 can be constrained
even with very limited angular sensitivity. The turnover location z∗ is practically
unconstrained for ℓmax ≲ 50, and Ωm is prior dominated for these multipoles. In case
of ℓmax ≳ 50 all the relevant parameters are tightly constrained, and for ℓmax ∼ 100
the constraints are at the level of a few percent. Notably, the cosmology (mimicked
by varying Ωm in our analysis) can match and surpass the CMB results only in case
of high angular resolution/signal-to-noise. For reference, ℓmax = 100 roughly corre-
sponds to 2 degrees.
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In our analysis, we focus on the best-case scenario of cosmic-variance limited
uncertainties as derived in Appendix 4.5 and use a simple proxy for the overall signal-
to-noise ratio of the cross-correlation, defined as

(
S
N

)2

≡
ℓmax∑

ℓ=ℓmin

(
C×

ℓ

)2

VarC×
ℓ

. (4.22)

Let us note that in our setup the GC signal dominates over the GC shot noise,
implying that equation (4.22) is indeed the theoretical limit for uncertainties. In
the presence of multiple, independent window functions, we simply sum the relative
signal-to-noise expressions in quadrature.

We compute the cross-correlation power spectra, given in equation (4.15), using
the model presented in subsection 4.4.1, and attempt to recover the model parameters
from a noisy realization. To explore the inferred constraints as a function of angular
resolution and S/N levels, we do this in several multipole ranges of ℓ with ℓmin = 2
and varying ℓmax.

The parameters of interest in our analysis are the amplitude of the GWB kernel
K0 and the turnover redshift z∗. In addition to these, we also explore the bias bGW
and Ωm to see if variations in Tg(k, r) can affect the inferred K(r), and to explore the
possible degeneracies between the GWB model and cosmology. To include the effects
of varying Ωm we have precomputed the dark matter transfer functions for a grid of
Ωm values, and have inferred the results for the intermediate values through nearest
neighbour interpolation.

The exploration of the parameter space is carried out using the MCMC python
code emcee (Foreman-Mackey, Hogg, Lang, & Goodman, 2013). We have employed
a Gaussian likelihood function on Cℓ with diagonal covariance matrix given through
equation (4.35), and the prior ranges given in Table 4.1. Note that since we expect K0
to be degenerated with bGW, we do not vary K0 itself, but rather vary the combination
bGWK0.

Parameter Fiducial value Prior
bGWK0 1 [0.01, 100]

bGW 1 [0.1, 10]
z∗ 1 [0.5, 1.5]
Ωm 0.32 G(0.32, 0.013)

Table 4.1: Prior ranges of the sampled parameters. For Ωm we use a Planck-2018
inspired Gaussian prior.

The main results of the analysis are summarised in Figure 4.6, where we show
the expected constraints on the parameters of interest as a function of the maximum
multipole included in the analysis. We also show the corresponding cosmic-variance-
only signal-to-noise ratios.

Let us first have a look at the left panel of the figure, which corresponds to a
fixed Ωm value. As we see, bGWK0 is constrained and, notably, this is true even in
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the limited multipole range corresponding to ℓmax = 10. This is expected, as a clear
detection of the signal is associated with a measurement of its amplitude. On the
other hand, less encouraging are the results for the turnover redshift z∗, which can
be constrained only for ℓmax ≳ 50 or, equivalently, a S/N of ∼ 33.

As we will prove shortly, the poor constraint on the amplitude is because, in the
small multipole range, Ωm is very poorly constrained. At the same time, it is strongly
degenerate with the amplitude.

In the right panel of the figure, we now impose a Gaussian prior on Ωm, with its
variance being comparable to the Planck-2018 constraint on Ωm. While the z∗ results
are not affected, the uncertainties on the amplitude are now slightly inflated, due to
a degeneracy between Ωm and bGWK0. This is also visible in the signal responses
plotted in Figure 4.3.

Let us now fully concentrate on the two limiting angular sensitivities in our anal-
ysis. We take a LIGO-like angular sensitivity limited to the multipole range of
ℓ ∈ [2, 10], as well as an angular sensitivity of a hypothetical high-resolution GW
detector corresponding to ℓ ∈ [2, 100]. The full constraints, for the case of Gaussian
priors on Ωm, are presented in Figure 4.5.

We can clearly see that K0bGW is constrained even in the case of the limited
angular resolution, while bGW is never separately constrained. We have checked that
the latter feature is also present in all the other runs presented in this Section. This
justifies our choice to vary the combination bGWK0 instead of varying bGW and K0
separately.

The turn-over redshift z∗ is unconstrained for the low-resolution case, while it is
tightly constrained for the case of ℓmax = 100. The dark matter abundance Ωm is prior
dominated for the low-resolution case, while it beats the prior in the high-resolution
scenario. Also noteworthy are the degeneracies between Ωm and K0bGW, as well as
between z∗ and K0bGW. These can be easily understood by inspecting the combined
behaviours presented in Figure 4.3.

Before turning to our conclusions let us mention that the results presented in this
section depend on the precise details of the GC window functions and GWB detection
and more precise results can only be obtained by performing a realistic forecast with
exact survey/detector specifications. While we leave a more detailed investigation for
future research, our results suggest that a cosmic-variance limited measurement of the
GWB anisotropies down to ℓ ∼ 100 is able to tightly constrain the redshift evolution
of the GW kernel K̃, as well as to provide Planck-like constraints on cosmological
parameters.

4.5 Conclusions
In this chapter, we have discussed in detail the angular power spectrum of the

cross-correlation between the GWB of astrophysical origin and GC.
We have shown that, contrary to the autocorrelation signal, the cross-correlation

signal does not depend heavily on the small-scale galaxy power spectrum and hence is
a more robust observational probe. To this point, we have also shown that the shot-
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noise associated with this signal is small for realistic choices of the window functions
Wi.

Then, armed with these results, we studied in detail the properties of the angular
power spectra for a range of model parameters. In particular, we have shown how the
signal is sensitive to the turnover redshift z∗ of the GWB kernel, a combination of its
amplitude and the bias bGWK0, as well as the dark matter abundance Ωm. We have
also shown that the signal is not separately sensitive to bGW and K0. A summary of
all of this is presented in Figure 4.3.

As one of the main goals of this chapter, we have performed a Bayesian parameter
estimation using an MCMC sampling based on mock data with cosmic-variance-
limited uncertainties. This choice allows us to provide an upper limit on the con-
straining power of this new observational probe (Figure 4.6). In particular, we have
demonstrated that the cross-correlation signal is a powerful tool to constrain the prop-
erties of the GWB kernel K(r) if appropriate GC window functions are used. This is
true even when marginalizing over uncertainties in the cosmology gravitational-wave
bias.

We have quantified for the first time the need of high-resolution GW detectors in
order to extract the full information content of the GWB of astrophysical origin. In
particular, we have shown that both a high angular resolution and a high signal-to-
noise ratio (ℓ ∼ 100, S/N ∼ 70) are required to recover both the matter abundance
Ωm and features of the kernel K(r) as a function of redshift. Note, in particular,
that these requirements are far above the angular resolution of present-day and near-
future detectors (roughly ℓ ≲ 10, and even ℓ ≲ 4 for LISA (Ungarelli & Vecchio,
2001; LIGO Scientific collaboration and VIRGO collaboration, 2019)). While this
is not the priority of currently proposed third-generation detectors (Maggiore et al.,
2020), it is worth noting that the advantages of high-resolution gravitational-wave
astronomy are numerous and not limited to the study of this anisotropic background
(J. Baker et al., 2019).

The case for studying the cross-correlation is strengthened by noticing that the
anisotropies of the GWB in kHz band will most probably first be measured through
cross-correlation with galaxy surveys, as the latter will provide a guiding pattern
to be looked at in the noisy GW data. Given the promising nature of our results
regarding the constraints of the GW kernel parameters and Ωm, we believe that the
cross-correlation between GW and GC has the potential to be a robust observational
probe in the era of multi-messenger cosmology.

Appendix 1: Shot-noise for the cross-correlation
signal

We follow (Jenkins & Sakellariadou, 2019) and evaluate the shot-noise contribu-
tion to the observed cross-correlation signal C×

ℓ in terms of the shot-noise contribution
to the covariance between the observed maps Ω(r̂) and ∆(r̂′). Our starting point is

Bℓ =
∫

d2r̂Pℓ(r̂ · r̂′)Cov[Ω(r̂), ∆(r̂′)]SN. (4.23)
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By keeping in mind that K̃(r) = r2K(r)n̄(r) and that δg (⃗r) = (n(⃗r)− n̄(r)) /n̄ we
use the definitions in equations (4.2), (4.12) to write:

Cov[Ω(r̂), ∆(r̂′)]SN =
∫

dr
∫

dr′ r
2

n̄
× Cov[K(r)n(⃗r), Wi(r′)n(⃗r′)]SN. (4.24)

As a side note, we point out that this expression is a stretch of notation since,
formally, the quantities K(r)n(⃗r) and W (r)n(⃗r) represent the mean values of the
variables that we are trying to correlate. To proceed, we notice that W (r)n(⃗r) is
proportional to the number density of galaxies visible in the galaxy survey and that
K(r)n(⃗r) is proportional to the number density of GW events around an infinitesimal
volume centred in r⃗. This is confirmed by the formalism used in the aforementioned
references (Jenkins & Sakellariadou, 2019) and (Cusin et al., 2018b) to predict a
realistic K(r).

In a finite volume δVi we write down the number of GW mergers as

Λi =
Ni∑

k

λk, (4.25)

where N is the number of galaxies present in this volume and the λj-s are the number
of events for each galaxy. If we assume that N and λk are Poisson distributed, Λi

follows a compound Poisson distribution with variance

Var[Λi] = ⟨Λ2
i ⟩ − ⟨Λi⟩2 = ⟨Ni⟩

(
⟨λ⟩+ ⟨λ⟩2

)
. (4.26)

If we call f the fraction of galaxies in the volume δVj visible in the galaxy survey
we also derive:

Cov[fNj, Λi] = f⟨N⟩⟨λ⟩δij, (4.27)
where δij is the Kronecker delta. By going back to the continuous case, we obtain the
following result:

Cov[K(r)n(⃗r), Wi(r′)n(⃗r′)]SN = n̄(r)Wi(r)K(r)δ3(⃗r− r⃗′). (4.28)
Finally, by plugging everything into equation (4.23) we obtain the result shown

in the main text:

Bℓ =
∫

dr Wi(r)K(r). (4.29)

Appendix 2: Cosmic variance of the cross-correlation
signal

Assume we have two maps on the sky, corresponding to the GWB and GC
anisotropies. The angular decomposition coefficients aGW

ℓm and aGC
ℓm are assumed to
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be Gaussian random variables with zero mean, and each m-mode is drawn from the
same distribution. The relevant angular power spectra are defined as

C×
ℓ ≡ Cov

[
aGW

ℓm , aGC
ℓm

]
, (4.30)

CGW
ℓ ≡ Var

[
aGW

ℓm

]
, (4.31)

CGC
ℓ ≡ Var

[
aGC

ℓm

]
. (4.32)

It is then trivial to construct an unbiased estimator of the cross-correlation power
spectrum as

Ĉ×
ℓ = 1

2ℓ + 1

+ℓ∑

m=−ℓ

aGW
ℓm aGC

ℓm . (4.33)

The variance of this estimator can then be shown to be

VarC×
ℓ = 1

(2ℓ + 1)2

+ℓ∑

m=−ℓ

Var
[
aGW

ℓm aGC
ℓm

]
=

1
(2ℓ + 1)2

+ℓ∑

m=−ℓ

CGW
ℓ CGC

ℓ +

Cov
[(

aGW
ℓm

)2
,
(
aGC

ℓm

)2
]
− Cov

[
aGW

ℓm , aGC
ℓm

]2
. (4.34)

In summary, we have

VarC×
ℓ =

CGW
ℓ CGC

ℓ +
(
C×

ℓ

)2

2ℓ + 1 , (4.35)

where we have used the Gaussianity of aℓm’s. Making the aGC
ℓm → aGW

ℓm replacement
turns this expression into

VarCGW
ℓ =

2
(
CGW

ℓ

)2

2ℓ + 1 , (4.36)

which, of course, recovers the usual cosmic variance result.
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