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Glossary

A Cosmological constant.
ACDM Standard Cosmological model.
(C)DM (Cold) Dark Matter.

AIC Akaike Information Criterion.
AP Alcock-Pacyznski effect.

BAO Baryonic Acoustic Oscillations.

BBN Big Bang Nucleosynthesis.

BH Black Hole(s).

BIC Bayesian Information Criterion.

BICEP Background Imaging of Cosmic Extragalactic Polarization.
BM Baryonic Matter.

CAMB Code for Anisotropies in the Microwave Background.
CfA Center for Astrophysics Redshift Survey.

CLASS Cosmic Linear Anisotropy Solving System.

CMB Cosmic Microwave Background.

CPL Chevallier-Polarski-Linder parametrization.

DE Dark Energy.
DES Dark Energy Survey.

EC Euclid Consortium.

EFT Effective Field Theory.
EM Electromagnetic.

ESA European Space Agency.
ET Einstein Telescope.

FLRW Friedmann-Lemaitre-Robertson-Walker.

GC Galaxy Clustering.
GPs Gaussian Processes.
GR General Relativity.
GR Gravitational Lensing.
GW Gravitational-Waves.

TA Intrinsic Alignment.



Glossary

IST:L Inter-Science Taskforce Likelihood.
IST:NL InterScience Taskforce Non-Linear.

LIGO Laser Interferometer Gravitational-Wave Observatory.
LISA Laser Interferometer Space Antenna.
LSS Large Scale Structure.

MCMC Monte Carlo Markov Chain.
ML Machine Learning.

NASA National Aeronautics and Space Administration.

SDSS Sloan Digital Sky Survey.
SHO Simple Harmonic Oscillator.
SKA Square Kilometre Array.
SNIa SuperNovae of type Ia.

WL Weak Lensing.
WMAP Wilkinson Microwave Anisotropy Probe.

XC Cross (X) - Correlations.
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Chapter 1

Introduction

Looking up at the night sky. A very small body movement that costs an insignif-
icantly small number of calories. However, the consequences of bending the neck up
45 degrees are extraordinary. First, it triggers our innate human curiosity about the
world we live in. Second, this curiosity activates our critical thinking by our wish to
learn something new. All through history, physicists have tried to explain how nature
works using this method of critical thinking, summarized in the scientific method. In
the 20th century, a tiny neck movement translated into a series of remarkable discov-
eries in the field of Theoretical Physics, culminating in the work of A. Einstein about
the Theory of General Relativity (Einstein, 1916). This milestone, together with dis-
coveries in the atomic world, brought about the era of Modern Physics, establishing
a revolution in our understanding of the universe.

During that century, humanity discovered that the universe is expanding (encoded
in the Hubble parameter) (Hubble, [1929). Years later, the Cosmic Microwave Back-
ground radiation was predicted and detected (Penzias & Wilson, [1965). Furthermore,
there appeared strong evidence that galaxies rotate faster in their outer regions point-
ing out the existence of an unknown type of matter called Dark Matter (Rubin, |1983),
and ultimately, it was found out that the universe is currently undergoing an acceler-
ated expansion thanks to the study of Supernovae type la observations (Schmidt et
al., 1998).

These discoveries started the so-called Modern Cosmology era. Cosmologists aim
to narrate the biography of the universe to understand its origin, structure and evo-
lution, its properties, and, eventually, its final fate. Cosmological observations have
increased our understanding of the universe’s evolution from the time of the creation
of the first nuclei up to the present. Yet, at earlier (and future) times the lack of
cosmological information makes speculation dominate.

The ultimate goal of cosmologists is to find a cosmological model able to explain
the current observational data, and so far, it seems that they have accomplished it.
The Standard Cosmological model, also known as the ACDM model, establishes that
our universe is mainly composed of two well-measured yet unknown components: a
type of matter that is known to only interact through gravitation, Cold Dark Mat-
ter (CDM), and a substance responsible of the current accelerated expansion of the
universe that can be modelled by a cosmological constant (A). The ordinary mat-
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ter from which everything we observe is made of commonly called Baryonic Matter|
(BM), only accounts for less than 5% of the total composition of the universe. Cos-
mologists have been able to test the robustness of the ACDM model mostly thanks to
the high-accuracy measurements of the temperature anisotropies of the Cosmic Mi-
crowave Background (CMB) obtained by successful experiments such as the NASA
WMAP mission (WMAP) 2003) and the ESA Planck mission (Planck Collaboration
et al., 2014a).

The Standard Cosmological model relies on the assumption that the underlying
distribution of the primordial density perturbations that seeded the early universe
was Gaussian. These density fluctuations in the early universe are the origin of the
current Large Scale Structure (LSS) of our universe that is observed today. The sim-
plest model of inflation (an exponential expansion phase in the primordial universe)
is compatible with this assumption, apart from explaining why the cosmological ob-
servations indicate that the universe is causally connected and flat.

Still, the ACDM model, though successful, fails to answer hot-burning questions
in the field such as “what is the nature of A?” or "why is there a tension between mea-
surements of the Hubble parameter using different observational probes?". For this
reason, theoretical cosmologists focus on developing modifications of the Standard
Cosmological model, and test them against astrophysical data to check whether al-
ternative scenarios can provide a better explanation of the observations. Furthermore,
cosmologists also work on constructing theoretical predictions of new observables that
can be used to test a given model beyond ACDM. The key discipline used so far to
compare theory with cosmological data is Statistics. In the last 20 years, not only the
amount of cosmological and astrophysical data has increased significantly, but also
our statistical analysis tools have evolved dramatically (Trotta, [2017)).

In the coming decades, a substantial change in the type of cosmological obser-
vations used for statistical analysis will take place. Although the era of precision
Cosmology based on the observations of the CMB has extensively advanced our un-
derstanding of the universe, it is close to an endﬂ In the next decade, the most precise
constraints on the parameters of the ACDM model (or extensions of this model) will
come from the information embedded in the large scale structure (LSS) of the uni-
verse, with several cosmological experiments and missions planned. The ESA mission
Fuclid (Laureijs et al., 2011), whose launch is expected in 2023, will precisely map
the universe’s structure by studying two observables: the Weak Lensing effect (WL),
which studies the apparent change of the shapes of galaxies) and Galaxy Clustering
(GC), which focuses on how well the distribution of galaxies in the universe can trace
the underlying matter distribution.

Even though the goal of the Fuclid mission is to shine some “light” on the origin
and nature of A and Dark Matter, its data can also be used to explore the origin of

LCosmologists usually misuse this term, as when they talk about “baryonic” matter, they also
refer to leptons.

2The CMB still offers an incredible source of information encoded in other observables such as
spectral distortions or the polarization signal. There are still efforts in proposing, designing, pursuing
and realizing new experiments based on observations of the CMB. See for instance (Suzuki et al.|
2018|).



1.1. EVOLUTION OF A HOMOGENEOUS AND ISOTROPIC UNIVERSE

the primordial density fluctuations that seeded the very early universe and evolved
up to the structure visible today. Therefore, the next generation of LSS surveys will
have the power to indirectly constrain different inflationary models by studying the
underlying spatial distribution of the cosmic web.

Furthermore, LSS surveys, together with observations of Gravitational-Wave (GW)
events (Black Hole or Neutron Star mergers), lay the foundation for multimessenger
Cosmology: cross-correlating the information contained in GW merger events and
the LSS information of our universe opens a new window for research in Cosmology;,
in which the universe is observed not only through the electromagnetic spectrum but
also through gravitational signals and the combination between these two.

In this self-contained chapter, we review the most important concepts of the
Standard Cosmological Model following the reviews by (Baumann, 2009), (Carroll
& Ostlie, [2014), (Dodelson|, 2003)) and (Mukhanov, 2005]).

1.1 Evolution of a homogeneous and isotropic uni-
verse

Cosmological observations at sufficiently large scales (> 100 Mpc) support the idea
that the universe is isotropic on large scales. If we also assume that we are not a special
observer in the universe, we infer homogeneity of space. These two characteristics are
the foundations of the Cosmological Principle. In the language of General Relativity,
such a universe is described by the Friedmann-Lemaitre-Robertson-Walker (FLRW)
metric (Friedmann| 1924} Lemaitre, (1931 Robertson, |1935; [Walker|, [1937)):

ds* = g, datdr” = —dt* + a*(t)yi;dz’ da?, (1.1)
where:

e u,v, 1,7 take the values {u, v} = {0,1,2,3} and {i,j} = {1,2,3}.

o a(t) is the scale factor, which accounts for the relative size of space-like hyper-
surfaces at a given time.

e 1z is the comoving coordinate, which defines a fixed set of points on a coordinate
grid that grows with the expansion of the universe given by scale factor a(t).

e ¢ is the cosmic time, which is the time measured by comoving observers (ob-
servers who move with the space expansion determined by the rate of change
of the scale factor a).

 7;; is the tensor corresponding to the spatial part of the metric, which in spher-
ical coordinates (r,0,¢) and together with the differentials dz'dz’ takes the

form:
2

+ r?d¢? + r? sin 0%d6°, (1.2)

vijdx'dr? = T

where £ is the intrinsic curvature of 3-surfaces, and represents a flat (k = 0),
positively curved (k = +1), or negatively curved (k = —1) spatial slices.

3



1.1. EVOLUTION OF A HOMOGENEOUS AND ISOTROPIC UNIVERSE

For convenience, we define the conformal time 7:

dt o
dr = — — ds* = a*(7) [—dT2 + %jdxldxj} . (1.3)
a
Light travels along null-geodesics (ds*> = 0), and in the transformed FLRW met-
ric ([1.3)), its propagation is the same as in Minkowski space when x = 0. The scale
factor a(t) encodes the time evolution of the universe. Usually, it is normalised so
that today ¢ it takes the value a(ty) = 1. Due to the expansion of the universe, pho-
tons travelling from their place of emission towards us are redshifted. This redshift
z is due to the stretching of electromagnetic waves along their path to us and it is
quantified as
1
z+1=—. 1.4
o) (1.4)

The FLRW metric is the solution to Finstein FEquations:

G
G = 5 T, (1.5)

2
where G, is the Einstein tensor and 7}, is the energy-momentum tensor of the matter
components. If we choose to describe the matter present in the universe as a perfect
fluid in the rest frame defined by its energy density p and pressure p, the tensor 7},
takes the form:

T = (p + D)ttty + PYpuvs (1.6)

where g, is the metric of equation (1.1)) and w, is the four velocity of a perfect
fluid. Solving equation (|1.5)) using natural units ¢ = h = 1, and defining the reduced

Planck mass as Mp = \/%, we obtain the well-known First and Secon Friedmann
equations respectively (Baumann, 2009),

N
s (a\° _ p K
w=(3) I (1.7)
Frm="—_ 1 1 (1.8)
“a ez '

where the derivative with respect to the cosmic time ¢ is denoted with the dot (=
d/dt) and H is the Hubble parameter, a crucial function in Cosmology defined as:

H(t) = ZEg (1.9)

Combining both equations (1.7 and (1.8) (or alternatively, calculating directly V,T*"
0) we obtain the continuity equation

p=-3%+p) (1.10)

3The Second Friedmann equation is usually called the acceleration equation.
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1.1. EVOLUTION OF A HOMOGENEOUS AND ISOTROPIC UNIVERSE

The equation of state of a perfect fluid is often given in terms of the dimensionless
state parameter, w, as p = wp. Solving equation ([1.10]) for each species i as a function
of the scale factor a(t),

Y

—3(1+wy) pmo<a®  (w=0) matter (Cold Dark Matter and baryons)
pi = pio (@) —

pro<cad (w = %) radiation

(1.11)
where the sub-index 0 indicates a reference value, which we have taken at the present
time. There is an extra component that must be taken into account to explain cur-
rent cosmological observations: the cosmological constant A. This constant was first
introduced in the Einstein Equations as a term Ag,, to obtain static solutions
of the Friedmann equations, and was later reintroduced when the High-Z Supernova
Search Team discovered that the expansion of the universe is accelerating thanks to
the study of supernovae type la observations (Riess et al., |1998)). Given equations
(1.8) and , we observe that a late time acceleration of the expansion of the
universe occurs when the universe starts to be dominated by an energy component
with an equation of state w < —1/3; that is, a substance that violates the strong
energy condition that is given by w > —1/3.

Why is this acceleration taking place? In quantum field theory there exists the
prediction of an accelerated expansion of the universe due to the non-zero quantum
mechanical vacuum energy. This vacuum energy behaves exactly like a cosmological
constant with an equation of state wy = —1, which results in a energy density

pa(t) = pa(to). (1.12)
This constant energy density is described by the energy-momentum tensor
TS = —MpAg,u. (1.13)

Unfortunately, the theoretical predictions of the estimated value of the vacuum energy
density do not agree with the cosmological observations. Still, current observations
can be explained by a cosmological constant A behaving as a fluid-like energy compo-
nent of the universe responsible of the accelerated late-time expansion. This approach
receives the name of dynamical Dark Energy (DE), which characterizes the fluid by
an equation of state wpg = —1. To infer information from the observational data,
a phenomenological parametrization is often used, denominated CPL (Chevallier &
Polarskil 2001)) (Linder, |2003) defined as,

wpg(z) = wo + wa(1 — a(2)). (1.14)

We aim to provide DE or modified gravity (MG) models that are able to explain
the current observational data to obtain some insight into the nature and origin
of the current accelerated expansion. To find a balance between observations and
plausible theories, it is interesting to study the Large Scale Structure of the universe
from the predictions of the ACDM model in terms of the phenomenological functiong]

4We are using the subscript “MG” to differentiate the symbol y from other quantities that will
be introduced later in this chapter.



1.1. EVOLUTION OF A HOMOGENEOUS AND ISOTROPIC UNIVERSE

Y v and iy, which parametrize modifications of the perturbed Einstein’s equations
relating the matter density contrast to the lensing of light and the Newtonian potential
(Frusciante & Perenonl 2020)). The function 3y;g will be later used in |chapter 6]

A
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Figure 1.1: Evolution of the scale factor a(t) as a function of the cosmic time ¢, redshift
z and energy scale E. The main key events in the history of the universe are pointed
out during the universe’s timeline. We highlight speculative epochs of the universe: at
earlier times, inflation and at later future times, Dark Energy-domination, where the
current accelerated expansion of the universe is modelled in term of the cosmological
constant A. Numerical integration of a(¢) has been done with (Calculadora Cosmolog-
1ca: code that solves Friedman Fquations numerically given values for components of
universel, [2015). The time evolution of the scale factor during radiation-domination
scales as a(t) o< t*/? and during matter-domination as a(t) o t?/3. Some cosmological
space missions as well as experiments placed on Earth are included only for represen-
tative purposes. All acronyms can be found in the Glossary.

Given (|1.11]), we can determine the evolution of the scale factor, a(t), as a function
of time in the presence of these 3 different species. Defining the critical density
Pe = 3M3H0 and the density parameterﬂ Qo = pi/pe (Hy is the Hubble parameter

5We are denoting the density parameters at present time with the sub-index 0. However, this
sub-index is most of the times dropped, and we will follow this notation in the rest of the thesis.
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evaluated today), we can re-write Friedmann equation (|1.7) as,

a\? 1\3 N & /1\?
H? = () = H?|Q,, () +Q, () - — () + ol . 1.15
a 0 “\a “\a HZ \a A0 (1.15)
Given that observational data, in particular, very precise measurements of the Cosmic
Microwave Background (CMB) radiation, support that the geometry of our universe

is flat (k = 0) (Planck Collaboration et all [2014al), we can solve the differential
equation of a(t) as a function of time ¢ |

12/B3+3w)  matter and radiation

Ht

. . (1.16)
e Cosmological constant

a ~ qz(430) a(t) = {

The re-written Friedmann equation shows how the three cosmological species
evolve differently with respect to the scale factor, and how these species also scale
in time according to equation . Knowing the values of the density parameters
today (Q,, 2. and Q,), we can account for the expansion of the universe throughout
its evolution. This difference in the scaling found in equation shows how the
universe progressed through different epochs, starting with a Radiation-domination
era followed by Matter and, ultimately, by Dark Energy-domination (see Figure ,
where the evolution of the scale factor a(t) as a function of time ¢ is depicted).

Given Friedmann equations and equation , we can now explain the thermal
history of the universe. At its very early stages, the universe behaved like a hot
plasma made of relativistic particles forming a thermal batch. As a consequence
of the universe’s expansion, the universe’s temperature cooled down, allowing the
decoupling of various particles from the thermal bath. At a temperature 7' ~ 10'° K,
it became more energetically favourable for quarks to exist in bound states such as
protons and neutrons instead of being in a quark-gluon plasma. Later, it is believed
that neutrinos decoupled from the cosmic thermal bath around 7' ~ 10!° K. Below
that temperature, high-energy photons (gamma-rays) can no longer produce electron-
positron pairs, and the populations of both electrons and positrons started to decrease
steeply by particle-antiparticle annihilation.

When the universe was approximately 3 minutes old, it had reached the necessary
low temperature to allow several light nuclei (Hydrogen, Helium and some Lithium) to
form through a process called Big Bang Nucleosynthesis (BBN). This mechanism was
responsible for the transition between a radiation-dominated universe and a matter-
dominated universe (z &~ 3600). The predictions made in the context of BBN (such as
the primordial abundances of those nuclei, which can be calculated by studying the
corresponding cross-sections) are in agreement with the current experimental evidence
(Cyburt, Fields, & Olive, 2003). The primordial abundance predictions are one of
the two main successes of the Big Bang Theory.

At a temperature 7'~ 1 eV (around z ~ 1100) the universe entered the so-called
Recombination epoch. During this time, light nuclei began to bind with electrons
to form neutral atoms. These bindings induced a drop in the number density of
free electrons. Hence, the decoupling of photons from matter took place, as photons
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could no longer scatter off of electrons, which is called recombination. These photons
could finally travel freely through space, with an almost isotropic distribution. This
primordial radiation is called the Cosmic Microwave Background (CMB). Its exper-
imental detection by Penzias and Wilson (Penzias & Wilson| [1965) represents the
second main success of the Big Bang Theory. More details about the modelling of
the CMB observables are given in [subsection 1.5.2]

Finally, after recombination, only the CMB radiation is emitted, introducing an
epoch called dark ages. At around z ~ 20, the Large Scale Structure (LSS) of the
universe started to form, where Dark Matter (DM) is thought to have a very impor-
tant role. It is assumed that DM is composed of an “exotic” yet-unknown particld|
that decoupled at earlier stages from the thermal bath and started to collapse gravi-
tationally into halos. Thus, after recombination, stars began to form when Baryonic
Matter (BM) collapsed to the centre of these pre-existing DM halos. Afterwards, due
to gravitation, galaxies were formed. These objects emit enough light to re-ionize
the medium by ripping electrons from the neutral atoms. At lower redshifts z ~ 6,
clusters of galaxies began to form thanks to gravity, building the well-known web-like
structure of the universe. At approximately z ~ 0.55, the contribution of DE is ap-
proximately equal to the contribution of matter, causing the universe to enter into
the Dark Energy-domination era.

1.2 A problem of initial conditions and inflation

Despite cosmological observations having accounted for experimental evidence of
the BBN as well as the CMB radiation, the detection of the CMB radiation also
brought some of the biggest puzzles that Modern Cosmology had to face. First of all,
it confirmed that our universe is currently dominated by Dark Energy and that we
need close to 30% of Dark Matter to explain the observations of the angular power
spectrum of the CMB temperature anisotropies. Furthermore, it showed the necessity
of fine-tuning the initial conditions of the Big Bang. The fine-tuning of the initial
conditions of the universe is usually shown in terms of the horizon problem and the
flatness problem. To introduce these problems, we calculate the maximum comoving
distance photons can travel in space-time from emission (t.) to a detecting observer

(ta):
ta dt’ ate) 1
= = —dl 1.17
xr /te a(t’) /CL(td) P (1.17)

where the factor 1/aH is denominated the comoving Hubble mdz’usﬂ The first prob-
lem is that not-causally connected patches in the CMB may seem to be in thermal
equilibrium. Solving the integral in equation for the different epochs in the
universe, we observe that xp is an increasing function during Matter and Radiation-
domination. If we calculate its size at the moment of the last scattering during the

6There are other alternative theories to DM that aim to explain the current behaviour observed
in the observational data. See for instance (Verlindel 2017
"Cosmologists misuse this term often calling to the comoving Hubble radius with the word horizon.
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CMB radiation emission, we discover that the CMB map is composed of at least ~ 10*
causally-disconnected patches despite showing the same temperature up to 1075 K.

On the other hand, the second problem exposes that, given today’s observed
values for the different components of the universe and the fact that our universe is
flat (k = 0), a flatter universe was required in the past due to the dependence of
density with time. Rewriting equation by absorbing the time dependencies
into the density parameters (); we see that

1-— ie{mzw} Qi(a) = e (1.18)

According to the calculations, we need to fine-tune, at least, at the moment of BBN
Yictmary Qiapey) — 1~ 10716 to obtain a flat universe x = 0 at present time.

An elegant solution to solve these two problems is a decreasing comoving Hubble
radius in a very early stage of our universe. This accelerated expansion period in the
early history of the universe is called inflation. Given Friedmann equations :

d<1><0 — d2a>0 — p+3p<0 — < ! (1.19)
dt \aH at? pep vsTy ‘
Re-writing the first term of equation ((1.19)), we obtain
o dn H
O T N = (1.20)

where N is the number of e-folds (number of expansion times of the universe a =
exp(N(t)) so that dN = Hdt), € is usually called the first slow-roll (kinematic)
parameter, and to ensure accelerated expansion 0 < ¢; < 1. In the limit when ¢; — 0,
the Hubble parameter becomes constant and therefore, the space-time becomes de
Sitter space. However, inflation needs to finish and last long enough to solve the
horizon problem (approximately between 50 and 60 e-folds). This condition is studied
by introducing a new parameter, €5, which relates the relative change of ¢; during

one e-fold as follows
dlne é

€= - = o (1.21)
and is known as the second slow-roll kinematic parameter. The condition |e|< 1 en-
sures that the change of €; is small and consequently, inflation can last. A shrinking
Hubble radius (1.19) also provides a natural mechanism to explain the generation
of the initial perturbations of the distribution of matter in the early universe that
evolved up to the current Large Scale Structure visible today. To explain the mecha-
nism, we use the Simple Harmonic Oscillator (SHO) as an example. Let’s model the
behaviour of small perturbations as damped SHOs due to the expanding space-time.
Before inflation, all small-scale perturbations are inside the Hubble radius. When the
comoving Hubble radius shrinks, the Hubble friction term starts to dominate and the
scales become over-damped. If the scale is larger than the Hubble radius, they cannot
longer move becoming frozen. After inflation, when the Hubble radius grows again,
the friction term does not longer dominate the behaviour of the SHO, allowing the
scales to move again. In the next section, we will introduce this mechanism using the
simplest setting of single-field slow-roll inflation.
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1.3. CANONICAL SINGLE-FIELD SLOW-ROLL INFLATION

1.3 Canonical single-field slow-roll inflation

Inflation needed to stop at some point because we know, from cosmological obser-
vations, that the radiation and matter-domination epochs took place. For inflation
to end, the space-time had to deviate from a perfect de Sitter space. Still, de Sitter
space-times remains a good approximation for ¢; < 1. Together with e; < 1, they
are the slow-roll conditions. We can discuss how microscopic physics can fulfil the
slow-roll conditions by defining a new substance that violates the strong energy con-
dition, similarly to the case of the cosmological constant. For simplicity, let us model
this substance as a single scalar field ¢ that is homogeneous, so that ¢(t,x) = ¢(t).
To describe the dynamics of the system, we introduce the second-order action for
the field ¢ with a canonical kinetic term and a potential V' (¢), minimally coupled to
gravity, given by

5= [ dov=a | "E R Joo,000- V(o) (122

where R is the Ricci scalar curvature of the space-time and the first and second terms
of the action describe the coupling of the inflaton ¢ to gravity. All this setting is
called canonical single-field slow-roll inflation. Calculating 7},, from the action ([1.22])
and comparing to the expression for a perfect fluid , we obtain the corresponding
expressions for the density, py, the pressure, ps, and the homogeneous field ¢

1. 1.
po= 50" +V, ps =50 =V (1.23)

Introducing expressions (|1.23]) in (1.7) and (1.10]), we can obtain the corresponding
to the continuity equation as well as the Friedmann equations in terms of V' and ¢
respectively:

av , 1 /1., 1 /1,
R TTF <2¢> +V>, H=1p <—2¢). (1.24)
The equations in can be used to express the slow-roll parameters €; and e,
in terms of the potential V' and the field ¢. To fulfil the slow-roll conditions, the
kinetic energy of the inflaton field has to be negligible with respect to the potential
energy (¢ < V), which makes the Hubble parameter to be nearly constant H JH < 1,
allowing an almost-exponential expansion with a(t) oc exp Ht. Also, the acceleration
of the field has to be very small ((b < H (/5) ensuring inflation to last long enough.
Moreover, when the slow-roll conditions are fulfilled, we can quickly see from equations
that the equation of state of this substance should be w, ~ —1, as in the
cosmological constant case. The slow-roll parameters can be also expressed in terms
of the potential V.

05V M? V 1
€y = 7 ( (‘év ) =~ €1 |77v|E P& ~ 261 — —€9, (].25)

and the slow-roll conditions imply that €y, |ny|< 1. The potential slow-roll parame-
ters are commonly used in the literature and can be also related to the kinetic slow-roll
parameters €; and €.
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1.3.1 Primordial perturbations

Apart from solving ad-hoc the fine-tuning of initial conditions, inflation explains
the origin of the primordial seeds that evolved to the current structure observed in
the universe. The origin of these primordial density perturbations lies in the quan-
tum fluctuations of the inflaton field with respect to the homogeneous background
and, also, in how the evolution of these perturbations k behaves with respect to the
comoving Hubble radius aH . The overview is as follows (see [Figure 1.2). When
the universe underwent inflation, quantum fluctuations were stretched to a very large
scale. When the physical Wavelengthﬁ of this mode is larger than the scale of the
Hubble radius, this mode is called super-Hubble (k=! > (aH)™'). These perturba-
tions that exited the Hubble radius during this extreme expansion remained frozen.
At later stages of the universe, when the comoving Hubble radius increased again dur-
ing radiation and matter-domination (see equations and (1.16)), these frozen
modes re-entered the Hubble radius again, becoming sub-Hubble (k~' < (aH)™') and
forming the initial density fluctuations of the universe.

Following the discussion presented in (Baumann) 2009; Achicarro & Welling,
2015)), where the original references can be also found, we can illustrate this be-
haviour mathematically using the canonical single-field slow-roll inflation scenario as
an example. For that, we use a perturbed expression of the FLRW metric in (1.1,
G (t,X) = G + 09, (t, %), and of the field ¢(t,x) = ¢(t) + d¢(t,x). To parametrize
09w, a particular useful choice of coordinates is the comoving gauge,

(5@5 = 0, (591](757 X) = (12 [(]_ - QR(t, X))(Sij + hij (t, X)] s &hw = O, (126)

where R denotes the scalar metric fluctuation (comoving curvature perturbation) and
h;j is the tensor part (gravitational waves) of the perturbed metric. In this gauge, the
inflation field ¢ is unperturbed (the density of the fluid is constant) and the scalar
degrees of freedom are parametrized by R. Substituting equation into the
expression of the action for a single-field , and expanding in powers of R, we
find the quadratic action for the scalar metric fluctuation,

1 2. OR)?
=3 /d‘*mf”fp [RQ - %2)] (1.27)

Our goal is to derive the equation of motion for R, show that it has a Simple Harmonic
Oscillator (SHO) form, and promote the classical field R into a quantum operator.
In order to solve the equations of motion derived from (1.27)), the Mukhanov-Sasaki
variable v is introduced (Mukhanov, [1988; [Sasaki, [1983). It is defined as

v=2R 2? = 2d’e. (1.28)

Using the conformal time 7, defined in equation (1.3), and the Mukhanov-Sasaki
variable v, we obtain the full quadratic action in perturbations with canonical kinetic

8 A physical wavelength of a mode is proportional to k~!. Larger physical wavelengths imply
smaller values of k.
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Figure 1.2: Graphical representation of the history of a particular comoving scale k!
(dashed black line). This comoving scale is a sub-Hubble scale (k7! < (aH)™!) un-
til it leaves the comoving Hubble radius 1/aH due to inflation, where it remains
constant and super-Hubble (k™' > (aH)™'). It re-enters during the radiation-
domination epoch, becoming sub-Hubble again (k! < (aH)™'). The evolution of
k=% after re-entering is modelled according to the dynamics of the radiation and
matter-domination epochs, and is encoded in the transfer function 7%, which is a
mathematical tool that explains the physical phenomena in the period between infla-
tion, radiation domination, matter domination, and the emission of the Cosmic Mi-
crowave Background. We can study the distribution of density perturbations in the
angular power spectra of anisotropies of the Cosmic Microwave Background (CMB)
Cy. Adapted from (Baumann, 2009).

terms:

1 3 ne a2, 2o
5’2—2/(176195[(0) (Ov) +Zv : (1.29)

where the derivative with respect to the conformal time 7 is denoted as df /dr = f'.
This action demonstrates that the Mukhanov-Sasaki variable v is the one we should
use as the canonical quantization variable. In Fourier space, we obtain the equation
of motion for v:

ZN
v + <k:2 - Z) vy = 0. (1.30)
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where vy is the amplitude of the Fourier mode and depends only on the magnitude
of k. Equation resembles the equation of a Simple Harmonic Oscillator (SHO)
with a mass depending on the conformal time m?(7) ~ —2”/z. Therefore, the quan-
tization of the field v is obtained analogously to the treatment of the quantum SHO.
We promote v and its corresponding conjugate momentum v’ to a quantum operator
v,

f)k = UkCALk + ’Ui:CALTk, (131)

where @y and &L are the creation and annihilation operators, which satisfy the canon-
ical commutation relation

lax, af,] = (27)%(k — K'). (1.32)

Solving equation ((1.30]) is complicated as z depends on the background dynamics.
However, some insight can be obtained if we study certain limits and constraints.
However, an important constraint can be imposed at the earliest stage of our universe
when 7 — —o0, which implies that all comoving scales were within the Hubble horizon
(as 7 oc —(aH)™!, given equation (1.17))). In this limit, we choose the vacuum state
for the fluctuation,

ax |0) =0, (1.33)

meaning that every mode k is assumed to have started its evolution in the vacuum
state, such that there was no particle production. According to this, modes with high
k do no feel the curvature of space-time, and the expectation value of the Hamiltonian
in the minimal energy state corresponds to the one in flat (Minkowski) space. This
boundary condition is known as the Bunch-Davies vacuum.

In the quasi-De Sitter regime, where H and e are approximately constant, the full

solution to equation ([1.30)) is,

v (7) = \;;i; <1 - k:) . (1.34)

Now, we can trace the history of a mode £ mathematically by studying the asymptotic
limits of the solution ((1.34) in the quasi-De Sitter case (H, e ~ constant):

o k7> 1 ¢ k> aH < k™' < (aH)™': the scale k is sub-Hubble, and the
solution of vy (7) is dominated by the oscillating exponential part e~**7. This is
just the result of the above-mentioned Bunch-Davis vacuum.

o |kT|< 1+ k< aH < k7' > (aH)™': the scale k is super-Hubble, and the
dominant contribution to the solution is the divergent factor 1/7. This means

that, in this range, equation (|1.34)) is,

y B 1 aH
m V() = NI Ry

(1.35)

where we have used that 7 ~ (aH)™'. Recovering the definition of v from
equation (|1.28]), we find that the curvature perturbation R is constant and

13



1.3. CANONICAL SINGLE-FIELD SLOW-ROLL INFLATION

shows that super-Hubble scales remain frozen when they leave the horizon:

v v H .

R z a2 > k2/3\/€ - rgél—R 0 (1.36)
where this expression for R should be evaluated for each mode at the Hubble
crossing radius k = aH.

In conclusion, during inflation, perturbation modes exit the horizon, becoming super-
Hubble scales. Quantum fluctuations in the inflaton field lead to some parts of the
universe being stretched for a longer period of time than others, which means that
some sub-Hubble scales exit the Hubble radius due to the accelerated expansion of
the universe later than other scales. All scales remained frozen until they re-enter at
later stages of the universe when the comoving Hubble radius increases again. The
before mentioned local time delay of the Hubble exit of different scales translates into
density fluctuations, which follow their evolution during radiation-matter domination.
These local differences in density become the seeds of all the current structures of the
universe.

1.3.2 Primordial power spectrum

We can study the statistical probability distribution of the primordial fluctuations
by using the power spectrum, Pgr(k), which is the Fourier transform of two-point
correlation function (R (k;)R(ks)):

(R(k1)R(ks)) = (27)%6° (k; — ko) Pr(k), (1.37)

where 42 is the three dimensional Dirac delta and Pg (k) is only dependent on the mag-
nitude of the momentum scale k& = |k|, and not on the direction, due to isotropy. The
primordial power spectrum is usually redefined as a dimensionless quantity, Pr(k),
as 3

Pr(k) = 2—7T2PR(I<:) (1.38)
Cosmological observations support statistically an almost scale invariant power spec-
trum, and this is why a phenomenological parametrization of Pg (k) is broadly used.

Using a Taylor-expansion up to the first order, the expression is

Pr(k)

log 7773(/6*)

ns—1

~ (ns—1)[logk —logk.] + ... = Pr(k) = A <]f> : (1.39)
where k, is a pivot scale, Ay is the scalar amplitude (the value of the spectrum at the
pivot scale) and n is called the spectral index. The spectral index quantifies the scale
dependence of Pr(k). As mentioned above, current observational data are consistent
with a power spectrum which is nearly scale-invariant. One can write the spectral
index ng and the scalar amplitude A, as a function of the slow-roll parameters €; and
€5 for canonical single-field slow-roll inflation:

Nng = 1— 261 — €9. (140)
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Figure 1.3: Tensor P;(k) and scalar Pr (k) primordial power spectra for the best fit
values of ACDM taking the tensor-to-scalar ratio r = 0.2 for illustration purposes.
Plot generated with CAMB.
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8m2¢;
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(1.41)

In the single-field slow-roll scenario, €¢; and e, are taken to be small, which indicates
that ng should slightly deviate from one, and this is why, by construction, single-
field slow-roll inflation is consistent with current observations. If we assume that the
distribution of the density perturbations is Gaussian, the power spectrum contains
all information to characterize it. This time-dependence of the Hubble parameter
(during inflation, the Hubble parameter decreases as e increases) induces a slight
increment of Pr (k) for low values of k, producing a red-tilted primordial power spec-
trum. Moreover, the parametrization ((1.39) is also used for the perturbations of the
metric (tensor modes),

Pi(k) = A <k>n : (1.42)

where A; is the tensor amplitude and n; is the tensor tilt. The ratio between both,
the scalar and tensor amplitudes, is called the tensor-to-scalar ratio:

r AS

(1.43)

1.3.3 Beyond canonical single-field slow-roll inflation

As seen in the previous section, the simplest inflationary scenario (the canon-
ical single-field slow-roll case) gives by construction a nearly scale-invariant power
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spectrum, which is the one supported by cosmological observations (Bennett et al.
2013))(Planck Collaboration et al., [2014b))(T. M. C. Abbott et al., 2018]). If we are in-
terested in studying deviations from this power-law primordial power spectrum ,
any alternative proposed approach has to predict a spectral tilt ny smaller than one
so that the power spectrum is still red-tilted.

In theoretical physics, it is customary to use a bottom-up approach to build an
Effective Field Theory (EFT) to describe low-energy physical phenomena in a model-
independent way. The idea behind EFT is that in nature there is often separation
of scales: many aspects of physics at a given energy or length scale do not depend
on detailed information about physical processes on much smaller length scales or
much larger energies (“UV-scales”). EFT is a powerful framework to study the low-
energy physics (with some limitations) by parametrizing the “unknowns” at UV-
scales. In the case of inflation, we can have a single degree of freedom responsible for
driving the perturbations and the background evolution, as in the canonical single
field case we just discussed. However, in other scenarios, a single degree of freedom is
responsible for the dynamics of the perturbations whereas some unknown effects on
the background physics are encoded in other primordial functions. In this last case,
the effective single field action for the perturbations up to second order, neglecting
higher-order slow-roll corrections (~ O(e?)) is given by,

L (aiR)Q] : (1.44)

52 = /d4l‘a3M12;.€1 [62 - 3

S a

where ¢4(t) is the curvature perturbation’s speed of sound and encodes part of this
unknown physics. This action has a single degree of freedom and reduces to the ac-
tion ([1.27) when ¢, = 1. This action is constructed following a bottom-up approach
by (Cheung, Fitzpatrick, Kaplan, Senatore, & Creminelli, [2008)), where the action is
written in terms of the Goldstone boson of time diffeomorphisms 7 (¢, x), which is re-
lated to the curvature perturbation R through the relation R = —H7 and assuming
73 to be small and approximately constant. On the other hand, this action can be
also obtained in a multifield setting by integrating out the heavy fields, as in reference
(Achucarro, Gong, Hardeman, Palma, & Patil, |2012)). This action has been used in
to study localized deviations from the power-law in the primordial

power spectrum, denominated in the literature as features.

1.4 The Large Scale Structure of the universe

The Friedmann-Lemaitre-Robertson-Walker (FLRW) metric provides a good de-
scription of the universe at large scales (those larger than 100 Mpc). Nevertheless,
on smaller scales, the universe is no longer isotropic and homogeneous, and it begins
to show a web of clustered matter, known as the Large Scale Structure (LSS) of the
universe. The description of the physics taking place at smaller scales can be done
by studying the perturbations around the FLRW cosmological background, assuming
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that the perturbations remain small. Scales that can be treated linearly in pertur-
bation theory are called linear scales. A detailed explanation of the theory of linear
order perturbations can be found in (Dodelson, [2003)).

We are interested in the time evolution of cosmological perturbations, which can
be divided into three different epochs. At early times, all of the perturbation modes
are outside the horizon and follow the same evolution. At intermediate times, the
modes’ wavelengths are within the horizon and the universe evolves from radiation
to matter domination. The matter-radiation equality and the stage of the horizon
crossing play an important role in the evolution of the modes. At late times, all the
modes follow the same evolution again. We mainly observe the distribution of matter
at late epochs, which corresponds to this latest stage.

Following the same perturbation theory approach explained above, let us start by
defining the dimensionless matter density contrast d,, in terms of the matter density
pm and the spatially constant density pp,:

5y = OPm _ P = P (1.45)

pin pin

Poisson’s equation, which is obtained by the theory of linear perturbations on the
FLRW metric, relates the gravitational potential in Fourier space ®(k,a) and the
matter density contrast as:

A Gpma?Om

L2

We are mostly focused on studying the Fourier transform of d,, because at linear
scales, the different Fourier modes k are independent. Moreover, for an isotropic
Gaussian field, the Fourier-transformed quantity is described by the power spectrum.
In particular, the Fourier transformed matter density contrast d,,(k) can be described
in terms of the matter power spectrum Pys(k, z) as

o = (1.46)

(O (k1)0m(ka)) = (27)° Pss(k, 2)8° (ki — ko) (1.47)

where 0%(k; —ky) is the three-dimensional Dirac delta function, and assuming isotropy,
the vector-dependency on k can be dropped. The matter power spectrum can be
related to the primordial power spectrum Pg (k) of curvature perturbations via the
matter transfer function 7, through

P&;(k’, Z) = 2W27_2m(l€, Z)PR(]{?), (148)

where the transfer function 7, is introduced to describe the combined effect of phys-
ical processes that affect the growth of our perturbations such as acoustic oscillations
(see [subsection 1.5.2)), silk damping, radiation drag, free-streaming damping, among
others. The transfer function 7, is usually computed by the numerical Boltzmann
solvers like CAMB (Lewis, Challinor, & Lasenby| 2000; Howlett, Lewis, Hall, & Challi-
nor,, 2012) and CLASS (Essinger-Hileman et al., 2014). See for a visualiza-
tion of the matter power spectrum. Combining the Boltzmann equations governing
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the Dark Matter evolution and the Poisson equation described in equation ((1.46)) we
can derive a second-order differential equation for the matter density perturbation o,
in Fourier Space:

o (z, k) + [[;II((;)) 1 i Z] & (2, k) — ;(?i(zizcgm(z, k)=0, (1.49)

where, here, the prime denotes derivatives with respect to z, and the time-redshift
evolution of §2,,(z) is given by equation . The second term of this equation can
be seen as a friction term that shows how the growth of structures can be affected
by the expansion of the universe. The last term is related to the enhancement of
matter densities due to gravity. Note that this equation is only valid in the limit
when §,, < 1 (terms of order §% are ignored).

The solution 6,,(z, k) of equation is scale-independent at later times; see
e.g. (Dodelson, 2003). This scale-independence motivates the introduction of the
growth factor D(z) through

D(z)
D(Z*) ’

O (2, k) = O (20, k) (1.50)

where z, is an arbitrary reference redshift in the early stages of the matter-dominated
era. Both d,,(2,k) and D(z) can be used to define another important quantity, i.e.
the growth rate f(z):

f(Z, k) =

mm%@g) (1.51)

~ dIn(1+

When 6,,(z, k) = dm(z) applies, the growth rate is itself a solution of a first-order
differential equation:

30m(2)

] f(z)+ = =0, (1.52)

f'(z) 51+

[ _[ 2 H'(?)
1+2 1+2z H(z)

with initial condition f(z = z,) = 1. In the Large Scale Structure literature, the
power spectrum of matter fluctuations Pss is usually normalised at present times by
requiring that the r.m.s. variance on a sphere of radius Rg = 8 h~! Mpc is equal to a
normalisation factor dubbed og, namely

1
O'g = ﬁ/d/{? P(;(g(k’, Z = 0) |WTH(]CR8)|2 k/‘?, (153)
T
with Wrg(z) = 3(sinx — xcosz)/z® a top-hat filter in Fourier space. It is also

customary to introduce the parameter Sy defined as,

Sg = 08\| —=- (154)
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1.4.1 The non-linear regime

As mentioned above, equation holds when 6 < 1. If we go to much smaller
scales the perturbations become more important and the linear theory breaks down,
which means that the growth of smaller massive perturbations cannot any longer be
tracked with this equation. This breakdown corresponds approximately to a scale
today of around k ~ 0.1 Mpc~! and it is denominated the non-linear regime.

Assuming the Standard Cosmological Model, structures are considered to be
formed hierarchically. This means that small structures are formed first around the
primordial over-densities of the matter density field. Due to gravity, these structures
collapse into dark matter halos. Larger structures form later by the accretion of mass
nearby or by the merging of different halos. Beyond the scales of a galactic halo or
inside it, it is very difficult to study the evolution of structures.

There exist different theoretical approaches to extend the model predictions to
smaller scales; for instance, the standard perturbation theory (SPT), see the review
by (Bernardeau, Colombi, Gaztanaga, & Scoccimarro, 2002). However, we need to
rely on prescriptions obtained from the fitting of cosmological simulations to go to
smaller scales. A widely-known used prescription to model the non-linear part of the
matter power spectrum Pjs is halofit (R. E. Smith et al., 2003)), where the authors
obtained the fitting prescription from a library of N-body cosmological simulations
(see for the halofit correction to Ps;). Although the code halofit is able
to predict correctly the non-linear matter power spectrum up to very small scales, the
fitting prescription was obtained from Cold Dark Matter simulations. This means that
halofit may provide biased results for the non-linear modelling if massive neutrinos
are taken into account or the non-linear modelling requires to go to even smaller
scales where the impact of baryonic interactions is non-negligible. Because of this
reason, other corrections are needed, the most famous being the Bird and Takahashi
corrections (Bird, Viel, & Haehnelt| |2012) (Takahashi, Sato, Nishimichi, Taruya, &
Oguri, [2012).

Recently, other tools have been developed to predict the non-linear corrections
to the matter power spectrum. For example, the code hmcode (Mead et al.. |2016)
introduced physically-motivated free parameters for the halo model formalism that
were fitted using high-resolution N-body simulations for a variety of cosmological
models. Moreover, another mechanism to make predictions for the non-linear regime
is based on emulators (see for instance (Heitmann, Lawrence, Kwan, Habib, & Higdon,
2014)). The idea behind emulators is based on running high-resolution simulations
at key points in the cosmological parameter space so that the full parameter space
can be recovered evenly. Then, an emulator is constructed to interpolate between the
values of the grid so that it gives predictions for any set of parameters within the
space and corrections for the matter power spectrum are computed.
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1.5 Observations

The number of precise and new observational probes used to constrain our under-
standing of the underlying physics that explain the universe has increased significantly
in the last decades. In this section, we detail the most important ones. Some of these
observational probes rely on definitions of distances in our universe. Cosmologists
work mainly with three different types of distances:

« Comoving distance y: measures the distance travelled by a light ray between
an object at redshift z and us in a coordinate system that expands with the scale
factor a(t). The comoving distance has already been introduced in equation
(L.17), and rewriting it in terms of the Hubble parameter H(z) we obtain:

=/ ;lé',) (1.55)

where z is the redshift and z = 0 is usually taken at present time.

o Angular diameter distance Dj: measures the distance to a distant object
of proper size [ subtended by an angle 6 as

[
Dy = —. (1.56)
0
For flat cosmologies (i.e: ACDM), relating the angle 6 to the comoving distance
X, we arrive at the redshift z dependent expression:

X
1+2

Da (1.57)

o Luminosity distance D;: measures the distance to a source by means of
studying the flux F' of an object with known luminosity L:

L

D? = —
L 4rF

(1.58)
For flat cosmologies (i.e: ACDM), we can relate Dy, with the angular diameter

distance Djy:
Dy, = (1 + 2)*Djy. (1.59)

1.5.1 Supernovae Type Ia (SNIa)

Some of the best cosmological constraints so far have been obtained using obser-
vations of Supernovae Type la (SNIa): a type of supernovae that does not have any
presence of hydrogen but does show strong Si II absorption lines in their spectra.
This type of supernovae is believed to originate from the thermonuclear disruption of
carbon-oxygen white dwarfs. Due to their characteristics (they are very bright, and
can be spotted at high redshift), they are used as distance indicators in Cosmology.
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In particular, the main observable used in SNIa observations is the distance modulug’]
o (2): H
pup = 5logy, (CODL> (1.60)

where Dy, is the luminosity distance defined above. Note that the speed of light factor
¢ was recovered in this equation.

1.5.2 CMB angular power spectrum

As we mentioned in the last section, the inflationary hypothesis is not only used
to explain the fine-tuning of the initial conditions issues but it provides an elegant
mechanism of production of the density fluctuations that seeded the early universe.
These primordial density fluctuations have been seen in the temperature anisotropies
AT /Ty of the Cosmic Microwave Background (CMB). The CMB is a relic radiation in
our universe. After Big Bang nucleosynthesis, the universe was filled with a very dense
baryon plasma, where baryons tend to cluster together due to gravitation. However,
the pressure created by photons was so large that it could stop the clustering. We
say that the baryonic plasma was suffering acoustic oscillations. When the universe
was approximately 380000 years old (at a redshift zqe. & 1090), it cooled down to a
temperature of approximately 1 eV, allowing light nuclei begin to bind with electrons
to form neutral atoms. These bindings induced a drop in the number density of
free electrons. Hence, the decoupling of photons from matter took place, as photons
could no longer scatter with electrons. This is the so-called recombination epoch.
These photons could finally travel freely through space, with an almost isotropic
distribution. The relic temperature of this radiation is now Ty ~ 2.7 K and makes up
the CMB. The acoustic oscillations got imprinted in a characteristic scale r; defined
as

o cs(2)
7ﬁs<zdec> - dZH(Z) 5 (161)
where ¢, is the sound speed of the photon-baryon fluid.
The temperature anisotropies AT'/Tj can be related to the primordial power spec-
trum Pr (k) through the angular power spectrum C/7:

Crr = i [ KPR ()T (BT (k). (1.62)

where 7,7 (k) is the corresponding transfer function. The angular power spectrum
of temperature anisotropies CT can be seen in . In general, the CMB
background provides more information than the one encoded in the temperature
anisotropies. In fact, in the CMB map, we can also study the polarization modes E

and B of photons. Thus, the general expression for the angular power spectra of the
CMB is

CXY fr [ RdkPRT (0T (h), (1.63)

9We have decided to use the subscript D for the distance modulus p to differentiate this variable

from the cosine of the angle in the expression for the galaxy power spectra in [subsection 1.5.3
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Figure 1.4: Left: CMB angular power spectrum of temperature anisotropies C;}t
with the experimental data of Planck 2018. Right: matter power spectra Pss (linear
and non-linear) with Planck 2018 and DES Y1 data. The plot has been generated
with CAMB and matplotlib using the available data provided by (Chabanier et al.,
2019) and (Planck Collaboration, Aghanim, Akrami, Ashdown, et al., 2020b)). Solid
line represents the best theoretical fit according to Planck 2018 data using the linear
prediction for the matter power spectrum. The amplitude of the non-linear prediction
(dashed red line), using halofit, has been increased for illustration purposes.

where X and Y may refer either to the temperature T or the polarization modes F
and B. Furthermore, 7;X are the transfer functions, which are usually written as
a line-of-sight integration in conformal time that contains the source factor S (k,7)

and the geometric projection P;* (k|7o — 7|) based on Bessel functions (see|Figure 1.2):

TX(k) = /0 drSX (k, ) PX (k|ro — 7). (1.64)

The computation of the transfer functions is usually done numerically. There are
several codes that are designed for this goal. The most well-known ones are CLASS
(Essinger-Hileman et al., 2014) and CAMB (Lewis et al., [2000; [Howlett et al., 2012).
The Planck mission (Planck Collaboration, Aghanim, Akrami, Ashdown, et al., 2020b)
has measured successfully C7 7, the cross-correlation spectrum C7* and CF¥.

1.5.3 Galaxy Clustering

We have seen in kection 1.4] that we can model the distribution of matter in our
universe by the matter power spectrum Fjss. The key question is how we can infer from
observations the matter distribution by looking at the bright distant objects present in
the night sky. Galaxy Clustering (GC) describes how well the distribution of galaxies
in the universe traces the underlying matter distribution. The theoretical prediction
for the positions of galaxies in the universe depends on the cosmological model, so
measuring the position from galaxies is a powerful proof to constrain cosmological
parameters. For that, we need a robust modelling for the relation between the galaxy
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Figure 1.5: Redshift-space correlation function compared to different cosmological
models. The data points are taken from the Sloan Digital Sky Survey (SDSS).
The magenta line shows the prediction of ACDM without baryons (€2, = 0), which
demonstrates that the BAO peak is statistically significant. The plot is original from
(Eisenstein et al., 2005)).

and the matter distributions. This relation is encoded in the so-called galazy bias
b. One of the simplest models relating the matter and galaxy densities is given by a
constant factor (Peacock & Dodds, [1994):

5y = b6p. (1.65)

This model is known to be very simplistic but is still used for forecasting. In
different bias models are shown.

When galaxy clustering is used as an observational probe to constrain cosmological
models, other observational probes can be taken into account to increase in accuracy.
One of these probes is the Baryonic Acoustic Oscillations (BAO), which do not only
affect photons (as we have seen in the case of the CMB in [subsection 1.5.2)) but
also baryons. The characteristic radius scale formed when the waves froze during
electron-photon decoupling (at around zgae &~ 1020 during the so-called drag epoch)
is imprinted as an excess of power on the distribution of baryons. Since baryons and
dark matter interact gravitationally, the latter would tend to cluster on this particular
scale. Consequently, galaxies likely form in the higher density regions corresponding

to the BAO scale 74(2arag) (see [Figure 1.5)).
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Another probe is Redshift Space Distortions (RSD). When we measure galaxy
redshifts, we need to take into account both the peculiar velocities of galaxieﬂ and
the Hubble flow. If only the Hubble recession is considered when we convert redshift
measurements to distances, we will recover a distorted field showing RSD. We can
write down the relation between the redshift space galaxy power spectrum F,, and
the real-space matter power spectrum Pss as (Kaiser) [1987)(Hamilton, |1998)

Pyg(k, i, 2) = Pos(k) (b + b f(2) i) (1.66)

where b is the bias introduced in equation , b, is the bias between galaxy
and matter velocity distributions (which is usually neglected), f is the growth rate
introduced in and py is the cosine of the angle to the line-of-sight. The
RSD also carry cosmological information in the growth rate f.

Finally, redshift surveys such as the future Fuclid mission (see will
measure the positions of galaxies and their redshift. Still, to compare this information
to theoretical predictions based on cosmological models, we need to translate the
position and redshift of galaxies to comoving coordinates. To do this process, we
need to assume a fiducial cosmological model. If the used fiducial model does not
agree with the real cosmological model of our universe, some extra distortions similar
to the RSD (Ballinger, Peacock, & Heavens, |1996) will be introduced. This is called
the Alcock-Pacyznski (AP) effect. This effect is taken into account when the recipe
of the Fuclid mission observables is introduced in [chapter 6]

1.5.4 Weak Lensing

Another approach to studying the formation of structures and constraining the
underlying cosmological model is not to look only at the position of galaxies in the sky
but also at their shapes. One of the most fascinating predictions of Einstein’s Theory
of General Relativity'l| (GR) is that the light from distant objects will be deflected
if there is a massive concentration along its way, inducing, for instance, distortions
in the shape of galaxies. This effect is called Gravitational Lensing (GL) and we can
use it to infer the mass distribution in the universe. There are different regimes of
gravitational lensing. When the deflection of light coming from the source is large,
we are in the so-called strong lensing limit, where even multiple images of the same
object or giant arcs are seen on the sky (see . Another example is when
we study the light coming from background distant galaxies. The magnitude of the
distortions is smaller than in the strong lensing regime, where the effect induced in the
shapes of galaxies is very subtle. However, we can statistically average all these small
distortions to infer the mass distribution in the LSS of the universe (Kaiser, [1998)).
We call this limit the Weak Lensing (WL) regime, and we can relate the distortion
of the shapes of galaxies with the underlying mass power spectrum.

10The gravitational force exerted on galaxies by their neighbouring mass can induce peculiar
velocities deviating from the Hubble flow.

1Tn fact, General Relativity was widely accepted after the detection of the deflection of a starlight
ray during a solar eclipse, whose magnitude was well in agreement with that predicted by Einstein’s
theory (Dyson, Eddington, & Davidson, {1920).
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Figure 1.6: Left: schematic illustration of the light wavefront and the different
regimes of gravitational lensing depending on the position of the observers. De-
flection arcs and double images, for instance, fall in the strong lensing limit (Courbin
et al., [2002). Right: illustration of the distortions caused by strong gravitational
lensing (centre of the image) and by weak lensing (the shape of the galaxies shows
small variations as we move away from the centre of the image) (Peirone, [2020)).

Mathematically, the distortion of light that induces the apparent change in the
intrinsic ellipticities of galaxies is described using GR. Deriving the geodesic equation
for the transverse motion of photons travelling from the source towards the observer
and integrating twice, we can obtain the position of the imaged shape as a function
of the source position:

897’ Xsource X
w—(s??z/ dy (1- Do), 1.67
s 6= [ a (1= X wcoy (167

where Ysource 1S the comoving distance to the source, 67 is the angle under the given
light ray between the source and the observer, 67 ... is the unlensed angle, i, j rep-
resent the direction on the sky, 65 is the Kronecker delta and ® is the gravitational

potential introduced in equation ([1.46]). We usually describe the change between the
source position and the observed one using the two-dimensional symmetric matrix:

00, I —kaL —m —72
sou}"ce o 51 — 1.68
007 ’ ( —2 1 — kKoL +m (1.68)

where kg1, is denominated convergencﬂ, which describes the magnification of an
image, and 71,7, are the two components of the so-called shear, which describe the
distortions and is the most important quantity for weak lensing studies.

Therefore, weak lensing makes circular images look like elliptical, and this effect
can be studied statistically to obtain valuable cosmological information using current

12We have added the subscript GL to differentiate this x from the one appearing in the FLRW
metric.
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and future galaxy surveys. However, the high-quality of incoming surveys also re-
quires accurate modelling of the systematic effects of weak lensing measurements. In
this respect, it is crucial to model the ellipticity of the galaxy shapes robustly. Fur-
thermore, the Intrinsic Alignment (IA) of galaxies must also be taken into account so
that the weak lensing signal does not become contaminated. During their formation
and evolution, galaxies tend to align with the matter distribution and neighbouring
galaxies due to tidal forces induced by the surrounding large scale structure. These
intrinsic alignments, if not taken into account, can mimic the weak lensing signal
and produce a systematic signal larger than the experimental errors. In [chapter 6]
the modelling for the Fuclid weak lensing observable, including IA corrections, is
explained in detail.

1.6 The Standard Cosmological model

Current cosmological observations described in support statistically
the Standard Cosmological Model, also known as the Concordance model or the
ACDM model. This model concludes that we live in a spatially flat universe, which
contains less than 5% of Baryonic Matter (BM) and approximately 26% of Cold
Dark Matter (CDM). The other main contribution comes from Dark Energy (DE),
which behaves like vacuum energy and is modelled with the cosmological constant A.
The percentage of radiation is negligible today. The ACDM model assumes that the
underlying distribution of the primordial density perturbations is Gaussian, and that
the corresponding primordial power spectrum of curvature perturbations is almost-
scale invariant.

This model is able to explain most of the current cosmological observations with
only six free parameters, whose values have been obtained with high accuracy (see
. The procedure and techniques to obtain the values of these parameters
using cosmological data coming from the CMB and LSS are explained in detail in
lsection 1.7

In the last years, data analysis of the ACDM model using different observational
probes has given values for the ACDM parameters that are in tension[| One example
is the case is the value of the Hubble constant Hj,, whose value obtained by direct
measurements from SNIa is significantly higher than the indirect value obtained using
CMB data (Riess et al., [1998). In the regime of LSS, other tensions are found. This
is the case for the amplitude og, whose value obtained from CMB measurements is
in tension with the one obtained from cluster abundance. This tension in og induces
another tension of 30 on the value of Sy measured from WL when compared to
the CMB Planck results. A detailed review about the current state of cosmological
tensions can be found in reference (Abdalla et al., [2022)).

Different explanations aim to bring some light on these tensions. Some scientists
strongly believe that the tensions may hint at new physics beyond the Concordance

13A parameter value given two data sets is referred to be in tension when their mean values and
confidence intervals overlap partially or slightly.

26



1.7. DATA ANALYSIS IN COSMOLOGY

Symbol ‘ Description ‘ Value
Density parameter of
2
Qph Baryonic Matter 0.02242 £+ 0.00014
Density parameter of Cold
2
Q.h Dark Matter 0.11933 4+ 0.00091
Measure of the sound
1000 horizon at last scattering. 1.04101 + 0.00029
Mo It can be used to infer a ’ ’
value for Hy
Thomson scattering optical
Treion depth due to reionization 0.0561 4 0.0071
In(1004,) | Scalar amplitude of the g 7y
primordial power spectrum
- Spectral index of the 0.9665 + 0.0038
primordial power spectrum

Table 1.1: Mean values and 68% intervals for the base-ACDM model parameters from
Planck CMB power spectra, in combination with CMB lensing and BAO, obtained by
the Planck Collaboration. The decimal notation used in this table agrees with that of
(Planck Collaboration, Aghanim, Akrami, Ashdown, et al., [2020b)). The parameter h
represents the reduced Hubble constant defined as h = Hy/(100kms™'Mpc™). The
scale amplitude Ay is fitted using a redefinition of it as In (10'°A) by the Planck
collaboration. The inflationary parameters n, and A, were evaluated at the pivot
scale k, = 0.005 Mpc_l.

model. Others support the assumption that the data analysis is contaminated by ob-
servational systematical errors that were beyond the control of the analysis method-
ology. In any case, the effort of the cosmological community is undeniable, either
by proposing extensions of the ACDM model that could explain the tensions, or by
further reviewing any possible systematics introduced on the measurements or on the
data analysis.

1.7 Data Analysis in Cosmology

Statistics are crucial to evaluate the fit of cosmological observations to any the-
oretical model. The starting point is to define the scientific question. For example,
you may be interested in finding the parameters that fit best a chosen theoretical
model, or you may want to discover if a model, given some parameters, is statistically
preferred than another one. These questions in Cosmology are usually answered using
a Bayesian Statistical framework. This section aims to be a practical guide on how
Bayesian statistics are currently used in the context of Cosmology and represents the
main methodology followed in the scientific content of this thesis.
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1.7.1 Bayesian Statistics

Bayesian statistics assume that the parameters of interest, given that the model
parameters are treated as random variables, have probability distributions (Ivezic,
Connolly, VanderPlas, & Gray, 2014]). Bayesian statistical analyses rely on Bayes’
Theorem, which provides the probablhty distribution of the parameters 0 given a
model M and the observed data d. This probability distribution, P(6|d, M), called
posterior distribution, is defined as

P(0|d, M) = £ @Z{E?'M). (1.69)

In equation (|1.69)), we find several probability distributions defined below:

o L(d|0,M) is the so-called likelihood, which gives the probability of observing
the data d given the model M and the parameter values 6. It measures the
compatibility of the data with the hypothesis.

o II(8|M) is the prior distribution, which is the probability distribution of the pa-
rameters 6 taking into account all available external information. For instance,
this information may come from previously collected data, limits imposed by
theory, results of previous experiments, etc. This prior should not take into
account the actual data d.

e Z(d|M) is the evidence (also called marginal likelihood), which gives the prob-
ability of observing the data given the external information and the chosen
model.

Likelihood

The likelihood L is a probability distribution that determines how well a model
M with a given set of parameter values # matches the given experimental data d.
The likelihood considers the assumptions of the model as well. In Cosmology, we are
especially interested in testing whether a cosmological model M, such as ACDM or
extensions of it, with its parameter values 6, can fit current data. Therefore, a relation
between the experimental data, d, and the theoretical predictions for cosmological
observables given by the model is needed. In many scenarios, the likelihood L is
modeled as a multivariate Gaussian distribution function of dimension 2:

[’:#e,%(dlf(e))tc Y(d— ), (1.70)
(2m)"y/1C]

where d is the data vector, f(@) is the theory vector, C' is the covariance matrix of
the data d, i is the number of variables of the data set d and |C| is the determinant of
the covariance matrix. This approach of using a multivariate Gaussian distribution
to model the likelihood is applied in CMB experiments, for instance, or in the Fuclid

mission (see [chapter 6| in particular [section 6.5)).
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Prior

The already known information about the parameters of interest is summarized
in a probability distribution denominated prior. The information coming from pre-
vious experiments can be used as prior distributions. Moreover, it is customary in
Cosmology to use Gaussian priors for the parameters 6 if the results from previous
experiments show that the posterior distributions of those parameters 6 resemble
a Gaussian distribution. In general, to define a prior for the set of parameters 6,
we need to set the probability distribution and the hyper-parameterd | of the prior
distribution.

In our research, in some cases, we restrict the hyper-parameters of the prior dis-
tribution according to the theory. In these cases, for each #, we assign a uniform
distribution, which is defined within the limits allowed by the theory, to ensure that
the probability area in the parameters space is equal for all the parameter values.
These priors are sometimes called uninformative priors, although there is a notorious
debate in the field of Statistics about whether uniform probability distributions are
indeed the less informative distributions. In other situations, we define more complex
prior distributions, according to the theory, so that we have an efficient sampling (for
instance, a Beta function, described in [chapter 2)).

We distinguish between two types of prior distributions: the conjugate and non-
conjugate priors. In the case of using a conjugate prior, the posterior distribution is
in the same probability distribution family as the prior distribution (for example, if
the prior is a Gausiaan distribution and the likelihood is defined as in equation ,
the posterior distribution is also Gaussian). Otherwise, for non-conjugate priors, the
posterior distribution is not part of the same family as the prior and this usually
increases the difficulty of the sampling procedure (see subsection .

Bayesian Statistics vs. Frequentist Statistics

A different approach to statistical problems is the Frequentist approach. This ap-
proach is very common in particle physics and other fields of science. Working with
an example, this approach is, in general, based on defining a null hypothesis such
as “the Primordial Power Spectrum does not deviate from an almost-scale invariant
power law”, and an alternative hypothesis, for instance, “the Primordial Power Spec-
trum has some features described by the model M” (Chluba, Hamann, & Patil, 2015).
Based on the results, the null hypothesis is either rejected or retained.

In the Frequentist approach, the most important output is not a probability den-
sity distribution of the parameters, but a numerical value called statistic, which is
used to determine whether the null hypothesis can be rejected or not. Associated
with the statistic, the assumed underlying probability distribution, and the degrees
of freedom we have a p-value (Robert| |2011]). This value is defined as the probability
of obtaining a statistic value equal to or more extreme than the observed one under

14We call hyper-parameters the parameters of the prior distributions. Examples of hyper-
parameters are, for instance, the bounds of a uniform distribution. More examples of hyper-

parameters can be seen in [chapter 2
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the assumption that the null hypothesis is correct. If the associated p-value is smaller
than the probability of rejecting the null hypothesis when it is trud™”} «, we reject
the null hypothesis in favour of the alternative one. In general, « is set to 0.05.
There is a notorious debate regarding the choice of a Bayesian or Frequentist
approach to tackle scientific problems. Both of them offer pros and cons: many re-
searchers criticise the use of a prior in Bayesian Statistics; in particular, whether the
selection of the prior distribution may be misleading. On the other hand, Frequen-
tist statistics is considered less flexible. Besides, the publication bias has induced
a tendency on obtaining p-values smaller than 0.05 (Viechtbauer, 2007). In some
exceptional cases, there has been a malpractice called p-hacking, which consists on
changing models and hypothesis on the fly during research and/or modifying the data
sets to obtain a p-value below 0.05 (Reyes, Dieste, C., & Juristo, 2020; Head, Hol-
man, Lanfear, Kahn, & Jennions, 2015). In any case, the use of Bayesian statistics
in infering the parameters distributions of a cosmological model or in the research
of extended cosmological models is more popular, due to the demanding numerical
simulations and other procedures required to analyse the data in the Frequentist ap-
proach (Schafer & Starkl 2003). One of these requirements is the large number of
experiments (or repetitions of measurements), such as in particle physics, where a
collision can be repeated numerous times. Unfortunately, in Cosmology, we cannot
perform several experiments for the same research question and this is one of the
main reasons behind the application of Bayesian statistical analysis (Schafer, 2015).

1.7.2 Parameter Inference

When only interested in the estimation of the values of the set of parameters 6 that
best fit a model M, the normalization Z(d|M) of the Bayes’ Theorem (Equation 1.69))
is usually omitted, because it provides only a re-scaling of the normalization of the
distribution. Thus

P(6)d, M) o £(d|6, M)IL(0)M). (1.71)

To infer the best value of the parameters 6 we need to explore the parameter space
and test if the model fits the data well for a wide range of parameter values within
this space. In Cosmology, we usually deal with a very large number of parameters
with non-conjugate prior distributions, which complicate the analytical evaluation
of the posterior distribution P(6|d, M) (Equation 1.71). Therefore, we need to use
numerical tools to sample computationally the posterior distribution. Usually, this
procedure is done by evaluating possible parameter values using a grid. These tools
are based on a random sample drawn from the real posterior distribution. The most
common ones are Monte-Carlo Markov Chain (MCMC) methods (see (Eckhardt,
1987) for a review). The name Monte Carlo simply means obtaining a representation
of the distribution by sampling it randomly, while the Markov Chain improves the
sampling efficiency.

15This is also known as type-I error.
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A Markov Chain is defined by a series of random variables where the probability
of the outcome of a random variable in the current step depends only on the outcome
of the random variable in the previous step (Markov, 2006)). We are interested in two
main properties of the Markov Chains. First, we need the chain to be stationary: the
distribution should not depend on time (meaning, it should not depend on the num-
ber of steps). Second, we need the chain to reach a state where the next elements of
the chain are picked from the high-density regions of the posterior distribution (that
is, the elements are selected from the region close to the likelihood maximum@.

In the simplest scenario for an MCMC, we compute the set of parameter values
iteratively. At each iteration, we check whether the new set of values fits better
than the previous one; this means that the set of values sampled from the posterior
distribution is closer to the maximum of the likelihood. This step is done by checking
the values given a selection criterion. Different sampling algorithms use different
selection criterion. If the selection criterion is fulfilled, the algorithm selects the new
set of values. Otherwise, it keeps the previous one. At the end of each iteration, the
set of parameter values is saved. The ordered set of saved iterations forms what we
call a chain. The density of points in the chain gives the posterior distributions of
the parameters.

Once the posterior distribution is sampled, we usually marginalise it to show the
results of a multi-parameter fit. Marginalization involves projecting the distributions
to all other dimensions, and it is usually achieved by summing or integrating over the
unwanted distributions of the parameters as

Poy(01) = [ Poy 0 (61.02)d0, (1.72)

where O are the set of random variables with values 6;, which are the variables that
we want to keep, and Os are the set of random variables with values 6, that we aim to
get integrated (or “marginalized” over). In Cosmology, it is customary to use already
available codes to post-process the MCMC chains, being one of the most popular
codes GetDist (Lewis, 2019).

There are several sampling algorithms for the MCMC process. In this thesis, we
focus on Metropolis-Hastings (MH) and Nested Sampling algorithms. In Cosmology,
there are several Bayesian Analysis Framework codes designed to carry out statistical
analyses of parameter inference of cosmological models against data. The most famous
ones are MontePython (Audren, Lesgourgues, Benabed, & Prunet, 2013]), CosmoMC
(Lewis & Bridle, [2002) (and its new python version Cobaya (Torrado & Lewis| 2021,
2019)) and CosmoSIS (Zuntz et al., 2015). These frameworks usually contain a so-
called theory code (for instance CAMB, CLASS or both) to provide theoretical predictions
of the cosmological observables, different data sets and several samplers (such as the
nested samplers PolyChord (W. J. Handley, Hobson, & Lasenby, 2015a, [2015b) or
MultiNest ([Feroz & Hobson, 2008; Feroz, Hobson, & Bridges, 2009; Feroz, Hobson,
Cameron, & Pettitt, [2019), and Metropolis-Hastings MCMC samplers).

16\ aximize the likelihood L is equivalent to minimize the —log L.
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Figure 1.7: Left: an example of a Markov Chain constructed by the Metropolis-
Hastings algorithm. It starts at 1, then 2 is proposed and accepted (step A), 3 is
proposed and refused (step B), and finally, 4 is proposed and accepted (step C). The
resulting chain is (61, 6,,0s,04). Central: an example of what happens when the
proposal step is too broad: the different proposed new set of values are further away
from the minimum of the log-posterior, and therefore, they get rejected. As a result,
the chain lacks mobility because all the proposals are unlikely and it may get stuck.
Right: an example of what happens with a proposal step that is too narrow: all
the proposed new set of values are accepted, making the chain to move towards the
minimum of the log-posterior but it samples the parameter space very slowly and the
convergence takes longer. Figure from (Leclercq et all 2014)).

This algorithm (Hastings, |1970) is based on a particular choice of the selection
criterion to decide whether to keep the set of values of the parameter space during
the current step ', or to come back to the previous step 6. This criterion is based on
calculating a ratio, called acceptance ratio, a, defined aﬂ

_ o®a0)
= b0l i

where p(6') is the posterior distribution and, the proposal distribution ¢(¢’|), is the
conditional probability of proposing a new 6’ given the previous 6 values. In general,
q is proposed to be a Gaussian distribution. At each step, a sample of ' from ¢(6'|9),
and a random number v from a uniform distribution between 0 and 1, are drawn. If
a > v, we accept 6, and it becomes a new state of the chain. Otherwise, we reject
0" and the new state of the chain is 6 again. This is shown in figure In this
figure, it can be observed that each accepted step only depends on the previous one
and that, eventually, it is independent of the number of steps, making the chain a
Markov Chain. To speed up the algorithm, a covariance matrix C' of previous sam-
pling runs can be used in the likelihood calculation so that the algorithm samples

Do not confuse with the scale factor a(t) used in previous sections.
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more efficiently the parameter space with prior information obtained from another
statistical study.

Still, the major disadvantage of this algorithm is that the sampled sets of param-
eters are correlated because we only use the previous sample to obtain the current
one. This means that, if we start the algorithm with a value within the parameter
space that has a low probability, the chain will not reflect the underlying distribution
very well until a higher likelihood region is reached. Therefore, a small percentage of
the initial values of the chain are usually discarded (the so-called burn-in phase), in
order to achieve the stationary property. Sometimes, the chains may also get stuck
in a lower probability region and not be able to escape from it to further explore
the parameter space. This is why, when this algorithm is used, several chains with
different initial values are usually run. In any case, this algorithm also suffers in
multi-modal posterior distributions where the chain can get stuck in relative maxima
of the likelihood (see for instance multi-modal posterior distribution at Chapter [2)).
A similar problem will arise if there are high correlations or degeneracies among the
parameters (showing correlated peaks in the posterior and “banana” contour plots).

The Metropolis-Hastings algorithm allows us to construct a Markov Chain con-
taining as many values as parameters we are trying to infer per step. Once that the
chain is stationary, we need to decide if we can stop the sampling. Therefore, a ques-
tion arises: how do we decide this? A simple answer is not available, as no test can
affirm whether a chain has converged or not. Still, some convergence diagnostics may
point out some necessary conditions for a chain to show some convergence, although
they are not sufficient conditions. Some diagnostics include:

o Individual segments of the chain show similar results, as long as the chain is
much longer (sufficient large number of steps in the chain) than any obvious
correlation.

o A reasonable number of accepted proposed steps. If the acceptance is too high,
it may point out that the chain is slowly converging; however, if the acceptance
is too small, it may indicate that the chain is locally stuck. An optimal accep-
tance rate for a Metropolis-Hastings MCMC is considered to be around 25-30%
(Gelman, Gilks, & Roberts, [1997)).

o As a result of running several chains at the same time with different starting
points to avoid them getting stuck, we can apply a different stopping crite-
rion: the Gelman-Rubin statistical criterion R (Gelman & Rubin, 1992). This
test consists of comparing the variance within individual chains to the variance
between chains. Their ratio, R, should be close to 1 when the chains have
converged. In Cosmology, the usual convergence ratio is R-1<0.01.

Nested Sampling

To circumvent the issues presented by the Metropolis-Hastings algorithm, an al-
ternative way of sampling the posterior was developed by J. Skilling (Skilling}, 2006):
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the Nested Sampling algorithm. This algorithm is based on calculating the evidence
Z (marginalized likelihood). From the Bayes’ theorem ((1.69)):

Z(d|M) x P(0]d, M) = £(d|0, M) x TI(0|M) — (1.74)

/Z(e) x p(6)do = /c(e) <OV — 7= /EdX. (1.75)

where we have defined dX as dX = I1(#)d6f and the prior and posterior are normalised
to the unit total. From this equation , we observe that Z, which is the normal-
ization in equation , is defined as the area below the curve £dX (see right panel
of [Figure 1.8)). Therefore, the algorithm developed by Skilling set up a genuine way
to estimate Z doing a numerical integration, whereas the sampling of the posterior p
is a by-product of this calculation.

In 1-dimension, the algorithm works as follows: in the first step, we generate a
starting set Sy of n samples uniformly distributed over the space and allowed by the
prior II. Next, we delete the lowest likelihood sample £y in Sy, and replace it with a
new uniform sample with a higher likelihood £; > Ly (this is called a hard constraint
on likelihood value), moving to step 5.

0 X 1

Figure 1.8: Left: Graphical interpretation of the Nested Sampling algorithm by look-
ing at the parameter space: the contours specify the areas of the search after each
step, where the point with the lowest likelihood was discarded. In every step, the
contours are reduced, moving closer to the regions of higher likelihood and finding
different likelihood clusters (separated contour regions with high likelihood). This
figure is the result of an animation from W. Handley lecture at (Lesgourgues|, 2018)).
Right: Likelihood function £ as a function of the parameter X = [ dfII(#), showing
how the area below the curve is the evidence Z. Adapted from (Skilling| 2006]).

The live-evidence, Zj;., is related to the live points Xj;,. and their corresponding
likelihood L. The live points Xj;,. are the survivor points of the n+1 sample S, 1
(see left panel of figure black points). The live evidence is approximately equal
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t0 Ziive = (Liive) Xiiwe (the value of the likelihood is similar when we are reaching
convergence, so we can approximate the integral as the average value of the likelihood
of every point times the number of points). The last process is repeated until the
live evidence, Zj;,. is a small fraction of the total evidence Z. The algorithm needs
a precise value for this fraction, given by the user, to determine if convergence is
achieved or not. The value of this fraction is what we call the "stopping criterion".
The set S of n samples is constantly updated after every step and the set of dead
points (the erased points with low likelihood) with an appropriate weighting factor
are the posterior samples (see left panel of figure , red points). This procedure can
be generalized to multiple dimensions (Skilling, 2006]). The points chosen randomly
from the region £(X) are representative of the posterior, and therefore, the samples
of the posterior distribution p are obtained by assigning weights w; to the discarded
points so that:

w; L(0)

p(f) =~ 7 (1.76)
1.7.3 Model Comparison
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Figure 1.9: Bayesian Information Criteria: proof-of-concept. = The data set
make _moons from the python package sklearn has been fitted using the Gaussian
Mixture model, also available in sklearn. The horizontal axis represents the num-
ber of Gaussian functions used to fit the data (more Gaussian functions represent an
increment in the number of parameters k). The vertical axis shows both the Akaike
Information Criterion (AIC) and the Bayesian Information Criterion (BIC). This
example shows the asymptotic behaviour of the AIC (blue triangles) and the growing
tendency for the BIC (orange circles), after some local minima. We conclude that
the most statistical convenient number of Gaussian functions is 6 (according to the
BIC) and 9 (according to the AIC, although after 6 the gain is not really significant)
because, after those local minima, both criteria remain either stable (AIC) or increase
(BIC). Example inspired by the documentation of sklearn (Scikit-learn 1.1.1 docu-
mentation: Gaussian Mizture Model Selection, [2022)).
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In many different scenarios, we are interested in knowing whether a model M is
statistically favoured with respect to a different model M,. In Bayesian statistics, this
is usually computed by calculating the Bayes Factor, which is inferred from applying
model comparison to Bayes’ theorem (Skilling, 2006]):

_ P(M|d) _ Z(d|M)I(M)

Y= POnid) = Z@ML)I(0n)

(1.77)

where P(M|d) are the posterior probability distributions integrated over all the pa-
rameter space O. If our sampling algorithm allows us to calculate evidences Z, for
example with the Nested Sampling algorithm, we can compute B directly by taking
the ratio of the evidences and priors (in some circumstances when the priors are uni-
form, the ratio of priors II(M) is assumed to be close to unity). If B is larger than
one, this means that the data support the model M; statistically better in comparison
to model M,.

The numerical integration to obtain P(M|d) may be infeasible, because, in gen-
eral, we might need a large number of samples. For this reason, alternatives to the
Bayes Factor are sometimes used, which are defined in terms of the likelihood £ and
the complexity of the model, and are called information criteria. In general, these
methods do not simply choose one model versus a different one by analysing which
likelihood is the highest, because a model with more parameters mostly leads to a
higher likelihood. In most cases, the information criteria penalize a model according
to its number of parameters k. The most popular information criteria are the Akaike
Information Criterion (AIC) (Akaike, 1974) and the Bayesian Information Criterion
(BIC) (Stoica & Selen, [2004). The AIC and BIC are defined respectively as

AIC = —2log L + 2k, (1.78)

BIC = -2log L+ kIn N, (1.79)

where N is the number of data points used in the fit. In principle, the model with
lower BIC or AIC is favoured. It is worth mentioning that the BIC and AIC tend to
show an asymptotic behaviour beyond a certain number of parameters (see figure ,
implying that no gaining is obtained when more parameters are included in the model.
The quantity —2log L is known as the dem’ance{ig].

1.8 About this thesis

Since the last decade, Modern Cosmology is increasingly becoming heavily-based
on data science, in particular, on Bayesian Statistics. This is the primary methodology
and common motto of all the chapters of this thesis. The thesis is divided into three
different parts:

18In Cosmology, we denote the deviance —2log £ with the symbol x2. This is a language misuse,
probably because the deviance follow a x? probability distribution.
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o The first part is focused on data science and inflation, pursuing to constrain
inflationary models using advanced inference techniques and forecasting tools.
Chapter 2 shows the first-ever results of the reconstruction of the inflaton’s
speed of sound using the latest Cosmic Microwave Background (CMB) data
from Planck 2018 and modern algorithms (Gaussian Processes). Chapter 3
is dedicated to the forecast of a particular class of single-field inflation models,
known as a-attractor, for a future CMB stage-IV experiment using a model-
dependent alternative approach for the sampling of the inflationary parameters
based on current constraints obtained by CMB and LSS data. These two chap-
ters are based on references (Canas-Herrera, Torrado, & Achucarro| 2021)) and
(Canas-Herrera & Renzi, [2021)), respectively.

o The second part of the thesis is dedicated to the novel interest in the cross-
correlations of Gravitational-Wave (GW) physics and Large Scale Structure
observables, concretely, Galaxy Clustering. In particular, we study how we
could exploit the information contained in these new observables by forecast-
ing their behaviour and possible detection using future experimental set-ups
and statistics. Chapter 4 focuses on the study of unresolved GW events that
form the Astrophysical Gravitational-Wave background, and how we can use
the cross-correlation of the anisotropies of that background with Galaxy Clus-
tering to extract both astrophysical and cosmological information. This work is
based on (Canas-Herrera, Contigiani, & Vardanyan, [2020)). On the other hand,
in Chapter 5 we investigate how machine learning techniques can be used to
reconstruct the propagation of tensor perturbations by combining the spatial
correlation between resolved GW mergers and galaxies. This chapter is based
on (Canas-Herrera, Contigiani, & Vardanyan| 2021]).

o Finally, the third part of this thesis is dedicated to the Fuclid mission and
the current work developed by the author of this thesis as a member of the
Euclid Consortium. Chapter 6 focuses on a crucial data science tool for the
mission: the code Cosmological Likelihood for Observables in Euclid (CLOE). In
this chapter, the implemented cosmological recipe, as well as the description
of the Fuclid likelihood, are depicted. The results concerning the structure
of CLOE and its performance to constrain cosmological parameters are a novel
preview of the content of the Key Project papers of the Fuclid Science Working
Group Inter-Science Taskforce Likelihood (IST:L).
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Part 1

Constraints on inflationary models
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Chapter 2

Bayesian reconstruction of the

inflaton’s speed of sound using
CMB data

This chapter is based on:

Bayesian reconstruction of the inflaton’s speed of sound using CMB data
Guadalupe Canas-Herrera, Jests Torrado Cacho and Ana Achticarro
(2021, June), Physical Review D 103, 12, 123531, arXiv:2012.04640.

2.1 Introduction

The standard cosmological model (ACDM) is currently favored by the available
data. It assumes that primordial fluctuations are Gaussian and defined by an almost
scale-invariant primordial power spectrum (see Chapter 1). These assumptions do not
point to any particular origin, although the simplest inflationary model, canonical
slow-roll single-field inflation, naturally predicts them. By contrast, other models
of inflation predict deviations from the near scale-invariant spectrum in the form of
features. If ever detected, they would open a new window of research in the field of
primordial dynamics. See i.e: (Chluba et al [2015; |X. Chenl, |2010; |Slosar et al., [2019;
Palma, 2015).

The study of features of primordial origin can be done within an Effective Field
Theory approach. Within this scenario, features can be produced by the time de-
pendence of primordial functions such as the slow-roll parameters or the speed of
sound of the effective inflaton (the adiabatic mode). In particular, small, soft and
transient reductions in the inflaton’s speed of sound produce such correlated localized
oscillatory features in the n-point correlation functions. In the 3-point function (or
bispectrum), these localized oscillations present a distinct difference in phase between
the squeezed and equilateral configurations (Achticarro, Gong, Palma, & Patil, 2013).

The Planck Collaboration (Planck Collaboration, Aghanim, Akrami, Ashdown,
et al., 2020b) searched for deviations of the canonical scenario in its last release of
data. Nevertheless, they did not find strong evidence in the context of features in
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the primordial power spectrum (Planck Collaboration, Akrami, et al. [2020). They
included, for the first time, a joint search of correlated simple features in the primor-
dial power spectrum and in the bispectrum, also without significant results. However,
the Planck Collaboration has not studied in detail different feature templates such
as the above mentioned ones due to small and transient reductions of the inflaton’s
speed of sound. This motivates us to continue our previous study (Achtcarro, Atal,
Ortiz, & Torrado, 2014} Achucarro, Atal, Hu, Ortiz, & Torrado, 2014; Hu & Torrado,
2015; [Torrado, Hu, & Achtucarro, 2017)), in preparation for a future release of the
Planck bispectrum likelihood or for future investigation in light of incoming Large
Scale Structure surveys.

Most of the time, the study of features in both observables (primordial power
spectrum and higher correlation functions) are model-dependent, both regarding their
physical origin and the ansatz used. In our latest paper in this series (Torrado et al.,
2017)), we already pointed out the need for testing more flexible feature templates to
mitigate the dependence on the ansatz. Within this approach, we can test whether
multiple and consecutive reductions of the inflaton’s speed of sound can take place
consecutively, a possibility already pointed out in the previous work (Torrado et al.,
2017)). Furthermore, reconstructing the inflaton’s speed of sound allows us to test
more complex feature templates with variable amplitude and oscillation frequency,
which implies more possibilities to fit well-motivated deviations from ACDM beyond
those that only used a pre-defined ansatz for the features.

Reconstructions at the level of the primordial power spectrum have already been
attempted (Planck Collaboration et al., 2016} |Hazra, Shafieloo, & Souradeep), [2013;
Hunt & Sarkar| 2014; Ravenni, Verde, & Cuesta, 2016} |Durakovic, Hunt, Mukherjee,
Sarkar, & Souradeep, 2018} Ballardini, 2019; Durakovic, Hunt, Patil, & Sarkar}, 2019;
W. J. Handley, Lasenby, Peiris, & Hobson|, 2019). However, there is not enough con-
straining power in Planck’s power spectrum alone to decide on a particular model for
the features. Model-informed reconstructions have the advantage of increasing the
constraining power by adding the information contained in higher-order correlation
functions; but this is only possible if the constraints of the theoretical model are prop-
erly imposed on the reconstructed spectrum, so that it will always lead to a consistent
prediction. The task of imposing these physical constraints along the reconstruction
is non trivial (Appleby, Gong, Hazra, Shafieloo, & Sypsas, 2016)). It is advisable,
instead, to reconstruct the primordial dynamics directly. In our case, we reconstruct
the inflaton’s speed of sound: the timing, intensity and rate of its reduction. Since
we are reconstructing the underlying function leading to the correlated features, it is
not only guaranteed that we will obtain a consistent bispectrum feature prediction
using power spectrum data alone, but we will also be able to use both data sets si-
multaneously to get a more stringent reconstruction once a bispectrum likelihood has
been released.

In this chapter, we develop a new analysis pipeline that uses Gaussian Processes
(GPs), a hyper-parametric regression technique, to model the inflaton’s speed of
sound profile. The analytic nature of GPs makes easy to impose the constraints of
the theoretical model, which involve derivatives of the reconstructed function. For a
given number of nodes in the GP, we construct a prior on the hyper-parameters of
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the GP model (the position of the nodes and the correlation length), that maximizes
entropy with respect to the bare physical constraints. In this way, we verify that nodes
are not placed wherever they would lead to an unphysical reconstruction, and that
the density with which the hyper-parameters are explored reproduces the measure
of the physical prior (W. Handley & Millea, 2019; (Gariazzo & Mena) 2019; Planck
Collaboration, Aghanim, Akrami, Ashdown, et al 2020b).

We test our new pipeline against Planck 2018 temperature, polarization and lens-
ing CMB angular power spectrum data, obtaining corresponding posteriors of the
parameters of interest and several maxima a posteriori. Our results do not only re-
produce our previous findings (Torrado et al. 2017)), but allow for combinations of
multiple consecutive reductions as well as more complex shapes.

This chapter is organized as follows. In section we review the theoretical
framework for inflationary correlated features in the primordial power spectrum due to
transient reductions in the speed of sound. In section we explain the methodology
used to generate features in the primordial power spectrum: the parametrization for
the reduction in the speed of sound , the chosen priors for the the different
parameters and the computational procedure (2.3.3). In section[5.5] we present
the results corresponding to the fitting of features using the CMB angular power
spectrum. Finally, we discuss the results, draw our conclusion and show prospective
work for the future in section 2.5

2.2 Theoretical model

We follow the Effective Field Theory (EFT) of inflationary perturbations (Cheung
et al., [2008) to characterize the fluctuations of comoving curvature perturbations
around an inflating cosmological background. It starts with an effective action for
the Goldstone boson of cosmic time diffeomorphisms 7(¢,x). This Goldstone boson
is related to the comoving curvature perturbation R(¢,x) through the relation R ~
—H(t)n(t,x), with the Hubble parameter H(t) = a/a, with a being the scale factor
(where the dot denotes derivatives with respect to cosmic time t). The effective single
field action for 7 up to second order is given by

2 2
c? a

) 2
Sy = /d4xa3M12_—,elH2 [—W + (9im) ], (2.1)

where Mp = 1/v8rG is the reduced Planck Mass in natural units ¢ = h = 1,
€, = —H/H? is the first slow-roll parameter and ¢, = c,(t) is the time-dependent
speed of sound.

The effective single field action up to third order, neglecting higher order slow-roll
corrections (~ O(€7)) and assuming 73 to be small and approximately constant reads
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(Achtucarro, Gong, et al.| 2012),
S3 :/ [d4xa3M}%€1H2

—2Hse2mi? — (1 — ;)7 (”2 - (am2> ] (2.2)

s 2 2
cs a

where s = s(t) parameterizes the change in the speed of sound c¢(t) defined as

_ G(t)

s = e H) (2.3)
The physical details of the theory are encoded in the speed of sound ¢, and in its
corresponding rate of change given by s. The speed of sound ¢, accounts for the effects
of integrating out the heavy fields within the effective action. To get an insight of
what this variable ¢ (t) means, we look at the particular case of an effective theory
for the comoving curvature perturbation R, when a strong turn in the inflationary
trajectory in multifield space is supported by a heavy field F with “effective mass”
M.g. In this case, the curvature perturbation R is kinetically coupled to the heavy
field F. This effective action is similar to the EFT of inflation equation (2.1]), with
the speed of sound ¢, of the adiabatic perturbation R given by (Achtcarro, Gong,
Hardeman, Palma, & Patil, [2011a} 2011b)

o 402

=1 -
Cg + k2/0,2 T Meﬁa

(2.4)
where €2 is the the angular velocity when there is a turn in the inflationary trajectory,
inducing a momentary reduction on the speed of sound ¢, (Achucarro, Gong, et al.
2012)). The effect of this variable speed of sound ¢s; can be seen in the primordial
power spectrum Pg, in the bispectrum Bxr and in higher-order correlation functions.
In particular, transient variations of ¢, produce localized oscillatory and correlated
features in both Pr and Br (Achicarro, Atal, et al., 2012). Generally, c4(t) encodes
the effect of derivative interactions.

Under the assumption of small, mild and transient reductions of the speed of
sound c,, the modifications in the primordial power spectrum of curvature pertur-
bations with respect to the almost-invariant power law spectrum, APr/Pr,, were
already calculated (Achtucarro et al., [2013). The quadratic action of EFT of infla-
tion, equation , is divided into a free part (resembling single field inflation, with
¢s = 1) and a small perturbation:

2
S :/d4x a®*MzeH? (7%2 — (Oi) )

a2
- /d4x a3M§EH2( (1 - 0;2) 7'r2>, (2.5)

Transitioning from cosmic time ¢ to the conformal time 7, so that dr = dt/a(t), using
the in-in formalism (Weinberg), 2005) and the following definition of the variable u,

u(t) = (1 —¢; (1)), (2.6)
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the change in the primordial power spectrum APz is given by the Fourier transform
of the reduction in the speed of sound c,:

APr
Pro

where Pgr( is the power law expressed in equation (|1.39)).

) OOO dru(r) sin (2k7), 2.7)

2.3 Methodology
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Figure 2.1: Example of reductions of the inflaton’s speed of sound u(7) in logarithmic
space GP with a single node at (7q,u;). The reductions peak at 71 ~ 103 with a
maximum reduction value —u; = |u|nax® 0.025. The width of each of the reductions
(given by the correlation length [, which, for a single GP node, plays the role of
the standard deviation) is different, being the green-dashed parametrization (I = 0.5)
milder than the solid blue one (I = 0.1). The rate of change of u(7), see equation ([2.3),
can be approximated as |$|max= |U|max/[[(€®° + |[tt|max)] using this parametrization.
The vertical lines indicate the values of 7 at which |s|ax is reached in each case.

The reduction of the speed of sound and its rate of change are encoded in u(7)
and s(7) respectively. We aim to use current cosmological data (the temperature,
polarization and lensing power spectrum of Planck 2018) to estimate them given the
theoretical framework presented in section[2.2] To do that, we use Bayesian inference,
as explained Chapter 1.

2.3.1 Reconstruction model for the reduction in the speed of
sound

We use Gaussian Processes (GPs) (Rasmussen & Williams, 2005) as an interpo-
lator for reconstructing the speed of sound of the inflaton. The mean curve of a GP,
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Figure 2.2:  Left panel: Reconstruction of u(7) using a GP on log|u(log|7])|
(continuous line) and on u(7) (dashed line), both using as training nodes (7,u) €
{(—100, —0.016), (—375,—0.03) }, and correlation length for each model such that the
width of the mode corresponding to the first node is similar (notice the difference in
width of the mode of the second one). As the reconstruction is done in conformal
time 7, the x-axis is always negative and 7 = 0 indicates the end of inflation. Right
panel: Corresponding feature in the primordial power spectrum. Notice how, despite
the similar position of the training nodes, their features look quite different: similar in
the leftmost oscillations (corresponding to the node at 7 = —100), but very different
after that, due to the broader width of the first mode.

which we use to represent the speed of sound evolution, is smooth by construction
(given our choice of kernel, see below) and naturally returns to a baseline value away
from the nodes of the interpolator, which is useful for representing the transient char-
acter of the speed of sound reductions. The length scale over which the return to
the baseline happens is called correlation length, and it is the same for all individual
nodes in a particular realisation. The particular properties of the correlation between
nodes is given by the kernel of the GP, which we choose to be a squared exponential
kernel. This means that when the interpolator is defined by a single node placed
at (r1,y1), the interpolating curve looks like a (non-normalised) Gaussian peaking
at the node’s position, with standard deviation equal to the correlation length [, i.e.
y(z) =y exp[-1/2 (x — 21)*/].

We aim to reconstruct u(7) = (1 — ¢;(7)). Since u(7) is a negative quantity, it
makes sense to reconstruct the logarithm of —u = |u|, to guarantee that the GP inter-
polator, once exponentiated, conserves sign. On the other hand, there is a choice to
be made about the scale of the conformal time axis: whether to reconstruct log|u(7)|
or loglu(log|7|)]. We show results for the latter case in this section for illustration
purposes.

As explained above, in the case where a single node is placed at (71, log(—u1))
the reconstruction of log(—u(7)) corresponds to a single transient reduction given
by a log-normal function of conformal time, whose maximum occurs exactly at the
node. The parameters that we would try to infer from the data would be the position
of the node (71,log(—w;)) and the correlation length [ representing the standard
deviation of the log-normal. The rate of change of the reduction, of interest in our
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theoretical framework, would peak approximately at |s|max~ 0.5 u1|/(exp(0.5)+ |u1]).
See for an example.

To reconstruct loglu(log|T|)| as a generalization of the previous case using GPs,
we choose a number i of training noded| (log|7;|, log|u;|) where log|u;|= log|u(log|7|)]

(see |[Figure 2.2)), to which we fit a GP with kernel function

1 (log|r;|— log|ri|\?
k(log||,log|Tiv1]; 1) = 2 exp {— ( og|7i| 0g]7’+1|> } , (2.8)

2 l

where c is the output scale, and [ the correlation length. The output scale ¢ plays no
role in this approach, and can be fitted using maximum likelihood and then ignored.
The correlation length will be sampled together with the position of the nodes. To
compute the GPs, we use the Python package sklearn (Scikit-learn 0.19.1 documen-
tation: Gaussian Processes, 2018). The mean of the GP is used as an interpolator
for log|u(log|7])|, and reads, in terms of the training nodes, as the matrix product:

log|u(log|7|)|= #(log|7],log|7:|; 1) x [x(log|7|,log|m;|; )] ' logluy|,  (2.9)

where the first kernel function k is a vector of evaluations at the requested log|7]|
combined with each of the training log|7;|, the second one is the matrix of evaluations
of k for each pair of training nodes (4, j), and the final term is the vector of training
log|u;|. Once u(7) is generated, we calculate s(7) from equation numerically,
which we can rewrite more conveniently as

(7) 1 u dlogu
s(t) ==
91 —udlog|7|
1 u 1
= 5.1 [(log|7|—log|7|) k(log|7|, log|7[; 1)] x
[k(log| |, log|m; Nt log|u;|, (2.10)

where we have taken the derivative after substituting u by the mean of the GP defined
in equation . Notice that this reproduces the matrix product in equation ([2.9)),
just changing the first vector. Finally, we compute the power spectrum feature of
equation from a fine sampling of the GP using the FFTLog algorithm (Hamilton),
20005 |fftlog - python wrapper FFTLog, 2016|). The density and limits of the log|T|
sampling for the FFTLog are chosen adaptively to minimise computational costs and
guarantee the accurate computation of the transform.

The most consequential difference of the choice between linear and logarithmic 7
in the GP will show up whenever we have nodes separated by a distance much larger
than the correlation length, appearing as isolated (log)Gaussians: in the linear case,
their width in 7 will be similar, whereas for the logarithmic one, the width will scale

logarithmically (see |[Figure 2.2)). Looking at the first equality in equation (2.10)), and
seeing how s depends on the logarithmic derivative on 7, it is easy to see that the

!Notice that our use of GPs as interpolators does not involve machine-learning, but we are
borrowing the term training from its literature.

47



2.3. METHODOLOGY

linear parameterization is going to struggle to place two or more nodes away from
each other, since s(7) will peak at highly different values in each of them, making it
hard not to violate the perturbativity bounds on s (see jsubsection 2.3.2)).

Thus for the primary results in this chapter, we model log|u(log|7|)|. To mitigate
excessive sensitivity to the prior of our results, we also perform a reconstruction in
u(7). Notice that by modelling u and not log|u| we need to deal with cases in which
u(T) goes positive, by assigning it null prior density. However, those are generally
disfavored by the data (require large | compared to the distance between nodes), and
the large difference between the log|u(log|7|)| and the u(7) reconstruction is useful
for assessing prior sensitivity.

2.3.2 Parameters and Priors

The action described in equations and is perturbative in terms of (1 —
1/c%). Tt implies that the reduction in the speed of sound, ¢y, cannot be too big
(Jul]< 1) and the rate of change in the reduction cannot be too fast (|s|< 1). Also,
the contributions of the slow-roll corrections €1, €5 have to be smaller than those of
the variable speed of sound c¢,. We need to impose these conditions for all values of
7, but it is enough to restrict to the point where u(7) and s(7) take their maximum
value (|t|max;, |S|max). Note that imposing the perturbative limit on |s|y.x satisfies
the consistency conditions in (Céspedes, Atal, & Palmal, [2012; |Adshead & Hul [2014}
Cannone, Bartolo, & Matarresel 2014). In short:

max(€, €2) < max(|u|max, |$|max) < 1. (2.11)

In (Torrado et al., 2017) we argued that this condition could be naturally imposed
by a prior Beta(5,5) on max(logy|t|max, 10g19|$|max) between the extremes in equation
(2.11)) (see left part of , the logarithm coming from the difference in order
of magnitude between both bounds.

Contrary to (Torrado et al., 2017)), in this work |u|max and |$|max are not sampled
directly. Instead, the parameter space for the feature consists of the position of
the nodes {(7;,u; = u(7;))} and the correlation length /. Thus, the total number of
feature parameters is 2N + 1 for a number N of nodes. Imposing the Beta prior
described above is not as simple as sampling the GP parameters from some prior,
computing |u|max and |s|max along the reconstruction, and multiplying by the Beta
density. That procedure will likely introduce undesired information in the shape of
under- or overdensities in the probability induced on (|u|max, |$|max), Which would
finally diverge significantly from a Beta. The correct way to proceed so that the
induced probability on the physical parameters is the desired one is by constructing
a distribution on the parameters of the nodes that maximises entropy with respect to
the desired one, which can be computed, according to (W. Handley & Milleal 2019),
as
7T0(7_i> Ui,y Z)T‘-pert(‘mma}(ﬂ |5|m&X>

P(|tt]max; |S]max | 70)

: (2.12)

Tpert, maxent(Tia Ui, l) =
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Figure 2.3: A description of the Bayesian priors adopted in this study. Left panels:
Desired Beta density distribution for the parameters (0g1o(|t|max) and 10g10(]$|max),
with e, = 0.008 and €5 = 0.04, respectively. Right panels: probability density distri-
bution induced by m on (0g10(|$|max) and l0g1o(|t|max) (defined as P in the denomina-
tor of equation (2.12))), for a Gaussian-Processes reconstruction in log|u(log|7|)| using
2 training nodes. The initial prior mo(7;, u;, [) induces overdensities at low [0g10(|$|max)
due to this quantity being doubly-correlated to early-time position of the nodes and
large correlation lengths; equation corrects for this effect.

where 7y (7;, u;, 1) is some initial prior on the node parameters and Tpert (|| max, |$|max)
the Beta prior described above. The term in the denominator is the probability
density induced by 7, on (|t|max, |$|max), Which we compute from a Monte Carlo
sample from 7y using PolyChord (W. J. Handley et al., 2015a, 2015b)). The Monte
Carlo sample is fed to GetDist (Lewis| [2019) to construct a density estimator. Both
the Beta prior and the maxent prior can be seen in

For 7y, we choose log-uniform prior distributions on the correlation length [ and
on the training node location (7;, uz)El The bounds for the time-positions 7; are chosen
so that the feature falls in the CMB window function (features running from scales

2Note that we are sampling the training nodes and the correlation length in a logarithmic scale
as we expect them to vary several orders of magnitude.
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k~ 1073 to k ~ 3 x 107!, though a larger region has been scanned as a consistency
check (see [subsection 2.4.1). The bounds for the amplitude of the reductions at
the nodes, u;, are chosen to generously fulfill the EFT condition in equation (2.11])).
Summarizing:

mo(logyo(|71]), - - -, 10810(|7nl), logyo (Jurl), - . -,
logig(|unl),logo 1) = U(1.8 < log;o(|7]) < 3.3)x

2
Hu(log10(|TiD < logyo(|Ti-1]) < 3.3)x

i=n
n

[TU(—4 <logyo(fwil) < 0) x «(1) (2.13)

=1

where U means a uniform distribution, and the prior on the time positions of the
nodes includes sorting so that 7; < 7;_1 (¢ runs from 1...n). The prior on [ is chosen
so that it produces reasonable values of |s|max. For each of the two reconstructions
studied here, log|u(log|r|)| and u(7), the boundaries can be chosen as|

Togluloglr)| (1) = U(—=2 <log;yl <2)  and
WU(T)(Z) = U(—Q < 1Og10l < 3.3). (2.14)

As an improvement on (Torrado et al., 2017), in this work we do not fix the value
of the slow-roll parameters ¢; and €, as bounds of the perturbativity condition equa-
tion (2.11)). Instead we let the bounds of the Beta distribution run dynamically,
marginalizing over the slow-roll parameters. We use as priors uniform distributions
U(0.0001 < ¢ < 0.05) and U(—0.06 < €3 < 0.06), which encompass the ACDM
posterior found for them in Planck 2018 (Planck Collaboration et al., 2016).

A diagram showing the different assumptions that enter the final prior is shown

in [Figure 2.4

2.3.3 Data sets and sampler

To constrain the reduction of the speed of sound, we use the Planck 2018 polarized
CMB and lensing data. In particular we use the product of the low multipole likeli-
hoods 1owT and lowE, the unbinned high-¢ likelihood plik_TTTEEE and the lensing
likelihood. We use the unbinned likelihoods because of the fast frequency of oscilla-
tions in the features, as was already pointed out in (Torrado et al., 2017).

We compute the changes to the CMB power spectra Cy using the Boltzmann code
CAMB (Lewis, 2013), modified accordingly to account for the increased sampling in k
needed by the oscillatory features APr/Pr, in the primordial power spectrum. We
sample over the parameter space described in section [2.3.2] i.e. the positions of the

3Notice that, while smaller values of [ will result in sharper reductions with too high, forbidden
|s|max values, larger values of [ would result in small |$|max values which are actually allowed as long
as |u|max fulfills equation . In any case, we are imposing these upper [ boundaries for the main
runs, since reductions with very small |s|max tend not to be easily distinguishable from changes in

the background cosmological model (see [subsection 2.4.1)).
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Figure 2.4: Diagram showing the structure of the prior. The conformal time 7; of
the nodes must fulfil that the feature happens within the observable CMB window.
The physically-motivated perturbativity condition of equation (2.11]) is imposed using
mazximum entropy (see text) on the position of the nodes and the correlation length.
Since the value of the slow-roll parameters influences the prior on the position of the
nodes via the lower bound of the perturbativity condition, the full prior (dashed grey
box) is non-separable.

training nodes {(7;,u; = u(7;))}, the correlation length [ of the GP, and the kinetic
slow-roll parameters €; and €. We also allow for the possibility of tensor modes, as
changes in the Sachs-Wolfe plateau caused by them could possibly be correlated with
features at very large scales. We track as derived parameters the scalar tilt ng, the
tensor-to-scalar ratio r and the EFT parameters (|u|max, |$|max). We fix the rest of
cosmological parameters of ACDM to the best fit of Planck 2018 with the present
likelihoods, as well as the nuisance parameters of the likelihoods. Fixing the ACDM
parameters is justified by previous sensitivity analyses in (Torrado et al., [2017)), that
we repeat here for the background ACDM parameters by exploring a broader range
of 7 and [ than the one indicated above (see [subsection 2.4.1) where we have also
assessed the impact of fixing the nuisance parameters of the Planck likelihoods).

We obtain the posterior distribution of the parameters using the sampler PolyChord
(W. J. Handley et al., 2015a, 2015b]). We use this nested sampler since, from previ-
ous searches, we expect the posterior distributions of u,., and 7; to be multi-modal.
The handling of the priors, likelihoods, Boltzmann code and sampler is managed by
the Bayesian framework Cobaya (Torrado & Lewis| 2021} 2019)). The analysis of the
posterior distributions is carried out using GetDist (Lewis, 2019).

We sample the posterior of two different parameterizations of the GP sound speed
reconstruction: log|u|(log|7|) and u(7), in the following called simply logarithmic and
linear parameterizations, respectively. We know the logarithmic parameterization is
more stable numerically, as it consistently makes the reconstruction of u(7) negative.
However, we still use the runs in the linear parameterization for the purposes of
assessing prior sensitivity. For the first sampling processes (up to three GPs nodes),
we run Cobaya in parallel launching 8 MPI processes, each allowed to thread across
3 CPU cores. In the case of 4 nodes, we run Cobaya with 32 MPI processes, each
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allowed to thread across only one single CPU core. The nested sampler PolyChord
has been run with 1000 live points (which is far above the requirements for the current
number of dimensions in the parameter space) and a stopping criterion of 0.01. The
computation time varies depending on the number of training nodes in the GPs: from
a few days with only 1 node, up to several weeks with 4 nodes.

All the mazima a posteriori (MAP) presented in the next section have been ob-
tained running Py-BOBYQA (Cartis, Fiala, Marteau, & Roberts| [2018; (Cartis, Roberts,
& Sheridan-Methven|, 2018)) (a Python implementation of the BOBYQA algorithm (Powell,
2009), available via Cobaya), initialized on the relevant local maxima of the PolyChord
samples.

2.4 Results

2.4.1 Consistency checks

Before presenting our results, we shortly discuss whether the assumptions made
in previous sections were justified. In particular, we have tested whether we find clear
posterior modes outside the (7;,1) prior region described section (the CMB win-
dow prior), and whether in posterior modes either in our initial prior or in the broader
region, the assumption of no-correlation with background cosmological parameters is
fulfilled.

To do that, we produced a 1-node posterior sample in the logarithmic parame-
terization in the enlarged prior region 0 < logy(|7;|) < 4.3 and 2 < log;,! < 10,
and let the background ACDM parameters vary. No significant modes were found
outside the original, reduced prior region. We found mild modes in the region
1.8 < logyo(|m]) < 3.3 and 2 < logy,! < 3.3, which presented some degeneracy
between €2,,,, ns and the reconstruction parameters (p ~ 0.17), due to the fact that
these features can be confused with the shape of the first and second acoustic peaks
(already observed in (Torrado et al., 2017)). This justifies restricting ourselves to the
prior described in [2.3.2] since any mode found outside of it would not be distinguish-
able from background cosmology.

The check for degeneracies between the ¢, reconstruction parameters and the slow-
roll parameters is of particular importance, since the latter determine the perturbative
prior limits on the former (see equation and . We have found no
significant degeneracies, neither in the tests described above nor in the final runs. We
have reproduced the Planck ACDM posterior on the slow-roll parameters in all cases
(e [Fizire 235).

Most of the results below have been run both in the linear and logarithmic pa-
rameterizations for the Gaussian Process (GP) reconstruction of the speed of sound
profile u(7). The results agree with each other, in particular, for the maxima a pos-
teriori found at late conformal time (i.e. towards the end of inflation, with —7; of a
few hundreds, where both parameterizations look similar). However, the logarithmic
parameterization differs from the linear one when training nodes are thrown at early

values of conformal time (i.e. —7; over 800), see |[Figure 2.2). This is due to modes
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Figure 2.5: Posterior distributions of the primordial parameters: the kinetic slow-roll
parameters €; and €y, and the derived spectral index ng; and tensor-to-scalar ratio r,
for a 2-node reconstruction in the logarithmic parameterization (red line). The grey
contours correspond to the featureless ACDM scenario. The correspondence between
both posteriors is due to the absence of degeneracies between the ¢, reconstruction
parameters and the slow-roll parameters. Similar results are found for 1, 3 and 4
nodes.

of constant width in logarithmic scale getting broader the further we go along the
axis of conformal time. In the 1-node case, the linear parameterization reproduces
the results in (Torrado et al., 2017)) (which uses a Gaussian ansatz in u(7)), whereas
the logarithmic parameterization produces different 1-node posterior modes (see Sec.

in appendix A).

It is worth remarking that the use of the logarithmic parametrization does not
compromise the flexibility of our reconstruction of u(7). Even though the logarith-
mic parameterization reconstructs naturally profiles of u(7) with broad reductions at
earlier conformal times and narrower reductions at later times (which is preferred so
that |$|max is not violated), narrow reductions at early conformal times can always
be achieved by adding further nodes that would force the profile to return to zero. If
the data and EFT conditions did allow for a narrow reduction at earlier conformal
times, we would have seen it during the analysis of the posterior distributions when
more than one training node was used.

Moreover, we have assessed the effect of fixing the nuisance parameters of the
Planck likelihoods by running a minimizer around both the baseline, featureless
ACDM model and the MAP features presented below, now letting the nuisance pa-
rameters vary. We find that this choice has almost no impact in our analysis, changing
the Ax? values by less an unit.

Finally, we have assessed the impact of using separately each of the high-¢ unbinned
TT and EE Planck 2018 data sets, in order to check which subset dominates the
posterior around each of the fits. To do that, we have combined each of these subsets
with low-/ temperature and polarisation, and lensing data, fixing LCDM and nuisance
parameters, and assuming a single dip. Using high-¢ TT data alone, we recover the
main single-dip maxima a posteriori described in the next section and appendix
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(i.e: 71 =~ —100,—200,—400, —1000). When using high-¢ EE data alone, we clearly
recover the dip at 71 ~ —100, whereas just barely the peaks at 7 ~ —200 and
71 &~ —400, and none of the earlier-time dips found in combination with TT data.
This shows that our posterior is temperature-dominated in most of the parameter
range. Concordance at late times is encouraging, but it needs to be explored further
with future less noisy polarised data from space- and ground-based surveys.

2.4.2 Reconstruction of the inflaton’s speed of sound profile
u(7)

In this section, we present the results of the GP reconstruction in the logarith-
mic parameterization using the Planck data as described above, and imposing the
Maximum-Entropy prior described in for the derived quantities || max and |$|max-

When presenting our results, we use an effective Ax? where we have subtracted
the x? of the MAP of the featureless ACDM (obtained by using a minimizer) for the
same likelihood combination (see [subsection 2.3.3)). Note that this effective Ax? is
not meant for model selection purposes and it is used for illustration only. As an
example, a triangle plot of the posterior distribution for the 2-nodes case can be seen
in

We have reconstructed the inflaton’s speed of sound profile u(7) using up to four
training nodes. We have stopped there after checking that the Akaike Information
Criterion (AIC) (Akaike, 1974) has a minimum for three training nodes and stabi-
lizes after that. The profile u(7) shows different patterns depending on how many
training nodes are used in the GP reconstruction. We have decided to classify all
possible profiles u(7) based on whether they show differentiated and non-overlapping
reductions (that we denominate dips) or they present some kind of substructure:

« One single dip: usually present at either late values of conformal time (—100,
—200, —400), or at earlier times (—800, ~ —1000). Early-time dips produce
features in the CMB power spectra localised in £’s up to the first acoustic peak,
whereas features from late-time dips affect the power spectra along the full
¢ range. Similar profiles were already found in previous studies (see

tion 2.4.1)). Details on this posterior modes can be found in appendix m

« Combination of non-overlapping reductions (2, 3 and 4 dips): appear-
ing when more than one training node is used, they consist of consecutive,

isolated reductions in the speed of soundﬁ Details can be found in appendices
2.6.2, [2.6.3| and [2.6.4, These combinations can be classified as (for details see

appendix [2.6)):

— All dips at late conformal times: when at least two training nodes are
considered, there is a preference for two of the possible dips remaining at

4Notice that the number of training nodes is not always equal to the number of dips: reconstruc-
tions with m dips found with m GP nodes usually re-appear as posterior modes in the m + 1 GP
nodes case, where one of the nodes is placed at u; ~ 0.
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Figure 2.6: Posterior distribution for the reconstruction of the speed of sound’s profile
u(7) using 2 training nodes and the logarithmic parametrization shown in [Figure 2.2]
We use Ax? = X2 odel — Xbaseline 88 the variable for the scatter plot’s colour scale, the
reference X7, ciine corresponding to the MAP of the baseline ACDM model to the same
datasets. We show the parameters of the training nodes (7;,u;) and the correlation
length [ (described in m priors in . We also show the posteriors of the EFT
parameters (|U|max, |$|max) (described in section [2.2) and not sampled directly, but
derived from the nodes parameters). It can be seen how longer correlation lengths
(broader reductions) lead to lower values of |s|max, and vice-versa. The posterior
distributions for different numbers of nodes display similar patterns. For all cases,
the posterior distributions are clearly multi-modal.

late-time values of 7;, combining either —100 and —200, or —400 and —200.
Their effect in the CMB power spectrum overlap each other along a large
range of (’s.

— Combination of early- and late-time dips: these appear typically as a com-
bination of features at both low ¢’s (from the early-time dips) and high ¢’s
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(from the late time ones), e.g. from the presence of dips both at —800 and
—100.

o Dips with substructure: We have found some maxima a posteriori where
the reconstructed u(7) does not show clearly separated reductions, but a more
complex profile with some degree of substructure. These substructures are
presented either at early and late 7;, trying to fit some of the characteristic
features of the CMB angular power spectrum (i.e: ¢ ~ 20 — 40 feature). The
fits are presented in Appendix A, in subsection [2.6.5]

As noticed in previous works (Torrado et al.l 2017), we do not have a highly
predictive posterior of the maximum of the rate of change of the sound speed, |s|max,
whose value is mostly constrained by the prior information. By contrast, the positions
of the nodes (the oscillation frequency of the features in the power spectrum) are
tightly constrained within each of the multiple posterior modes, specially for nodes
at late conformal time.

Using the sampling results of the profile u(7) with four training nodes in the GPs,
we have reconstructed the allowed confidence contours for u(7) given Planck 2018
data. The result can be seen in [Figure 5.3 As expected from the 1-D marginalized
posterior distributions, the confidence contours are narrower around 7; = [—100, 200].
These modes were found in every single reconstruction of the inflaton’s speed of sound
independently of the number of training nodes (and were also observed in previous
studies (Torrado et al. 2017)), and usually show the highest individual dip Ax? with
respect to ACDM (since they produce features at a long range of ¢ for which Planck
has low error bars). On the other hand, the confidence contours are broader for earlier
conformal times 7; < —400. This is the range of 7 where we have found the modes
at 7, = [—800, —1000] and some degree of substructure. In this range, the posterior
distributions are not very predictive (see again , where the posterior peaks
are small for 7, < —800), since they produce low-multipole features hidden by cosmic
variance.

2.5 Conclusions

We have searched for features in the primordial power spectrum as given by the
last release of Planck 2018 data. Following an EFT of inflation approach, we have
focused our search on features coming from reductions of the sound speed of the
inflaton, assuming these reductions to be small, mild and transient. These feature
templates were not tested by the Planck Collaboration.

We have improved over previous studies (which used a single-reduction Gaussian
ansatz) by developing a reconstruction technique for the speed of sound’s profile based
on Gaussian Processes. We have also marginalised over the slow roll parameters to
allow for a dynamical prior. In this new pipeline, the parameters of the reconstruction
(the position of the training nodes and the correlation length) are fitted to the Planck
2018 data. The physical constraints of the model are imposed on the reconstruction
parameters by means of a Maximum-Entropy prior defined on the EFT quantities
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Figure 2.7: Reconstruction of the inflaton’s speed of sound profile u(7) based a 4-
nodes GP, where the confidence contours (68% and 95%) are shown. We are able to
constrain the shape the inflaton’s speed of sound more stringently at late times (up to
~ —200), whereas the confidence intervals get larger at earlier times (i.e: starting from
—800). This difference in the constraining power between early and late conformal
times is mostly due to early-time reductions being associated to low-multipole features
where cosmic variance is largest. The best mazima a posteriori are also plotted on top
of the confidence contours: two 3-dipped cases (labelled C.2, dashed blue, and C.3,
dashed orange), two 4-dipped cases (labelled D.0, solid blue, and D.1, solid orange)
and a 3-dipped case in which one of the dips possesses some substructure (labelled
S.3, solid green). For additional fits and a more detailed presentation of them see

appendix [2.6]

(¢t maxs |S|max), which define the consistency bounds of the model. We have also
tracked as derived parameters ng and r.

This template-free reconstruction of u(7) has allowed us to make an exhaustive
search of more flexible features’ templates, constrained only by EFT conditions. The
analysis of the result of Bayesian parameter inference on the Planck 2018 data has
demonstrated that there are many possible different and complex u(7) profiles which
are consistent with Planck’s CMB power spectra. As expected, none of these fits is
preferred with respect to ACDM (their Ax?’s are not significant), although show some
interesting results in terms of new feature templates. First, we have argued that there
is a strong preference for two consecutive reductions of the speed of sound to coexist
at late times around 7; & —200 and 7; ~& —100. Also, combinations of modes at
late conformal time 7; & —100 and early conformal time 7; &~ —800 are also possible.
Second, we have found certain profiles which show some degree of sub-structure at
early and late conformal times. Finally, we have been able to obtain reconstruction
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2.6. APPENDIX: DETAILED RESULTS UP TO 4 NODES OF U(r) IN
LOG-LOG PARAMETERIZATION

confidence contours for the u(7) profile given the results obtained with four training
nodes.

In the future, we plan to exploit this robust and novel pipeline in the search
of features using new sets of data (in particular, Large Scale Structure surveys or
the CMB bispectrum). Furthermore, the improvement of current data (for example,
the polarization of the CMB) will also help to reduce the noise and, therefore, the
uncertainty we have at large scales. If the noise is reduced, we could discern how
realistic the reductions at earlier conformal times are. Moreover, we also consider
introducing new features coming from a variable first slow-roll parameter (Durakovic
et al., 2019) to perform a joint search of both patterns: features induced by a variable
cs(7) and €(7).

2.6 Appendix: detailed results up to 4 nodes of
u(7) in log-log parameterization

In this appendix, we explain in detail the several mazima a posteriori found dur-
ing the sampling runs when the profile of the inflaton’s speed of sound wu(7) was
reconstructed using Gaussian Processes up to 4 training nodes.

2.6.1 One dip (denoted by “A”)

These profiles of u(7) show only one single reduction of the inflaton’s speed of
sound or one dip. These reductions can be found using just one training node in
the Gaussian Process. The modes at late conformal time 7; (see the first row of
present a well defined oscillation frequency 7; (at -100, -200 and -400).
The value of |u|max is around 0.02 and the rate of change in the speed of sound
|8 max>> |t|max- These dips are exactly reproduced with the linear parametrization of
the reconstruction of u(7). They were already listed during previous searches using
Planck 2013 and 2015 data (Hu & Torrado, 2015; [Torrado et al., 2017)). In particular,
the mode corresponding at 7; & —400 was identified faintly in (Torrado et al., [2017).
These modes are present in a broad multipole ¢ range (¢ ~ [100 — 2000]), fitting some
structures in the temperature and polarization data.

Modes at early conformal time 7; (-800, -1000) (see the second row of
are found, but are more poorly constrained and with worse Ay? with respect to
ACDM. Mode A.3 at 7; & —800 shows similar characteristics to the modes at a late
conformal time (small amplitude and same behaviour in the EFT parameter s). It
fits an apparent oscillating structure of the temperature Cy at the first acoustic peak.
This mode is also found with the linear parametrization and in previous searches in
(Hu & Torrado, [2015; Torrado et al., [2017). The modes at -800 and -1000, with a
larger amplitude, have |$|max™ |[t|max. They slightly differ from the modes found in
previous studies. The main reason is that u(7) reconstructed using the logarithmic
parametrization differs from the linear one at high values of 7;,. The modes at -1000
try to fit the characteristic ¢ ~ 20 — 40 structure of the CMB temperature angular
power spectrum. As identified in (Torrado et al., [2017)), this kind of features impose
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Figure 2.8: One single dip, one training node. Top: Different profiles u(7) for the 6
mazxima a posteriori when only 1 training node is used (and consequently only one
dip is visible). The reconstruction is done following the logarithmic parametrization
explained in [subsection 2.3.1 We found a principal MAP and 5 other fits when the
multimodal posterior distribution is further analysed (see, for example, ,
where other peaks in the posterior distribution are visible). Bottom: Differences in
the CMB temperature (TT), E-polarization (EE) and cross-correlated power spectra
(TE) between the MAP to the Planck 2018 data and the featureless ACDM baseline
model for the reconstructed speed of sound profiles u(7) A.0 - A.5 shown above.
Notice how these profiles fit small deviations from ACDM at low and high multipoles
¢. The same color and line-style correspondence between the u(7) profiles and the
differences in the CMB spectra has been used.
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Figure 2.9: 2 non-overlapping dips, 2 training nodes. Top: Different profiles u(r) for
the 3 mazima a posteriori when only 2 training nodes are used and only two clearly
different dips are observed. The reconstruction is done following the logarithmic
parametrization explained in [subsection 2.3.1. We found a principal best fit and
2 other fits when the multimodal posterior distribution is further studied (see, for
example, , where other peaks in the posterior distribution are visible).
Bottom: Differences in the CMB temperature (TT), E-polarization (EE) and cross-
correlated power spectra (TE) between the best fit to the Planck 2018 data and the
featureless ACDM baseline model for the reconstructed speed’s of sound profile u(7)
shown above. Notice how these profiles fit small deviations from ACDM at low and
high multipoles ¢. The same color and line-style correspondence between the wu(7)
profiles and the differences in the CMB spectra has been used.
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Figure 2.10: 3 non-overlapping dips, 3 training nodes. Top: Different profiles u(7)
for the 3 maxima a posteriori when only 3 training nodes are used and three dif-
ferentiated dips are observed. The reconstruction is done following the logarithmic
parametrization explained insubsection 2.3.1l We found 3 MAP when the correspond-
ing multimodal posterior distribution is further studied (see, for example, ,
where other peaks in the posterior distribution are visible). Bottom: Differences in
the CMB temperature (TT), E-polarization (EE) and cross-correlated power spectra
(TE) between the best fit to the Planck 2018 data and the featureless ACDM baseline
model for the reconstructed speed’s of sound profile u(7) shown above. Notice how
these profiles fit small deviations from ACDM at low and high multipoles /. The same
color and line-style correspondence between the u(7) profiles and the differences in
the CMB spectra has been used.
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Figure 2.11: 4 non-overlapping dips, 4 training nodes. Top: Different profiles u(7) for
the 3 maxima a posteriori when only 4 training nodes are used and four differentiated
dips are observed. The reconstruction is done following the logarithmic parametriza-
tion explained in [subsection 2.3.1l In this case, we observe how possible reductions
at 7 &~ —100, —200, —400 and —800 can consecutively take place. Bottom: Differ-
ences in the CMB temperature (TT), E-polarization (EE) and cross-correlated power
spectra (TE) between the best fit to the Planck 2018 data and the featureless ACDM
baseline model for the reconstructed speed’s of sound profile u(7) shown above. No-
tice how these profiles fit small deviations from ACDM at low and high multipoles
¢. The same color and line-style correspondence between the u(7) profiles and the
differences in the CMB spectra has been used.
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Figure 2.12: Profiles with substructure (2 training nodes and 4 training nodes). Top:
Different profiles u(7) for 2 maxima a posteriori when only 2 or training nodes are
used and the profiles of u(7) show some grade of substructure. The reconstruction
is done following the logarithmic parametrization explained in [subsection 2.3.1. We
found 2 fits (one an earlier conformal time and a another one at late conformal time),
when the corresponding multimodal posterior distributiosn are further studied (see,
for example, where other peaks in the posterior distribution are visible).
Bottom: Differences in the CMB temperature (TT), E-polarization (EE) and cross-
correlated power spectra (TE) between the best fit to the Planck 2018 data and the
featureless ACDM baseline model for the reconstructed speed’s of sound profile u(7)
shown above. Notice how these profiles fit small deviations from ACDM at low and
high multipoles ¢. The same color and line-style correspondence between the wu(7)
profiles and the differences in the CMB spectra has been used.
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a tighter upper limit on the scalar-to-tensor ratio r, although these are still within
the analogous bounds in ACDM.

2.6.2 Two dips (denoted by “B”)

In this case, the inflaton would suffer two consecutive reductions of the speed of
sound (due to, for instance, two consecutive turns in the field space). In the previous
study using Planck 2015 (Torrado et al., 2017)), it was pointed out that, a priori,
the features due to single reductions of the sound speed that do not overlap can in
principle co-exist. These combinations would be modes at early 7; with another late
mode (i.e: -1000 and -100). However, the results of the reconstruction using two
training nodes show a richer picture (see [Figure 2.9). We have identified that the
modes at -100 and -200 can result from an overlapping feature that is preferred by
the data, and thus, it is the overall MAP for the 2-nodes reconstruction. The dips at
-200 and -400 can also co-exist (mode B.1), with a worse Ax?. These two overlapping
features fit TT, TE and EE structure across a large range of . On the other hand,
there is a possible combination of the modes at -800 and -100 (see the first row of
[Figure 2.9)). This u(r) profile includes the fitting of the apparent oscillations around
the first acoustic peak and small deviations across the rest of the multipole scale. All
of these combinations of modes fulfill |$|ynax>> || max-

2.6.3 Three dips (denoted by “C”)

When the profile of the inflaton’s reduction of the speed of sound wu(r) is recon-
structed using 3 training nodes, we find more complex profiles. The usual dips at
late 7; around -100 and -200 combine to mild and small reductions at early conformal
times around -1000 and -1500 (see modes C.2 and C.3 of subsection 2.6.3 respec-
tively). The combinations that are preferred by the data are those whose earlier
training node 7; is placed around wu; ~ —0.01. These small dips at early 7; were not
found alone during the search using one training node (modes A shown in[Figure 2.8).
However, these modes at early conformal times are loosely constrained and the con-
fidence intervals are large. Overall, these profiles fits the data very similarly as the
single standing modes A.0 and A.1, as well as the combination B.0. Furthermore, we
have also verified that the modes A.0 and A.2 can co-exist (contrary to the case of
reconstruction with 2 training nodes, where the combination -100 and -400 was not
found) if a very small mode is added close to -100. All these profiles presented in

Figure 2.10|are in the limit |s|pmax>> |t|max. Finally, the 2-dip profiles explained above
are also reproduced when we run with 3 training nodes.

2.6.4 Four dips (denoted by “D?”)

We find similar profiles for u(7) as the ones for 3 training nodes, adding one extra
dip and finding the remaining possible combination of nodes at late 7; around -100,
-200 and -400 with modes at earlier times at -800, -1000 or -1500 (see modes D.0, D.1
and D.3 of [Figure 2.11). Thus, we have corroborated that the modes A.0, A.1, A.2
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and A.4 can, in principle, co-exist. Still, the small modes at early 7; ~ —1000, —1500
are less likely to show up in the posterior, as they are poorly constrained given the
data. It is worth mentioning that we can mostly reproduce all the different profiles
found during the search using up to three nodes when four training nodes are used. In
this case, one, two or three training nodes are placed in such a way the corresponding
profile looks very similar to the cases A, B or C (either the training node is placed
close to u; =~ 0 or close to the previous training mode itself).

2.6.5 Reductions with substructure (denoted by “S”)

Apart from concatenations of transient reductions in the speed of sound, we have
also observed some possible fits which show more complicated feature patterns ac-
cording to the data. These are profiles of u(7) that do not clearly show full dips but
have some kind of substructure (see the upper row of profile S.1). We
find a sub-structured maxima a posteriori at a late conformal time (centred around
7; = —100), which resembles the mode A.0 but with two small sub-reductions. Simi-
larly to A.0, the limit of the EFT functions is |8|max>> || max-

Motivated by the loose constraints of the training nodes in the range of early
conformal times —800 < 7; < —3000, we have launched a GPs reconstruction using
two training nodes, which are restricted to remain in the range —3500 < 7; < —990,
obtaining the profile S.2 of This profile have the particularity that
|8 max << |t|max- This profile tries to fit not only the structure of the CMB TT angular
power spectrum around ¢ =~ 20 — 40 but also the apparent structure of the first
acoustic peak in the TT and TE data. To answer the question if it is possible the
substructure mode S.2 to co-exist with any of the modes at late conformal time 7;,
we have relaunched the GPs reconstruction with 4 training nodes, constraining the
two early ones in the range —3500 < 7 < 7 < —990. When this constraint is
imposed, the later training nodes 73 and 74 are placed clearly around -100 and -200.
The resulting profile (see mode S.3 in can fit the CMB data at low ¢ but
also in a broader range similarly to the case of the mode A.0, increasing the statistical
significance Ax?. In this case, the EFT limit is reverted to |s|max>> [t|max due to the
narrow mode at -100.
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Chapter 3

Constraints on a-attractor models

This chapter is based on:
Current and future constraints on single-field c-attractor models

Guadalupe Canas-Herrera, Fabrizio Renzi
(November, 2021), Physical Review D 104, 10, 103512, arXiv:2104.06398.

3.1 Introduction

In this chapter, we forecast the possible constraints that a future CMB StagelV
(CMB-S4 hereafter) experiment may impose on inflationary observables in the op-
timistic scenario of a detection of non-vanishing tensor anisotropies in the Cosmic
Microwave Background (CMB) polarization and temperature data. In general, the
approach followed within the community (see e.g. (Planck Collaboration et al., 2014b,
2016; (Chiang et al., [2010; |Ade et al., 2016; Planck Collaboration, Aghanim, Akrami,
Ashdown, et al., 2020b))) is to sample the inflationary parameters without assuming
any specific inflationary model a priori. While this approach has the advantage of ex-
ploring the inflationary sector model-independently, it does not allow for a complete
sampling study of the parameter space in a specific model. Moreover, the assumption
that the inflationary observables are independent of one another is in contrast with
the prediction of any theory of inflation, which, for instance, assumes the validity of
the slow-roll conditions (see e.g. (Renzi, Shokri, & Melchiorri, 2020; Shokri, Renzi, &
Melchiorri, 2019; |Giare, Di Valentino, & Melchiorri, 2019)). In this work, conversely
to the current literature on the subject, we follow a model-dependent approach im-
posing a specific model a priori and calculate the inflationary observables directly
imposing the slow-roll conditions on the inflationary potential.

As mentioned in Chapter 1, the ACDM model is based on the simplest inflationary
paradigm: canonical slow-roll single-field inflation. Within this approach, the power
spectra of scalar and tensor comoving curvature perturbations are parametrised as
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power laws:

E \ s—14+75 log k/k:

Pr(k) = As(kf) (3.1)
ko

Pr(k) = rA, (kt) (3.2)

where k2 = 0.05 Mpc ! and &L = 0.002 Mpc " and the subscripts stand for scalar and
tensor perturbations respectively. The powers of the parametrizations are the scalar
and tensor indices (ngs and n;) and the scalar power spectrum have been further ex-
panded in terms of the running of the spectral index ag. Statistical analysis of recent
cosmological observations (Planck observations of the Cosmic Microwave Background
(CMB) (Planck Collaboration, Akrami, et al., [2020; Planck Collaboration, Aghanim,|
‘Akrami, Ashdown, et al., [2020c, 2020b) and Large Scale Structure (LSS) surveys
(To et all, [2021; [Heymans et al., [2020)) support this parametrisation for the scalar
fluctuations with 10°Ag &~ 2.1 and n, ~ 0.965 (Planck Collaboration, Akrami, et al.,
2020; Planck Collaboration, Aghanim, Akrami, Ashdown, et al., 2020c 2020b)).

In the last decade, the bound on the amplitude of PGWs (parametrized typically
with the tensor-to-scalar ratio, r) has not yet seen significant improvement, where
only an upper limit rgg02 < 0.056 at 95% C.L. has been provided in the last data
release of the Planck Collaboration (Planck Collaboration, Akrami, et al., [2020) com-
bining Planck and BICEP2/Keck array (BK15) data (Ade et al., 2018). Detecting
those PGWs would give a direct measurement of the energy scale during inflation, as
well as a clear distinguishable signature of the quantum origin of primordial fluctua-
tions. In the upcoming decade, a new generation of CMB experiments (e.g. BICEP3
(Grayson et al., 2016), CLASS (Essinger-Hileman et al., 2014) , SPT-3G (Benson
et al., 2014)), Advanced ACTPol (Henderson et al, 2016), LBIRD (Suzuki et al.
2018) and CMB-S4 (K. N. Abazajian et all [2016)) are expected to strongly improve
the sensitivity on the B-modes polarization in the Cosmic Microwave Background
(CMB), possibly revealing first evidences for inflationary tensor modes with ampli-
tudes r ~ 0.01 — 0.001. That range is precisely expected in many well-motivated
models, such as the Starobinsky inflation, which is considered the benchmark of fu-
ture CMB experiments. However, while a measure of a non-vanishing r» would be
of key importance for inflationary theories, it will not allow understanding the in-
flationary mechanism in detail but only its energy scale. It is therefore timely to
investigate, given future CMB experiments, what would be the freedom in a generic
inflationary framework that is left in case of the optimistic scenario of a non-vanishing
tensor-to-scalar ratio measure.

In particular, there is a general class of models called a-attractors, that has gained
lots of popularity because of their agreement with observational constraints and the
universality of their predictions for the inflationary observables (larygina, Sfakianakis,
Wang, & Achucarrol, 2019} Tarygina, Sfakianakis, Wang, & Achtcarro| [2020; [Aresté|
[Salé, Benisty, Guendelman, & Haro| [2021b], 2021a} [Rodrigues, Santos da Costa, &/
‘Alcaniz, 2021). Recently, a-attractors have also been of the interest to study a
possible connection between early and late physics in the context of Dark Energy
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(Akrami, Kallosh, Linde, & Vardanyan, 2018; |Akrami, Casas, Deng, & Vardanyan,
2021; Miranda, Fabris, & Piattella, 2017; |Pozdeeval, [2020; Pozdeeva & Vernovi, [2021)).
This set of models have also been embedded in a more general multi-field inflationary
scenario and in A/ = 1 supergravity. In the context of supergravity, the a-attractor
can be represented by a potential of the form:

V(p)
Vo

= (tanh(8p/2))™ (3-3)

where % = 2/3a and n is an arbitrary value. It is important to note that the
"attractor behaviour" of this potential sits on the fact that the observable predictions
are the same up to leading order regardless of the value of n while they differ only in
sub-leading corrections. Assuming slow-roll inflation and the a-attractor form of the
inflationary potential the observational predictions for the inflationary observables
can be written as:

12«
r = W (34&)
2 T
=l =1, 3.4b
" N 3a (3.4b)
2 r

where N is the number of e-folds to inflation to last. These definitions in terms of
parameter « encompass several inflationary models and clearly reduce to the well-
known Starobinsky inflation for o« = 1 (Kallosh, Linde, & Roest, |2013} [Kallosh, Linde,
Roest, & Yamada, 2017; |Carrasco, Kallosh, Linde, & Roest|, [2015). Moreover, for a
broad class of potentials V', as long as a < O(1), the scalar spectral index ng, its
running ag and the tensor-to-scalar ratio r converge to the functional form of equation
regardless of the kinectic terms of the theory. It has also been showed that this
statement holds true in some multi-field inflation regimes (Achtcarro, Kallosh, Linde,
Wang, & Welling) 2018), where the conditions that guarantee the universality of the
observational predictions for the inflationary parameters are derived by imposing
constraints on the potential. The universality of the observational constraints is one
of the most important features of single-field a-attractor models.

3.2 Constraints from current CMB and LSS data

Current CMB (Planck Collaboration et all 2014b, 2016; |Chiang et al. 2010;
Ade et al.; 2016 |Planck Collaboration, Aghanim, Akrami, Ashdown, et al., 2020b)
and LSS (To et al., 2021 data are unable to constrain the tensor-to-scalar ratio if
r is sampled independently from the scalar index n,. However, by imposing the a-
attractor model a priori, we force a specific functional relation between n, and r that
allows us to translate the sub-percentage constraints on ng from current data into a
constraint on 7 in the context of a-attractors.
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Figure 3.1: Posterior distribution for Planck 2018 data alone and combined with the
Biceps/Keck 2015 B-mode data and with Large Scale Structure DES data. The dotted
lines denote the expected values for Staronbinsky inflation (o« =1 and N ~ 60).

In fact, by imposing an inflationary model we are selecting a subset of the pa-
rameter space allowed by the data when r and ng are considered independently in
cosmological parameter estimations. This is particularly evident if one considers the
relation between r and ng in the a-attractor model given by equation (3.4h)).

Current data cannot break the r — a degeneracy, and therefore, sampling it in our
analysis would give no insights on the a-attractor models. For this reason, instead of
sampling r and « independently, we use the ratio 7/« as a parameter for our MCMC
analysis.

Along with the ratio r/«a, we consider as independent parameters the other five
standard ACDM ones: the baryon wy, = Qph? and the CDM w, = Q.h? densities, the
Hubble constant Hy, the optical depth 7 and the amplitude of scalar perturbations Aj.
We also let free the running of the spectral index ag. As a-attractors satisfy the usual
inflationary consistency relation, we fix the index of tensor modes to ny = —r/8. The
uniform prior distribution imposed on these parameters are reported in [lable 3.1]

Parameter ‘ Prior range
Oph? [0.005,0.1]
Q.h? [0.001,0.99]

Hy [20, 100]
T [0.01,0.8]
To.002/c - 103 (0.5, 8]
log(1019A,) [1.61,3.91]
>m, 0, 1]
Neff [27 5]

Table 3.1: Range of uniform priors distributions imposed on the sampled parameters
during the analysis.
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The predictions of the theoretical observational probes are calculated using the
latest version of the cosmological Boltzmann integrator code CAMB (Lewis et al., [2000;
Howlett et al., 2012)). To compare our theoretical predictions with data, we use the full
2018 Planck temperature and polarization datasets which also includes multipoles £ <
30 (Planck Collaboration, Aghanim, Akrami, Ashdown, et al.; 2020a). We combine
the Planck likelihood with the Biceps/Keck 2015 B-mode data (Ade et al., 2018) and
the combination of galaxy clustering and weak lensing data from the first year of
the Dark Energy Survey (DES Y1) (T. M. C. Abbott et al., 2018). The posterior
distributions of the cosmological parameters have been explored using the publicly
available version of the Bayesian analysis tool Cobaya (Torrado & Lewis, 2021)). In
particular, the posteriors have been sampled using the MCMC algorithm developed
for CosmoMC (Lewis & Bridle, 2002; Lewis, 2013|) and tailored for parameter spaces
with a speed hierarchy.

The 1D posterior of r/«, ns and ag resulting from our Bayesian statistical analysis
employing Planck 2018 data in combination with DES and BK15 data are reported
in Given the sub-percentage constraints on the scalar index, we found
a sub-percentage constraint on the tensor amplitude i.e. r/a = 0.003877050045 for
Planck 2018 data alone. Due to this correlation, we see also that there is virtually no
difference between the results using the Planck 2018 data and combining them with
the Biceps/Keck 2015 data (r/a = 0.0040070000s:) as the constraint on the scalar
index is unchanged (if not for a statistically insignificant shift in the posterior mean
between the two runs). When LSS data (i.e: DES) are included in the analysis, a
shift in the spectral index ng, with respect to CMB data is found. DES data prefer
a slightly higher value for ng, shifting accordingly the running of the spectral index
ag and the tensor-to-scalar ratio r. However, the results remain consistent with that
from PK18 and PK18+BK15 within 1o (see also [Figure 3.1).

Incidentally, we also obtain a constraint on the running of the scalar index ag
(related to r/a by equation ([3.4c))) away from zero at 4 standard deviation i.e. ag =
—6.4715-107*. It is worth noting that (as for r) this is due to the specific correlation
which arises in a-attractor inflation between the parameters of the scalar and tensor
spectrum. This result, however, points out that future measurements of g g2 and
Noran could potentially rule out the a-attractor model: they are key parameters in
studying the viability of an inflationary model and should be considered in the future
analysis of CMB and LSS data.

We conclude this section with the following two considerations:

o Given ny, &~ 0.965 and r — 0, the best-fit model for CMB and LSS data is
the case of a = 1, which corresponds to Starobinsky inflation, and this cannot
be distinguished from a generic model with « # 1 unless future experiments
provides a measure of either polarization B-modes or ag.

o Current data are consistent with »r — 0. Nevertheless, not all values of a are
allowed. Instead, they set an upper limit on the value of the tensor-to-scalar
ratio and this knowledge can be used to obtain an upper limit for «a:

Tlim

To

[0 5 = lim, (35)
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where 7}, is the experimental threshold for a given experimental configuration
and 7y is the mean of the r/a posterior. Being r;, ~ 0.1 for P18 data and
Tim ~ 0.06 for P18+BK15 data combined (Planck Collaboration, Aghanim,
Akrami, Ashdown, et al.| [2020b)), we correspondingly find ay;, &~ 25 and agyy, ~
15 for P18 and P184BK15 respectively. These upper limits would be the same
that one would obtain running an MCMC analysis with r and « considered

independently (see Appendix .

3.3 Forecast for future CMB-S4 observations
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Figure 3.2: Forecasted 2D contours at 68% and 95% C.L. for « attractor inflationary
parameters for a CMB-S4 experiments with and without allowing the neutrino sector
to vary («CDM, aCDM+ Nz and aCDM+Nyg + Y- m,, respectively).

While current data are unable to constraint the value of o given the current ex-
perimental sensitivity, future generation CMB experiments are expected to strongly
improve the sensitivity on the B-mode polarization signal of the CMB, possibly
discovering evidence of a primordial tensor mode with amplitude in the range of
r ~ 0.01 —0.001 (Ade et al., 2019; Lee et al., 2019; K. Abazajian et al., 2022} Hazumi
et al., 2020). In particular, this is the range of predictions for many well-motivated
inflationary models, such as Starobinsky inflation, considered the benchmark for fu-
ture CMB observations (Ade et al., 2019; Lee et al 2019; K. Abazajian et al., 2022;
Hazumi et al., 2020). In this section, we study the optimistic scenario of a future
detection in the CMB anisotropies of non-vanishing tensor amplitude and we forecast
the constraints achievable with a CMBS4-like experiment on the parameters of the
a-attractor model.

We consider as a baseline model a minimal extended ACDM cosmology with
the inclusion of non-vanishing tensor-to-scalar ratio, » and «. This extended model
constitutes our simulated data sets. The value of r is chosen correspondingly to
the best-fit value obtained with a Starobinsky model using only Planck 2018 data
i.e. ¥ = 0.00387, while we fix & = 1. The value of the scalar index and its running are
also fixed to ng = 0.964 and ag = 0.0006. The remaining ACDM parameters values
are: wy, = 0.0221, w. = 0.12, Hy = 67.3, 7 = 0.06 and In(10'°A,) = 3.05. As the new
generation of CMB experiment also expects to set some light in the neutrino sector,
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we also explore the number of effective degrees of freedom of relativistic species Neg
and the sum of the neutrino masses Y m, in the forecast.

Both simulated data and theoretical models are computed with the latest version
of the Boltzmann code CAMB (Lewis et al., [2000; Howlett et al., 2012). To extract
constraints on cosmological parameters, we make use of the Monte Carlo Markov
Chain (MCMC) code CosmoMC (Lewis & Bridle, [2002; Lewis, 2013) which compares
theory with a simulated dataset using a given likelihood.

As in (Di Valentino, Holz, Melchiorri, & Renzi, 2018; |Renzi, Hogg, Martinelli,
& Nesseris, [2021} Renzi, Cabass, Di Valentino, Melchiorri, & Pagano| 2018; |Cabass
et all [2016), we built our forecasts for future CMB experiments following a well-
established and common method. Using the set of fiducial parameters described
above, we compute the angular power spectra of temperature C/7, E and B polar-
ization C’f EBB and cross temperature-polarization C7¥ anisotropies. We produce
synthetic realization of future data adding to the theoretical power spectra, an expo-
nential noise of the form (Perotto, Lesgourgues, Hannestad, Tu, & Y Y Wong}, [2006):

Ny =w " exp({(£ +1)6?/81n2) (3.6)

where 6 is the FWHM angular resolution and w™! is the experimental sensitivity
expressed in pKarcmin. The polarization noise is derived equivalently assuming
w, ' = 2w~ since one detector measures two polarization states. The simulated
spectra, realized accordingly to the previous discussion, are compared with theoretical
ones using a “CMB-like” likelihood as in (Perotto et al., 2006; |Audren, Lesgourgues,
Bird, Haehnelt, & Viel, 2013])

For this chapter, we have constructed synthetic realizations of CMB data for only
one experimental configuration, namely CMB-S4 (see e.g. (K. N. Abazajian et al.
2016))). The CMB-S4 dataset is constructed using ¢ = 3’ and w = 1 Karcmin,
and it operates over the range of multipoles 5 < ¢ < 3000, with a sky coverage
of the 40%. Furthermore CMB-S4 is expected to reach a target sensitivity on the
tensor-to-scalar ratio of Ar ~ 0.0006, whose goal is to provide a 95% upper limit
of r < 0.001. Therefore the value chosen for our fiducial model is well within the
scope of an experiment like CMB-S4. However, the corresponding sensitivity on the
value of the running of the scalar index, ag would be only Aag = 0.002 which would
clearly not be enough for a joint detection of r and ag assuming Starobinsky inflation.
Thus, it may not be possible to distinguish between a generic a-attractor model with
r ~ 0.004 and Starobinsky inflation despite a future detection of a non-vanishing
tensor amplitude.

In a-attractors, however, the uncertainties about the correct shape of the infla-
tionary potential, defining the value of r, ny, and ag, are parameterized with the «
parameter. Therefore a measure of the value of a would also give us insights about the
correct shape of the inflationary potential and correspondingly on the correct theory
of inflation. A CMBS4-like experiment will be able to give such insights provided a
detection of a non-vanishing tensor amplitude.

Current data only place a loose upper bound 0 < a < 15 (Kallosh & Linde,

[l

2019) correspondingly to P18+BK15 upper limit on the tensor amplitude r < 0.056
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at 95%C.L. (Planck Collaboration, Akrami, et al., [2020). To correctly explore the
available parameter space for o we therefore employ a logarithmic prior on its value
—6 < logyg < 1 while we keep the priors on the other parameters as of [Table 3.1
We refer to this model as aCDM. From our CMB-S4 forecasts we obtain a 15%
bound on the parameter a = 1.017)13, clearly showing the ability of future CMB
experiments of bounding single-field slow-roll inflationary models. Models with o > 2
and o < 0.5 would be potentially excluded at more than 2 standard deviations in
the optimistic scenario of a PGWs detection with amplitude in the range of the
Starobinsky model. We eventually extend this baseline model including the number
of relativistic neutrino species Neg, («(CDM + Neg). When Neg is varied, we find a 5%
reduction of the accuracy with which « is measured i.e. @ = 1.077035 while the bound
on the tensor-to-scalar ratio is basically the same in the two cases, i.e. o(r) = 0.00050
. Conversely we found an increase in the error budget of the scalar index and running,
passing from o(ng) = 0.0016 and o(ag) = 0.00006 («CDM) to o(ns) = 0.0035 and
o(ag) = 0.0001 («CDM + Noi) an worsening of a factor around two in both cases.
It is worth stressing that Primordial Gravitational waves may also contribute to the
number of relativistic species being themselves relativistic degrees of freedom (Cabass
et all [2016; [T. L. Smith, Pierpaoli, & Kamionkowski, 2006; Clarke, Copeland, &
Moss, [2020). This contribution can be calculated analytically to be :

rAg

nr

Negraw ~ (A" — B"T) (3.7)

where A and B are two real numbers and A, B > 1. This contribution is clearly ex-
tremely small for red spectra (ny < 0) but may be important in inflationary theories
where blue spectra (ny > 0) can be produced (see e.g. (Mukohyama, Namba, Peloso,
& Shiu, 2014; [Namba, Peloso, Shiraishi, Sorbo, & Unall, 2016; Stewart & Branden-
berger}, [2008; [Hebecker, Jaeckel, Rompineve, & Witkowski, 2016; Peloso, Sorbo, &
Unal, [2016; |Giare & Melchiorri, 2021} |Giare & Renzi, 2020)). Consequently the only
interaction between PGWs and neutrinos considered in this work is the one arising
from neutrino anisotropic stress after neutrino decoupling at 7' < 1 MeV (Kojima, Ka-
jino, & Mathews, 2010]). These constraints are virtually unmodified when we further
extend our baseline model, allowing the whole neutrino sector to vary i.e. Nog+>_ m,,.
The 2D contours for both our forecasts are reported in [Figure 3.2] A strong correla-
tion now arises between a and the other inflationary parameters conversely to what
we found with the Planck data. This is due to the power of CMB-54 of resolving the
B-mode spectrum, consequently breaking the degeneracy between r and n,. Never-
theless, the situation is unchanged for the scalar running. The strong bound we find
on the scalar running is in fact due to imposing the a-model a priori. Even a StagelV
experiment would not have the required accuracy to measure the tiny scalar run-
ning predicted by a-attractor inflation. When r, ng and ag are independently varied
(i.e. neglecting the consistency relation in equation (3.4)) the running is fixed only
with an error o(ag) = 0.0029 at 68% C.L., an order of magnitude higher than when
the a-model is imposed a priori and in good agreement with the expected sensitivity
for the CMB-54 experiment (K. N. Abazajian et al., 2016)).
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Figure 3.3: 1D posterior for the parameter « for several experimental configurations.
These posterior distributions are obtained with the method described in Appendix
. The CMB Stage-I11 (CMBS3) constraint is obtained assuming a target sensitivity
of 7, = 0.01 corresponding to ag, &~ 3. This sensitivity would be achievable by a
stage-11I experiment such as SPT-3G (Benson et al., |2014) or BICEP3 (Grayson et
al., 2016]).

We conclude noting that, as well as for current data, one can forecast the corre-
sponding upper limit on « from equation in the pessimist scenario which CMBS4
will not be able to detect a tensor-to-scalar ratio above the target sensitivity. As-
suming 7, = 0.001 (K. Abazajian et al., 2022)), one finds oy, &~ 0.26 which would
exclude Starobinsky inflation at ten standard deviations. With respect to Planck
data, CMBS4 will provide an improvement on the measure of a;, of two orders of
magnitude even in the pessimistic case of not detecting any B-mode polarization sig-
nal. The constraints on r/a will be instead improved only by a factor of four leading
to r/a = 0.00386 4 0.00035 when neutrinos parameters are fixed to their ACDM
values. We show in a comparison of the upper bounds on « achievable by
the experimental configurations considered in this work.

3.4 Conclusions

We have carried out a Bayesian analysis with current CMB and LSS data to
constrain inflationary observables (the scalar spectral index ng, its running ag and
the tensor-to-scalar ratio ). With the current constraining power on ng and imposing
the a-attractor model a priori in our analysis, the possible values of the ratio r/«a
are narrowed in a band of around 0.004. However current data do not have enough
sensitivity to break the degeneracy between r and a and consequently to constrain
any deviation from the Starobinsk inflationary model due to the fact the predicted
tensor-to-scalar ratio is much smaller than the current upper limit of LSS and CMB
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data. Consequently, we focused our attention on forecasting the constraints achievable
by a future CMBS4 experiment assuming a tensor-to-scalar ratio corresponding to
the value obtained from Planck data imposing the a-attractor model a priori, see

[section 3.2

The forecast is performed from a Bayesian statistical approach, where « is let free
to be sampled from a logarithmic prior distribution. Future CMB-S4 experiments
will then be able to constrain a as long as the value of r is above the target sensi-
tivity expected from such experiment i.e. » > 0.001 (K. N. Abazajian et al., [2016}
K. Abazajian et al., 2022). Conversely, in the pessimist scenario that even in future
CMB-54 data will not measure a tensor amplitude above the target sensitivity, the
situation will be exactly as for current data and only an upper limit on the value of
a could be placed. We forecasted the corresponding limit on « to be ay, &~ 0.26, an
improvement of two orders of magnitude with respect to Planck data alone.

In conclusion, a future CMB-S4 experiment will have enough sensitivity to signifi-
cantly constrain single-field slow-roll inflationary models. In the case of an optimistic
detection of a non-vanishing tensor amplitude, it would be able to shed light on both
the energy scale and the shape of the inflationary potential, while in the pessimistic
scenario of a non-detection of tensor modes it would still be able to place a tight
upper limit on the value of a and exclude Starobinsky inflation at 100 . We underline
that, when the running of the spectral index ag is free to vary, it is always different
from zero as expected from the inflationary consistency relation of the « attractor
model. However, we show that the value expected for the scalar running given the
current constraints on the scalar index is so small that it will not be detectable by
a future CMB-S4 experiment (with an expected sensitivity of Aag ~ 0.003), but
it may be reachable when information from future weak lensing and galaxy cluster-
ing measurements will be included (Euclid Collaboration et al., |2020; Font-Ribera
et al., 2014; LSST Science Collaboration, Abell, et al., [2009). The combination of
future weak-lensing surveys and CMBS4 would possibly reach a target sensitivity
on Aag ~ 0.001, a factor of three better than CMBS4 alond!] This is enough to
constrain ag at a level compatible with the value expected from a-attractor models.
Note that a measure of ag would constitute a smoking-gun for inflation as well as
a measure of a non-zero tensor amplitude. Therefore, future LSS surveys and CMB
experiments will either give us a measure of both r and ag in the most optimistic
scenario or they will be able to significantly reduce the available parameter space for
single-field slow-roll inflation in the most pessimistic one.

!This is derived assuming an improvement of a factor o(as)planck/o(as)cmBss ~ 3 of the fore-
casted constraints on ag with respect to the combination of weak-lensing and Planck data from
Tab.21 of (Amendola, Appleby, et al., [2018)
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3.5 Appendix: from a two sigma bound to an up-
per limit

In this section we briefly describe the procedure used to convert the two sigma
bound on r/« into an upper limit on « assuming an experimental threshold ry;,,. Let
us start noting that an upper limit on the tensor-to-scalar ratio, r < 7, at 95% C.L.
can be represented by an half-normal distribution with standard deviation, o, given
by the following equation:

/T“m N(z]0,0)dz = 0.95 (3.8)

Tlim

Solving for o and applying an inverse transform sampling technique, we can extract
samples from the half normal distribution. Then, for each samples of the half Gaussian
of r/a, we can use equation to calculate a sample of the distribution of a.. This
procedure allows to reconstruct the posterior of a starting from the bound on r/a and
it is equivalent to perform a full MCMC analysis with an experimental configuration
that can reveal tensor modes with amplitude r» > m, at 95% C.L. . As shown
in Fig.(3.3), the results on « agrees almost perfectly with the approximate results
obtained considering a delta distribution for rq and ry,. Thus, we conclude that the
uncertainties in the measure of r/a can be negligible in deriving an upper limit for
the values of «.
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Chapter 4

Cross-correlations of the
anisotropies of the Astrophysical
Gravitational-Wave Background
with Galaxy Clustering

This chapter is based on:

Cross-correlation of the astrophysical gravitational-wave background with galaxy clus-
tering

Guadalupe Canas-Herrera, Omar Contigiani and Valeri Vardanyan.

(August, 2020), Physical Review D 102, 4, 043513, arXiv:1910.08353.

4.1 Introduction

Gravitational waves (GWs) are one of the striking predictions of the General The-
ory of Relativity (Einstein, (1916, [1918)). The first indirect detection was obtained by
measuring the orbital decay of a pulsar binary system by Hulse and Taylor (Hulse &
Taylor}, |1975) and, a century after they were conjectured, the GW signal of a merging
black hole binary was detected by the Laser Interferometer Gravitational-Wave Ob-
servatory (LIGO) (LIGO Scientific collaboration and VIRGO collaboration, 2016b)).
Because the strain of GWs is less affected by distance compared to electromagnetic
radiation, they potentially contain important information about sources which would
be otherwise too dim to be observable. This discovery paved the way for a new multi-
messenger era in cosmology and opened a new window into the physics of compact
objects and gravity (Ezquiaga & Zumalacarregui, [2018)).

Every GW signal observed so far has been emitted from bright sources resolved
as distinct events, such as low-redshift black hole (LIGO Scientific collaboration and
VIRGO collaboration) 2016a, 2017a; [2017b, 2017¢) and neutron star binary mergers
(LIGO Scientific collaboration and VIRGO collaboration, [2017d)). However, in ad-
dition to resolved events, one can expect the presence of a GW background (GWB)
produced by the superposition of unresolved compact binaries that are either too far
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away or too faint to be detected individually. In practical terms, these unresolved
sources form stochastic GWBs, which may differ in spectral shape and frequency
depending on the source population (Thrane et al., [2009).

For instance, supermassive black hole binaries form a stochastic background in
the nHz band, which is expected to soon be detected by the Pulsar Timing Array
(PTA) (S. R. Taylor et al., [2016; |Arzoumanian et al., 2018; Mannerkoski, Johansson,
Pihajoki, Rantala, & Naabj 2019). While in the mHz band, the mergers of a similar
population of massive binaries are expected to be detected as resolved events by the
Laser Interferometer Space Antenna (LISA) (Wyithe & Loeb)| 2003]).

GWBs might also have a cosmological origin. Examples of such backgrounds
are those produced in the early Universe, such as during inflation (T. L. Smith et
al.l 2006), or a phase transitions (Blanco-Pillado, Olum, & Siemens, [2018]). More-
over, a hypothesized primordial black hole population (Sasaki, Suyama, Tanaka, &
Yokoyama, [2018) might also contribute to the total number of compact binaries in
the Universe. Many of these cosmological backgrounds are predicted to be isotropic
and they can extend over multiple frequency bands, from nHz up to GHz (Sousa,
Avelino, & Guedes|, 2020; [Wang, Huang, Li, & Liao, 2020)).

In this chapter, we discuss the background due to solar-mass sized stellar remnants
(black hole or neutron star binaries). The astrophysical GWB resulting from their
inspiral and coalescence should be detectable not only in mHz band (Z.-C. Chen,
Huang, & Huang) 2019), but also in the Hz to kHz band. In this range, LIGO searches
of this background have already been performed (LIGO Scientific collaboration and
VIRGO collaboration, 2019).

While the experimental challenges associated with the detection of this GWB are
not the focus of this work, it is worth pointing out that fundamental obstacles persist
in both frequency ranges. In the mHz band, the reconstruction is hindered by the
presence of an additional low-frequency background induced by Galactic white dwarf
binaries (Amaro-Seoane et al., 2012). To address this complication, previous works
have shown that this background can be removed by exploiting the yearly modulation
of space-based GW observatories (Adams & Cornish, [2014). On the other hand, the
main obstacle in the Hz-kHz is represented by the large shot noise contribution.
Because the astrophysical GWB in this band is comprised of multiple unresolved
transient events, a low event rate induces a large theoretical uncertainty in the total
expected energy density. In particular, the contribution of this effect to the scale-
dependence of the signal has a divergent formal expression (Jenkins & Sakellariadoul,
2019; (Cusin, Dvorkin, Pitrou, & Uzan| 2018a)).

None of these GWBs have been detected yet. Still, if ever observed, they would be
the direct analogues of electromagnetic backgrounds formed by the superposition of
multiple astronomical signals. Examples of this type of backgrounds are the cosmic
infrared background (CIB) (Hazumi et al., 2020), produced by stellar dust, and the
cosmic X-ray background (CXB) (Fabian & Barcons, |1992), formed by numerous
extragalactic X-ray sources.

The anisotropies of the astrophysical GWB have been extensively studied for years
(Thrane et al.,[2009) and, more recently, two independent groups Cusin et. al. (Cusin,
Dvorkin, Pitrou, & Uzan| 2018b; |Cusin, Pitrou, & Uzan| 2017) and Jenkins et. al.

82



4.2. GRAVITATIONAL-WAVE ANISOTROPIES

(Jenkins & Sakellariadoul, 2018; |Jenkins, Sakellariadou, Regimbau, & Slezak, 2018)
obtained discrepant predictions for the scale-dependent signal (Cusin et al.| 2018a;
Jenkins, Sakellariadou, et al., 2019)). The main disagreements are related to the shape
of the angular power spectrum as well as the overall amplitude of the signal. The
difference in shape seems to be related to the treatment of non-linear scales (see also
of this chapter), whereas the difference in amplitude is due to the chosen
normalization. Here, let us mention that the main focus of their investigations so
far has been the study of the autocorrelation signal and its shot-noise component,
with further studies in this field being carried out also in (Cusin, Pitrou, & Uzan),
2018; \Cusin, Dvorkin, Pitrou, & Uzanl [2020}; Pitrou, Cusin, & Uzan| [2020} (Cusin,
Durrer, & Ferreira), [2019). It is, however, worth pointing out that signals beyond
autocorrelation, such as the cross-correlation between GWB and galaxy clustering or
weak lensing convergence, have also been modelled to some extent (see e.g. (Cusin,
Dvorkin, Pitrou, & Uzan| 2019)).

Here, we study the cross-correlation between the anisotropies of the astrophysical
GWB and galaxy clustering (GC), and argue why it represents the ideal observable
to detect the background and measure its properties. There are three main reasons
for this choice. First, the distribution of compact mergers forming the GWB is
determined by the distribution of their host galaxies. This means that one should
expect a relatively large correlation between the two signals. Second, the cross-
correlation signal for diffuse backgrounds is expected to have a larger signal-to-noise
ratio compared to the autocorrelation signal, hence the former is likely to be detected
earlier (Ando, Benoit-Lévy, & Komatsu, 2014). Third, as presented in the next
section, our investigation shows that the autocorrelation signal of the astrophysical
GWRB is very sensitive to small-scale structure, while the cross-correlation signal is
free from this problem. In a somewhat similar spirit, Refs. (S. Mukherjee, Wandelt, &
Silk, [2020b, 2020a; |Calore, Cuoco, Regimbau, Sachdev, & Serpico| 2020) have recently
studied the cross-correlation of resolved GW sources with large scale structure and
lensed cosmic microwave background.

Our chapter is organized as follows. In we review the main aspects
of the GWB autocorrelation signal and highlight its limitations. In we
present the angular power spectrum of the cross-correlation signal and calculate the
expected shot-noise contamination (section 4.5)). In |section 4.4f we demonstrate how
the cross-correlation can be used to constrain the average power emitted by unresolved
GW sources as a function of redshift, and quantify the required signal-to-noise ratio
and angular resolution. To do this, we use a fiducial cosmology based on the best-
fit results of Planck 2018 (Planck Collaboration, Aghanim, Akrami, Ashdown, et
al., |2020b) and a toy model for the GWB. Finally, we present our conclusions in

[section 4.5

4.2 Gravitational-Wave anisotropies

In this section, we discuss the autocorrelation signal of the anisotropic GWB.
This signal, as well as the shot-noise contamination, have been extensively studied in

83



4.2. GRAVITATIONAL-WAVE ANISOTROPIES

previous works (Jenkins & Sakellariadou, 2019; | Jenkins, Romano, & Sakellariadou,
2019; |Cusin, Dvorkin, et al., 2019)). Here, we review the main aspects of modelling
these and describe some particularities.

Our starting point is the definition of the dimensionless energy density of GWs
from a given direction of the sky t, per unit solid angle:

N oy dpGW (V()uf')
Qe _ D fpawito, 1)
aw (10, £) pe  dyd?t

, (4.1)
where pgw (1o, T) is the present-day energy density in GWs, 14 is the observed fre-
quency and p. = 3H2/87G is the critical density of the Universe. Note that, from
now on, we suppress the frequency dependence. We model this signal as

Qaw(t /dr r (4.2)

where n(r) is the galaxy density field in comoving coordinates r, and K is the GW
kernel that encodes the average contribution of a galaxy to Qg as a function of
comoving distance r. In practice, this includes information about the star formation
history of the Universe and the properties of the emitting binary population. It
is instructive to rewrite equation in terms of the galaxy overdensity d,(T) =
n(r)/n(r) — 1, with n(r) being the average number density of galaxies, defined as
n(r) = [ d®tn(r)/4n. With this notation we have

Qaw (F / dr 12 r) (6,(F) + 1) . (4.3)

From this point, the angular power spectrum of the anisotropic GWB CZW can be
calculated to be

e
OSW — 4 /k 1P (k) + BEY. (4.4)

Here §€Q(k) is given by
5 (k / dr ()i ()T, (k, r)je (kr) (4.5)

where T}, is the synchronous gauge transfer function relating the galaxy power spec-
trum to the primordial one P(k) = A, (k/k,)™ ", and j, is the spherical Bessel
function of order ¢. Note that the galaxy bias is implicitly absorbed in Tj. Note also
that in equation (4.5)) we neglect relativistic corrections, as they are generally found
to be below cosmic variance (Bertacca et al., [2019)).

The term BFYW in the power spectrum is the shot-noise bias term introduced
by the spatial and temporal shot-noise in the distribution of the individual events
forming the GWB. Following (Jenkins & Sakellariadou, 2019), we write the shot-
noise contribution in the kHz band as

BEW — / dr KC(r l ;J{rjl(fo)] . (4.6)
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Because of the low event rate in this frequency range, this noise contribution is in-
versely proportional to the average number of events per galaxy, written as the average
redshifted event rate (1+ z)/R(r) multiplied by the observing time Ty. However, be-
cause the duration of the inspiral phase in the mHz band is much larger than any
reasonable observing time, the contribution of the term 1/(R(r)Tp) is negligible in
this case.

The GWB discussed here is an integrated signal. Because of this, the low-redshift
objects might significantly contribute to the GWB. Indeed, the astrophysical models
of (Cusin, Dvorkin, et al.; [2019) suggest that the combination

K(T) = K(r)a(r)r? (4.7)

is not decaying to negligible values close to redshifts z ~ 0. This introduces two
complications in the modelling.
The first is connected to the shot noise. To highlight this, we rewrite equation (4.6))

BEW _ / dr T’f(i():l l1 + M] . (4.8)

From this expression, it is clear that the shot-noise has a divergent expression due
to low-redshift (low-r) contributions. To obtain a well-behaved prediction for the
autocorrelation signal, this divergence can be suppressed if local events are excluded
from the background. This is equivalent to setting a lower limit in the integral above
different from zero.

Second, there exist a complication derived from the scale dependent part of the
angular power spectrum (the first term in equation (4.4])), which is expected to re-
ceive non-negligible contributions from small, highly non-linear scales. To get some
intuition about this feature, let us simplify our expression for the GWB angular power
spectrum by using the so-called Limber approximation

jlz) = \/Z‘SD (a—1), (4.9)

where dp is the Dirac delta-function and o = ¢ + 1/2. Using this in Eq. (4.5)) and
neglecting the bias term we obtain

212 fkmax dk ~. [/« a
aw 2 ez (2 2 = 4.1
Ce a /km k;3IC <k:)8 (kk) (4.10)

S(k,r) = T,(k,r)P(k)"/2. (4.11)

What equation demonstrates is that K(r) acts as a modified kernel and
selects a particular domain in the k-integral. This causes small scales to contribute
significantly to CFW, unless K is vanishing at the lower end of its argument or S2 /K3 is
falling fast enough at large values of k. As the modelling of the galaxy power spectrum
at non-linear scales is highly uncertain, this feature is signalling a potential danger
of using the autocorrelation signal as a probe of GW merger history or cosmology.
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Figure 4.1: Left panel: Linear autocorrelation power spectra CF" of the GWB of
a constant K (r) for a set of upper limits of the integral in equation , in units of
Mpc™'. Right panel: The same as in the left panel, but for the cross-correlation
between a galaxy sample (centered at z = 0.5) and the GWB, C;*. Both of the panels
are supposed to be understood as normalized with respect to the amplitude of the
fiducial GWB model, to be discussed in detail later.

To accurately assess the impact of the issue mentioned above, let us turn to the
results of exact numerical computations which do not rely on the Limber approx-
imation. Having in mind the speed requirements of our later parameter analysis,
we have developed a fast numerical procedureﬂ to compute the integrals in equa-
tions and , given the dark matter transfer function 77, ) calculated using
an Einstein-Boltzmann solver

A technical remark is in order here. Given the rapidly-oscillatory nature of the
spherical Bessel functions in equation (4.5)), we have precomputed the line-of-sight
integrals over these Bessel functions on bins of a fine r-grid. On the speed grounds,
the source terms are then inserted only on a much coarser grid, which is only justified
if these source functions do not vary significantly between two coarse-grid points.
While this assumption is well justified for the transfer functions, we can only use our
integrator if the kernel (r) does not have rapid changes. In this chapter, we consider
only such smooth-enough kernels (and window functions — see the next sections). We
have verified the reliability of our integration procedure against a modified version of
the latest public version of CAMB (Lewis et al., 2000; [Howlett et al., [2012)).

Our results are illustrated in the left panel of where we have chosen
several values of k.., the upper limit of the integral in equation (4.4]), and calculated
the corresponding angular power spectra for the multipoles in the range ¢ = [2, 100].
Note in particular that the magnitude of the signal changes drastically with k.,
meaning that the autocorrelation signal depends heavily on the shape of the low red-
shift power spectrum on non-linear scales. This is likely one of the causes behind the

!The codes used in this chapter are publicly available at https://github.com/
valerivardanyan/GW-GC-CrossCorrl

“In this chapter, we use the ACDM limit of the EFTCAMB code (Hu, Raveri, Frusciante, & Silvestri,
2014; [Raveri, Hu, Frusciante, & Silvestri, 2014]) for simplicity, as it is easier to output the required
transfer functions as a function of redshift.
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4.3. CROSS-CORRELATION WITH GALAXY CLUSTERING

\ ---- Wi(z=0.5,6.=0.18)
--—- Wy(z=1.5,0.=0.6)
— K(z. = /chd

Figure 4.2: Fiducial model as a function of redshift z, of the GW source kernel
K(r(2)) in Eq. (@7). In practice, we cut off the low-redshift sources with comoving
distances smaller than 150 Mpc (see the text for details). The galaxy clustering
window functions W; and W5 are assumed to be Gaussian.

discrepancy between Jenkins et. al. and Cusin et. al. and suggests that an accurate
prediction of the autocorrelation signal should take into account not only the shot-
noise contribution (Jenkins, Romano, & Sakellariadou, 2019; (Cusin, Dvorkin, et al.,
2019), but also the uncertainties due to baryonic effects in the matter distribution at
small scales (Debackere, Schaye, & Hoekstral 2020; [Schneider et al.; 2019). We point
out, in particular, that the galaxy catalogue based on dark-matter-only simulations
of (Blaizot et al., 2005) and the halofit model of (Takahashi et al., 2012) are not
designed to consistently or accurately model this uncertainty. While not shown, we
point out that this problem is even more noticeable at high ¢, where a larger value of
Fmax ~ 5 Mpc™t is required for the integrals to converge (as highlighted in (Cusin et
al., 2018a)).

4.3 Cross-correlation with galaxy clustering

In this section, we introduce the main concepts necessary for modelling the cross-
correlation signal and discuss its advantages.

First of all, we define the observed overdensity of galaxies in the given direction
per unit sold angle as

Af) = / dr Wi(r)8,(F), (4.12)

where W;(r) is the probability density function of the galaxies’ comoving distances
(also referred to as the GC window function) and J,(r) is the galaxy overdensity
defined earlier. Using equation (4.12), the angular power spectrum of GC, CF¢, can

be shown to be

d 1
oS¢ = 4W/?1A@(ls)]27>(k) + (4.13)

7
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where Ay(k) is given by
Mmz/mwmmwﬁMmy (4.14)

T;(k,r) is the transfer function for the galaxy overdensity in the selected redshift
range W;(r), je(kr) is the spherical Bessel function of order ¢ and n; is the average
number of galaxies per steradian, also dependent on the specific redshift selection
W;(r). This final quantity appears in the second term in equation and dictates
the size of the shot-noise component of the power-spectrum.

Using equations and , one can derive the angular power spectrum of
the cross-correlation C;° of the GWB and the GC maps, given by equation and
(4.12). This is

cyzm/f&mmmwmm+m, (4.15)

where the shot-noise contribution By, derived in Appendix [4.5] can be shown to be
m:/mwwwmy (4.16)

With these expressions in mind, we can now discuss how the cross-correlation signal
can be used to address the modelling challenges we have presented in the previous
section.

To address the first one, we notice that, while the 1/r? divergence is still present
in the integral in equation , this integral is generally well behaved if the window
function W;(r) decays fast enough at small redshifts. Notice that this is impossible
to do in the equivalent expression for the autocorrelation in equation .

With respect to the second issue, we compare in the effects of the small-
scale power spectrum on both the auto and cross-correlation. To explain the different
behaviour, we note that the equivalent of equation for the cross-correlation is

22 rkmax dk a\ ~ [« a
X ~ R . R P— 2 _
@’“@ Fonin MWCQ)K<k>S<hk>' (4.17)

Because GC surveys allow for redshift-selection of the sources, the GC window func-
tion W;(r) can be taken to be peaked at some non-zero redshift and quickly decaying
for larger or smaller values of r. equation shows that this behaviour cuts off
the contribution from very large and very small scales, as shown in the right panel of

igure 4.1

4.4 Information content

4.4.1 Model set-up

In this section, our primary goal is to explore the sensitivity of the cross-correlation
signal to various parameters and estimate its information content. To this end, we
model the signal using simple, but representative assumptions about the GW and GC
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Figure 4.3: Effects of the model parameters bagw/Co, 24, 2 and bgw on the cross-
correlation signal. The uncertainties are the cosmic variance defined in Appendix
4.5l Note particularly that in the case of both of the window functions W; and
W5 the change in bqwK( induces a significant change in the amplitude of the signal
(upper left panel), while when the combination bgw/Cy is fixed, the signal is not
sensitive to the value of the GW bias bgw (lower left panel). Note that mostly the
high-¢ multipoles are sensitive to changes in z, (upper right panel). Note also that
the change on §2,,, modifies the tilt of the signal, without altering its overall amplitude
(lower right panel). All of the panels are supposed to be understood as normalized
with respect to the amplitude of the fiducial GWB model.

maps. This allows us to derive an upper limit on the constraining power by assuming
the theoretical minimum uncertainty due to cosmic variance.

We base our model for l@(r) on the physically motivated one of Cusin et. al.
(Cusin, Dvorkin, et al.| 2019), by noting that their function .4(z) is the analogue of
our K(r) in redshift space. In this reference, in particular, it is shown that A(r) is
a slowly-evolving function of redshift, and has a similar shape over a wide range of
frequencies and assumptions about the source population (see their figures 19 and
13). Thus, we model the kernel as

K(r) = 271’80)7& ftanh [10(=.(r) — ()] + 1}, (4.18)
where Ky is the amplitude of the kernel, z, is a cut-off redshift, and n(r) ~ 107}
Mpc ™ is the average comoving galaxy number density estimated using Figure 4 of
(Schaye et al., 2015). We do not implement a redshift dependence for this quantity
because its value is relevant only for the shot-noise component of the cross-correlation,
found to be negligible in the cases considered here. In our fiducial model, we assume

z. = 1 (see [Figure 4.2), as it is known by Cusin et al. that the astrophysical kernel
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10°{ —— Fiducial =~ = Qn=0.62

Figure 4.4: Effects of the model parameters bawKo, 24, 2m and bgw on the auto-
correlation signal. The uncertainties are defined as in [Figure 4.3 The curves should
be understood as normalized with respect to the amplitude of the fiducial GWB
model.

K(r)n(r)r? is expected to decay around that value in redshift. Notice that, while
Ko should be dimensionful, its units are irrelevant to us because the cross-correlation
signal is proportional to its value. For the rest of the chapter, we call K¢ the fiducial
value of this quantity.

In the next subsections, we study the cross-correlation between the GWB modelled
above and two galaxy catalogues centred at different redshifts. The two window
functions, W; and W,, are assumed to be Gaussian distributions centered at z =
{0.5,1.5} and with widths of o, = {0.18,0.6}. These values are picked so that the
two selections overlap with the constant portions of K(r).

Moreover, we model the transfer functions in equations and by using

a linear bias approximation (valid for large scales):
T;(k) = b/ Tw(k, 1), (4.19)

and
Tg(k,’l") = bGWTm(k7r)7 (420)

where Ty, (k,r) is the transfer function for cold dark matter and the by are known
as bias parameters. When varying our model, we freeze the bias of both galaxy cat-
alogues since it can be extracted from the clustering autocorrelation signal alone.
On the contrary, we treat the GW bias bgw as a free parameter and we assume it
to be a constant over redshift. While this is not necessarily true, in the absence of
shot-noise, only the combination walC(r) appears in the signal. This implies that a
more complex model can always capture any redshift dependence through the func-
tion I@(T) Note, however, that breaking the degeneracy between the linear bias of
the GW population and the amplitude of the astrophysical kernel K(r) requires a full
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understanding of the GWB kernel and all ingredients (Scelfo, Bellomo, Raccanelli,
Matarrese, & Verde, 2018).

For the rest of the analysis, we focus on the mHz frequency band, and assume
that low-redshift events (below r = 150 Mpc) can be filtered. In our modelling,
as discussed in the previous sections, these assumptions are essential to obtain a
well-behaved signal which is not overwhelmed by noise. For reference, under these
assumptions we get the following relative noise values at /= 10:

GW
B Bi
GW X
G Gy

~ 1074 (4.21)

The first value is derived using the inspiral time of a solar mass black hole binary
starting from 1 mHz (Blanchet, Damour, Iyer, Will, & Wiseman, 1995), an observing
time of 1 year and a merger rate of 107° per year (B. P. Abbott et al., [2019).

As a summary of our model, contains the two window functions W7y, W,
and the kernel K(r).

4.4.2 Behaviour of the cross-correlation

Before attempting to reconstruct the parameters of our model from mock data,
let us gain some insights into the response of the cross-correlation signal on various
parameters.

First, we explore the dependence of the signal on the kernel amplitude &y, or,
more precisely, the combination bqw/Cy. In the upper left panel of we can
see that in the case of both of the window functions W and W5 the change of the
amplitude induces a significant change in the signal. Note that here the bias itself is
fixed. In reality, the kernel amplitude Ky and the bias are perfectly degenerate with
each other since the two appear as proportionality constants to both cross-correlation
signals. To see this, in the lower left panel of we demonstrate the impact of
varying bgw on the signal when bqw/Cy is held fixed. Note that a similar scaling with
the kernel amplitude is present also for the autocorrelation signal shown in[Figure 4.4]
which is proportional to (bawXo)?2.

Second, we turn our attention to the dependence of the signal on the turnover
redshift z,. In the upper right panel of we see that the change of z,
induces a change in the shape of the signal. The signal with W5 is sensitive to z,,
while in the case of W; the signal is practically independent of it. A similarly small
effect is also visible in the autocorrelation signal in [Figure 4.4]

Third, it is interesting to show the effect of (2, on the signal. Specifically, in
the lower left panel of [Figure 4.3] it is demonstrated that the effects of 2, and Iy
are qualitatively different from each other. Indeed, changing €2,, rotates the signal,
while ICy affects the amplitude of the signal. This rotation effect due to varying €2,
is expected, as a similar effect is observed in the galaxy clustering autocorrelation
signal. Indeed, such a behaviour in the signal allows galaxy clustering to constrain
both €, and the normalization of the matter power spectrum og (see e.g. (Euclid
Collaboration et al., 2020))).
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Finally, we point out that the scale-dependent power spectra discussed in this
sections do not have a clear peak for any value of ¢ and practically do not show any
sign of decaying power for small scales. This is in contrast to the naive expectations
based on galaxy clustering result. This difference is due to the interplay between
projected scales and redshift selection described in [section 4.2 together with the use

of relatively wide effective window functions (K (r), Wy and W5).

4.4.3 Constraining ()

Gaussian prior on Q,, € = 10
B Gaussian prior on O, £ = 100
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Figure 4.5: Posterior distributions for the cases of /;,,, = 10 (orange) and £, = 100
(black), with Planck-2018-like Gaussian prior on 2, (shown in red dashed line).
Contours represent the 68% and 95% confidence regions. We can clearly see that
Kobaw is constrained even in the case of the limited angular resolution, while bgw
is never separately constrained. The turn-over redshift z, is unconstrained for the
low-resolution case, while it is tightly constrained for the case of £, = 100. Finally,
), is prior dominated for the low-resolution case, while it beats the prior in the high-
resolution scenario. Also noteworthy are the degeneracies between €2, and Kobgw,
as well as between z, and Kybgw.

The goal of this section is to understand the constraining power of the cross-
correlation signal by studying how precisely the astrophysical model can be inferred
from a noisy Cy measurement.
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Figure 4.6: Constraints on the GWB parameters (bgw, Ko, z.) and cosmology (£p,)
obtained using the cross-correlation signal with two window functions as a function
of the maximum multipole included in the analysis. Cosmic-variance limited mea-
surements are assumed for all the constraints, so these should be understood as the
best-case scenario results. Larger values of the signal-to-noise ratio (S/N) correspond
to better angular resolution (see Eq. . We have explored the effect of {2, on these
constraints by either fixing its value (left panel), or setting a Planck-2018-like Gaus-
sian prior (right panel). Remarkably, the combination bgw/Cy can be constrained
even with very limited angular sensitivity. The turnover location z, is practically
unconstrained for £, < 50, and €2y, is prior dominated for these multipoles. In case
of lrax = 50 all the relevant parameters are tightly constrained, and for £;,,, ~ 100
the constraints are at the level of a few percent. Notably, the cosmology (mimicked
by varying 2, in our analysis) can match and surpass the CMB results only in case
of high angular resolution/signal-to-noise. For reference, ¢;,,, = 100 roughly corre-
sponds to 2 degrees.
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In our analysis, we focus on the best-case scenario of cosmic-variance limited
uncertainties as derived in Appendix [£.5]and use a simple proxy for the overall signal-
to-noise ratio of the cross-correlation, defined as

£)=5 &

éigmin

Let us note that in our setup the GC signal dominates over the GC shot noise,
implying that equation is indeed the theoretical limit for uncertainties. In
the presence of multiple, independent window functions, we simply sum the relative
signal-to-noise expressions in quadrature.

We compute the cross-correlation power spectra, given in equation (4.15]), using
the model presented insubsection 4.4.1} and attempt to recover the model parameters
from a noisy realization. To explore the inferred constraints as a function of angular
resolution and S/N levels, we do this in several multipole ranges of ¢ with £, = 2
and varying £ ;..

The parameters of interest in our analysis are the amplitude of the GWB kernel
Ko and the turnover redshift z,. In addition to these, we also explore the bias bgw
and €, to see if variations in Ty (k,r) can affect the inferred IC(r), and to explore the
possible degeneracies between the GWB model and cosmology. To include the effects
of varying €2, we have precomputed the dark matter transfer functions for a grid of
), values, and have inferred the results for the intermediate values through nearest
neighbour interpolation.

The exploration of the parameter space is carried out using the MCMC python
code emcee (Foreman-Mackey, Hogg, Lang, & Goodman| 2013). We have employed
a Gaussian likelihood function on C, with diagonal covariance matrix given through

equation (|4.35)), and the prior ranges given in[Table 4.1} Note that since we expect Ky

to be degenerated with bgw, we do not vary Ky itself, but rather vary the combination

Parameter | Fiducial value Prior
bawCo 1 [0.01, 100]
baw 1 [0.1,10]

Zy 1 [0.5,1.5]
Qmn 0.32 G(0.32,0.013)

Table 4.1: Prior ranges of the sampled parameters. For €2, we use a Planck-2018
inspired Gaussian prior.

The main results of the analysis are summarised in [Figure 4.6] where we show
the expected constraints on the parameters of interest as a function of the maximum
multipole included in the analysis. We also show the corresponding cosmic-variance-
only signal-to-noise ratios.

Let us first have a look at the left panel of the figure, which corresponds to a
fixed Q,, value. As we see, bqwKy is constrained and, notably, this is true even in
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the limited multipole range corresponding to ¢, = 10. This is expected, as a clear
detection of the signal is associated with a measurement of its amplitude. On the
other hand, less encouraging are the results for the turnover redshift z,, which can
be constrained only for £, = 50 or, equivalently, a S/N of ~ 33.

As we will prove shortly, the poor constraint on the amplitude is because, in the
small multipole range, €2, is very poorly constrained. At the same time, it is strongly
degenerate with the amplitude.

In the right panel of the figure, we now impose a Gaussian prior on €, with its
variance being comparable to the Planck-2018 constraint on 2,,,. While the z, results
are not affected, the uncertainties on the amplitude are now slightly inflated, due to
a degeneracy between (), and bgw/o. This is also visible in the signal responses
plotted in

Let us now fully concentrate on the two limiting angular sensitivities in our anal-
ysis. We take a LIGO-like angular sensitivity limited to the multipole range of
¢ € [2,10], as well as an angular sensitivity of a hypothetical high-resolution GW
detector corresponding to ¢ € [2,100]. The full constraints, for the case of Gaussian
priors on €, are presented in [Figure 4.5

We can clearly see that Kobgw is constrained even in the case of the limited
angular resolution, while bgw is never separately constrained. We have checked that
the latter feature is also present in all the other runs presented in this Section. This
justifies our choice to vary the combination bgw/Cy instead of varying bgw and Ky
separately.

The turn-over redshift z, is unconstrained for the low-resolution case, while it is
tightly constrained for the case of £, = 100. The dark matter abundance €2, is prior
dominated for the low-resolution case, while it beats the prior in the high-resolution
scenario. Also noteworthy are the degeneracies between €2, and Kobaw, as well as
between z, and Kybgw. These can be easily understood by inspecting the combined
behaviours presented in [Figure 4.3

Before turning to our conclusions let us mention that the results presented in this
section depend on the precise details of the GC window functions and GWB detection
and more precise results can only be obtained by performing a realistic forecast with
exact survey /detector specifications. While we leave a more detailed investigation for
future research, our results suggest that a cosmic-variance limited measurement of the
GWB anisotropies down to ¢ ~ 100 is able to tightly constrain the redshift evolution
of the GW kernel K, as well as to provide Planck-like constraints on cosmological
parameters.

4.5 Conclusions

In this chapter, we have discussed in detail the angular power spectrum of the
cross-correlation between the GWB of astrophysical origin and GC.

We have shown that, contrary to the autocorrelation signal, the cross-correlation
signal does not depend heavily on the small-scale galaxy power spectrum and hence is
a more robust observational probe. To this point, we have also shown that the shot-
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noise associated with this signal is small for realistic choices of the window functions
Wi.

Then, armed with these results, we studied in detail the properties of the angular
power spectra for a range of model parameters. In particular, we have shown how the
signal is sensitive to the turnover redshift z, of the GWB kernel, a combination of its
amplitude and the bias bqw/Co, as well as the dark matter abundance €2,,. We have
also shown that the signal is not separately sensitive to bgw and Ky. A summary of
all of this is presented in [Figure 4.3

As one of the main goals of this chapter, we have performed a Bayesian parameter
estimation using an MCMC sampling based on mock data with cosmic-variance-
limited uncertainties. This choice allows us to provide an upper limit on the con-
straining power of this new observational probe . In particular, we have
demonstrated that the cross-correlation signal is a powerful tool to constrain the prop-
erties of the GWB kernel IC(r) if appropriate GC window functions are used. This is
true even when marginalizing over uncertainties in the cosmology gravitational-wave
bias.

We have quantified for the first time the need of high-resolution GW detectors in
order to extract the full information content of the GWB of astrophysical origin. In
particular, we have shown that both a high angular resolution and a high signal-to-
noise ratio (¢ ~ 100, S/N ~ 70) are required to recover both the matter abundance
Qn, and features of the kernel K(r) as a function of redshift. Note, in particular,
that these requirements are far above the angular resolution of present-day and near-
future detectors (roughly ¢ < 10, and even ¢ < 4 for LISA (Ungarelli & Vecchio,
2001 [LIGO Scientific collaboration and VIRGO collaboration, 2019)). While this
is not the priority of currently proposed third-generation detectors (Maggiore et al.,
2020)), it is worth noting that the advantages of high-resolution gravitational-wave
astronomy are numerous and not limited to the study of this anisotropic background
(J. Baker et al., [2019)).

The case for studying the cross-correlation is strengthened by noticing that the
anisotropies of the GWB in kHz band will most probably first be measured through
cross-correlation with galaxy surveys, as the latter will provide a guiding pattern
to be looked at in the noisy GW data. Given the promising nature of our results
regarding the constraints of the GW kernel parameters and €2, we believe that the
cross-correlation between GW and GC has the potential to be a robust observational
probe in the era of multi-messenger cosmology.

Appendix 1: Shot-noise for the cross-correlation
signal

We follow (Jenkins & Sakellariadou, |2019) and evaluate the shot-noise contribu-
tion to the observed cross-correlation signal C; in terms of the shot-noise contribution
to the covariance between the observed maps Q(t) and A(#). Our starting point is

B, = / PPy - ) Cov[Q(E), A(#)]sx. (4.23)
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By keeping in mind that K(r) = r2kC(r)n(r) and that §,(F) = (n(¥) — na(r)) /n we
use the definitions in equations (4.2)), (4.12) to write:
Cov ), A s =
2
/w/mixcwmmmﬂwm%wmw (4.24)
n
As a side note, we point out that this expression is a stretch of notation since,
formally, the quantities K(r)n(r) and W (r)n(r) represent the mean values of the
variables that we are trying to correlate. To proceed, we notice that W (r)n(r) is
proportional to the number density of galaxies visible in the galaxy survey and that
KC(r)n(r) is proportional to the number density of GW events around an infinitesimal
volume centred in r. This is confirmed by the formalism used in the aforementioned
references (Jenkins & Sakellariadoul, 2019) and (Cusin et al., 2018b) to predict a
realistic IC(r).
In a finite volume 0V; we write down the number of GW mergers as

N;
k

where IV is the number of galaxies present in this volume and the A;-s are the number
of events for each galaxy. If we assume that N and A, are Poisson distributed, A;
follows a compound Poisson distribution with variance

Var[A;] = (A2) — (A)? = (N;) (0 + (\)?). (4.26)

If we call f the fraction of galaxies in the volume 0V} visible in the galaxy survey
we also derive:

Cov[fNj, Ai] = F(N){N)dij, (4.27)

where §;; is the Kronecker delta. By going back to the continuous case, we obtain the
following result:

Cov[K(r)n(F), Wi(r")n(T)]sny = n(r)Wi(r)K(r)6* (¥ — ). (4.28)

Finally, by plugging everything into equation (4.23) we obtain the result shown
in the main text:

&:/mwmmm. (4.29)

Appendix 2: Cosmic variance of the cross-correlation
signal

Assume we have two maps on the sky, corresponding to the GWB and GC
anisotropies. The angular decomposition coefficients a5" and a§¢ are assumed to
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be Gaussian random variables with zero mean, and each m-mode is drawn from the
same distribution. The relevant angular power spectra are defined as

C) = Cov [af,,\zv, agﬂ , (4.30)
CY = Var [af)| | (4.31)
CF¢ = Var {agﬂ . (4.32)

It is then trivial to construct an unbiased estimator of the cross-correlation power
spectrum as
X 1 < ew ac
C) = > agya 4.33
l 20 +1 =, Im “Um * ( )

The variance of this estimator can then be shown to be

VarCy — (%i 1 mZ:ZVar (G age] =
1
(20 +1)? mZ_E ar
Cov {(afmw) (a?ﬁ) } Cov [ag,\;v,afng] . (4.34)

In summary, we have

cevose v (o)’

VarC =
arCy 2+ 1 ’

(4.35)

where we have used the Gaussianity of a,,’s. Making the a5$¢ — a$"W replacement

turns this expression into

2(C
VarCSW = <2/+1) (4.36)

which, of course, recovers the usual cosmic variance result.
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Chapter 5

Reconstruction of the propagation
and origin of gravitational waves

This chapter is based on:

Learning how to surf: Reconstructing the propagation and origin of gravitational waves
with Gaussian Processes

Guadalupe Canas-Herrera, Omar Contigiani and Valeri Vardanyan.

(September, 2021), The Astrophysical Journal, 918, 20, arXiv:2105.04262.

5.1 Introduction

The first direct detection of gravitational waves (GWs) by (B. P. Abbott et al.,
2016) triggered a rapidly increasing interest in exploiting this new field for cosmo-
logical information. GWs alone are not particularly useful because the data provides
only a sky position and a measure of the luminosity distance to the source. However,
GW sources can serve as powerful cosmological probes when combined with electro-
magnetic (EM) data, from which redshifts can be extracted. This idea dates back to
(Schutzl [1986) and has two main variations.

The first, simplest, possibility is the observation of so-called standard sirens (Holz
& Hughes|, 2005), GW sources with EM counterparts from which a redshift can be
observed. As an example, a population of binary neutron stars, such as the already
observed GW170817 (B. P. Abbott et al., |2017¢), can be used to reconstruct the
luminosity-redshift function and constrain cosmological observables. In this context,
the aforementioned observation has already lead to promising results in constraining
the Hubble constant Hy = 100h km/s/Mpc (B. P. Abbott et al., [2017b; [H.-Y. Chen,
Fishbach, & Holz|, 2018)).

The second possibility is to use dark sirens with a statistical counterpart. The
likely counterpart is identified using the rough sky-localization offered by current
GW detectors in combination with deep galaxy catalogs. This technique, sometimes
combined with the first, has also been used to extract a measurement of H (Soares-
Santos et al., 2019; B. P. Abbott et al., [2021]) and a refined version of it is the focus
of this work. Assuming that both galaxies and the hosts of GW mergers are biased
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tracers of the same cosmological structure, it is possible to measure a non-zero cross-
correlation signal between the two (see . At the linear level, in particular,
the description of this signal is especially simple. It should be noted that this idea has
been explored by others before, sometimes using a different formalism (Namikawa,
Nishizawa, & Taruya, [2016; |S. Mukherjee & Wandelt, 2018} |Scelfo et al., 2018) and
that similar methods have already been employed to provide a measurement of H
(Finke, Foffa, Iacovelli, Maggiore, & Mancarella, 2021]).

In addition to these two methods, modelling of higher-order effects in the merger
dynamics or knowledge of intrinsic source distribution can also be used to extract
the luminosity distance-redshift relation from GW observations alone. Because GW
signals provide a measurement of the redshifted chirp-mass of the system, features
dependent only on the mass of the system (e.g. tidal effects) can be used to extract the
cosmological redshift present in the signal (Messenger & Read| 2012). Furthermore,
expected features in the source distribution, such as, e.g. the pair instability mass
gap (Farr, Fishbach, Ye, & Holz, 2019)) or the peak of the star formation rate (Ye &
[Fishbach| 2021) can also be used to extract this relation from catalogs of GW events.

We also mention that, in principle, the same idea can be used in the absence
of resolved events. Previous works, however, have shown that a detection of this
effect from a stochastic background signal is unlikely to happen soon due to the low
signal-to-noise ratio (SNR) attainable by current and proposed experiments covering
the optimal wavelength range (Canas-Herrera et al., 2020; Alonso, Cusin, Ferreira, &|

Pitrod, 2020).

In this chapter, we discuss the possibility of using the non-zero correlation between
the distribution of EM galaxies and resolved GW mergers to jointly extract informa-
tion about the two main quantities in the field of GW cosmology: the luminosity
distance as a function of redshift, describing the propagation of gravitational waves
across cosmic time, and the linear bias of GW sources with respect to the underlying
dark matter distribution of the Universe, describing their clustering properties. The
linear bias, in this context, is a multiplicative factor relating the spatial correlation
function of a source population to the correlation function of the matter distribution
of the Universe.

It is already established that GWs carry the potential of constraining the fun-
damental laws of gravity. This is the case because propagation of GWs in modified
gravity scenarios differs from predictions of the general theory of relativity (GR) in
multiple ways (Deffayet & Menou, 2007} |Garoffolo, Tasinato, Carbone, Bertacca, &
Matarrese, [2020; [Ezquiaga & Zumalacarregui, 2020). One of the clear signatures is
the speed of tensor modes which can be both sub- and superluminal as opposed to the
GR case, where GWs propagate at the speed of light. The tight constraints on speed
deviations imposed by the multimessenger observations of GW170817
, , for example, have ruled out a wide parameter space of otherwise viable
scalar-tensor theories of gravity (Pettorino & Amendola, 2015; Lombriser & Tay-|
lor}, 2016} [Sakstein & Jain, [2017; [Ezquiaga & Zumalacérregui, 2017; [Creminelli &
\Vernizzi, 2017; T. Baker et al. [2017). Similarly, implications for bi-gravity models
have also been demonstrated in the literature (Amendola, Konnig, Martinelli, Pet-|
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ftorino, & Zumalacarreguil, 2015} [Max, Platscher, & Smirnov, 2017, 2018} [Akrami,
Brax, Davis, & Vardanyan, 2018, June; Belgacem et al., 2019).

Another striking difference between modified gravity and GR is the modified fric-
tion of GWs (Amendola, Sawicki, Kunz, & Saltas, 2018 |Belgacem, Dirian, Foffa, &
Maggiore, 2018)). This feature arises in models with non-minimal coupling of a scalar
field and gravity which manifests itself as a redshift-dependent gravitational coupling.
As a result, the inferred luminosity distance to GW sources differs from the corre-
sponding EM luminosity distance. This interesting phenomenon has already been
constrained using the aforementioned multimessenger detection of GW170817
& Nishizawal, 2018; |Lagos, Fishbach, Landry, & Holz, 2019)) and the mass distribution
of existing GW catalogs (Marfa Ezquiagal, [2021). In this work, we will investigate the
possibility of testing this hypothesis using the spatial clustering of GW sources and
galaxies.

The discovery of the first LIGO-Virgo binary black hole has been used to moti-
vate alternative scenarios where the binary did not represent the endpoint of stellar
evolution, but originated either as a pair of primordial black holes (PBH) or some
exotic compact objects (Bird et al. 2016; |Sasaki, Suyama, Tanaka, & Yokoyama)
2016} Bustillo et al., [2021)). In particular, the last half-decade has seen a resurgence
in interest for PBHs (Clesse & Garcia-Bellido, 2017 [Sasaki et al., [2018; Raccanelli,
Kovetz, Bird, Cholis, & Munoz, 2016}, [Raccanelli, Vidotto, & Verde| 2018)). The main
difference between the PBH and stellar evolution scenarios is the spatial distribution
of GW mergers, measurable both in the redshift and sky distribution of the sources.
Injsubsection 5.3.1| we expand on how to model this difference through the linear bias
and present our model.

In addition to presenting our formalism, we investigate a possible method to pre-
cisely reconstruct the redshift evolution of clustering and modified gravity effects in
the upcoming decades. Our study is based on Gaussian processes (GPs), a well-known
hyper-parametric regression method (Rasmussen & Williams|, [2005). The structure
and implementation of this pipeline are presented in [section 5.4]

GPs have been widely used in the literature to reconstruct the shapes of phys-
ical functions such as the dark energy equation of state w(z) (Shafieloo, Kim, &/
Linder} 2012; (Gerardi, Martinelli, & Silvestri, |2019), the primordial inflaton’s speed
of sound (Canas-Herrera, Torrado, & Achtucarro, 2021) or the mass function of the
merging binary black hole systems (Li et al.,[2021). GPs are very useful for such func-
tional reconstructions due to their flexibility and simplicity, relying only on a handful
of hyper-parameters. In general, binned reconstructions (Crittenden, Pogosian, &
[Zhaol, [2009; [Crittenden, Zhao, Pogosian, Samushia, & Zhang], 2012} [Zhao, Critten-|
den, Pogosian, & Zhang), 2012)), as well as parametric reconstructions with high-degree
polynomials are similar in spirit to GPs while also offering more flexibility in the ex-
trapolation (Colgain & Sheikh-Jabbari, 2021). The chapter is organized as follows.
In we summarize the essential concepts concerning the GW propagation
in modified gravity models. In we detail the modelling of the clustering
correlations between the GW source population and galaxies. In we ex-

plain our reconstruction pipeline for the GW luminosity distance and the bias. Our

findings are presented in and further discussed in
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Unless stated otherwise, our fiducial cosmology is based on the best fit results
from Planck 2018 (Planck Collaboration, Aghanim, Akrami, Arroja, et al., 2020). In
our analysis, we use COLOSSUS (Diemer} 2018) and Astropy (Astropy Collaboration
et al., 2013, [2018)) for cosmological calculations, sklearn (Scikit-learn 0.19.1 docu-
mentation: Gaussian Processes, [2018) for the GP implementation, emcee (Foreman-
Mackey et al. [2013) as our posterior sampler and GetDist (Lewis, 2019) to plot
the final contours. Our analysis pipeline is made publicly available, see (Vardanyan,
Canas-Herrera, & Contigiani, [2021)).

5.2 Gravitational wave propagation

In GR, and around a background Friedmann-Lemaitre-Robertson-Walker (FLRW)
metric, the amplitude of GWs evolves according to

W' 4+ 2HR, — V2he = 0, (5.1)

where h, denotes the amplitude of either polarization (o € [x,+]), primes denote
derivatives with respect to the conformal time, and H is the conformal Hubble func-
tion. In this equation, the prefactor of the Laplacian term controls the propagation
speed, which we have set to coincide with the speed of light in ¢ = 1 units.

The second term is the standard cosmic friction term which causes the strain
amplitude to decay as hq(.) o< Dy, !(2), with Dy, being the FLRW luminosity distance:

DL(z) = (1 + Z) /OZ I{d(;’ (52)

where the Hubble function H(z) is given in terms of the Hubble constant Hy, present-
day dark matter abundance €2, and dark energy abundance {lpg.) as

H(z) = Hy [Qm(1 + 2)* + Qpp(2)] - (5.3)

Throughout this chapter we assume a constant equation of state wy for dark energy,
such that its energy density is given by

Qpi(z) = (1 — Qu)(1 + 2205, (5.4)

The standard AC' DM cosmology corresponds to wg = —1.
It is now established that modifications of GR can affect the propagation of GWs.
The important effect for us is the modified friction term with respect to the GR

expectation in equation (/5.1)),
W'+ [2 4 an(2)] HA, — V2he =0, (5.5)

where we have again imposed the GW speed to be unity as suggested by observa-
tions. The modified friction term introduces a new scaling hq(.y o< 1/ Dy, qw(2), with
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Dy, gw(2) # Duz) for non-zero aps(z). The luminosity distance to GW events can be

written as:
DL GW 1 /Z 5 on(,%)
: = —— d . .
Dion (z) = exp { 5 ) z 0+2) (5.6)

In this work, we assume that the luminosity distance for EM sources Dy, gy is unaf-
fected and is equal to the expression in equation (5.2)). The function ay; corresponds
to the running of the effective Planck mass, i.e.,

_ dlog(Megs/Mp)?
N dloga

an : (5.7)

where Mp is the Planck mass and Mg is its effective value at redshift z = 1/a —
1. This function encodes information about extensions of GR such as scalar-tensor
theories (Horndeskil, [1974; Bellini & Sawicki, 2014)) or, more broadly, quantum gravity
(Calcagni et al., 2019)). The modified friction term is also a natural prediction of non-
local modifications of gravity (Dirian, Foffa, Kunz, Maggiore, & Pettorino, 2016))

From an effective field theory point of view ays(z) is a free function of order unity.
In practical studies of modified gravity and dark energy, however, o, is often assumed
to take simple parametric forms. The main guiding principle is the assumption that
its effects should be negligible in the early universe, which prompts to choose a(z)
to be proportional either to the dark energy abundance or simply to some power of
the scale factor a.

Such parametrizations make it possible to find a closed form expression for the
ratio in equation and have inspired a widely used parametrization of the ratio
as a monotonic deviation which goes to 1 at present day (Belgacem et al., 2018])

Dy, cw )= = 1-=

=0 + m (58)

DL,EM

In this expression, =y and n are two constant parameters, which are typically ~ 1.

5.3 Angular power-spectra

5.3.1 GW sources

We consider GW mergers with a distribution in redshift written as

o
1+2

new(z) = : (5.9)

where ng corresponds to the comoving number density of observed events as a func-
tion of redshift, and the term (14 2) takes into account the cosmological time dilation.

In our analysis, we use a constant value of ng ~ 3 x 1076 h3Mpc=3 (with h denot-
ing the usual normalized Hubble constant), motivated by current LIGO constraints

(R. Abbott et al. 2021)).
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For a given selection of sources along the line of sight, the average number of
projected sources can be written using the comoving distance x(z):

e x(2)
= /0 4= Snaw(a) (5.10)

z

The function S encodes the selection and the scatter due to observational errors.
In this chapter, simple bins in a range [Dy, min, DL max] are used and we assume a
lognormal distribution with fixed scatter oy, p for the individual sources (Oguri, [2016)).
In this case, S can be written as:

S(2) = 5 [Tmin(2) — Tmax(2)], (5.11)

with
In Dy, min — In Dy, gw(2)
\/50 In D 7

and similarly for z,.«. Including this effect makes S resemble a top-hat function with
damping tails dictated by oy, p.

Tmin(z) = erfc [ (5.12)

The angular power spectrum of these sources can be written using the Limber
approximation

Caw(l / dz Wc;w()
(5.13)
) 0+1/2
baw(2) P (x(z)’z>’

where P(k, z) is the matter power-spectrum at redshift z and comoving scale k, bgw
is the bias of the GW sources, and the window function can be written as

XQ(Z) nGW(z) S(Z)

WGW(Z) - H(Z) ﬁGW

(5.14)

For the purpose of illustration, we will make use of a few simple parametrization
for the GW bias. We will consider either a constant bias bgw with a value of order
unity or a more complex form:

baw(2) = bo (1 + D@) , (5.15)

where D(z) represents the growth factor. The first model, with its low constant value,
mimics a PBH origin for the mergers (Bird et al., 2016} Raccanelli et al.| [2016)), while
the second mimics the stellar evolution case by tracking the galaxy linear bias (Oguri,
2016)).
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5.3.2 Galaxies

Similarly to the GW population, we again assume a constant comoving number
density of galaxies. Throughout our analysis we fix

Ngar(2) = 1072 A*Mpc 2, (5.16)

and we write the autocorrelation signal of galaxies under the Limber approximation

as
gal / dz

bgal( )P (

gal( )

£+1/2 Z)
x(z) )

(5.17)

In this expression the definition of Wy, is the same as Wgw used in the previous
section except for using ng,i(z), a different selection function, and by, (2) is the linear
galaxy bias. In our analyses, we assume a known galaxy bias in the form of

1

bgal(Z) =1+ D(Z) .

(5.18)

In general, this function is expected to be accurately measured from the galaxy au-
tocorrelation signal alone.

In this chapter, we employ a top-hat selection function for Wg,1, which assumes no
uncertainty in galaxy redshift estimates. This choice mimics a spectroscopic galaxy
survey or a general redshift survey with negligible uncertainties. As an example,
another choice commonly found in the literature is a Gaussian distribution NV (z, 0ga1),
where 04, should be much larger than the expected redshift uncertainty for each
individual galaxy.

By combining the distribution of GW sources and galaxies one can construct a
cross-correlation map. In our formalism, we write the cross-correlation between a
GW bin i and a galaxy bin j (fully specified by their respective window functions)
as:

C1(6) = [ e G Wl

6;;/2’2) |

(5.19)

e

We conclude this section by pointing out that the power spectra in equation ,
(5.13) and (5.19)) do not include relativistic terms and do not capture the effects of evo-
lution and lensing bias (see, e.g., (Scelfo et al., |2018; [Scelfo, Boco, Lapi, & Viel, 2020))
for a detailed treatment). Specifically, while the effects of lensing are expected to be
negligible at the redshifts considered here (Oguri, [2016; |Contigiani), 2020; |S. Mukher-
jee et al.; 2020b), the same is not true for relativistic effects. Therefore, we choose
not to consider small values of ¢ in our analysis since the signal at these large angular
scales is dominated by them.
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5.4 Reconstructing GW physics

The primary goal of the chapter is to demonstrate how to reconstruct the prop-
erties of GW propagation and source clustering as a function of redshift. We do so
by showing how to recover an assumed fiducial model by using mock angular power
spectra with cosmic-variance or shot-noise limited uncertainties.
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Figure 5.1: The cross-correlation signal between GW sources at z = [0.9, 1.1] (shaded
area) and galaxies at different redshifts (zg). If the luminosity distance ratio
Dy, cw/DLEm(z) in equation is different from its GR assumption (£, # 1),
the location of the predicted cross-correlation peak is also affected.

Our methodology hinges on the fact that by cross-correlating a GW luminosity
distance bin with multiple galaxy redshift bins we can determine the redshift of the
GW sources by matching the clustering properties of the two at the true redshift
(Oguri, 2016} Bera, Rana, More, & Bose, [2020)).

We demonstrate this idea in where we have considered GW sources
located at redshift [0.9,1.1] in a GR cosmology where Dy, gw(z) = DL rm(z). In this
figure, we show the expected cross-correlation signal between the angular distribution
of these sources and the angular distribution of galaxies located at various redshifts.
As expected, in GR (Z¢ = 1) the signal peaks inside the correct redshift range (shaded
area). However, as we depart from the GW luminosity distance relation, the location
of this peak is affected.

5.4.1 Mock data and fiducial model

In this section, we describe the recipe used to generate the mock angular power
spectra (Cgal, Caw, and Cy ) that are fed into our reconstruction pipeline together with
their error covariance matrix. When describing real data, these angular power-spectra
are extracted from the autocorrelation and cross-correlation maps representing the
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sky distribution of galaxies and GW sources. The recipe has three main ingredients:
the details of the fiducial model, a description of the instrumental configuration and
a definition of the dominant source of error.

The first ingredient is the fiducial model. Our decision in this case is based on the
results of (T. Baker & Harrison, 2021)), where present-day constraints on the function
oy appearing in equation are presented. As shown in (Belgacem et al., 2019),
the results of the ay;y o< a parametrization found in that work can be mapped to the
=(z) function in equation . Using this transformation, we find that the 3o upper
limit roughly corresponds to

=0 S 1.4, (5.20)

~

with n = 1. Thus, we assume a fiducial model with Zi4 = 1.4 and nfid = 1, repre-
senting the limit of our present understanding.

The second ingredient of our forecast is the instrumental configurations. The
size of our data vector is given by the number of multipoles ¢ and window functions
that we include in our analysis. Since both are largely dictated by observational
considerations, in this work we assume an optimistic combination of a network of
three Einstein Telescopes (Maggiore et al., 2020; Hall & Evans, [2019) capable of a
log-scatter in measured Dy, gw of o1, p = 0.05, and a high-z redshift survey with large
sky coverage and negligible redshift uncertainties such as SKA (Weltman et al., [2020)).

The range of angular scales that we consider is limited by two factors. On small
scales, large multipoles (¢ > 100) are excluded due to the angular resolution of about
1 degree expected for our GW detector configuration of choice (Hall & Evans, 2019)).
On large scales, we do not explore values of ¢ < 10 because our modelling does
not take into account the relativistic effects dominating the signal at these scales.
Nevertheless, we stress that these multipoles contribute relatively little information
compared to larger multipoles since they are dominated by cosmic variance.

Our window functions are distributed in the redshift range [0.1,3]. We assume
Nga1 = 12 galaxy bins equally spaced in redshift, and Ngw = 8 GW luminosity
distance bins equally spaced in Dy, gw. We mention in particular that this choice is
not completely arbitrary. The number of GW bins is motivated by forcing well-defined
bins such that their width is at least three times the luminosity distance uncertainty
om p that we have assumed. Furthermore, we have also verified that the exact number
of galaxy bins does not dominate our results as long as Nga > Ngw.

As for the last ingredient, we assume cosmic-variance or shot-noise limited uncer-
tainties. In this case, we can write the covariance matrix of the auto-correlation and
cross-correlation signals defined in equation (5.13)), (5.17)) and (5.19)) as the following:

5@[’ x
(20 +1) faoy (5.21)
<C«zmc~qn + C«mé«gm) ’

Cov [CY(0)C™(1')] =

where the indices i, j, m, n can represent both galaxy or gravitational wave bins. The
terms C™™ contain the shot-noise contribution when they represent the autocorrela-
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tions in the same bin:
- . Sim
cm ) = C ) + = (5.22)

where n is the average density of projected objects from equation . In this work,
we assume a survey covering a sky fraction equal to fg,, = 0.5.

Let us point out that we do not use the cross-bin correlations for the bins of
the same type as a signal. However, we properly take into account the C'™ terms for
overlaps between two different GW bins. Similar terms for galaxy bins are completely
negligible as there are no overlaps between the spectroscopic redshift bins.

For the setup described in this section, we find a total SNR of the GW-gal and GW-
GW angular power-spectra of ~ 37. This value is dominated by the GW-gal cross-
correlations since the GW-GW auto-correlations are not well measured (SNR< 6).

To generalize our choices, in [subsection 5.5.2| we expand on how different combi-
nations of instrumental specifications can affect the precision of the reconstruction.

5.4.2 Reconstruction Pipeline

In this section, we describe how the mock data presented in the previous section
can be used to reconstruct Dy, gw and baw as a function of z. For ease of interpretation
and visualization, in our analysis we do not fit these functions directly, but instead
focus on the ratios Dy, aw/Drpm (2) and baw/bga (2). We point out that we do not
marginalize over different possibilities for b, (2). This is because we are not interested
in exploring the properties of the galaxy population, which are expected to be very
well constrained by the galaxy-galaxy correlation signal alone.

As emphasized earlier, our approach makes use of a GP regression. This method
is often used when the function of interest is directly measured at certain redshifts.
These measurements are used as a training sample of the GP model, which then can
predict the values of the reconstructed function at redshifts lacking any direct mea-
surements (Belgacem, Foffa, Maggiore, & Yang, 2020; Renzi et al., 2021; [P. Mukherjee
& Mukherjee], 2021; Levi Said, Mifsud, Sultana, & Zarb Adami, 2021; [Perenon et al.|
2021).

However, this is not directly applicable for our current problem as neither the
Dy, gw/ D1 gm (2) nor the baw /bgar (2) are directly observable. Instead, these functions
determine the auto- and cross-angular power spectra, which constitute our direct
observables. In order to use GPs for our problem, we consider a certain number of
redshift nodes for the two functions, referred to as training nodes with a slight abuse
of terminology. The amplitudes of the nodes are free and, given a node configuration,
we consider GPs which pass through all of these nodes exactly. To render our scenario
computationally feasible and not consider many functions for each node configuration,
we use the GPs regressor of the python package sklearn to output the best fit and
use this as our function.

Our use of GPs can be thought of as a binning of the functions of interest in
redshift space, and imposing a certain prior correlations between the bins. These
correlations are specified by the GP kernel function, which in our case is chosen to
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Figure 5.2: Example of GP reconstruction. The function Dy, gw/Dyem (2) is con-
structed using 4 nodes at fixed redshifts (filled black dots). By varying the amplitudes
of the nodes and the correlation length (L), it is possible to obtain different functional
forms. The dashed lines represent a few possible realizations, while the thick lines
represents the GP best fit from sklearn used in our sampling. Larger correlation
lengths produce smoother lines.

be

2
k(z;, zj; L) o< exp —; (’%I/Zﬂ) , (5.23)
where L is the so-called correlation length. This kernel is flexible enough for our
purposes, and we do not expect the detailed choice to have any significant impact on
our results. For computational purposes, we generate the GPs using a baseline around
Dy ew/DrLem (2) = 1. This baseline makes the GPs reconstruction to efficiently
return to Dy, gw/Drem (2) = 1 when not pushed towards other values by the training
nodes.

This process is described in[Figure 5.2|for two values of correlation length L. While
pictured in this example, for physical reasons in our analysis we exclude negative-
valued functions when exploring Dy, aw/Drem (2) and baw/bga (2), and also non-
monotonic realizations of Dy, gw (2).

The goal of our statistical analysis is to explore the possible constraints on the
shape of both Dy, aw/Drem (2) and baw/bgar (2). For that, we aim to sample the
posterior distributions of the amplitudes of the nodes as well as the cosmological
parameters. The correlation length L can in principle be fixed based on theoretical
priors. Lacking such priors in our case, we only impose a wide uniform prior on L
and consider it as a free parameter (see [Table 5.1)).

Each step of the sampling process consists of producing two GP curves — one
for each Dy, gw/Drrm (2) and bgw/bgal (2) — given the current set of training node
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Parameter ‘ Prior

Node amplitudes [0, 11] (Uniform)
Correlation length (L) | [1, 10] (Uniform)

Qn 1% (Gaussian)
h 1% (Gaussian)
wo 5% (Gaussian)

Table 5.1: Summary of the priors imposed before reconstructing baw/bga (2) and
Dy, gw/DvL M (2) using 4 nodes each. The GP hyper-parameters (i.e., the 2 corre-
lation lengths and the 4 x 2 amplitudes) are explored independently. The fiducial
model is given by =g = 1.4,n=1,Q, = 0.31,h = 0.67,wy = —1.

amplitudes. The curves are used in the calculation of theoretical auto- and cross-
correlation power spectra described in [section 5.3 The theoretical power spectra
enter the Gaussian likelihood together with the generated mock data. The theoretical
predictions are computed using our python code which is interfaced with the emcee
sampler. The typical runs with varying cosmology take approximately 10 hours on a
modern machine.

After obtaining the posterior distribution of the nodes, we reverse-engineer the
problem to obtain confidence contours for each Dy, gw/Drem (2) and baw/bga (2).
For all the sampled node amplitudes we generate the corresponding GP profiles on
finite but sufficiently many redshift points and calculate the 68% and 95% confidence
intervals at each redshift using the statistical python package GetDist.

To assess the impact of different cosmological backgrounds and clustering prop-
erties, we include in our reconstruction three nuisance parameters: the dark matter
abundance €),,, the Hubble constant Hy and the dark energy equation of state pa-
rameter wg. A summary of our model parameters and priors used in this work is
presented in [Table 5.1]

We would like to point out that upcoming galaxy surveys will measure these pa-
rameters with very high precision. While GWs alone might be able to provide com-
petitive constraints, the focus of our analysis is not in constraining them. Rather, we
would like to quantify how accurately the GW luminosity distance and source proper-
ties can be measured. These properties are not accessible to generic redshift surveys
and can only be measured with the use of GW-specific observables. This reasoning
justifies our tight Gaussian priors on the aforementioned cosmological parameters.

5.5 Results

5.5.1 Reconstructions

In our reconstructions, we always impose the Dy, gw/DrLgm (2) to become unity
at redshift zero by placing a fixed node at z = 0 with an amplitude of 1. Besides
this fixed node, we have 4 nodes for each of the reconstructed functions. We have
arrived at this number by gradually increasing the number of nodes and monitoring
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Figure 5.3: Confidence intervals (68%, in black, and 95%, in lighter grey) of the
jointly reconstructed functions Dy, gw/Dr em (2) and baw /bgar (2). Together with the
assumed fiducial model, we also plot the expectation for different models (see text for
more details). The vertical lines mark the fixed location of the nodes used in the GP
reconstruction.

the goodness of fit. In practice, we have monitored the AIC information criterion for
1-, 2- and 3- node setups for the GW luminosity distance. Our experiments suggest
that, as expected, the 1-node configuration is significantly worse than the presented
4-node setup. The 2- and 3- node setups have similar performance compared to the
4-node case, but the latter still outperforms the former two. We then use the same
number of nodes for the bias reconstruction.

In our main analysis, the redshift positions z; of the nodes are fixed. We have,
however, performed an experimental run to assess the impact of letting them free in
reduced uniform prior ranges. The result of this experimentation is that the node
locations remain unconstrained, and the final posterior of e.g. Dy, gw/Dyrm (2) does
not change when the node redshift locations are being sampled as free parameters.
This implies that the exact locations of the GP notes are unimportant given they are
uniformly distributed in the redshift range of interest.

It is worth emphasizing that when applying our methodology to real data, the
number of nodes, as well as their exact redshift placements, should be constrained
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by performing similar, but more systematic experiments. Particularly, more accurate
measures, such as the Bayesian evidence ratios, should be employed. Also, if enough
data is used, some possible constraints could be found by letting the training nodes
be completely free in the entire redshift range of interest. As the resulting posteriors
are expected to be multimodal, this should be investigated using nested sampling
algorithms.

As mentioned earlier, we also explore the GP correlation lengths both for the bias
and the luminosity distance. On physical grounds, we are interested in smooth GP
functions and have imposed the minimum of the uniform prior range for L to be of
the order of the inter-node distance so that the smoothness is maintained. We find
that, as expected, both of the correlation lengths remain unconstrained within the
imposed wide prior ranges.

The results of our joint reconstruction is presented in [Figure 5.3 In the same
Figure, we also compare these constraints to different theoretical models. In the case
of Dy, aw/DyLem(z), we use the parametrization o (z) = g [%r where we use the
equation (5.3)) with wy = —1 to obtain the plotted lines (Belgacem et al., [2019). On
the other hand, for bgw /bga (2) we plot the lines corresponding to constant values of
baw (z), while keeping the galaxy bias fixed to the expression in equation .

In principle, the output of our sampling can also be used to reconstruct the func-
tion a(z) by calculating the numerical derivative of Dy, gw/Dygm (2). For the pur-
poses of this chapter, however, we chose not to do this. The kernel in equation (}5.23)
can be interpreted as a smoothness prior and the value of ay,(z) is directly affected
by it. Because of this, if one is interested in inferring as(z), GPs should be used to
sample this function directly.

As expected, we observe how the fiducial models for both Dy, gw/Drem (2) and
bow /bgal (2) are well encoded within the reconstructed confidence contours in both
panels of [Figure 5.3] The constraints at higher redshift (z & 3) for both reconstruc-
tions are broader. This is an effect that could not be seen if a parametric function
was used for Dy, gw/Dyewm (2), for instance, as the parametrization would have fixed
the behaviour similarly at low and higher redshifts. Finally, in we show
the correlation between these functions. We observe weak but non-zero correlations
between the GW bias and the luminosity distance. In general, parametric models
might induce non-physical correlations. GPs are expected to behave better in this re-
gard, but they can still induce spurious correlations due to finite correlation lengths.
For consistency, we have also performed a reconstruction using a redshift binning
approach and concluded that we can recover a very similar correlation structure with
both of the methods.

5.5.2 Signal-to-Noise scaling

The constraining power of our method crucially depends on a number of obser-
vational specifications. The most relevant parameters are 1) the angular sensitivity,
specified by the maximum multipole £, of the angular power spectra; 2) the number
of GW sources, which is specified by the comoving number density ngw; and 3) the
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Figure 5.4: Correlation matrix for the reconstructed functions bgw/bga (2) and
Dy, cw/Drem (2). The figure displays how mild, but non trivial correlations can
arise from a joint reconstruction.

precision of the GW luminosity distance measurements oy, p. In the case of ngw, we
adjust the value of ng in equation as a way to explore different values of the
total number of observed GW events, N = 47 fyyngw. This, in principle, should
include selection effects not captured by our formalism. Obviously, for a given ex-
perimental configuration the mentioned three variables are not independent, but it is
still interesting to find the dependence of our results on each one of them separately.
This allows us to reach conclusions without relying on specific experiments, and to
suggest potential design guidelines for future GW detectors.

To attain such insights, in this subsection we consider constraints on the para-
metric expression in equation ([5.8]), as well as the parametric GW bias given by
equation (5.15)). For simplicity, we fix n = 1 and only constrain the parameter =.

When varying (., and N we keep the rest of the configuration (including the
luminosity distance binning) fixed. Each case of oy, p, on the other hand, is accom-
panied by an adjustment in the number of luminosity distance bins. This is done to
be consistent with our binning strategy, namely that the luminosity distance width
of each bin is at least O(3) times wider than oy, p.

Our results are summarized in [Figure 5.5, where we plot the anticipated uncer-
tainties in Zy (upper panel) and by (lower panel) as a function of the SNR of the
cross-correlation in equation (|5.19)).
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Figure 5.5: Scaling of the observed constraints with the cross-correlation SNR. Using a
parametrized model for baw /bga1 (2) and Dy, gw/ Dy, gm (2) we explore the constraining
power of our method as a function of the number of observed GW sources N =
[0.7,4,7,13,20] x 10*, angular resolution £, = [20,40,60,80,100] and luminosity
distance uncertainty oy, p = [0.5,0.3,0.2,0.075,0.05]. As visible from the figure, the
data SNR completely captures the effect on the observed uncertainties Aby and A=
in the first two cases. In the case of oy, p, we observe that the increase in constraining
power for Dy, aw/Drem (#) is steeper due to the larger number of window functions
that we can build to sample Dy, gw (2).

For a fixed oy, p the constraining power on =, and by is almost completely de-
termined by the cross-correlation SNR. This fact suggests that no matter how the
given SNR is realized (either by increasing the number of sources or by improving
the angular sensitivity), the expected constraints will be the same. This implies that
the results presented in this chapter can be easily scaled to different configurations.
Unsurprisingly, we find that the constraints scale as 1/SNR.

The situation is somewhat different for the case of varying o1, p (and the number
of luminosity distance bins). The constraints on the bias still follow the same form
(see the lower panel), but the scaling of the =y constraints, on the other hand, is
much steeper than in the cases of varying (., and ngw, roughly 1/ SNR?. This
fact can be qualitatively understood by remembering the importance of the relative
positions of GW and galaxy window functions demonstrated in [Figure 5.1} Sampling
this relation with a larger number of window functions increases the precision of our
reconstruction.
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The results presented in this section quantify the importance of accurate luminos-
ity distance measurements and demonstrate the benefit that smaller values of oy, p
can bring to a binned approach.

5.6 Discussion and Conclusions

In this chapter, we have shown how the combination of GW observations and
redshift surveys can be exploited in the era of GW cosmology. We have identified
two essential quantities that characterize this new research field: 1) the luminosity
distance relation, a clear imprint of modifications to the propagation of tensor modes
(see , and 2) the bias of the sources, regulating their spatial distribution
and betraying their origin.

Proposed GW detectors such as the Einstein Telescope (Maggiore et al., [2020)
or Cosmic Explorer (Reitze et al., [2019) are expected to probe a sizeable fraction of
the visible Universe and produce large statistical samples. In this context, we point
out that the number of sources assumed for our main analysis, 2 x 10°, is particu-
larly conservative and differs from expectations by at least an order of magnitude
(Maggiore et al., [2020). This difference is primarily due to our assumption of a con-
stant comoving density of events. While we do not explore other assumptions for
the distribution of GW sources over cosmic time, we have investigated similar effects
in [subsection 5.5.2] where we have shown how our results can be rescaled to other
instrument configurations or number of observed sources.

Our formalism, based on binned angular power-spectra and sky maps, is optimal
for a large number of sources with no known counterpart. Its main advantages are
related to the simple modelling of the theoretical signals and their data covariance
matrix. Because no reconstruction of the underlying density field is necessary, the
predictions display a clear separation of scales. For example, the angular scales that
we have considered hare are all within the linear regime (K < 0.1 Mpc™!). Further-
more, because this formalism is well established, our shot-noise limited covariance
matrix can be easily generalized to include additional sources of (co-)variance.

Although a comprehensive comparison between multiple approaches is outside the
scope of this work, it is worth discussing how our results compare to others found in
the literature. We preface this by saying that one-to-one comparisons, however, are
often complicated either by significantly different assumptions or the impossibility of
directly translating these assumptions from one prescription to another. Despite this,
here we draw a parallel between our method and two other methods.

The first method is the one used in (S. Mukherjee, Wandelt, & Silk, 2021]),
which has also been shown to be extremely successful in measuring both bgw (2)
and Dy, qw () using parametric models. Similarly to this work, the information is
also extracted from the cross-correlation with redshift sources, but no binning of the
GW data is performed. In this case, we have verified that such methods perform
significantly better than our map-based approach in the case of a low number density
of GW sources and large uncertainty in the measured Dy gy (2). These features, in
particular, make it especially useful for near-future samples of a few tens of objects.
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The second promising method to measure Dy, gw () that has been proposed in
the literature is offered by GW sources with known counterparts. Such observations
give direct access to Dr, gw as a function of redshift and can be combined with sim-
ilar measurements in the EM spectrum to obtain Dy, gw/Drem (2). The analysis
of (Belgacem et al., 2020) is based on this methodology and, similarly to ours, also
employs GPs to reconstruct this ratio from an Einstein Telescope sample with ~ 102
sources.

Ultimately, we expect this counterpart-based formalism and the one described in
this work to be complementary: a direct measure of Dy, gw (2) can be used to break
the degeneracy between bias and luminosity distance shown in [Figure 5.4 However,
because the fraction of events with known counterparts that will be observed is heavily
dependent on both the GW source distribution and multiple instrumental setups, we
do not attempt to combine the two methods here.

In conclusion, the combination of GW resolved events and the clustering of galax-
ies is expected to improve our current knowledge of the physical properties of the
Universe. Our work shows how to reconstruct these properties as a function of red-
shift in a generic way, and highlights the need for accurate and precise measurements
of Dy, gw. This will require control over the instrument calibration uncertainties
(Cahillane et al., 2017), but also the degeneracy between the inclination of the source
and its luminosity distance (Ghosh, Del Pozzo, & Ajith, 2016)). In the future, we aim
to apply our current analysis pipeline to the next generation of large scale structure
surveys and incoming GW observations.
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Chapter 6

Cosmological Likelihood for
Observables in Fuclid

We can use observations of the large
scale structure (LSS) of the universe, as
galaxy clustering (GC) and weak lensing
(WL), to extract cosmological informa-
tion (see . If we want to ex-
ploit all the information encoded in LSS,
we need large data sets of galaxies that
contain not only their positions in the
sky and their shapes but also their red-
shifts. These large data sets form the
so-called galaxy redshift surveys. Some
examples of well-known galaxy redshifts
surveys are the Center for Astrophysics
Redshift Survey (CfA) (Tonry & Davis|
1979) and the Sloan Digital Sky Survey
(SDSS) (Lundgren et al. 2015). These
surveys have successfully shown that we
can use the information contained in the
large scale structure of the universe to
improve our cosmological knowledge and

Figure 6.1: Artist’s impression of the Fu-
clid spacecraft.

constrain not only cosmological parameters but also be able to discern among several

cosmological models.

In this chapter, we will focus on the future Fuclid mission, a near-infrared space
telescope currently under development by the European Space Agency and the Euclid
Consortium, and for which the author of this thesis has dedicated a vast percentage
of her doctoral time. In particular, the author works as one of the main software
developers for the official Bayesian analysis pipeline that will be eventually used to
produce the constraints on the cosmological parameters once the data is available:
the Cosmological Likelihood for Observables in Euclid (CLOE).
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6.1. THE FUCLID MISSION

This chapter is organized as follows. In we present the mission, main
goals, structure and technical details of the telescope. In we introduce
the features of the future Fuclid surveys and we show briefly how the photometric
and spectroscopic techniques works. In we explain in mathematical detail
the theoretical description and modelling of the primary observational probes. In
lsection 6.4 we detail how the fiducial benchmark data and covariance matrices are
generated and later used to validate the Bayesian analysis pipeline. In
we formally introduce CLOE: structure, features and dependencies. In we
show the results of the validation of CLOE in its earliest version release. Finally, we
conclude with the outline of the future plans for CLOE in [section 6.8

6.1 The Fuclid Mission

6.1.1 Telescope, goals and the Euclid Consortium

Euclz'aﬂ is an European Space Agency (ESA) medium-class mission part of the
Cosmic Vision 2015-2025 program. According to the main scientific objectives listed
in the mission’s study definition reportﬂ (Laureijs et al., 2011)), the ultimate goals
of Fuclid are to understand the physical origin of the accelerated expansion of the
Universe, whose responsible agent is thought to be Dark Energy, and to understand
the nature of Dark Matter. Moreover, Fuclid is meant to study the initial conditions
that seeded the early universe and were responsible for the formation of the cosmic
structure and ultimately, it will also try to understand the range of validity of General
Relativity. To achieve its goals, Fuclid will map the LSS of the universe by creating
one of the largest galaxy catalogues ever, and this is why Euclid is considered primarily
a cosmological mission.

Fuclid satellite’s launch is planned for 2024E| using an Ariane 62 and will travel
up to the L2 Sun-Earth Lagrangian point to be on duty for a 6-years mission. It
will explore the expansion history of the Universe and the evolution of the LSS by
measuring the position, shapes and redshifts of galaxies. For that, it will incorporate
a 1.2-meter telescope and two scientific instruments that will observe in the optical
and near-infrared bands: a high-quality panoramic optic visible imager (VIS), a near-
infrared 3-filter (Y, J and H) photometer (NISP-P) with a slitless spectrograph (NISP-
S). The spectrograph consists on one ‘blue’ grism (920 — 1250 nm) and three ‘red’
grisms (1250 — 1850 nm placed on three different orientations). The optical and near-
infrared instruments share a common field-of-view of 0.53 deg?. FEuclid will cover
eventually 15000 deg? of the sky up to redshift z ~ 2. The primary result product of
the mission will be a complete redshift galaxy catalogue up to magnitude 24 in the
Y, J, and H bands. It will collect enough information to study the mission’s primary
observational probes: 30 million spectroscopic redshifts used for spectroscopic galaxy
clustering measurements and 2 billion photometric galaxy images, which will be used

1Up-to-date information about the mission can be found at https://www.Euclid-ec.org
2The study definition report receives the popular name of the “Red Book”.
3The launch of the satellite is yet unknown due to consequences of the war conflict in Ukraine.
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for weak lensing and photometric galaxy clustering observations (Amendola, Appleby,
et al., 2018 [Euclid Collaboration et al. 2020).

Apart from the primary probes, Fuclid will provide additional cosmological ob-
servables such as the cross-correlation with CMB observations, strong lensing, abun-
dance and properties of galaxy clusters and even luminosity distance measurements
through supernovae la. Moreover, Fuclid will complement the cosmological observ-
ables with astrophysical and astronomical probes of high scientific interest (i.e: cool
brown dwarfs, stellar populations in the galaxy and the universe nearby, High-z Ly-
man Break Galaxies...).

In June 2012, ESA named the Fuclid Consortium (EC) as the team responsible for
the mission, the data production and the scientific instruments (VIS and NISP). The
scientific exploitation and interpretation of the massive Fuclid data collection will be
led by the scientists of the EC as well. It comprises approximately 1500 scientists
with various backgrounds (i.e: astronomers and astrophysicists, theoretical physi-
cists, engineers, technicians, and managers...). The EC contains researchers from 14
European countries working in their national space agencies or associated research
institutes (Austria, Belgium, Denmark, Finland, France, Germany, Italy, the Nether-
lands, Norway, Portugal, Romania, Spain, Switzerland and the United Kingdom),
scientists from Canada and USA (through NASA and other US laboratories) and few
scientists from Japan. The EC is led by the Euclid Consortium Lead (ECL) and the
Euclid Consortium Board (ECB), which have also the role of acting as contact points
between the EC members and ESA. The activity of the EC is organized in several
groups (Tutusaus Lleixay, 2018, September):

o the EC Science Ground Segment (SGS), which is responsible for the design,
test, integration and operation of the data processing tools and pipelines and
whose activities are sub-arranged in Organizational Units (OUs). Each of the
OUs is dedicated to one specific task, for instance, providing the measurements
of the positions of galaxies.

o the EC Science Working Groups (SWGs), which have the responsibility of the
scientific production and delivery of Euclid data releases and their scientific
exploitation. There are three different types of SWGs: the cosmology SWGs
(weak lensing, galaxy clustering, galaxy cluster, theory...), the legacy SWGs
(exoplanets, Milky Way...) and the cosmological simulations SWG. The work
within the SWGs is further structured in Working Packages (WPs).

With Fuclid’s launch fast approaching, it is necessary to improve and update
the current cosmological forecasts for the scientific performance of the satellite to
assess the impact of the design and technical description of the mission. The first
Fuclid forecasts were shown in the definition study report (Laureijs et al. [2011)).
Years later, the EC multidisciplinary group “Inter-Science Working Group Taskforce
Forecast” (also known as “IST:Forecast”) (Euclid Collaboration et al., 2020) unified
the implemented definitions of the different Euclid primary probes: updating the
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information presented in the Red Book by including the latest astrophysical knowl-
edge. Besides, they also validated the data analysis methodology and computational
tools to produce Fisher forecasts and verify their robustness. The work carried out
by “IST:Forecast”, which focused their analysis on the ACDM model, remains the
current state-of-the-art for the scientific performance of the mission.

Still, as mentioned in chapter 1, [section 1.7] it is customary to use Bayesian statis-
tics as the analysis framework for testing cosmological models against data to infer
the probability distributions of the parameters of a model. Therefore, the construc-
tion of a software that allows us to perform a full Bayesian statistical analysis not
to only go beyond the “Fisher forecast” scenario but to analyse the incoming data is
crucial for the Fuclid mission. Using a full Bayesian statistics approach will open the
possibility of forecasting the scientific performance of the satellite not only for the
Standard Cosmological Model but also for extensions of ACDM, where, for instance,
the posterior distributions of the parameters of interest sometimes cannot be easily
approximated by a Gaussian function. To be able to move towards a full Bayesian
statistical analysis, it is necessary to construct a software that computes the likelihood
distribution given the model and its parameters, and some (fiducial) data. Further-
more, we need to model the theoretical observables to make predictions: weak lensing
(WL), photometric galaxy clustering (GCph), spectroscopic galaxy clustering (GCsp)
and their combinations.

Additionally, to unleash the full power of Fuclid primary observational probes,
it is essential to exploit all the information contained in the non-linear regime of
matter density perturbations; that is, at late times and small scales (K > 0.1 Mpc).
At these scales, the matter distribution is affected by the non-linear evolution of
density fluctuations, which induces changes in the shape of the matter power spectrum
beyond the predictions of linear perturbation theory (see [subsection 1.4.1] for more
information). Therefore, the EC is giving special attention to the need of modelling
with precision the theoretical predictions of Fuclid primary observables for the non-
linear scales to make the best use of the future Fuclid data.

6.1.2 The role of IST:LL and IST:Non-Linear

The work presented in this chapter, which is a summary of the science contained
in a series of upcoming Fuclid key-project papers, represents the results of the inten-
sive activity of code design, development, review and testing carried out by several
scientists from different Science Working Groups within the EC. The work has been
conducted by a novel and special multidisciplinary group known as the “Inter-Science
Taskforce Likelihood” (IST:L). This group is in charge of developing the official like-
lihood and Fuclid software that will produce the theoretical predictions for Fuclid
primary probes and the computation of the Fuclid likelihood, and will also produce
the official constraints on the probability distributions of the cosmological param-
eters. The results of this work activity, which currently has been taking place for
approximately three years, is the software Cosmological Likelihood for Observables in
Fuclid (also known as CLOE).
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CLOHY, which is currently available only for EC members, can compute the theo-
retical predictions of the primary probes given the implementation recipes provided
by the cosmology Science Working Groups. Furthermore, CLOE can be attached to
the Bayesian analysis framework Cobaya as an external likelihood to perform full
sampling of the posterior probability distributions of the parameters of interest (see
. In May 2021 CLOE v.1.0 was released, including the first implementation
for the theoretical observables’ recipe only up to the linear regime. A version 1.1
appeared soon after after fixing a series of bugs and implementing functionalities in
the user interface. By the end of 2022, CLOE v.2.0 will be available within the EC
including a revisited recipe of the observables including corrections for the non-linear
scales.

The multidisciplinary group in charge of correcting the primary observables for
the non-linear scales is the “Inter-Science Working Group Taskforce Non-Linear”
(IST:NL). If these corrections are not implemented, the theoretical models will be
incomplete and will eventually bias the the statistical analysis. This is why the
work of IST:NL is crucial for CLOE to succeed and provide correct constraints of
the cosmological parameters. IST:NL is responsible for the non-linear modelling as
well as the theory covariances, and they will create the “IST:NL model library” that
interfaces with CLOE. So far, IST:NL has implemented external codes able to provide
non-linear corrections: bacco (Arico, Angulo, & Zennaro, 2021} |Angulo et al., 2021}
Arico, Angulo, Contreras, et al 2021)), euclid emulator 2 (Euclid Collaboration
et al., 2021) and fastPT (McEwen, Fang, Hirata, & Blazek, 2016; Fang, Blazek,
McEwen, & Hirata, 2017). Therefore, IST:L is responsible for the computation of the
theoretical predictions for the primary observables and the likelihood, and IST:NL
will include the non-linear corrections by implementing the non-linear codes within
CLOE.

The work in IST:L and IST:NL is organized following an Agile inspired philosophy
where the working tasks are split into smaller sub-tasks that are assigned to different
sub-groups, which use a SCRUM framework for developing, delivering, and sustaining
software (see (Abrahamsson, Salo, Ronkainen, & Warstay, [2017)) for more details about
Agile). Each sub-group is composed by a Scrum master, code developer, code reviewer
and several theory ezxperts. The software CLOE contains unit testing and combines
the practices of continuous integration (CI) and continuous delivery (CD), enforcing
automation in building, testing and deployment of CLOE (see (SCRUM: practical
guide, 2022) and (Sane|, 2021) for more information about good practices in coding).
The author of this chapter works as one of the main code developers for CLOE within
IST:L and as a consultant for IST:NL.

6.2 Photometric and Spectroscopic surveys

Galaxy redshift surveys can be classified based on the technique used to extract
the redshift measurements. In this sense, we can mainly classify redshift surveys as

4For EC members CLOE can be downloaded from https://gitlab.euclid-sgs.uk/pf-ist
-likelihood/likelihood-implementation
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photometric and spectroscopic ones. Spectroscopic redshift surveys use spectrographs
to obtain redshifts. These devices can obtain the spectrum of a cosmic object by
separating the incoming light into several narrow bins using dispersion. As seen
during [chapter 1} [section 1.1} the light coming from distance objects is redshifted. To
extract the redshift measurements, we need to compare the obtained spectra to the
one known from an object of the same class at rest. This approach requires a large
collection time and previous information about the angular position of the galaxies
for targeting. Photometric redshift surveys, on the other hand, use images to extract
low-resolution spectra, where the redshift is still inferred by comparing the obtained
spectra with other spectra from similar objects at rest. This method does not require
target galaxies and it needs less exposition time than the spectroscopic technique,
but provides worse redshift estimates.

When Fuclid arrives at the L2 Lagrangian point, it will start operating for a
6-years long mission, creating two different surveys. The first survey is the Fuclid
Wide Survey covering 15000deg? of the sky up to a magnitude of approximately 24
for both VIS and NISP instruments; thus, it will contain both spectroscopic and
photometric redshifts. The contamination coming from the Milky Way as well as the
contamination coming from the Solar System will be removed. This survey will be
used for the study of the Fuclid primary probes: weak lensing and galaxy clustering.
The other survey will consist of three Fuclid Deep Fields going to 2 magnitudes deeper
than the wide survey but covering only, in total, 40 deg?. The Euclid Deep Fields will
be used to calibrate the wide survey, apart from providing precious information to
study Active Galactic Nuclei, high redshift galaxies and other objects. It is expected
that after the 6 operation years, Euclid will have measured the shape and photometric
redshifts of 1.5 x 10° galaxies, creating the photometric Euclid survey, and about
5 x 107 galaxy spectroscopic redshifts, used for the spectroscopic Fuclid survey.

The photometric measurements of the Fuclid wide survey will be used to study
weak lensing (WL) and photometric galaxy clustering (GCph). WL is sensitive to
both baryonic and dark matter (BM and DM) and the expansion rate of the uni-
verse. The spectroscopic measurements of the Fuclid wide survey will be employed for
the spectroscopic galaxy clustering (GCsp), including baryonic acoustic oscillations
(BAO) and redshift space distortions (RSD). GCsp is sensitive to the distribution of
matter as well as the expansion of the universe and the growth rate of structures.
Combining all the probes, as we will see in [section 6.7] will allow us to constrain
different cosmological parameters and possibly discern among cosmological models
once the real data is available.

Moreover, when the redshift of the galaxies is known, we can extract more cos-
mological information using tomography: we can create slices of two-dimensional pro-
jected images to recover the three-dimensional distribution of matter in the universe
(Hu, [1999)). By dividing the galaxies into redshift tomographic bins, n;(z), we can
obtain the time evolution of LSS. For the Fuclid mission, the distribution of galaxies
of both the photometric and spectroscopic surveys will be divided into redshift bins,
which will be used to compute the Fuclid primary probes. In this first approach,
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10 redshift bins for the photometric probes and 4 redshift bins for the spectroscopic
probe are used’]

6.3 Theoretical predictions for Fuclid primary ob-
servables
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Figure 6.2: Cosmological background quantities requested by CLOE to CAMB via
Cobaya, to be used as ingredients of the computation of the Fuclid primary theo-
retical observables described in . Top-left is the Hubble parameter H(z),
top-right are the comoving x(z) and the angular diameter Dy (z) distances, bottom-
left are the root mean square mass fluctuations amplitude on 8 Mpc/h scales og(2)
(where h is the reduced Hubble parameter), and the product of og times the growth
rate f(z), and finally, bottom-right are the growth factor D(z) and growth rate
f(z). All quantities are represented as a function of redshift z. Within CLOE, these
quantities are obtained in cobaya_interface.py and further processed in cosmo.py.
All plots have been generated taken the fiducial cosmological values presented in

[tion 6.91 All the definitions of these background functions can be found at [chapter 1]

In this section, the modelling of the Fuclid main scientific probes is presented:
weak lensing and photometric galaxy clustering for the photometric catalogue with
the cross-correlation between the two, and spectroscopic galaxy clustering for the
spectroscopic catalogue. For simplicity and completeness, the modelling described

5The number of redshift bins is decided by the SWGs and the corresponding OUs, and can be
changed at later times
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Cosmological probe Output
Spectroscopic galaxy clustering (GCsp)
Spectroscopic galaxy bias bECsP ()

Redshift-space galaxy-galaxy power spectrum
Perpendicular scaling factor

chéCSp(z, k)
qu(2)

Parallel scaling factor q(2)
Cosine of the angle between k and the line-of-sight Lk
Legendre multipole power spectra (¢ = m) Py(k, 2)
Weak lensing (WL)

Galaxy redshift density distribution nVk
Intrinsic alignment - intrinsic alignment power spectrum Piaia(z, k)
Matter density - intrinsic alignment power spectrum Psia(z, k)
Intrinsic alignment function fia(2)
Intrinsic alignment nuisance parameters Ara, Mia
Shear window function W (z, k)
Intrinsic alignment window function WA (2)
Intrinsic alignment angular power spectra CINA(0)
Shear angular power spectra Ci (o)
Weak lensing angular power spectra Cyt(0)
Photometric galaxy clustering (GCph)

Galaxy redshift density distribution nyoh
Galaxy-galaxy power spectrum PIOP (2, k)
Photometric galaxy window function VV?’Cph( )
Photometric galaxy bias bECPh(2)
Photometric galaxy clustering angular power spectra C’S Crhy(p)

Weak Lensing - Photometric Galaxy Clustering Cross-Correlation (XC)

Galaxy-matter power spectrum
Galaxy-intrinsic alignment power spectrum

s
F)g(;AIp (Z7 k)
g

Photometric galaxy-matter angular power spectrum Cip ()
Photometric galaxy-intrinsic alignment angular power spectrum C’%IA(E)
Photometric cross-correlation angular power spectrum C’%C(ﬁ)

Table 6.1: Summary of the different quantities and symbols used to write the recipe
for the Euclid primary probes: weak lensing (WL), photometric galaxy clustering
(GCph), spectroscopic galaxy clustering (GCsp) and the weak lensing - photometric
galaxy clustering cross-correlation (XC). The recipe is written in terms of several
different power spectra P(z,k) to simplify the interface with IST:NL, which will
provide IST:L with the non-linear corrections for the observables. Note that the
notation for the angular power spectra C;;(¢) is written differently with respect to the
notation used in the previous chapters, where here we have decided to write explicitly
the dependence on the tomographic redshift bins 7, j as subscripts and the symbol
of the probe as superscript. The colours used to highlight the different cosmological
probes are in concordance with the colours used in the plots of the observables or
cosmological constraints.
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below corresponds to the recipe v.1.0 implemented in CLOE version 1.0 and version
1.1. The primary Fuclid observables are written in terms of basic cosmological func-
tions described in , such as the comoving distance x(z), the Hubble param-
eter H(z), the matter power spectrum Pss, the growth factor D(z) and growth rate
f(2), the angular diameter distance Dy, and the Modified Gravity phenomenological
function ZM(;H (see . In this section, the speed of light ¢ factors in the

mathematical expressions are kept.

6.3.1 Galaxy Clustering: Spectroscopic (GCsp)

105_

104_

Py(k) Mpc’]

102_

102 10!
k [Mpc~']

Figure 6.3: Legendre multipoles P, (k) for the spectroscopic galaxy clustering probe
(GCps) as a function of scale k for multipoles ¢ = 0 (solid line), ¢ = 2 (dashed line)
and ¢ = 4 (dashed-dotted line), corresponding to the second tomographic redshift bin
centred at z = 1.2. The shades regions correspond to the data uncertainties given
the fiducial covariance matrix as explained in [subsection 6.4.4, Within CLOE, the
spectroscopic legendre multipoles are obtained in spectro.py. The plot has been
generated taking the fiducial cosmological values presented in

As we have seen in [subsection 1.5.3] galaxies are biased tracers of the total matter
in the Universe. In the linear regime, we can assume a linear deterministic bias

6The Modify Gravity function Yyq is implemented in the code, but in this version, it is set equal
to 1.
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model and write the relation between the galaxy power spectrum chécsl’ and the
matter power spectrum Pys(k, 2) as

PSP (k, i, 2) = [B99P (2) + f(2)ud]” Prs(h, 2) . (6.1)

where we know that our observations are affected by redshift space distortions (RSD),
whose effect in the power spectrum can be described at the linear level by f(2)ug
Also k = |E| is the module of the wavevector k, iy, is the cosine of the angle be-
tween k and the line-of-sight direction, and f(z) is the growth rate. The b9CsP(z) is
the redshift-dependent linear bias parameter and will take different values for each
tomographic redshift bin. The analysis of tomographic galaxy clustering probe us-
ing spectroscopic redshifts is expressed in Legendre multipoles. In Fourier space, the
Legendre multipoles P, (k) are given by

20 + 1 .
Py(k,z) = / dpr, Le(p) PSOP (b, i, 2) (6.2)

where L, is the Legendre polynomial. As we have explained already [subsection 1.5.3],
the true underlying power spectrum is not direct observable. All estimates of these
functions based on galaxy surveys require the assumption of a fiducial cosmology to
transform the observed redshifts into physical separations. A difference between the
fiducial and true cosmologies leads to a re-scaling of the components parallel and
perpendicular to the line-of-sight direction, s and s, of the total separation vector
s between two galaxies in the survey, defined as

S| = qJ_Sfj_da (63)
)= CIHSH 7
where ‘fid” denotes the quantities in the fiducial cosmology and the scaling factors ¢
are given by the ratios of the comoving angular diameter distance, Da(z), and the

Hubble parameter, H(z), respectively, in the true and fiducial cosmologies at the
mean redshift of the sample:

DA(Z)
q, = Dﬁd(z) (65)
q = ﬁ;{((;) (6.6)

Equation (6.3)) and equation (6.4)) can be written in terms of & and yy; as (Ballinger
et al. [1996)

1/2

R(E, i, 2) = K g2 (2) (uf)? + ¢ %(2) (1= ()] (6.7)
e 2) = i ) a2 () (W + %) (- )] (68)

In Fourier space, the fiducial cosmology also leads to a rescaling of the power spec-

-1
trum amplitude by a factor (qiqu) . These geometric distortions must be applied to
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all model predictions before they are compared with real galaxy clustering measure-
ments. Using equations , , the prediction for the observed Legendre multipoles
Pops o(k1) including geometric Alcock-Pacyznski distortions can be obtained as

1 2041
a1 (2)q(z) 2

The plotted expression for equation can be found in [Figure 6.3

Pg(kﬁd, Z) =

1
[ L PEC (k5 ), f®): 2) apf
(6.9)

6.3.2 Weak Lensing (WL)

— n — n
N 1 6
no - 1Ny
T 3 ns3 ng
~
2, - Ty Ny
B o- T Ny nq
—
=
c
1.
O WX
0.0 0.5 1.0 1.5 2.0 25 3.0 35 4.0

Figure 6.4: Galaxy redshift density distribution n}¥%(z2) as a function of redshift for
the weak lensing (WL) probe in the 10 different tomographic redshift bins 7. These
distributions are read by CLOE as external files in reader.py and further processed in
redshift_distribution.py. The benchmark distributions have been generated as
explained in [subsection 6.4.1} In CLOE v.1.1, the density distributions for both weak
lensing and photometric galaxy clustering are considered equal: nVE(z) = nS P (2).

As it was already introduced in [subsection 1.5.4] the light coming from distant
galaxies bends towards us due to the massive objects that it can find along its trajec-
tory, inducing distortions in their observed shape, allowing us to map the distribution
of matter in space. This effect is called gravitational lensing, and in their weakest
limit, we can extract cosmological information by studying the tiny distortions in
galaxy shapes statistically. The weak lensing probe is written in terms of the to-
mographic angular power spectra in harmonic space, C}Y(¢), with i, j labelling the
corresponding redshift bins, and WL standing for Weak Lensing. The angular power
spectrum C’i\;] Lis the Fourier transform of the two-point correlation function, which
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can be written as a line-of-sight integral of the matter power spectrum Pjss; and a win-
dow function W;(z), which contains information about the probability distribution of
observing a source galaxy at a given redshift z and about the physics of gravitational
lensing. The weak lensing effect is modelled by taking into account not only the shear
power spectrum () but also the intrinsic alignment (IA) contribution, which is an
astrophysical systematic error on the shapes of galaxies due to tidal forces applied
by the surrounding large scale structure. In total, the weak lensing angular power
spectrum CY™(¢) is:

CM(0) = C(0) + C (0) + CHM™M (). (6.10)

We start by introducing the WL galaxy source redshift density distribution convolved
with the photo-z uncertainties of the i-th redshift bin n}"*(z) (see [Figure 6.4). The
total galaxy density in the i-th redshift bin is given by the equation

V= / " dzn)VE(2), (6.11)
where zpi, and Zpax are the minimum and the maximum redshift value of the redshift
bin distribution, respectively. In this recipe, we assumed that the analysis will be
done with 10 different tomographic redshift bins. Note that we have explicitly added
a superscript ‘WL’ to remind us that, in general, WL and GCph samples can be
different, i.e. n)V¥(z) # nSP"(2), although, in this recipe so far, both are considered
equal. We can now define the window functions W;(z) in terms of the WL galaxy
source redshift distribution n}¥L'(z) for the two main contributions included in the
modelling of the weak lensing effect (see : the shear window function W}’
and the intrinsic alignment W4 one, defined as:

W702) = 5 () 1+ 95wk ) [ amie) LA

C

WIA(2) = nv,w;éf ) H(z), (6.13)

n; C

where Yy (k, 2) a modified gravity function. Moreover, we can relate the window
functions W; with the matter density distribution in the universe encoded in the
matter power spectrum Pss. For the case of IA, we need to introduce an intrinsic
alignment model. In version 1.0, we model the intrinsic alignment using the redshift-
dependent non-linear alignment (zNLA) model explained in (Euclid Collaboration et
al., 2020), which is written in terms of the intrinsic alignment function fia(2):

_ & S\ ~ 2)18™
in(e) = ~AnCia (14 2" (D)L (6.14)

where (L)(z) is the luminosity redshift-dependent mean, L,(z) the characteristic lu-
minosity of source galaxies as computed from the luminosity function, the parameter
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Figure 6.5: Weak lensing window functions: (top) the shear window function W} (z)
and (bottom) the intrinsic alignment W% (z) as a function of redshift z for the 10
photometric tomographic redshift bins i. The plots have been generated taking the
fiducial cosmological values presented in Within CLOE, these window
functions are calculated in photo.py.
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™ =0, and Cp = 0.0134 is kept fixed as it is degenerated with the rest of the param-
eters. The parameters n'* and A™ are free parameters of the model and should be
determined by fitting the data and/or via carefully designed simulations; this is why
they are defined as free nuisance parameters in this recipe so that we can marginal-
ize over them. Given the intrinsic alignment model we can define the corresponding
power spectra that relates the matter power spectrum Pjss with the intrinsic alignment
systematic distortions:

PgIA(k"Z> = f[A(Z)P(;(s(k’, Z), (6.15)

Piaia(k, z) = [fia(2)]* Pss(k, 2). (6.16)

Finally, we can write the full expressions for each of the WL angular power spectra
components present in equation (6.10|) using the Limber approximation:

[ke(2), 2l W [Re(2), 2]
H(z)x*(2)

Cr(l) =c / 2.V Pss [ke(2), 2], (6.17)

Wi Tke(2), 2] Wi (2) + WIR ()W [ke(2), 2]

CIA () = ¢ / d Poia [ke(2), 2], (6.18)

H(z)x*(2)
WA ()W (2)
TATA i
OO = ¢ [ de =5 5y Puaaa ha(2), 2] (619
The different components of C}Y"(¢) are evaluated at k = ky(z) = E;(lz/f. An example

plot for the total weak lensing angular power spectrum CY)™(f) can be found in

6.3.3 Photometric Galaxy Clustering (GCph)

Similarly to the weak lensing case (section , to analyze the photometric
galaxy clustering probe we still focus on the tomographic galaxy clustering angular
power spectra CSCph(f) in the Fourier space using the Limber approximation and
remaining up to linear scales. We start by defining the GCph galaxy source redshift
SCPh () in each tomographic bin 7 of the photometric survey by

density distribution n,
ne %P (2), being the total angular galaxy density 7. "™ in such redshift bin given by

7CCPh _ / " denSOPh () (6.20)

Zmin
We can define the window function W'Z-GCph for a given tomographic bin ¢ as

GCph
n; " (z) H(z)
VViGCph(Z) = ﬁGCph c (6'21)

)
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Figure 6.6: Photometric angular power spectra C'(¢) for both weak lensing (WL, in
green solid line) and photometric galaxy clustering (GCph, in yellow dashed lines)
probes and for only one tomographic redshift bin ny(z) (that can be seen in the
subplot in solid black line). The WL angular power spectrum includes both the
contributions from shear and intrinsic alignment. The shades regions (WL, green
and GCph, yellow) correspond to the data uncertainties given the fiducial covariance
matrix as explained in [subsection 6.4.1| and |subsection 6.4.2l The plots have been
generated taking the fiducial cosmological values presented in [section 6.9 Within
CLOE, these angular power spectra are calculated in photo.py.

which contains information about the probability density distribution of source galax-
ies at a given redshift. Similarly to the weak lensing case, we can relate the mat-
ter density power spectrum Pjss with the galaxy-galaxy photometric power spectrum
PGCPh(k, 2), defined in this recipe as

PGP (k, 2) = [b9PM(2)]* Pas (k, 2), (6.22)

where bSCPh ig the linear photometric galaxy clustering bias and we expect to have
different values for each redshift bin, so that we treat them as nuisance parameters to
be sampled and marginalized over. Joining all the information together, the GCph

angular power spectrum reads

V[/].GCph(Z) Pg(g;Cph [lﬂ@(z), Z] ’ (623)

WEPR(2)
H(z)x*(2)

COoP (¢) = / Azt
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and it is evaluated at k = ky(z) = L2 Ap example plot of equation (6.3.3)) can be

x(2)
found at [Figure 6.6

6.3.4 Weak Lensing - Photometric Galaxy Clustering Cross-
Correlation (XC)
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Figure 6.7: Angular power spectrum C(¢) for the photometric weak lensing - pho-
tometric Galaxy Clustering cross-correlation (XC, dashed-dotted blue line) and for
only one tomographic redshift bin n4(z) (that can be seen in the subplot). The shade
region (XC, blue) corresponds to the data uncertainties given the fiducial covariance
matrix as explained in [subsection 6.4.3] The plot has been generated taking the fidu-
cial cosmological values presented in Within CLOE, the angular power
spectrum is calculated in photo.py.

As for the other probes of the photometric catalogue, we focus on the angular
cross-correlation between WL and GCph in Fourier space, C;?C(é), with 4, 7 labelling
redshift bins, and WL and GCph respectively denoting lensing and (photometric)
galaxy clustering. For each single probe that we cross-correlate, we refer to their
dedicated sections (see [subsection 6.3.2{ and [subsection 6.3.3). To calculate the cross-
correlation, we need to define all the cross power spectra needed to build the corre-
sponding angular power spectra. To take into account the shear-position correlation
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we employ the following definition for the galaxy-matter power spectrum:

PR (k, 2) = bSO (2) Pys(k, 2), (6.24)

where the photometric galaxy bias bP"°* are those described in [subsection 6.3.3]
Similarly, to take into account the galaxy-IA correlation we employ the following
definition of the density-intrinsic cross-spectrum:

PSP (k, 2) = [fia (2)bSCPR(2)] Pys(k, 2), (6.25)

where fia(z) is the intrinsic alignment function defined in equation (6.14]). The weak
lensing - position angular cross-spectrum C%(C(E) will be then given by the sum of the
galaxy-shear correlation and the galaxy-IA correlation:

GO0 = Cif(0) + CE0), (6.26)

which in practice is implemented as

Ce(0)

:C/mﬁknWTW@JWFM@m$Wma (6.27)
+ W)W (2) P (ke 2)]

resulting in a single integration of the two different integrands, where WZ-GCph(z),

W [ke(2), 2] and W (z) are respectively defined in equations (6.21)), (6.12) and
(6.14). An example plot of the full observable in equation (6.27) can be found at

igure 6.

6.4 Benchmark data and covariance matrices

After introducing the modelling of the theoretical predictions for the Fuclid pri-
mary observables, in this section, we introduce how the fiducial benchmark data, as
well as the covariance matrices, have been generated to validate CLOE.

6.4.1 Weak Lensing (WL)

As a test case, we consider 10 equally populated redshift bins over the range
0.001 < z < 2.5. We model the photometric redshift uncertainty as the sum of
two Gaussian distributions: one for the well determined photometric redshifts and
another for the outliers (see (Euclid Collaboration et al., 2020))), parameterized by
1 — fou with o, uncertainty, and another f,,; with o, uncertainty, respectively:

2
(Z |Z) _ 1- fout exp _1 [Z — Cbep — Zb‘|
Pl = oo (1 + 2) 2| op(1+2)

N Jout 12— cozp— 20 2
—————exp{ —= |[———————| ).
210,(1 + 2) Pi72 oo(1+ 2)
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The number density distribution n;(z) of the observed galaxies in the ith bin is given
by:
2
S22 dzp n(2)ppn(2p|2)
ni(z) = — , (6.29)
S dz S5 dz n(2)Ppn(2p]2)

where (z; , z;") are the edges of the ith redshift bin and

n(z) x (;)2exp [— (;)3/21 (6.30)

is the galaxy density distribution as defined in the “Red Book” (Laureijs et al. [2011)),
where 2y = 2,/ V2 with z, being the median redshift. The values for the different
parameters are provided in (Euclid Collaboration et al., 2020). As mentioned in the
description of the WL angular power spectra, concerning the Intrinsic Alignment
effect, for this recipe we have used a zNLA model (or eNLA with ;4 = 0) for the
benchmark data array as well as for the covariance matrices. The following fiducial
values are used {Aja, ma, Bia} = {1.72,—-0.41,0.0}, while C;x =0.0134 remains fixed
in the analysis, as it is degenerated with Ajx.

Concerning the covariance matrix, we will consider only Gaussian terms and it is
given by

Cov[Cy™(0), Ca ()]

_ 62’ L WL
(204 1) fay AL GO+ Nk ) (6.31)

[CRE() + N0
+[CWE(0) + NE(0)]
[CE() + Ny}

where d¥ is the Kronecker delta symbol, the indexes 7, j, m, n run over all tomographic
bins, Al is the width of the multipoles bins and fq, is the fraction of the sky covered
by the survey (see (Euclid Collaboration et al., 2020) for details). The shot noise
term due to the uncorrelated part of the intrinsic alignment ellipticity field is defined

as
WL ol
N = (0) = 0; (6.32)

ﬁyVL v]

with o. = 0.3 being the variance of the intrinsic ellipticity. It is worth mentioning that
the code implementation reads the observed galaxy distribution (already convolved
with the photometric redshift PDF) from an external file since it will be provided by
the corresponding SGS OU as well as the covariance matrix as an external file as it
will be computed (analytically or from simulations) by an external IST:NL/SWG/OU
team.

Any of the validated codes used in the IST:Forecast work can give as outputs
the C’ZV L(¢) using the galaxy density distribution in equation , as well as the
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Gaussian covariance matrix. We have used the IST:Forecast codes to produce the
benchmark data, which is read by CLOE as external data. The external benchmark
data C’;;V L(¢) is computed by considering 20 logarithmically equispaced values in ¢
over the range ¢ = [10,4000].

6.4.2 Photometric Galaxy Clustering (GCph)

Like in the case for external benchmark for Ci\;v L(¢), we consider 10 equally pop-
ulated redshift bins from z = 0.001 up to z = 2.5 with 20 multipole bins ¢ logarith-
mically equally spaced over the range ¢ = [10,4000]. The photometric bias b8P for
the benchmark is obtained by linearly interpolating the bias values for the redshift
bins 0.001 < z < 2.5, and for redshifts above the final bin (z > 2.5), we use the bias
obtained for the final redshift bin value. Similarly, for redshifts below the first bin
(z < 0.001), we use the bias obtained for the first redshift bin value. In practice, this
is computed as

L(z=0.001) for z<0.001
bOOPR(2) =<8 L(2) for 0.001 <z<25 (6.33)
L(z =2.5) for 2>25

where L(z) is obtained by linearly interpolating the points
(21, (1 + 2’1)1/2, z9, (1 + 22)1/27 z3, (1 + 23)1/27 e 210, (1 + Z10)1/2L (6.34)

with z; the centre of the i-th redshift bin.

Concerning the data covariance matrix, we consider a theoretical Gaussian co-
variance matrix as in the Weak Lensing case in equation (6.31]), but with a different
shot-noise term given by
o
—GCon (6.35)
n.:

1

NSM) =

which is scale-independent. Similarly to the weak lensing case, CLOE reads both
the observed galaxy distribution (already convolved with the photometric redshift
PDF, which in this case is assumed to be equal to the one used for the weak lensing
observable) and the covariance matrix as external files. The Cngh(E) as well as the
covariance matrix are obtained by using IST:Forecast validated codes.

6.4.3 Weak Lensing - Photometric Galaxy Clustering Cross-
Correlation (XC)

The benchmark data is computed as given in sections [6.4.2|and [6.4.1} Concerning
the covariance matrix of the XC observable, we consider again a theoretical Gaussian
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covariance matrix, which in this case reads

Cov[CXC(0), CXC(0)]
52’ XC XC /ot
SR TR T, {cXew e +

[CRE(0) + NYM(0)]
([CPM () + NN}

gl

(6.36)

where the noise terms are defined in equations and . The covariance ma-
trix as well as the fiducial benchmark data can be read as external files and provided
as an input to CLOE, and the C’Scph(ﬁ) as well as the covariance matrix is obtained
by using IST:Forecast validated codes.

6.4.4 Spectroscopic Galaxy Clustering (GCsp)

As an external benchmark, we consider predictions of the Legendre multipoles in
Fourier space computed under the same recipe described in [subsection 6.3.1], with
covariance matrices computed within the Gaussian approximation as described in
(Grieb, Sanchez, Salazar-Albornoz, & Vecchiaj, |2016)). These predictions assume the
same underlying cosmology|'| and survey specifications in terms of volume, galaxy
number density and bias as of the IST:Forecast paper (Euclid Collaboration et al.
2020) (see tables 1, 2, and 3 of this paper). The analysis of the spectroscopic sample
assumes 4 redshift bins from z = 0.9 up to z = 1.8, whose redshift range is summarised
in Table . All theory predictions are computed at the mean redshift z = (242 —
Zmin)/2 of each bin. The input linear power spectra used to compute these external
benchmarks were obtained with CAMB, using the parameter file stored in the gitlab
repository of the IST:Forecast (which corresponds to the cosmology specified in Table
1 of (Euclid Collaboration et al., 2020)), except for the value of og that here is 0.8156,
corresponding to Ay = 2.12605 - 1077).

The Gaussian prediction for the statistical uncertainty on the power spectrum
multipoles P,(k) depends on the choice of the k-bin width, Ak. As we are implicitly
assuming that measurements of Py(k) are uncorrelated under the Gaussian assump-
tion, the minimal value for Ak should be the effective fundamental frequency defined
as k§f = 27 /V1/3 V being the volume sample (we assume an ideal cubic or otherwise
compact volume). A value of Ak smaller than kT would result in correlated bins even
under the Gaussian assumption since k£ is the smallest difference in k we can resolve.
The values of k£ for the four redshift bins are reported in . We assume a bin
width of Ak = 0.004, a value larger but close to the largest value for k¢ across the
four redshift bins. The power spectra are computed in the range 0.002 < k£ < 0.502
and are evaluated at the centre of the wavenumber bin. To compute the predictions
for the gaussian variance we average over the bins.

"Except for the value of og that is 0.8156, corresponding to A, = 2.12605 - 1077.
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redshifts ket

09<z<11 0.0031
1.1 <2< 1.3 0.0030
1.3 <2z<1.5 0.0029
1.0 <2z< 1.8 0.0025

Table 6.2: Values of kff for the four spectroscopic redshift bins.

With respect to the covariance matrix, if we define the multipole expansion of the
per-mode covariance in a volume V. (2) as (Grieb et al. 2016))

20) +1) (26, + 1

11 17°
/ [2 Py (’f(kﬁd,uﬁd)7uk(u2d))+—] (i) e () dp? - (6.37)
-1 14919 LA

the Gaussian covariance of the power spectrum multipoles Py (k19 2) is given by

2 (27)* /k§d+Akﬁd/2 )

Cov {Pobs,ﬁ(k?d; 2), Pobs b (/fjﬁd; Z)} =y, Y 07,0, (K1) (K19) 2k
K

kfid—Akfid /2

(6.38)
where the volume of the bin in k-space is Visa = 4m[(k]? + Ak /2)? — (ki —
AK84/2)3] /3. We will neglect any cosmology dependence of the covariance matrix
C, which is kept fixed during the analysis. For our linear theory tests, we will com-
pute input covariance matrices using the Gaussian approximation of (Grieb et al.,
2016)) specifically, the covariance matrices of the Legendre multipoles are given by
equations (16) and (18) of (Grieb et al., 2016). All the spectroscopic benchmark data
as well as the covariance matrices are pre-computed and given as external input to
CLOQE.

6.5 Standard likelihood analysis

The estimation of constraints on a given set of cosmological parameters, ¢, based
on the Fuclid data, J; will follow a Bayesian framework. According to Bayes’ theorem
(see [chapter 1] jsection 1.7.1)), the key ingredient in the estimation of the posterior
distribution of the parameters, P(0|d, M), is the likelihood function £(d]6, M), which
describes the plausibility of a certain parameter value 6 after observing a particular
outcome. For all Fuclid primary probes, in this version of the recipe, we assume that
the likelihood function E(J] 6, M) of these measurements is Gaussian with a cosmology
independent covariance matrix C"

- t

~2log L(d]f, M) o< (d = T(0)) ¢~ (d - T(0)), (6.39)
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where C'~! is the inverse of the covariance matrix, also known as the precision matrix
d is the data vector constructed with the fiducial benchmark data explained in
and T'(9) is the theory vector constructed with the predictions for the Euclid

observables whose recipes are depicted in [section 6.3]

6.6 CLOE: specifications and structure

The code Cosmological Likelihood for Observables in Fuclid (CLOE) is designed to
produce theoretical predictions of the primary Fuclid observables (see
as well as the computation of the likelihood (see given some fiducial
benchmark data (detailed in . The specifications and structure presented
in this section are referred to CLOE v.1.1, which contains the theoretical recipe version
1.0. explained in [section 6.3] The code CLOE is fully written in python (Van Rossum
& Drake Jr, [1995) using a set of common packages described in . It is
designed to work as an external likelihood class for the Bayesian Analysis Framework
code Cobayaﬂ To build and run CLOE, IST:L provides a dedicated conda environment
(Anaconda Software Distribution) 2020) with development tools.

Package ‘ Version

astropy 2.0.1
matplotlib | 3.5.1

scipy 1.8.0
numpy 1.22.2
pandas 1.4.1
PyYAML 6.0

Cobaya 3.1.1

getdist 1.3.3

Table 6.3: Summary of the python packages that CLOE uses in all its different modules.
The versions correspond to those requested by the conda environment provided by
IST:L to run CLOE v.1.1.

The structure of CLOE is very modular, as it is designed keeping in mind the
flexibility and future expansion of the code. The philosophy behind CLOE’s design
is to make it as user-friendly as possible so that many scientists within the EC can
use it when the first release of data arrived’] As all Euclid data will be publicly
released after a relatively short proprietary period and will constitute for many years
the ultimate survey for Cosmology, we also aim CLOE to be very easy to learn and
use so that everybody within the Cosmology community can exploit its capacity and
features soon.

8See the documentation of how to create a customized external likelihood for Cobaya at (Creating
your own cosmological likelihood class, [2022).

INote that CLOE will eventually be used within different Working Packages of the SWGs. How-
ever, IST:L will be the ultimately responsible team for producing the official constraints on the
cosmological parameters.
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CLOE is the result of a study and analysis of the current state-of-the-art open-
science Cosmology codes available in the literature. The first goal of IST:L. was to
investigate the features, portability, pros and cons of the most widely used cosmolog-
ical software for Bayesian Statistical analyses: CosmoMC (Lewis & Bridle, |2002; |Lewis,
2013), MontePython (Audren, Lesgourgues, Benabed, & Prunet| 2013), CosmoSIS
(Zuntz et all [2015)) and Cobaya (Torrado & Lewis, 2021}, 2019). In the end, given the
collection of requirements requested by different Science Working Groups (SWGs) as
well as the goals of the Fuclid mission, IST:L decided to interface the likelihood code
with Cobaya (and in future versions, with CosmoSIS), because:

e both codes allow us to obtain computational theoretical background functions
from the most widely used Boltzmann Solvers CAMB (Lewis et al., |2000; [Howlett
et al) |2012) and CLASS (Essinger-Hileman et al., |2014). Moreover, Cobaya is
prepared to interact with modified versions of CAMB and CLASS without further
hacking Cobaya source code.

e both codes contain a large number of different samplers (the most important of

them explained in nested sampler Polychord (W. J. Handley et al.,
2015a;, 2015b), Metropolis Hastings, evaluate...)

e both codes accept external self-defined likelihoods with minimal modification
of their source codes.

The structure of CLOE v.1.1 can be seen in figure [6.8] The software CLOE consists
of a main python class inherited from Cobaya that works as an external likelihood,
called cobaya_interface.py (the class being called EuclidLikelihood). This class
initializes the class Euclike and collects the main cosmological background functions
requested to the Boltzmann Solver (i.e: CAMB or CLASS) through Cobaya. These
ingredients are saved into an instance of the class Cosmology (within the cosmo mod-
ule), where they are subsequently passed on to the nonlinear module. Given the
requests selected by the user, the class Euclike invokes the initialization and read-
ing routines of the corresponding selected data and covariance matrices to create the
data vector (using the classes Reader and Masking in figure . Given the read
data, CLOE computes the theoretical predictions of the observables and produces the
theory vector calculating the predictions for the Fuclid primary observables coded
in the modules photometric_survey and spectroscopic_survey. Finally, Euclike
computes the “log-like” value (see equation , which is returned to the Cobaya
class in cobaya_interface.py. The selection of the observables and further features
of the theoretical predictions can be done by the user either following the standard
Cobaya input files (i.e: yaml files, python scripts or even using a python interpreter
as jupyter) or using the so-called CLOE overlayer (a series of scripts provided in CLOE
to camouflage the use of Cobaya so that the user is agnostic to the whole CLOE struc-
ture). CLOE understands “on-the-fly” the nuisance parameters that are introduced
in the theoretical predictions, so that cobaya_interface.py source code does not
need to be further modified. The advanced structure of CLOE, seen in detail with
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its several python classes, inheritance and dependencies, can be found at the IST:L
gitlab repositorylﬂ

run_cloe.py

\

cobaya interface.py
(EuclidLikelihood)

A

cosSmo.py euclike.py
(Cosmology) (Euclike)
masking.py
reader.py «—> (Masking)
(Reader) b data_ handler.py
(Data_handler)

l

¢ > photo.py
(Photo)
redshift distribution.py
nonlinear.py  |______________ N (RedshiftDistribution)
(NonLinear) d
spectro.py
(Spectro)

Figure 6.8: Simple diagram of the structure of CLOE in version 1.1, generated using
draw.io. In the diagram it can be seen how the different modules within CLOE
interact. The module run_cloe.py is informally known as the overlayer and the
module nonlinear.py is currently implemented within the structure of CLOE but not
yet used in this version (IST:NL is the responsible of the structure of this module
and in this particular version, the theoretical observables are computed up to linear
regime).

The software CLOE contains a README, an automatic generated documentation
of the python softwareE] as well as a series of scripts and notebooks. In particular,
CLOE offers a DEMO jupyter notebook that shows how to compute the Fuclid primary
observables according to the corresponding recipe, internal background functions re-
trieved by Cobaya, the values of the likelihood, posterior and priors, the redshift

0Visit https://gitlab.euclid-sgs.uk/pf-ist-likelihood/likelihood-implementation/
-/wikis/uploads/083b51a7591215dffecdbe511446d8b5/classes.png

H"The automated generated documentation is created using “Read the docs” https://docs
.readthedocs.io/en/stable/index.html.
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distributions of the galaxies for both the photometric and spectroscopic catalogues
and even the photometric window functions and various matter power spectra ex-
plained in [subsection 6.3.1} [subsection 6.3.2] [subsection 6.3.3] [subsection 6.3.4/and in

table [6.3] All the figures of have been produced using this DEMO jupyter
notebook.

6.7 Validation of the benchmark data using CLOE

To validate the theoretical recipe implemented in CLOE of the Fuclid primary
probes, we carry out a Monte Carlo Markov Chain (MCMC) sampling technique to
retrieve the posterior distributions of the cosmological and nuisance parameters given
the fiducial benchmark data explained in [section 6.4, We take a flat ACDM model as
the baseline cosmological model and we use the theoretical prediction of the Fuclid
primary probes up to linear order (non-linear corrections are not included). The
sampler used is the Metropolis-Hastings mcmc included in Cobaya. The Boltzmann
Solver is CAMB. In all cases, we use the default Cobaya convergence criterion (i.e: R-1
(means) < 0.01 and R-1 (standard deviations) < 0.2, seesection 1.7.2|for more details
about the definition of the convergence criterion R). We show in the time
required for each run to reach convergence according to these conditions while letting
the nuisance parameters free. These runs were done in the xMaris cluster at the
Lorentz Institute. xMaris|/runs on CentOS v7.6 and has as architecture x86 64. To
run CLOE in this cluster, the conda environment it is not used and python v.3.7.4, gcc
v.8.30, OpenMPI v.3.1.4 and mpidpy v.3.1.1 are used instead. It has been verified that
very similar running times were obtained when a different cluster was used (Alice
cluster at Leiden University).

The list of free sampled parameters included 5 cosmological parameters (€, 2y,
Hy, ng, As, where oy and Sg are obtained as derived parameters) and up to 16
nuisance parameters (the 10 different photometric bias parameters b%“P for the 10
photometric redshift bins, the 4 different spectroscopic bias parameters b5“*P for the
4 spectroscopic redshift bins, and the 2 intrinsic alignment nuisance parameters A™
and ). The running scripts can be found in the Fuclid gitlab repository of CLOE.

All the runs consisted of 8 chains, each of them crossing into 4 cores. The chains
achieved a convergence of R — 1 < 0.1 in approximately 3 days, where some of them
were visually converged, in particular, those runs that included the combinations of
different observational probes. However, to reach the standard convergence criterion,
the runs needed several days to end. The average computation time for CAMB was
approximately 4.2 seconds per evaluation and that of CLOE around 7.1 seconds per
evaluation. Note that this average time for CLOE is the sum of both the computation
time of the theoretical observables as well as the computation time of the likelihood,
and therefore, the average time for the theoretical predictions computed by CLOE is
around 3 seconds per evaluation. Each chain contains around O(5) accepted steps.

After reaching convergence, the analysis and post-processing of the chains is per-
formed with GetDist (Lewis, 2019). The list of best fit values, together with their
68% confidence intervals, are obtained after marginalizing the posterior distributions.
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Figure 6.9: Constraints on the cosmological parameters using Fuclid primary obser-
vational probes. This plot shows the different observational primary probes indepen-
dently, i.e. weak lensing (WL) in green, photometric galaxy clustering (GCph) in
yellow and spectroscopic galaxy clustering (GCsp) in red. The red dashed lines show
the fiducial values of the parameters.

These best fits and uncertainties are gathered in the appendix [section 6.9] in [Ta-]
[ble 6.5| [Table 6.6], [Table 6.7], [Table 6.8/ and [Table 6.9 The benchmark data have been
generated using a list of fiducial values for the cosmological and nuisance parameters
that are also present in those tables. We also use the fiducial values for the cosmo-
logical parameters in plots of the posterior distributions, [Figure 6.9 and [Figure 6.10]
for visualisation purposes.

As expected, the individual Euclid primary probes alone (WL, GCph and GCsp)
do not show a big constraining power on the cosmological parameters. In fact, photo-
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Data combination ‘ Node ‘ Elapsed time

GCsp maris069 | 14 days, 18 hours, 52 minutes
GCph maris070 | 42 days, 5 hours, 32 minutes
WL maris072 | 16 days, 3 hours, 24 minutes
XC maris073 | 17 days, 19 hours, 34 minutes
GCph+WL maris070 | 14 days, 23 hours, 1 minutes
3x2pt maris073 | 10 days, 4 hours, 3 minutes

GCph+WL+GCsp | maris073 | 15 days, 17 hours, 43 minutes
3x2pt+GCsp maris072 | 7 days, 20 hours, 14 minutes

Table 6.4: Computation time to reach convergence for each of the considered Fuclid
probe combinations in the case where the nuisance parameters are free to vary. All
nodes have as hardware an opteron6376 with 1Gb,R815 highmem. The combination
3x2pt refers to WL4+GCph+XC together.

metric galaxy clustering (GCph) shows some degeneracies between the nuisance bias
parameters b%“P and the amplitude of the power spectrum A, and therefore, also
between oy (see [Figure 6.9). This is the main reason why the computation time of
this probe to reach convergence is the largest with respect to the other observational
probes. To achieve convergence, the proposal step of the photometric nuisance bias
parameters’ priors have been adjusted to the optimal value to avoid the chains to
get stuck. Weak lensing (WL) also shows degeneracies in the Hubble parameter H,
and in the density of baryons €),,. Moreover, its constraining power on the spectral
index ng is more limited than that of GCph. Contrarily, WL constrains og, due to the
fact that WL is very sensitive to the matter density €2,,. The spectroscopic galaxy
clustering is overall the primary observational probe that has a good constraining
power on all the cosmological parameters.

When combined, we can unleash the full power of Fuclid primary probes (see
[Figure 6.10). The combination of both photometric primary probes (WL and GCph)
breaks the degeneracies previously shown by the individual photometric probes (in
particular, in og, Hy and €2y,). Including the cross-correlation between weak lensing
and photometric galaxy clustering (XC) in the analysis; in order words, the full 3x2pt
photometric combination, increases the constraining power in og and €2, although
it does not improve the constraining power on the rest of parameters. However,
when GCsp is included in the analysis, the confidence intervals of all cosmological
parameters reduce significantly, showing how the combination of all Euclid primary
probes will be the future state-of-the-art of new LSS cosmological analysis, being at
the level of constraints obtained by Planck (if not successfully beating it).

For the case of the 3x2pt with GCsp, the analysis included 16 free nuisance param-
eters. The 12 photometric nuisance parameters, bias and and intrinsic alignment ones,
are shown in [Figure 6.11] It can be observed how adding the cross-correlation XC
between weak lensing and photometric galaxy clustering improves the constraining
power on the nuisance parameters, in particular, the intrinsic alignment parameters.

In the case of the analysis of the spectroscopic bias parameters (see [Figure 6.12)),

145



6.7. VALIDATION OF THE BENCHMARK DATA USING CLOE

B GCphot+WL
3x2pt
Hl 3x2pt+GCsp

0.055} —
é’o.o5o--+-@-+--
0.045}

707

Ho
I

65

0.97¢

0.96

Ns

\

0.95¢ (AN

0.82¢

o]
1
1
1
*
1
[

|
1
1

T
0.80( 1 : :
I
I

0.845;

]
I
}
I
1
+
& =
0.840¢ i
I
1

1
I
0.96 0.84

Ns

Figure 6.10: Constraints on the cosmological parameters using all possible (available)
combinations of Fuclid primary probes. The green contours show the combination of
the two photometric probes, GCph and WL, yellow contours add to this combination
the cross-correlation of these two probes (XC), producing the standard 3x2pt com-
bination, and in the black contours, GCsp is added to this last combination as an
independent probe (3x2pt+GCsp). The black dashed lines show the fiducial values
of the parameters.

the spectroscopic bias parameters get further constrained when the 3x2pt probe is
included in the analysis. We conclude that the improvement on all the nuisance pa-
rameters is a natural consequence of the improvement in constraining power of the
cosmological parameters as more Fuclid probes are combined.
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Figure 6.11: Constraints on the nuisance parameters of the photometric observational
probes of Fuclid: WL, GCph and XC. All photometric nuisance parameters of Fuclid
are shown, including the 10 different photometric galaxy clustering bias parameters
bSCPh and the two weak lensing intrinsic alignment parameters A™ and n'®. The
green contours show the combination of the two photometric probes, GCph and WL,
yellow contours add to this combination the cross-correlation of these two probes,
producing the standard 3x2pt combination, and in the black contours, GCsp is added
to this last combination as an independent probe (3x2pt+GCsp). The black dashed
lines show the fiducial values of the nuisance parameters.

6.8 The future of CLOE

In the previous sections, we have seen how we can use the Cosmological Likelihood
for Observables in Fuclid (CLOE) to plot Fuclid primary observables and other internal
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Figure 6.12: Nuisance parameters of the spectroscopic observational probes of Fuclid.
The 4 bias nuisance parameters of the spectroscopic Fuclid probe are shown. The red
contours show the bias parameters when only the Spectroscopic Galaxy Clustering
is used, whereas, in the black contours, the photometric 3x2pt probe is added to the
analysis. The black dashed lines show the fiducial values of the nuisance parameters.

ingredients needed for the computation of the theoretical recipe. Moreover, we have
demonstrated that we can use CLOE as an external likelihood for Cobaya to perform
parameter inference. Nevertheless, to do meaningful science, CLOE needs to evolve. In
fact, versions 1.0 and 1.1 of CLOE can be considered a proof-of-concept where we set
up the general structure of code, the interaction among the modules and the interface
with Cobaya as well as with IST:NL. However, for real scientific performance, several
changes are needed.

First, we need to update the recipe for the Fuclid primary probes to include a
more realistic modelling of the observables. For the spectroscopic survey, in addition
to the observed Legendre multipoles Py(k), we aim to include the observed two-point
correlation £(s) function multipoles, where s is the separation between two galaxies in
the survey. Furthermore, for the photometric survey, in particular photometric galaxy
clustering, we will incorporate new angular power spectra terms in C’gcph to account
for contributions coming from redshift space distortions (RSD) and magnification.
For the weak lensing observable, the WL galaxy redshift distribution n}"*(z) will be

i
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replaced by an effective one to take into account the shear multiplicative bias and
the blending terms. Furthermore, due to the sensitivity of the weak lensing probe on
the non-linear model used to correct the matter power spectrum, the Bernaredeau -
Nishimichi - Taruya (BNT) transform (see (Bernardeau, Nishimichi, & Taruya, [2014))
will be also included in the lensing window functions to minimise the overlap between
them so that each tomographic bin only receives contribution from a well defined
range in scale. For that, we will follow the recipes from (P. L. Taylor, Bernardeau, &
Kitching, 2018; P. L. Taylor et al., [2021). For both cases, WL and GCph, we will allow
testing non-flat cosmological models by including the corresponding changes into the
equations and requesting new background functions to the Boltzmann solvers through
Cobaya. Besides, the equations for the photometric observables will be updated to
include the Modify Gravity function pyg too.

Second, we will need to work towards a complete CLOE version that contains
the necessary implementations to correct Fuclid primary probes at non-linear scales.
In this sense, a merge of IST:NL software development into CLOE is essential for the
release of v.2.0 as well as for the validation of the current nonlinear module interface.
Finally, we need to validate the new theoretical recipe against fiducial benchmark data
and we need to check the overall performance of CLOE, giving particular attention to
the speed of the code, and introduce any software optimisation if required.

CLOE is planned to be used for the third Euclid Science Performance Verification
(SPV3) exercise. This activity aims to assess whether the expected performances of
the Fuclid project are in line with the core science objectives of the nominal mission,
and furthermore, it will ensure gaining insights into the performances of the project
and identify any critical aspect for the realization of the core goals in terms of sys-
tematic errors (either of instrumental, astrophysical of theoretical origin). For this
exercise, IST:L will use CLOE to produce the official constraints on the cosmological
parameters given the wow,CDM model. For this reason, the release of CLOE v.2.0,
including the above-mentioned modifications on the theoretical recipe of the observ-
ables, non-linear corrections and required speed optimisations, is planned before the
end of 2022.
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6.9. APPENDIX: FIDUCIAL AND BEST FIT VALUES FOR THE
COSMOLOGICAL AND NUISANCE PARAMETERS

6.9 Appendix: fiducial and best fit values for the
cosmological and nuisance parameters

Qb Qm HO Ng gg
Fiducial 0.05 0.32 67 0.96 0.8156
GCsp 0.0502 4+ 0.0020 | 0.3197 + 0.0048 67.371%  10.9594 +£0.0036 | 0.700750:1
GCph 0.0504 £ 0.0018 | 0.3194+0.0047 | 67.4+1.6 | 0.9595 4 0.0035 | 0.8172 % 0.0047
WL 0.059310:044, 0.319610:00%2 7619, 0.93719:929 0.816 £ 0.010
XC 0.0513 4 0.0053 | 0.3180 % 0.0095 68.7739 | 0.9572 4 0.0098 | 0.8172 % 0.0056
GCph+WL 0.0502 £ 0.0020 | 0.3201+0.0036 | 67.2+1.5 | 0.9595 4 0.0036 | 0.8153 % 0.0058
3x2pt 0.0502 £ 0.0020 | 0.3200 % 0.0021 67212 1 0.9596 £ 0.0036 | 0.8154 + 0.0033
GCph+WL+GCsp | 0.05007 & 0.00079 | 0.32000 £ 0.00086 | 67.06 & 0.62 | 0.9598 + 0.0025 | 0.8154 & 0.0012
3x2pt+GCsp 0.05009 == 0.00079 | 0.32001 = 0.00080 | 67.07 & 0.60 | 0.9598 = 0.0024 | 0.8155 = 0.0011

Table 6.5: Recovered best fit values and 68% errors for the cosmological parameters
for the considered probe (and probe combinations) when the nuisance parameters

were let free.

b(;rcph bgwcpll bg;CP]l p4GCph »5GCph

Fiducial 1.0997727037892875 | 1.220245876862528 | 1.2723993083933989 | 1.316624471897739 | 1.35812370570578
GCph 1.0976 =+ 0.0067 1.2177 £0.0071 1.2697 £ 0.0076 1.3139 £ 0.0072 1.3549 £ 0.0076
XC 1.101 +£0.017 1.220 £ 0.011 1.271 +£0.012 1.3152 £ 0.0083 1.353 +0.010
GCph+WL 1.1000 £ 0.0077 1.2205 4 0.0082 1.2726 + 0.0087 1.3169 + 0.0089 1.3583 £+ 0.0094
3x2pt 1.0998 + 0.0050 1.2203 £ 0.0048 1.2724 + 0.0051 1.3167 + 0.0054 1.3581 + 0.0056
GCph+WL+GCsp 1.0998 + 0.0028 1.2203 £ 0.0024 1.2724 + 0.0028 1.3167 + 0.0030 1.3581 4+ 0.0032
3x2pt+GCsp 1.0997 &+ 0.0027 1.2203 £ 0.0022 1.2724 + 0.0026 1.3166 £+ 0.0029 1.3581 £+ 0.0030

Table 6.6: Recovered best fit values and 68% errors for the first five photometric bias
nuisance parameters for the considered probe (and probe combinations) when the
cosmological parameters were let free.

bgcph b?Cpl' bSCI’h p9GCph »10GCph

Fiducial 1.3998214171814918 | 1.4446452851824907 | 1.4964959071110084 | 1.5652475842498528 | 1.7429859437184225
GCph 1.397170005% 1.4416 + 0.0085 1.4933 + 0.0089 1.5621 + 0.0091 1.739 £ 0.011
X 1.397 +0.013 1.442 4 0.013 1.496 + 0.016 1.560 + 0.016 1.750 4 0.029
GCph+WL 1.4000 = 0.0095 1.4449 + 0.0098 1.497 £ 0.010 1.565 & 0.010 1.743 £ 0.012
3x2pt 1.3999 4 0.0058 1.4446 + 0.0059 1.4965 + 0.0061 1.5653 + 0.0060 1.7429 + 0.0074
GCph+WL+GCsp | 1.3999 + 0.0034 1.4446 + 0.0033 1.4965 & 0.0031 1.5653 4 0.0030 1.7430 4 0.0044
3x2pt-+CGCsp 1.3998 4 0.0033 1.4446 4 0.0031 1.4965 + 0.0030 1.5652 + 0.0029 1.7429 + 0.0043

Table 6.7: Recovered best fit values and 68% errors for the first five photometric bias
nuisance parameters for the considered probe (and probe combinations) when the
cosmological parameters were let free.
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6.9. APPENDIX: FIDUCIAL AND BEST FIT VALUES FOR THE
COSMOLOGICAL AND NUISANCE PARAMETERS

b?CSp bSCSp b?C);CSP p4GCsp
Fiducial 1.4614804 1.6060949 1.7464790 1.8988660
GCsp 1.4615 + 0.0057 | 1.6061 4+ 0.0061 | 1.7465 4+ 0.0065 | 1.8989 4 0.0070
3x2pt+GCsp | 1.4614 £ 0.0025 | 1.6060 & 0.0028 | 1.7464 4 0.0031 | 1.8988 £ 0.0033

Table 6.8: Recovered best fit values and 68% errors for the spectroscopic bias nuisance
parameters for the considered probe (and probe combinations) when the cosmological
parameters were let free.

AIA 77IA

Fiducial 1.72 —0.41

WL 1.724 £0.076 | —0.412 + 0.094
XC 1.722 £ 0.038 | —0.404 + 0.046
GCph+WL 174870079 —0.44175:589
3x2pt 1.722 £ 0.035 | —0.411 + 0.032
GCph+WL4GCsp | 1.725 4+ 0.073 | —0.415 + 0.086
3x2pt+CGCsp 1.722 £ 0.035 | —0.411 £ 0.032

Table 6.9: Recovered best fit values and 68% errors for the intrinsic alignment nui-
sance parameters for the considered probe (and probe combinations) when the cos-
mological parameters were let free.
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Summary

The fascination with the night sky. A simple gaze at the wonderful landscape
above us opens a window toward imagination. This fascination together with our
innate human curiosity paved the passion for understanding the world we live in.
From ancient cultures to nowadays, we were all concerned about the same questions:
“Where did we come from?” and “ What is our place in the Universe?”.

Understanding and learning more about the cosmos is not only appealing to those
who dedicate their lives to science but also to the lay population in general. A quick
search within the most popular forums on the internet demonstrates that all have
threads up-to-date dedicated to conversations about the universeE] Moreover, every
time there is an exciting astronomical discovery, it spreads within a few hours, as was
the case for the first-ever image captured by the Event Horizon Telescope (EHT) of
the supermassive black hole Sgr A*.

The composition of the universe, as well as its believed origin, and the main force
dominating, gravity, are part of the popular culture of our civilization. But, how
is (and was) the Universe studied? We rely on astronomical observations of, for in-
stance, stars and other massive compact objects present in the Universe, to build
our scientific knowledge based on the comparison of those observations with some
physical assumptions, which form a cosmological model. For example, an average lay
citizen is familiar with the concept of Big Bang.

Indeed, cosmologists believe that the universe was formed approximately 13.77
billion years ago from a very dense and hot state. The young Universe cooled down
while it expanded, and it is still expanding today at a faster rate. Our Universe
is composed of two main ingredients: an unknown matter substance that interacts
gravitationally denominated dark matter and the agent responsible of the accelerated
expansion of the universe called dark energy. The matter we are all made of, baryonic
matter, accounts only for approximately 5% of the content of the universe. Therefore,
it is not surprising that concepts such as dark energy and dark matter are surrounded
by a halo of mystery, which attracts the interest of the public. Talking in scientific
terms, most of the scientific knowledge about the composition of the universe was
obtained from observations of the cosmic microwave background: the relic radiation

12G8ee for instance https://www.quora.com/Why-do-you-love-to-gaze-at—the-stars-of-the
-night-sky.
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emitted in the early universe when the first neutral atoms were formed and photons
could finally scatter away and move freely throughout the Universe. From these ob-
servations, we concluded that our Universe is flat.

As the Universe cooled down and expanded, gravity started to play a more signif-
icant role and the current structures observed in our Universe started to form: from
the first stars to the first galaxies, and from the first galaxies to the first clusters
of galaxies. These objects formed the so-called large scale structure of the universe,
which looks like a web. However, gravity is not the only player in the formation of
the large scale structure of the universe. We need the existence of an underlying
Gaussian distribution of primordial density perturbations that can explain the origin
of the current structure. So far, inflation, an exponential expansion phase in the
primordial universe, is believed to be the mechanism of production of these primor-
dial seeds. The simplest model of inflation is compatible with the assumption of a
Gaussian distribution of the primordial density perturbations, apart from explaining
why the cosmological observations indicate that the universe is causally connected
and flat. The inflationary paradigm together with the assumption that our Universe
is mostly composed of dark matter and dark energy are the basis of the standard
cosmological model.

In the coming years, the cosmological observations available to study the Universe
are expected to increase. In particular, we will exploit the information encoded in
the large scale structure of the universe. For that, new missions and experiments are
focusing on creating large galaxy surveys that will contain information about their
positions in the sky, their shapes and also their redshifts. With the catalogues, cos-
mologists will study the composition of the universe using observables such as galaxy
clustering (GC) and weak lensing (WL). Among these experiments, the European
Space Agency medium-size Fuclid mission, whose satellite is expected to be launched
in the near future, aims to understand the physical origin of the accelerated expan-
sion of the universe, as well as understand the nature of dark matter. Fuclid will also
study the initial conditions that seeded the early universe and were responsible for
the formation of the cosmic-web structure. For that, Fuclid will map the large scale
structure of the universe by creating one of the largest galaxy catalogues ever known.

What is the methodology used to compare astrophysical observations with phys-
ical models to extract conclusions about the universe we live in? Cosmologists have
used statistics, in particular, a Bayesian statistical approach, during the last 30 years
to test different cosmological models against data. Bayesian statistics are based on
Bayes’ theorem. This theorem tells us that our degree of belief can be encoded in a
probability distribution. Bayesian statistics assume that the probability distribution
of some parameters of a model, given some observed data, is directly proportional to
the product of two probability distributions: the distribution that gives the proba-
bility of observing the data given the model M and the parameter values, times the
probability distribution that encodes some prior knowledge information known about
the theory or the experiment. In the last decades, the success of Bayesian statis-
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tics applied to cosmology is mostly due to the exponential increase in computational
power that made massive numerical inference feasible for the first time.

Bayesian statistics can be used for a large set of scientific questions. For instance,
it allows us to constrain, given a model and some data, the best fit values of the
parameters of that model. On top of that, with this statistical approach we can
also discern whether an alternative cosmological model is statistically favoured with
respect to the standard cosmological model. Moreover, Bayesian statistics are also
useful in forecasting analyses, where we aim to test how sensitive a future experiment
will be to the possible detection of a new observable or even, given the experimental
set-up of a future mission, if there is any chance that some extensions of the standard
cosmological model can be ruled out statistically.

This thesis is dedicated to the Bayesian statistical analyses of extensions of the
standard cosmological model using several astronomical data sets, and to the forecast
of new observables or experiments. The use of this methodology is the common
motto in all the chapters of the thesis. After Chapter 1, where we introduce all the
main concepts of cosmology as well as the basics of Bayesian statistics, the thesis is
divided into three different parts depending on which goal the Bayesian statistical
methodology was used for:

o The first part focuses on data science and inflation, and it aims to constrain
inflationary models using advanced inference techniques and forecasting tools.
Chapter 2 shows the first-ever results of the reconstruction of the speed of
sound of the field responsible for driving inflation, using the latest cosmic mi-
crowave background (CMB) data from Planck 2018 and modern algorithms
(Gaussian processes). Chapter 3 is dedicated to the forecast of a particular
class of single-field inflation models, known as a-attractors, for a future CMB
stage-1V experiment using a model-dependent alternative approach for the sam-
pling of the inflationary parameters based on current constraints obtained by
cosmic microwave background and large scale structure data.

e The second part of the thesis is dedicated to the novel concept in cross-correlations
of gravitational-wave (GW) physics and large scale structure observables; in
particular, galaxy clustering. In two projects we study how we can exploit the
information contained in these new observables by forecasting their behaviour
and possible detection using future experimental set-ups and Bayesian statis-
tics. Chapter 4 studies unresolved GW events that form the astrophysical
gravitational-wave background, and how we can use the cross-correlation of the
anisotropies of that background with galaxy clustering to extract both astro-
physical and cosmological information. On the other hand, in Chapter 5 we
investigate how machine learning techniques can be used to reconstruct the
propagation of tensor perturbations by combining the spatial correlation be-
tween resolved GW mergers and galaxies.
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e The third part of this thesis is dedicated to the Fuclid mission and the tasks
of the Euclid Consortium: goals, main survey features and the primary FEu-
clid observational probes. In particular, Chapter 6 focuses on a crucial data
science analysis software for the mission: the code Cosmological Likelihood for
Observables in Fuclid, also known as CLOE. The Bayesian analysis tool CLOE is
designed to be able to constrain the values of the parameters of a model given
the future Fuclid data through performing Bayesian inference. In this chapter,
we describe the implemented cosmological recipe of the primary probes, as well
as the description of the Fuclid likelihood. The results concerning the struc-
ture of CLOE and its performance to constrain cosmological parameters are a
preview of the current state of the Fuclid mission, for which I have dedicated a
vast percentage of my time.
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Samenvatting

De fascinatie voor de nachtelijke hemel. Een eenvoudige blik op het prachtige land-
schap boven ons opent een venster naar de verbeelding. Uit deze fascinatie samen met
onze aangeboren menselijke nieuwsgierigheid, is de passie voor het begrijpen van de
wereld waarin wij leven geboren. Van oude culturen tot nu, dezelfde vragen hielden
ons bezig: "Waar komen we vandaan?"' en "Wat is onze plaats in het heelal?".

Het begrijpen en bestuderen van de kosmos is een onderwerp dat niet alleen weten-
schappers, maar ook de bevolking in het algemeen. Een snelle zoektocht op de pop-
ulairste fora op het internet toont aan dat ze allemaal actieve berichten hebben die
gewijd zijn aan gesprekken over het heela]™| Bovendien wordt elke spannende as-
tronomische ontdekking binnen een paar uur verspreid, zoals het geval was bij de

allereerste foto van het superzware zwarte gat Sgr A*, gemaakt door de Event Hori-
zon Telescope (EHT).

De samenstelling van het heelal, de vermoedelijke oorsprong ervan en de belan-
grijkste dominante kracht, de zwaartekracht, maken deel uit van de popcultuur van
onze beschaving. Maar hoe wordt (en werd) het heelal bestudeerd? We vertrouwen op
astronomische waarnemingen, bijvoorbeeld van sterren en andere massieve, compacte
objecten in het heelal, om onze wetenschappelijke kennis op te bouwen, gebaseerd
op de vergelijking van die waarnemingen met voorspellingen gebaseerd op een aantal
fysische veronderstellingen, die een kosmologisch model vormen. De gemiddelde leek
is bijvoorbeeld bekend met het begrip "Big Bang'.

Kosmologen hebben gevonden dat het heelal ongeveer 13,77 miljard jaar geleden
is ontstaan uit een zeer dichte en hete toestand. Het jonge heelal koelde af ter-
wijl het uitdijde, en het dijt nu nog steeds sneller uit. Ons heelal is opgebouwd uit
twee hoofdbestanddelen: een onbekende materie die gravitationeel op elkaar inwerkt,
genaamd donkere materie, en de stof die verantwoordelijk is voor de versnelde uitdijing
van het heelal, donkere energie. De materie waar wij allemaal van gemaakt zijn, de
baryonische materie, maakt slechts ongeveer 5% uit van de inhoud van het heelal. Het
is dan ook niet verwonderlijk dat begrippen als donkere energie en donkere materie
omgeven zijn door een waas van mysterie die de belangstelling van het publiek wekt.
Wetenschappelijk gezien is het grootste deel van de kennis over de samenstelling van

13Zie bijvoorbeeld https://www.quora.com/Why-do-you-love-to-gaze-at—the-stars-of-the
-night-sky.

181


https://www.quora.com/Why-do-you-love-to-gaze-at-the-stars-of-the-night-sky
https://www.quora.com/Why-do-you-love-to-gaze-at-the-stars-of-the-night-sky

het heelal verkregen door waarnemingen van de kosmische achtergrondstraling (Cos-
mic Microwave Background): de reststraling die in het vroege heelal is uitgezonden
toen de eerste neutrale atomen werden gevormd en fotonen eindelijk konden ver-
strooien en zich vrij door het heelal konden bewegen. Uit deze waarnemingen hebben
we ook geconcludeerd dat ons heelal geometrisch vlak is.

Naarmate het heelal afkoelde en uitdijde, begon de zwaartekracht een grotere rol
te spelen en ontstonden de huidige structuren die in ons heelal waar te nemen zijn:
van de eerste sterren tot de eerste sterrenstelsels, en van de eerste sterrenstelsels
tot de eerste clusters van sterrenstelsels. Deze objecten vormden de zogenaamde
grootschalige structuur van het heelal, die eruitziet als een web. De zwaartekracht
is echter niet de enige speler bij de vorming van de grootschalige structuur van het
heelal. Er moet een onderliggende Gaussische verdeling van primordiale dichthei-
dsverstoringen bestaan die de oorsprong van de huidige structuur kan verklaren. Tot
nu toe wordt aangenomen dat inflatie, een exponentiéle expansiefase in het oerheelal,
het mechanisme is voor de productie van deze primordiale kiemen. Het eenvoudigste
model van inflatie is verenighaar met de veronderstelling van een Gaussische verdeling
van de primordiale dichtheidsverstoringen, en verklaart tevens waarom de kosmolo-
gische waarnemingen erop wijzen dat het heelal causaal verbonden en vlak is. Het
inflatieparadigma vormt samen met de aanname dat ons heelal voor het grootste deel
uit donkere materie en donkere energie bestaat, de basis van het standaard kosmolo-
gisch model.

In de komende jaren zullen naar verwachting steeds meer kosmologische waarne-
mingen beschikbaar komen om het heelal te bestuderen. In het bijzonder zal gebruik
worden gemaakt van de informatie die is gecodeerd in de grootschalige structuur
van het heelal. Daartoe zijn nieuwe missies en experimenten gericht op het maken
van grote verzamelingen van gegevens van van sterrenstelsels, die informatie zullen
bevatten over hun posities aan de hemel, hun vormen en ook hun roodverschuivin-
gen. Met de catalogi zullen kosmologen de samenstelling van het heelal bestuderen
aan de hand van waarnemingen zoals clustering van sterrenstelsels (GC) en zwakke
lenseffecten (WL). Een van deze experimenten, de middelgrote Euclid missie van de
Europese ruimtevaartorganisatie (European Space Agency), waarvan de satelliet naar
verwachting binnenkort zal worden gelanceerd, is erop gericht de fysische oorsprong
van de versnelde uitdijing van het heelal te begrijpen en inzicht te krijgen in de aard
van donkere materie. De Fuclid missie zal ook de begincondities bestuderen die aan
de basis lagen van het ontstaan van het heelal en die verantwoordelijk waren voor de
vorming van de structuur van het kosmische web. Daartoe zal Fuclid de grootschalige
structuur van het heelal in kaart brengen door een van de grootste catalogi van ster-
renstelsels ooit te maken.

Wat is de methodologie die wordt gebruikt om astrofysische waarnemingen te
vergelijken met fysische modellen om conclusies te trekken over het heelal waarin
we leven? Kosmologen hebben in de laatste 30 jaar gebruik gemaakt van statistiek,
in het bijzonder van een Bayesiaanse statistische benadering, om verschillende kos-
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mologische modellen te toetsen aan data. Bayesiaanse statistiek is gebaseerd op het
theorema van Bayes. Dit theorema zegt ons dat onze graad van geloof kan worden
gecodeerd in een waarschijnlijkheidsverdeling. De Bayesiaanse statistiek gaat ervan
uit dat de kansverdeling van een aantal parameters van een model, gegeven een aantal
geobserveerde gegevens, recht evenredig is met het product van de kansverdeling die
de waarschijnlijkheid geeft van het observeren van de gegevens gegeven het model
M en de parameterwaarden maal de kansverdeling die een aantal a priori bekende
informatie over de theorie of het experiment codeert. In de laatste decennia is het
succes van de Bayesiaanse statistiek toegepast op de kosmologie vooral te danken aan
de exponentiéle toename van de rekenkracht van computers die massale numerieke
inferentie voor het eerst haalbaar maakte.

Bayesiaanse statistiek kan worden gebruikt voor een groot aantal wetenschap-
pelijke vraagstukken. Het stelt ons bijvoorbeeld in staat om, gegeven een model
en enkele gegevens, de best passende waarden van de parameters van dat model te
bepalen. Daarnaast kunnen wij met deze statistische benadering ook nagaan of een
alternatief kosmologisch model volgens de statistiek de voorkeur geniet ten opzichte
van het standaard kosmologisch model. Bovendien zijn Bayesiaanse statistieken ook
nuttig in voorspellingsanalyses, waarin we willen testen hoe gevoelig een toekomstig
experiment zal zijn voor de mogelijke detectie van een nieuw waarneembaar object
of zelfs, gegeven de experimentele opzet van een toekomstige missie, of er een kans is
dat sommige uitbreidingen van het standaard kosmologisch model statistisch kunnen
worden uitgesloten.

Dit proefschrift is gewijd aan de Bayesiaanse statistische analyses van uitbreidin-
gen van het standaard kosmologisch model met behulp van verschillende astronomis-
che datasets, en aan de voorspelling van nieuwe waarneembare gegevens of experi-
menten. Het gebruik van deze methodologie is de rode draad van het proefschrift.
Na hoofdstuk 1, waarin we de belangrijkste concepten van de kosmologie en de ba-
sisprincipes van de Bayesiaanse statistiek introduceren, is het proefschrift verdeeld in
drie verschillende delen, athankelijk van het doel waarvoor de Bayesiaanse statistische
methodologie werd gebruikt:

o Het eerste deel richt zich op datawetenschap en inflatie, en het heeft als doel in-
flatiemodellen te begrenzen met behulp van geavanceerde inferentietechnieken
en voorspellingsinstrumenten. Hoofdstuk 2 toont de allereerste resultaten
van de reconstructie van de geluidssnelheid van het veld dat verantwoordelijk
is voor de inflatie, met behulp van de nieuwste gegevens over de kosmische
achtergrondstraling (CMB) van Planck 2018 en moderne algoritmes (Gaussis-
che processen). Hoofdstuk 3 is gewijd aan de voorspelling van een bepaalde
klasse van inflatiemodellen met één veld, bekend als -attractoren, voor een
toekomstig CMB fase-IV-experiment met behulp van een model-athankelijke,
alternatieve benadering voor de verzameling van de inflatieparameters op basis
van de huidige beperkingen die verkregen zijn met gegevens over de kosmische
achtegrondstraling en de grote schaal structuur.
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o Het tweede deel van het proefschrift is gewijd aan de nieuwe interesse in de cross-
correlaties van gravitatie-golf (GW) fysica en grote schaal structuur waarnemin-
gen; en in het bijzonder, clustering van sterrenstelsels. In deze twee projecten
bestuderen we hoe we de informatie in deze nieuwe waarneemgegevens kun-
nen exploiteren door hun gedrag en mogelijke detectie te voorspellen met be-
hulp van toekomstige experimenten en Bayesiaanse statistiek. In hoofdstuk
4 bestuderen we de ruis van overlappende GW signalen die de astrofysische
zwaartekrachtgolfachtergrond vormen, en hoe we de correlatie tussen de struc-
tuur van die achtergrond en de clustering van melkwegstelsels kunnen gebruiken
om zowel astrofysische als kosmologische informatie te verkrijgen. Anderzijds
onderzoeken we in hoofdstuk 5 hoe machine learning technieken kunnen wor-
den gebruikt om de propagatie van tensorverstoringen te reconstrueren door de
ruimtelijke correlatie tussen individueel herkenbare GW bronnen en melkwegs-
telsels te combineren.

o Het derde deel van dit proefschrift is gewijd aan de Fuclid missie en de taken
van het Euclid Consortium: doelstellingen, hoofdkenmerken van de survey en
de primaire Fuclid-observatiesondes. In het bijzonder wordt in hoofdstuk 6
aandacht besteed aan cruciale software voor de data-analyse voor de missie: de
code Cosmological Likelihood for Observables in Euclid, ook bekend als CLOE.
Dit Bayesiaanse analyse-instrument is ontworpen om de parameterwaarden van
een model te kunnen afleiden uit de toekomstige metingen van de Fuclid missie.
In dit hoofdstuk beschrijven we het geimplementeerde kosmologische recept van
de primaire sondes, evenals de beschrijving van de statistische waarschijnlijkheid
van Fuclid data. De resultaten met betrekking tot de structuur van CLOE en
hoe goed de code presteert bij het beperken van kosmologische parameters zijn
een voorproefje van wat we hopen te leren van de Fuclid missie, ik een groot
deel van mijn tijd heb besteed.
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