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Part 1

Constraints on inflationary models
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Chapter 2

Bayesian reconstruction of the

inflaton’s speed of sound using
CMB data

This chapter is based on:

Bayesian reconstruction of the inflaton’s speed of sound using CMB data
Guadalupe Canas-Herrera, Jests Torrado Cacho and Ana Achticarro
(2021, June), Physical Review D 103, 12, 123531, arXiv:2012.04640.

2.1 Introduction

The standard cosmological model (ACDM) is currently favored by the available
data. It assumes that primordial fluctuations are Gaussian and defined by an almost
scale-invariant primordial power spectrum (see Chapter 1). These assumptions do not
point to any particular origin, although the simplest inflationary model, canonical
slow-roll single-field inflation, naturally predicts them. By contrast, other models
of inflation predict deviations from the near scale-invariant spectrum in the form of
features. If ever detected, they would open a new window of research in the field of
primordial dynamics. See i.e: (Chluba et al [2015; |X. Chenl, |2010; |Slosar et al., [2019;
Palma, 2015).

The study of features of primordial origin can be done within an Effective Field
Theory approach. Within this scenario, features can be produced by the time de-
pendence of primordial functions such as the slow-roll parameters or the speed of
sound of the effective inflaton (the adiabatic mode). In particular, small, soft and
transient reductions in the inflaton’s speed of sound produce such correlated localized
oscillatory features in the n-point correlation functions. In the 3-point function (or
bispectrum), these localized oscillations present a distinct difference in phase between
the squeezed and equilateral configurations (Achticarro, Gong, Palma, & Patil, 2013).

The Planck Collaboration (Planck Collaboration, Aghanim, Akrami, Ashdown,
et al., 2020b) searched for deviations of the canonical scenario in its last release of
data. Nevertheless, they did not find strong evidence in the context of features in
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2.1. INTRODUCTION

the primordial power spectrum (Planck Collaboration, Akrami, et al. [2020). They
included, for the first time, a joint search of correlated simple features in the primor-
dial power spectrum and in the bispectrum, also without significant results. However,
the Planck Collaboration has not studied in detail different feature templates such
as the above mentioned ones due to small and transient reductions of the inflaton’s
speed of sound. This motivates us to continue our previous study (Achtcarro, Atal,
Ortiz, & Torrado, 2014} Achucarro, Atal, Hu, Ortiz, & Torrado, 2014; Hu & Torrado,
2015; [Torrado, Hu, & Achtucarro, 2017)), in preparation for a future release of the
Planck bispectrum likelihood or for future investigation in light of incoming Large
Scale Structure surveys.

Most of the time, the study of features in both observables (primordial power
spectrum and higher correlation functions) are model-dependent, both regarding their
physical origin and the ansatz used. In our latest paper in this series (Torrado et al.,
2017)), we already pointed out the need for testing more flexible feature templates to
mitigate the dependence on the ansatz. Within this approach, we can test whether
multiple and consecutive reductions of the inflaton’s speed of sound can take place
consecutively, a possibility already pointed out in the previous work (Torrado et al.,
2017)). Furthermore, reconstructing the inflaton’s speed of sound allows us to test
more complex feature templates with variable amplitude and oscillation frequency,
which implies more possibilities to fit well-motivated deviations from ACDM beyond
those that only used a pre-defined ansatz for the features.

Reconstructions at the level of the primordial power spectrum have already been
attempted (Planck Collaboration et al., 2016} |Hazra, Shafieloo, & Souradeep), [2013;
Hunt & Sarkar| 2014; Ravenni, Verde, & Cuesta, 2016} |Durakovic, Hunt, Mukherjee,
Sarkar, & Souradeep, 2018} Ballardini, 2019; Durakovic, Hunt, Patil, & Sarkar}, 2019;
W. J. Handley, Lasenby, Peiris, & Hobson|, 2019). However, there is not enough con-
straining power in Planck’s power spectrum alone to decide on a particular model for
the features. Model-informed reconstructions have the advantage of increasing the
constraining power by adding the information contained in higher-order correlation
functions; but this is only possible if the constraints of the theoretical model are prop-
erly imposed on the reconstructed spectrum, so that it will always lead to a consistent
prediction. The task of imposing these physical constraints along the reconstruction
is non trivial (Appleby, Gong, Hazra, Shafieloo, & Sypsas, 2016)). It is advisable,
instead, to reconstruct the primordial dynamics directly. In our case, we reconstruct
the inflaton’s speed of sound: the timing, intensity and rate of its reduction. Since
we are reconstructing the underlying function leading to the correlated features, it is
not only guaranteed that we will obtain a consistent bispectrum feature prediction
using power spectrum data alone, but we will also be able to use both data sets si-
multaneously to get a more stringent reconstruction once a bispectrum likelihood has
been released.

In this chapter, we develop a new analysis pipeline that uses Gaussian Processes
(GPs), a hyper-parametric regression technique, to model the inflaton’s speed of
sound profile. The analytic nature of GPs makes easy to impose the constraints of
the theoretical model, which involve derivatives of the reconstructed function. For a
given number of nodes in the GP, we construct a prior on the hyper-parameters of
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2.2. THEORETICAL MODEL

the GP model (the position of the nodes and the correlation length), that maximizes
entropy with respect to the bare physical constraints. In this way, we verify that nodes
are not placed wherever they would lead to an unphysical reconstruction, and that
the density with which the hyper-parameters are explored reproduces the measure
of the physical prior (W. Handley & Millea, 2019; (Gariazzo & Mena) 2019; Planck
Collaboration, Aghanim, Akrami, Ashdown, et al 2020b).

We test our new pipeline against Planck 2018 temperature, polarization and lens-
ing CMB angular power spectrum data, obtaining corresponding posteriors of the
parameters of interest and several maxima a posteriori. Our results do not only re-
produce our previous findings (Torrado et al. 2017)), but allow for combinations of
multiple consecutive reductions as well as more complex shapes.

This chapter is organized as follows. In section we review the theoretical
framework for inflationary correlated features in the primordial power spectrum due to
transient reductions in the speed of sound. In section we explain the methodology
used to generate features in the primordial power spectrum: the parametrization for
the reduction in the speed of sound , the chosen priors for the the different
parameters and the computational procedure (2.3.3). In section[5.5] we present
the results corresponding to the fitting of features using the CMB angular power
spectrum. Finally, we discuss the results, draw our conclusion and show prospective
work for the future in section 2.5

2.2 Theoretical model

We follow the Effective Field Theory (EFT) of inflationary perturbations (Cheung
et al., [2008) to characterize the fluctuations of comoving curvature perturbations
around an inflating cosmological background. It starts with an effective action for
the Goldstone boson of cosmic time diffeomorphisms 7(¢,x). This Goldstone boson
is related to the comoving curvature perturbation R(¢,x) through the relation R ~
—H(t)n(t,x), with the Hubble parameter H(t) = a/a, with a being the scale factor
(where the dot denotes derivatives with respect to cosmic time t). The effective single
field action for 7 up to second order is given by

2 2
c? a

) 2
Sy = /d4xa3M12_—,elH2 [—W + (9im) ], (2.1)

where Mp = 1/v8rG is the reduced Planck Mass in natural units ¢ = h = 1,
€, = —H/H? is the first slow-roll parameter and ¢, = c,(t) is the time-dependent
speed of sound.

The effective single field action up to third order, neglecting higher order slow-roll
corrections (~ O(€7)) and assuming 73 to be small and approximately constant reads
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(Achtucarro, Gong, et al.| 2012),
S3 :/ [d4xa3M}%€1H2

—2Hse2mi? — (1 — ;)7 (”2 - (am2> ] (2.2)

s 2 2
cs a

where s = s(t) parameterizes the change in the speed of sound c¢(t) defined as

_ G(t)

s = e H) (2.3)
The physical details of the theory are encoded in the speed of sound ¢, and in its
corresponding rate of change given by s. The speed of sound ¢, accounts for the effects
of integrating out the heavy fields within the effective action. To get an insight of
what this variable ¢ (t) means, we look at the particular case of an effective theory
for the comoving curvature perturbation R, when a strong turn in the inflationary
trajectory in multifield space is supported by a heavy field F with “effective mass”
M.g. In this case, the curvature perturbation R is kinetically coupled to the heavy
field F. This effective action is similar to the EFT of inflation equation (2.1]), with
the speed of sound ¢, of the adiabatic perturbation R given by (Achtcarro, Gong,
Hardeman, Palma, & Patil, [2011a} 2011b)

o 402

=1 -
Cg + k2/0,2 T Meﬁa

(2.4)
where €2 is the the angular velocity when there is a turn in the inflationary trajectory,
inducing a momentary reduction on the speed of sound ¢, (Achucarro, Gong, et al.
2012)). The effect of this variable speed of sound ¢s; can be seen in the primordial
power spectrum Pg, in the bispectrum Bxr and in higher-order correlation functions.
In particular, transient variations of ¢, produce localized oscillatory and correlated
features in both Pr and Br (Achicarro, Atal, et al., 2012). Generally, c4(t) encodes
the effect of derivative interactions.

Under the assumption of small, mild and transient reductions of the speed of
sound c,, the modifications in the primordial power spectrum of curvature pertur-
bations with respect to the almost-invariant power law spectrum, APr/Pr,, were
already calculated (Achtucarro et al., [2013). The quadratic action of EFT of infla-
tion, equation , is divided into a free part (resembling single field inflation, with
¢s = 1) and a small perturbation:

2
S :/d4x a®*MzeH? (7%2 — (Oi) )

a2
- /d4x a3M§EH2( (1 - 0;2) 7'r2>, (2.5)

Transitioning from cosmic time ¢ to the conformal time 7, so that dr = dt/a(t), using
the in-in formalism (Weinberg), 2005) and the following definition of the variable u,

u(t) = (1 —¢; (1)), (2.6)
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the change in the primordial power spectrum APz is given by the Fourier transform
of the reduction in the speed of sound c,:

APr
Pro

where Pgr( is the power law expressed in equation (|1.39)).

) OOO dru(r) sin (2k7), 2.7)

2.3 Methodology
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Figure 2.1: Example of reductions of the inflaton’s speed of sound u(7) in logarithmic
space GP with a single node at (7q,u;). The reductions peak at 71 ~ 103 with a
maximum reduction value —u; = |u|nax® 0.025. The width of each of the reductions
(given by the correlation length [, which, for a single GP node, plays the role of
the standard deviation) is different, being the green-dashed parametrization (I = 0.5)
milder than the solid blue one (I = 0.1). The rate of change of u(7), see equation ([2.3),
can be approximated as |$|max= |U|max/[[(€®° + |[tt|max)] using this parametrization.
The vertical lines indicate the values of 7 at which |s|ax is reached in each case.

The reduction of the speed of sound and its rate of change are encoded in u(7)
and s(7) respectively. We aim to use current cosmological data (the temperature,
polarization and lensing power spectrum of Planck 2018) to estimate them given the
theoretical framework presented in section[2.2] To do that, we use Bayesian inference,
as explained Chapter 1.

2.3.1 Reconstruction model for the reduction in the speed of
sound

We use Gaussian Processes (GPs) (Rasmussen & Williams, 2005) as an interpo-
lator for reconstructing the speed of sound of the inflaton. The mean curve of a GP,
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Figure 2.2:  Left panel: Reconstruction of u(7) using a GP on log|u(log|7])|
(continuous line) and on u(7) (dashed line), both using as training nodes (7,u) €
{(—100, —0.016), (—375,—0.03) }, and correlation length for each model such that the
width of the mode corresponding to the first node is similar (notice the difference in
width of the mode of the second one). As the reconstruction is done in conformal
time 7, the x-axis is always negative and 7 = 0 indicates the end of inflation. Right
panel: Corresponding feature in the primordial power spectrum. Notice how, despite
the similar position of the training nodes, their features look quite different: similar in
the leftmost oscillations (corresponding to the node at 7 = —100), but very different
after that, due to the broader width of the first mode.

which we use to represent the speed of sound evolution, is smooth by construction
(given our choice of kernel, see below) and naturally returns to a baseline value away
from the nodes of the interpolator, which is useful for representing the transient char-
acter of the speed of sound reductions. The length scale over which the return to
the baseline happens is called correlation length, and it is the same for all individual
nodes in a particular realisation. The particular properties of the correlation between
nodes is given by the kernel of the GP, which we choose to be a squared exponential
kernel. This means that when the interpolator is defined by a single node placed
at (r1,y1), the interpolating curve looks like a (non-normalised) Gaussian peaking
at the node’s position, with standard deviation equal to the correlation length [, i.e.
y(z) =y exp[-1/2 (x — 21)*/].

We aim to reconstruct u(7) = (1 — ¢;(7)). Since u(7) is a negative quantity, it
makes sense to reconstruct the logarithm of —u = |u|, to guarantee that the GP inter-
polator, once exponentiated, conserves sign. On the other hand, there is a choice to
be made about the scale of the conformal time axis: whether to reconstruct log|u(7)|
or loglu(log|7|)]. We show results for the latter case in this section for illustration
purposes.

As explained above, in the case where a single node is placed at (71, log(—u1))
the reconstruction of log(—u(7)) corresponds to a single transient reduction given
by a log-normal function of conformal time, whose maximum occurs exactly at the
node. The parameters that we would try to infer from the data would be the position
of the node (71,log(—w;)) and the correlation length [ representing the standard
deviation of the log-normal. The rate of change of the reduction, of interest in our
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theoretical framework, would peak approximately at |s|max~ 0.5 u1|/(exp(0.5)+ |u1]).
See for an example.

To reconstruct loglu(log|T|)| as a generalization of the previous case using GPs,
we choose a number i of training noded| (log|7;|, log|u;|) where log|u;|= log|u(log|7|)]

(see |[Figure 2.2)), to which we fit a GP with kernel function

1 (log|r;|— log|ri|\?
k(log||,log|Tiv1]; 1) = 2 exp {— ( og|7i| 0g]7’+1|> } , (2.8)

2 l

where c is the output scale, and [ the correlation length. The output scale ¢ plays no
role in this approach, and can be fitted using maximum likelihood and then ignored.
The correlation length will be sampled together with the position of the nodes. To
compute the GPs, we use the Python package sklearn (Scikit-learn 0.19.1 documen-
tation: Gaussian Processes, 2018). The mean of the GP is used as an interpolator
for log|u(log|7])|, and reads, in terms of the training nodes, as the matrix product:

log|u(log|7|)|= #(log|7],log|7:|; 1) x [x(log|7|,log|m;|; )] ' logluy|,  (2.9)

where the first kernel function k is a vector of evaluations at the requested log|7]|
combined with each of the training log|7;|, the second one is the matrix of evaluations
of k for each pair of training nodes (4, j), and the final term is the vector of training
log|u;|. Once u(7) is generated, we calculate s(7) from equation numerically,
which we can rewrite more conveniently as

(7) 1 u dlogu
s(t) ==
91 —udlog|7|
1 u 1
= 5.1 [(log|7|—log|7|) k(log|7|, log|7[; 1)] x
[k(log| |, log|m; Nt log|u;|, (2.10)

where we have taken the derivative after substituting u by the mean of the GP defined
in equation . Notice that this reproduces the matrix product in equation ([2.9)),
just changing the first vector. Finally, we compute the power spectrum feature of
equation from a fine sampling of the GP using the FFTLog algorithm (Hamilton),
20005 |fftlog - python wrapper FFTLog, 2016|). The density and limits of the log|T|
sampling for the FFTLog are chosen adaptively to minimise computational costs and
guarantee the accurate computation of the transform.

The most consequential difference of the choice between linear and logarithmic 7
in the GP will show up whenever we have nodes separated by a distance much larger
than the correlation length, appearing as isolated (log)Gaussians: in the linear case,
their width in 7 will be similar, whereas for the logarithmic one, the width will scale

logarithmically (see |[Figure 2.2)). Looking at the first equality in equation (2.10)), and
seeing how s depends on the logarithmic derivative on 7, it is easy to see that the

!Notice that our use of GPs as interpolators does not involve machine-learning, but we are
borrowing the term training from its literature.
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linear parameterization is going to struggle to place two or more nodes away from
each other, since s(7) will peak at highly different values in each of them, making it
hard not to violate the perturbativity bounds on s (see jsubsection 2.3.2)).

Thus for the primary results in this chapter, we model log|u(log|7|)|. To mitigate
excessive sensitivity to the prior of our results, we also perform a reconstruction in
u(7). Notice that by modelling u and not log|u| we need to deal with cases in which
u(T) goes positive, by assigning it null prior density. However, those are generally
disfavored by the data (require large | compared to the distance between nodes), and
the large difference between the log|u(log|7|)| and the u(7) reconstruction is useful
for assessing prior sensitivity.

2.3.2 Parameters and Priors

The action described in equations and is perturbative in terms of (1 —
1/c%). Tt implies that the reduction in the speed of sound, ¢y, cannot be too big
(Jul]< 1) and the rate of change in the reduction cannot be too fast (|s|< 1). Also,
the contributions of the slow-roll corrections €1, €5 have to be smaller than those of
the variable speed of sound c¢,. We need to impose these conditions for all values of
7, but it is enough to restrict to the point where u(7) and s(7) take their maximum
value (|t|max;, |S|max). Note that imposing the perturbative limit on |s|y.x satisfies
the consistency conditions in (Céspedes, Atal, & Palmal, [2012; |Adshead & Hul [2014}
Cannone, Bartolo, & Matarresel 2014). In short:

max(€, €2) < max(|u|max, |$|max) < 1. (2.11)

In (Torrado et al., 2017) we argued that this condition could be naturally imposed
by a prior Beta(5,5) on max(logy|t|max, 10g19|$|max) between the extremes in equation
(2.11)) (see left part of , the logarithm coming from the difference in order
of magnitude between both bounds.

Contrary to (Torrado et al., 2017)), in this work |u|max and |$|max are not sampled
directly. Instead, the parameter space for the feature consists of the position of
the nodes {(7;,u; = u(7;))} and the correlation length /. Thus, the total number of
feature parameters is 2N + 1 for a number N of nodes. Imposing the Beta prior
described above is not as simple as sampling the GP parameters from some prior,
computing |u|max and |s|max along the reconstruction, and multiplying by the Beta
density. That procedure will likely introduce undesired information in the shape of
under- or overdensities in the probability induced on (|u|max, |$|max), Which would
finally diverge significantly from a Beta. The correct way to proceed so that the
induced probability on the physical parameters is the desired one is by constructing
a distribution on the parameters of the nodes that maximises entropy with respect to
the desired one, which can be computed, according to (W. Handley & Milleal 2019),
as
7T0(7_i> Ui,y Z)T‘-pert(‘mma}(ﬂ |5|m&X>

P(|tt]max; |S]max | 70)

: (2.12)

Tpert, maxent(Tia Ui, l) =
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logBeta{max[logm(\u|max), logm(\s\max)]} , Logpert, maxent {max[10510(|"|max)» 10g10 (][ 1max)] }
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Z g (—
g g
= =
= e
a0 —1.5 &0
< i)
—20{ 777 logio(|s|max) =loguo(lulmax) = SEEEEEEEEEEE. | 5] 10g10(||max) = 10g10(|2t|max)
loc=¢€,=0.04 loc=¢€,=0.04
B scale= —ey = —0.04 Bl scale= —e;= —0.04
a=b=5 a=b=5
254 = . 25K '
=25 -2.0 -15 -1.0 -0.5 =25 -2.0 -15 -1.0
log1o(|t|max) 1og19(|tmax)

Figure 2.3: A description of the Bayesian priors adopted in this study. Left panels:
Desired Beta density distribution for the parameters (0g1o(|t|max) and 10g10(]$|max),
with e, = 0.008 and €5 = 0.04, respectively. Right panels: probability density distri-
bution induced by m on (0g10(|$|max) and l0g1o(|t|max) (defined as P in the denomina-
tor of equation (2.12))), for a Gaussian-Processes reconstruction in log|u(log|7|)| using
2 training nodes. The initial prior mo(7;, u;, [) induces overdensities at low [0g10(|$|max)
due to this quantity being doubly-correlated to early-time position of the nodes and
large correlation lengths; equation corrects for this effect.

where 7y (7;, u;, 1) is some initial prior on the node parameters and Tpert (|| max, |$|max)
the Beta prior described above. The term in the denominator is the probability
density induced by 7, on (|t|max, |$|max), Which we compute from a Monte Carlo
sample from 7y using PolyChord (W. J. Handley et al., 2015a, 2015b)). The Monte
Carlo sample is fed to GetDist (Lewis| [2019) to construct a density estimator. Both
the Beta prior and the maxent prior can be seen in

For 7y, we choose log-uniform prior distributions on the correlation length [ and
on the training node location (7;, uz)El The bounds for the time-positions 7; are chosen
so that the feature falls in the CMB window function (features running from scales

2Note that we are sampling the training nodes and the correlation length in a logarithmic scale
as we expect them to vary several orders of magnitude.
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k~ 1073 to k ~ 3 x 107!, though a larger region has been scanned as a consistency
check (see [subsection 2.4.1). The bounds for the amplitude of the reductions at
the nodes, u;, are chosen to generously fulfill the EFT condition in equation (2.11])).
Summarizing:

mo(logyo(|71]), - - -, 10810(|7nl), logyo (Jurl), - . -,
logig(|unl),logo 1) = U(1.8 < log;o(|7]) < 3.3)x

2
Hu(log10(|TiD < logyo(|Ti-1]) < 3.3)x

i=n
n

[TU(—4 <logyo(fwil) < 0) x «(1) (2.13)

=1

where U means a uniform distribution, and the prior on the time positions of the
nodes includes sorting so that 7; < 7;_1 (¢ runs from 1...n). The prior on [ is chosen
so that it produces reasonable values of |s|max. For each of the two reconstructions
studied here, log|u(log|r|)| and u(7), the boundaries can be chosen as|

Togluloglr)| (1) = U(—=2 <log;yl <2)  and
WU(T)(Z) = U(—Q < 1Og10l < 3.3). (2.14)

As an improvement on (Torrado et al., 2017), in this work we do not fix the value
of the slow-roll parameters ¢; and €, as bounds of the perturbativity condition equa-
tion (2.11)). Instead we let the bounds of the Beta distribution run dynamically,
marginalizing over the slow-roll parameters. We use as priors uniform distributions
U(0.0001 < ¢ < 0.05) and U(—0.06 < €3 < 0.06), which encompass the ACDM
posterior found for them in Planck 2018 (Planck Collaboration et al., 2016).

A diagram showing the different assumptions that enter the final prior is shown

in [Figure 2.4

2.3.3 Data sets and sampler

To constrain the reduction of the speed of sound, we use the Planck 2018 polarized
CMB and lensing data. In particular we use the product of the low multipole likeli-
hoods 1owT and lowE, the unbinned high-¢ likelihood plik_TTTEEE and the lensing
likelihood. We use the unbinned likelihoods because of the fast frequency of oscilla-
tions in the features, as was already pointed out in (Torrado et al., 2017).

We compute the changes to the CMB power spectra Cy using the Boltzmann code
CAMB (Lewis, 2013), modified accordingly to account for the increased sampling in k
needed by the oscillatory features APr/Pr, in the primordial power spectrum. We
sample over the parameter space described in section [2.3.2] i.e. the positions of the

3Notice that, while smaller values of [ will result in sharper reductions with too high, forbidden
|s|max values, larger values of [ would result in small |$|max values which are actually allowed as long
as |u|max fulfills equation . In any case, we are imposing these upper [ boundaries for the main
runs, since reductions with very small |s|max tend not to be easily distinguishable from changes in

the background cosmological model (see [subsection 2.4.1)).
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Full final prior

€1, €2 Tiy Wi, |

i Slow-roll prior| |MaxEnt + Observ prior E

v Perturbativity prior
€1,€2 < |u|maX7 ‘S|max < 1

Observability prior
1073 < Akfeaure < 0.3

Figure 2.4: Diagram showing the structure of the prior. The conformal time 7; of
the nodes must fulfil that the feature happens within the observable CMB window.
The physically-motivated perturbativity condition of equation (2.11]) is imposed using
mazximum entropy (see text) on the position of the nodes and the correlation length.
Since the value of the slow-roll parameters influences the prior on the position of the
nodes via the lower bound of the perturbativity condition, the full prior (dashed grey
box) is non-separable.

training nodes {(7;,u; = u(7;))}, the correlation length [ of the GP, and the kinetic
slow-roll parameters €; and €. We also allow for the possibility of tensor modes, as
changes in the Sachs-Wolfe plateau caused by them could possibly be correlated with
features at very large scales. We track as derived parameters the scalar tilt ng, the
tensor-to-scalar ratio r and the EFT parameters (|u|max, |$|max). We fix the rest of
cosmological parameters of ACDM to the best fit of Planck 2018 with the present
likelihoods, as well as the nuisance parameters of the likelihoods. Fixing the ACDM
parameters is justified by previous sensitivity analyses in (Torrado et al., [2017)), that
we repeat here for the background ACDM parameters by exploring a broader range
of 7 and [ than the one indicated above (see [subsection 2.4.1) where we have also
assessed the impact of fixing the nuisance parameters of the Planck likelihoods).

We obtain the posterior distribution of the parameters using the sampler PolyChord
(W. J. Handley et al., 2015a, 2015b]). We use this nested sampler since, from previ-
ous searches, we expect the posterior distributions of u,., and 7; to be multi-modal.
The handling of the priors, likelihoods, Boltzmann code and sampler is managed by
the Bayesian framework Cobaya (Torrado & Lewis| 2021} 2019)). The analysis of the
posterior distributions is carried out using GetDist (Lewis, 2019).

We sample the posterior of two different parameterizations of the GP sound speed
reconstruction: log|u|(log|7|) and u(7), in the following called simply logarithmic and
linear parameterizations, respectively. We know the logarithmic parameterization is
more stable numerically, as it consistently makes the reconstruction of u(7) negative.
However, we still use the runs in the linear parameterization for the purposes of
assessing prior sensitivity. For the first sampling processes (up to three GPs nodes),
we run Cobaya in parallel launching 8 MPI processes, each allowed to thread across
3 CPU cores. In the case of 4 nodes, we run Cobaya with 32 MPI processes, each
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allowed to thread across only one single CPU core. The nested sampler PolyChord
has been run with 1000 live points (which is far above the requirements for the current
number of dimensions in the parameter space) and a stopping criterion of 0.01. The
computation time varies depending on the number of training nodes in the GPs: from
a few days with only 1 node, up to several weeks with 4 nodes.

All the mazima a posteriori (MAP) presented in the next section have been ob-
tained running Py-BOBYQA (Cartis, Fiala, Marteau, & Roberts| [2018; (Cartis, Roberts,
& Sheridan-Methven|, 2018)) (a Python implementation of the BOBYQA algorithm (Powell,
2009), available via Cobaya), initialized on the relevant local maxima of the PolyChord
samples.

2.4 Results

2.4.1 Consistency checks

Before presenting our results, we shortly discuss whether the assumptions made
in previous sections were justified. In particular, we have tested whether we find clear
posterior modes outside the (7;,1) prior region described section (the CMB win-
dow prior), and whether in posterior modes either in our initial prior or in the broader
region, the assumption of no-correlation with background cosmological parameters is
fulfilled.

To do that, we produced a 1-node posterior sample in the logarithmic parame-
terization in the enlarged prior region 0 < logy(|7;|) < 4.3 and 2 < log;,! < 10,
and let the background ACDM parameters vary. No significant modes were found
outside the original, reduced prior region. We found mild modes in the region
1.8 < logyo(|m]) < 3.3 and 2 < logy,! < 3.3, which presented some degeneracy
between €2,,,, ns and the reconstruction parameters (p ~ 0.17), due to the fact that
these features can be confused with the shape of the first and second acoustic peaks
(already observed in (Torrado et al., 2017)). This justifies restricting ourselves to the
prior described in [2.3.2] since any mode found outside of it would not be distinguish-
able from background cosmology.

The check for degeneracies between the ¢, reconstruction parameters and the slow-
roll parameters is of particular importance, since the latter determine the perturbative
prior limits on the former (see equation and . We have found no
significant degeneracies, neither in the tests described above nor in the final runs. We
have reproduced the Planck ACDM posterior on the slow-roll parameters in all cases
(e [Fizire 235).

Most of the results below have been run both in the linear and logarithmic pa-
rameterizations for the Gaussian Process (GP) reconstruction of the speed of sound
profile u(7). The results agree with each other, in particular, for the maxima a pos-
teriori found at late conformal time (i.e. towards the end of inflation, with —7; of a
few hundreds, where both parameterizations look similar). However, the logarithmic
parameterization differs from the linear one when training nodes are thrown at early

values of conformal time (i.e. —7; over 800), see |[Figure 2.2). This is due to modes
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Figure 2.5: Posterior distributions of the primordial parameters: the kinetic slow-roll
parameters €; and €y, and the derived spectral index ng; and tensor-to-scalar ratio r,
for a 2-node reconstruction in the logarithmic parameterization (red line). The grey
contours correspond to the featureless ACDM scenario. The correspondence between
both posteriors is due to the absence of degeneracies between the ¢, reconstruction
parameters and the slow-roll parameters. Similar results are found for 1, 3 and 4
nodes.

of constant width in logarithmic scale getting broader the further we go along the
axis of conformal time. In the 1-node case, the linear parameterization reproduces
the results in (Torrado et al., 2017)) (which uses a Gaussian ansatz in u(7)), whereas
the logarithmic parameterization produces different 1-node posterior modes (see Sec.

in appendix A).

It is worth remarking that the use of the logarithmic parametrization does not
compromise the flexibility of our reconstruction of u(7). Even though the logarith-
mic parameterization reconstructs naturally profiles of u(7) with broad reductions at
earlier conformal times and narrower reductions at later times (which is preferred so
that |$|max is not violated), narrow reductions at early conformal times can always
be achieved by adding further nodes that would force the profile to return to zero. If
the data and EFT conditions did allow for a narrow reduction at earlier conformal
times, we would have seen it during the analysis of the posterior distributions when
more than one training node was used.

Moreover, we have assessed the effect of fixing the nuisance parameters of the
Planck likelihoods by running a minimizer around both the baseline, featureless
ACDM model and the MAP features presented below, now letting the nuisance pa-
rameters vary. We find that this choice has almost no impact in our analysis, changing
the Ax? values by less an unit.

Finally, we have assessed the impact of using separately each of the high-¢ unbinned
TT and EE Planck 2018 data sets, in order to check which subset dominates the
posterior around each of the fits. To do that, we have combined each of these subsets
with low-/ temperature and polarisation, and lensing data, fixing LCDM and nuisance
parameters, and assuming a single dip. Using high-¢ TT data alone, we recover the
main single-dip maxima a posteriori described in the next section and appendix
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(i.e: 71 =~ —100,—200,—400, —1000). When using high-¢ EE data alone, we clearly
recover the dip at 71 ~ —100, whereas just barely the peaks at 7 ~ —200 and
71 &~ —400, and none of the earlier-time dips found in combination with TT data.
This shows that our posterior is temperature-dominated in most of the parameter
range. Concordance at late times is encouraging, but it needs to be explored further
with future less noisy polarised data from space- and ground-based surveys.

2.4.2 Reconstruction of the inflaton’s speed of sound profile
u(7)

In this section, we present the results of the GP reconstruction in the logarith-
mic parameterization using the Planck data as described above, and imposing the
Maximum-Entropy prior described in for the derived quantities || max and |$|max-

When presenting our results, we use an effective Ax? where we have subtracted
the x? of the MAP of the featureless ACDM (obtained by using a minimizer) for the
same likelihood combination (see [subsection 2.3.3)). Note that this effective Ax? is
not meant for model selection purposes and it is used for illustration only. As an
example, a triangle plot of the posterior distribution for the 2-nodes case can be seen
in

We have reconstructed the inflaton’s speed of sound profile u(7) using up to four
training nodes. We have stopped there after checking that the Akaike Information
Criterion (AIC) (Akaike, 1974) has a minimum for three training nodes and stabi-
lizes after that. The profile u(7) shows different patterns depending on how many
training nodes are used in the GP reconstruction. We have decided to classify all
possible profiles u(7) based on whether they show differentiated and non-overlapping
reductions (that we denominate dips) or they present some kind of substructure:

« One single dip: usually present at either late values of conformal time (—100,
—200, —400), or at earlier times (—800, ~ —1000). Early-time dips produce
features in the CMB power spectra localised in £’s up to the first acoustic peak,
whereas features from late-time dips affect the power spectra along the full
¢ range. Similar profiles were already found in previous studies (see

tion 2.4.1)). Details on this posterior modes can be found in appendix m

« Combination of non-overlapping reductions (2, 3 and 4 dips): appear-
ing when more than one training node is used, they consist of consecutive,

isolated reductions in the speed of soundﬁ Details can be found in appendices
2.6.2, [2.6.3| and [2.6.4, These combinations can be classified as (for details see

appendix [2.6)):

— All dips at late conformal times: when at least two training nodes are
considered, there is a preference for two of the possible dips remaining at

4Notice that the number of training nodes is not always equal to the number of dips: reconstruc-
tions with m dips found with m GP nodes usually re-appear as posterior modes in the m + 1 GP
nodes case, where one of the nodes is placed at u; ~ 0.
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Figure 2.6: Posterior distribution for the reconstruction of the speed of sound’s profile
u(7) using 2 training nodes and the logarithmic parametrization shown in [Figure 2.2]
We use Ax? = X2 odel — Xbaseline 88 the variable for the scatter plot’s colour scale, the
reference X7, ciine corresponding to the MAP of the baseline ACDM model to the same
datasets. We show the parameters of the training nodes (7;,u;) and the correlation
length [ (described in m priors in . We also show the posteriors of the EFT
parameters (|U|max, |$|max) (described in section [2.2) and not sampled directly, but
derived from the nodes parameters). It can be seen how longer correlation lengths
(broader reductions) lead to lower values of |s|max, and vice-versa. The posterior
distributions for different numbers of nodes display similar patterns. For all cases,
the posterior distributions are clearly multi-modal.

late-time values of 7;, combining either —100 and —200, or —400 and —200.
Their effect in the CMB power spectrum overlap each other along a large
range of (’s.

— Combination of early- and late-time dips: these appear typically as a com-
bination of features at both low ¢’s (from the early-time dips) and high ¢’s
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(from the late time ones), e.g. from the presence of dips both at —800 and
—100.

o Dips with substructure: We have found some maxima a posteriori where
the reconstructed u(7) does not show clearly separated reductions, but a more
complex profile with some degree of substructure. These substructures are
presented either at early and late 7;, trying to fit some of the characteristic
features of the CMB angular power spectrum (i.e: ¢ ~ 20 — 40 feature). The
fits are presented in Appendix A, in subsection [2.6.5]

As noticed in previous works (Torrado et al.l 2017), we do not have a highly
predictive posterior of the maximum of the rate of change of the sound speed, |s|max,
whose value is mostly constrained by the prior information. By contrast, the positions
of the nodes (the oscillation frequency of the features in the power spectrum) are
tightly constrained within each of the multiple posterior modes, specially for nodes
at late conformal time.

Using the sampling results of the profile u(7) with four training nodes in the GPs,
we have reconstructed the allowed confidence contours for u(7) given Planck 2018
data. The result can be seen in [Figure 5.3 As expected from the 1-D marginalized
posterior distributions, the confidence contours are narrower around 7; = [—100, 200].
These modes were found in every single reconstruction of the inflaton’s speed of sound
independently of the number of training nodes (and were also observed in previous
studies (Torrado et al. 2017)), and usually show the highest individual dip Ax? with
respect to ACDM (since they produce features at a long range of ¢ for which Planck
has low error bars). On the other hand, the confidence contours are broader for earlier
conformal times 7; < —400. This is the range of 7 where we have found the modes
at 7, = [—800, —1000] and some degree of substructure. In this range, the posterior
distributions are not very predictive (see again , where the posterior peaks
are small for 7, < —800), since they produce low-multipole features hidden by cosmic
variance.

2.5 Conclusions

We have searched for features in the primordial power spectrum as given by the
last release of Planck 2018 data. Following an EFT of inflation approach, we have
focused our search on features coming from reductions of the sound speed of the
inflaton, assuming these reductions to be small, mild and transient. These feature
templates were not tested by the Planck Collaboration.

We have improved over previous studies (which used a single-reduction Gaussian
ansatz) by developing a reconstruction technique for the speed of sound’s profile based
on Gaussian Processes. We have also marginalised over the slow roll parameters to
allow for a dynamical prior. In this new pipeline, the parameters of the reconstruction
(the position of the training nodes and the correlation length) are fitted to the Planck
2018 data. The physical constraints of the model are imposed on the reconstruction
parameters by means of a Maximum-Entropy prior defined on the EFT quantities
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Figure 2.7: Reconstruction of the inflaton’s speed of sound profile u(7) based a 4-
nodes GP, where the confidence contours (68% and 95%) are shown. We are able to
constrain the shape the inflaton’s speed of sound more stringently at late times (up to
~ —200), whereas the confidence intervals get larger at earlier times (i.e: starting from
—800). This difference in the constraining power between early and late conformal
times is mostly due to early-time reductions being associated to low-multipole features
where cosmic variance is largest. The best mazima a posteriori are also plotted on top
of the confidence contours: two 3-dipped cases (labelled C.2, dashed blue, and C.3,
dashed orange), two 4-dipped cases (labelled D.0, solid blue, and D.1, solid orange)
and a 3-dipped case in which one of the dips possesses some substructure (labelled
S.3, solid green). For additional fits and a more detailed presentation of them see

appendix [2.6]

(¢t maxs |S|max), which define the consistency bounds of the model. We have also
tracked as derived parameters ng and r.

This template-free reconstruction of u(7) has allowed us to make an exhaustive
search of more flexible features’ templates, constrained only by EFT conditions. The
analysis of the result of Bayesian parameter inference on the Planck 2018 data has
demonstrated that there are many possible different and complex u(7) profiles which
are consistent with Planck’s CMB power spectra. As expected, none of these fits is
preferred with respect to ACDM (their Ax?’s are not significant), although show some
interesting results in terms of new feature templates. First, we have argued that there
is a strong preference for two consecutive reductions of the speed of sound to coexist
at late times around 7; & —200 and 7; ~& —100. Also, combinations of modes at
late conformal time 7; & —100 and early conformal time 7; &~ —800 are also possible.
Second, we have found certain profiles which show some degree of sub-structure at
early and late conformal times. Finally, we have been able to obtain reconstruction
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confidence contours for the u(7) profile given the results obtained with four training
nodes.

In the future, we plan to exploit this robust and novel pipeline in the search
of features using new sets of data (in particular, Large Scale Structure surveys or
the CMB bispectrum). Furthermore, the improvement of current data (for example,
the polarization of the CMB) will also help to reduce the noise and, therefore, the
uncertainty we have at large scales. If the noise is reduced, we could discern how
realistic the reductions at earlier conformal times are. Moreover, we also consider
introducing new features coming from a variable first slow-roll parameter (Durakovic
et al., 2019) to perform a joint search of both patterns: features induced by a variable
cs(7) and €(7).

2.6 Appendix: detailed results up to 4 nodes of
u(7) in log-log parameterization

In this appendix, we explain in detail the several mazima a posteriori found dur-
ing the sampling runs when the profile of the inflaton’s speed of sound wu(7) was
reconstructed using Gaussian Processes up to 4 training nodes.

2.6.1 One dip (denoted by “A”)

These profiles of u(7) show only one single reduction of the inflaton’s speed of
sound or one dip. These reductions can be found using just one training node in
the Gaussian Process. The modes at late conformal time 7; (see the first row of
present a well defined oscillation frequency 7; (at -100, -200 and -400).
The value of |u|max is around 0.02 and the rate of change in the speed of sound
|8 max>> |t|max- These dips are exactly reproduced with the linear parametrization of
the reconstruction of u(7). They were already listed during previous searches using
Planck 2013 and 2015 data (Hu & Torrado, 2015; [Torrado et al., 2017)). In particular,
the mode corresponding at 7; & —400 was identified faintly in (Torrado et al., [2017).
These modes are present in a broad multipole ¢ range (¢ ~ [100 — 2000]), fitting some
structures in the temperature and polarization data.

Modes at early conformal time 7; (-800, -1000) (see the second row of
are found, but are more poorly constrained and with worse Ay? with respect to
ACDM. Mode A.3 at 7; & —800 shows similar characteristics to the modes at a late
conformal time (small amplitude and same behaviour in the EFT parameter s). It
fits an apparent oscillating structure of the temperature Cy at the first acoustic peak.
This mode is also found with the linear parametrization and in previous searches in
(Hu & Torrado, [2015; Torrado et al., [2017). The modes at -800 and -1000, with a
larger amplitude, have |$|max™ |[t|max. They slightly differ from the modes found in
previous studies. The main reason is that u(7) reconstructed using the logarithmic
parametrization differs from the linear one at high values of 7;,. The modes at -1000
try to fit the characteristic ¢ ~ 20 — 40 structure of the CMB temperature angular
power spectrum. As identified in (Torrado et al., [2017)), this kind of features impose
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Figure 2.8: One single dip, one training node. Top: Different profiles u(7) for the 6
mazxima a posteriori when only 1 training node is used (and consequently only one
dip is visible). The reconstruction is done following the logarithmic parametrization
explained in [subsection 2.3.1 We found a principal MAP and 5 other fits when the
multimodal posterior distribution is further analysed (see, for example, ,
where other peaks in the posterior distribution are visible). Bottom: Differences in
the CMB temperature (TT), E-polarization (EE) and cross-correlated power spectra
(TE) between the MAP to the Planck 2018 data and the featureless ACDM baseline
model for the reconstructed speed of sound profiles u(7) A.0 - A.5 shown above.
Notice how these profiles fit small deviations from ACDM at low and high multipoles
¢. The same color and line-style correspondence between the u(7) profiles and the
differences in the CMB spectra has been used.
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Figure 2.9: 2 non-overlapping dips, 2 training nodes. Top: Different profiles u(r) for
the 3 mazima a posteriori when only 2 training nodes are used and only two clearly
different dips are observed. The reconstruction is done following the logarithmic
parametrization explained in [subsection 2.3.1. We found a principal best fit and
2 other fits when the multimodal posterior distribution is further studied (see, for
example, , where other peaks in the posterior distribution are visible).
Bottom: Differences in the CMB temperature (TT), E-polarization (EE) and cross-
correlated power spectra (TE) between the best fit to the Planck 2018 data and the
featureless ACDM baseline model for the reconstructed speed’s of sound profile u(7)
shown above. Notice how these profiles fit small deviations from ACDM at low and
high multipoles ¢. The same color and line-style correspondence between the wu(7)
profiles and the differences in the CMB spectra has been used.
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Figure 2.10: 3 non-overlapping dips, 3 training nodes. Top: Different profiles u(7)
for the 3 maxima a posteriori when only 3 training nodes are used and three dif-
ferentiated dips are observed. The reconstruction is done following the logarithmic
parametrization explained insubsection 2.3.1l We found 3 MAP when the correspond-
ing multimodal posterior distribution is further studied (see, for example, ,
where other peaks in the posterior distribution are visible). Bottom: Differences in
the CMB temperature (TT), E-polarization (EE) and cross-correlated power spectra
(TE) between the best fit to the Planck 2018 data and the featureless ACDM baseline
model for the reconstructed speed’s of sound profile u(7) shown above. Notice how
these profiles fit small deviations from ACDM at low and high multipoles /. The same
color and line-style correspondence between the u(7) profiles and the differences in
the CMB spectra has been used.
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Figure 2.11: 4 non-overlapping dips, 4 training nodes. Top: Different profiles u(7) for
the 3 maxima a posteriori when only 4 training nodes are used and four differentiated
dips are observed. The reconstruction is done following the logarithmic parametriza-
tion explained in [subsection 2.3.1l In this case, we observe how possible reductions
at 7 &~ —100, —200, —400 and —800 can consecutively take place. Bottom: Differ-
ences in the CMB temperature (TT), E-polarization (EE) and cross-correlated power
spectra (TE) between the best fit to the Planck 2018 data and the featureless ACDM
baseline model for the reconstructed speed’s of sound profile u(7) shown above. No-
tice how these profiles fit small deviations from ACDM at low and high multipoles
¢. The same color and line-style correspondence between the u(7) profiles and the
differences in the CMB spectra has been used.
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Figure 2.12: Profiles with substructure (2 training nodes and 4 training nodes). Top:
Different profiles u(7) for 2 maxima a posteriori when only 2 or training nodes are
used and the profiles of u(7) show some grade of substructure. The reconstruction
is done following the logarithmic parametrization explained in [subsection 2.3.1. We
found 2 fits (one an earlier conformal time and a another one at late conformal time),
when the corresponding multimodal posterior distributiosn are further studied (see,
for example, where other peaks in the posterior distribution are visible).
Bottom: Differences in the CMB temperature (TT), E-polarization (EE) and cross-
correlated power spectra (TE) between the best fit to the Planck 2018 data and the
featureless ACDM baseline model for the reconstructed speed’s of sound profile u(7)
shown above. Notice how these profiles fit small deviations from ACDM at low and
high multipoles ¢. The same color and line-style correspondence between the wu(7)
profiles and the differences in the CMB spectra has been used.
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a tighter upper limit on the scalar-to-tensor ratio r, although these are still within
the analogous bounds in ACDM.

2.6.2 Two dips (denoted by “B”)

In this case, the inflaton would suffer two consecutive reductions of the speed of
sound (due to, for instance, two consecutive turns in the field space). In the previous
study using Planck 2015 (Torrado et al., 2017)), it was pointed out that, a priori,
the features due to single reductions of the sound speed that do not overlap can in
principle co-exist. These combinations would be modes at early 7; with another late
mode (i.e: -1000 and -100). However, the results of the reconstruction using two
training nodes show a richer picture (see [Figure 2.9). We have identified that the
modes at -100 and -200 can result from an overlapping feature that is preferred by
the data, and thus, it is the overall MAP for the 2-nodes reconstruction. The dips at
-200 and -400 can also co-exist (mode B.1), with a worse Ax?. These two overlapping
features fit TT, TE and EE structure across a large range of . On the other hand,
there is a possible combination of the modes at -800 and -100 (see the first row of
[Figure 2.9)). This u(r) profile includes the fitting of the apparent oscillations around
the first acoustic peak and small deviations across the rest of the multipole scale. All
of these combinations of modes fulfill |$|ynax>> || max-

2.6.3 Three dips (denoted by “C”)

When the profile of the inflaton’s reduction of the speed of sound wu(r) is recon-
structed using 3 training nodes, we find more complex profiles. The usual dips at
late 7; around -100 and -200 combine to mild and small reductions at early conformal
times around -1000 and -1500 (see modes C.2 and C.3 of subsection 2.6.3 respec-
tively). The combinations that are preferred by the data are those whose earlier
training node 7; is placed around wu; ~ —0.01. These small dips at early 7; were not
found alone during the search using one training node (modes A shown in[Figure 2.8).
However, these modes at early conformal times are loosely constrained and the con-
fidence intervals are large. Overall, these profiles fits the data very similarly as the
single standing modes A.0 and A.1, as well as the combination B.0. Furthermore, we
have also verified that the modes A.0 and A.2 can co-exist (contrary to the case of
reconstruction with 2 training nodes, where the combination -100 and -400 was not
found) if a very small mode is added close to -100. All these profiles presented in

Figure 2.10|are in the limit |s|pmax>> |t|max. Finally, the 2-dip profiles explained above
are also reproduced when we run with 3 training nodes.

2.6.4 Four dips (denoted by “D?”)

We find similar profiles for u(7) as the ones for 3 training nodes, adding one extra
dip and finding the remaining possible combination of nodes at late 7; around -100,
-200 and -400 with modes at earlier times at -800, -1000 or -1500 (see modes D.0, D.1
and D.3 of [Figure 2.11). Thus, we have corroborated that the modes A.0, A.1, A.2
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and A.4 can, in principle, co-exist. Still, the small modes at early 7; ~ —1000, —1500
are less likely to show up in the posterior, as they are poorly constrained given the
data. It is worth mentioning that we can mostly reproduce all the different profiles
found during the search using up to three nodes when four training nodes are used. In
this case, one, two or three training nodes are placed in such a way the corresponding
profile looks very similar to the cases A, B or C (either the training node is placed
close to u; =~ 0 or close to the previous training mode itself).

2.6.5 Reductions with substructure (denoted by “S”)

Apart from concatenations of transient reductions in the speed of sound, we have
also observed some possible fits which show more complicated feature patterns ac-
cording to the data. These are profiles of u(7) that do not clearly show full dips but
have some kind of substructure (see the upper row of profile S.1). We
find a sub-structured maxima a posteriori at a late conformal time (centred around
7; = —100), which resembles the mode A.0 but with two small sub-reductions. Simi-
larly to A.0, the limit of the EFT functions is |8|max>> || max-

Motivated by the loose constraints of the training nodes in the range of early
conformal times —800 < 7; < —3000, we have launched a GPs reconstruction using
two training nodes, which are restricted to remain in the range —3500 < 7; < —990,
obtaining the profile S.2 of This profile have the particularity that
|8 max << |t|max- This profile tries to fit not only the structure of the CMB TT angular
power spectrum around ¢ =~ 20 — 40 but also the apparent structure of the first
acoustic peak in the TT and TE data. To answer the question if it is possible the
substructure mode S.2 to co-exist with any of the modes at late conformal time 7;,
we have relaunched the GPs reconstruction with 4 training nodes, constraining the
two early ones in the range —3500 < 7 < 7 < —990. When this constraint is
imposed, the later training nodes 73 and 74 are placed clearly around -100 and -200.
The resulting profile (see mode S.3 in can fit the CMB data at low ¢ but
also in a broader range similarly to the case of the mode A.0, increasing the statistical
significance Ax?. In this case, the EFT limit is reverted to |s|max>> [t|max due to the
narrow mode at -100.
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