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Abstract: As heart failure (HF) is a devastating health problem worldwide, a better understanding
and the development of more effective therapeutic approaches are required. HF is characterized by
sympathetic system activation which stimulates α- and β-adrenoceptors (ARs). The exposure of the
cardiovascular system to the increased locally released and circulating levels of catecholamines leads to a
well-described downregulation and desensitization of β-ARs. However, information on the role of α-AR
is limited. We have performed a systematic literature review examining the role of both cardiac and
vascular α1-ARs in HF using 5 databases for our search. All three α1-AR subtypes (α1A, α1B and α1D) are
expressed in human and animal hearts and blood vessels in a tissue-dependent manner. We summarize
the changes observed in HF regarding the density, signaling and responses of α1-ARs. Conflicting
findings arise from different studies concerning the influence that HF has on α1-AR expression and
function; in contrast to β-ARs there is no consistent evidence for down-regulation or desensitization of
cardiac or vascular α1-ARs. Whether α1-ARs are a therapeutic target in HF remains a matter of debate.
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1. Introduction

The sympathetic nervous system primarily regulates cardiac function via β-adrenoceptors
(β-ARs) [1,2], whereas α1-adrenoceptors (α1-ARs) play an important role in the regulation of vascular
tone [3]. Yet, α1-ARs are also expressed in various cell types of the heart and can contribute to the
regulation of cardiac contraction [4,5], rhythm [6,7] and hypertrophy [8]. However, the role of cardiac
α1-ARs appears to be species-dependent with a considerable contribution in rodents but a much
smaller (if any) contribution in the healthy human heart [1]. On the other hand, cardiac expression
of other subtypes such as β3-ARs also appears to be lower in the human heart than in that of other
species, but such receptors become up-regulated in congestive heart failure (CHF) [9].

The sympatho-adrenal system is activated in acute and chronic heart failure (HF). Accordingly,
plasma levels of noradrenaline and its co-transmitters are increased in CHF [10,11]. This appears to
correlate with a higher risk of mortality [12]. In line with this, patients with reduced left ventricular
function appear to be more prone to post-operative vasoplegia that additionally increases the mortality
and morbidity risk [13,14]. The regulation of β-ARs in CHF has been reviewed extensively and appears
distinct for the three β-AR subtypes [1].
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α1-ARs are also a subfamily with three members: α1A, α1B and α1D [15]. Data outside the
cardiovascular system suggest that they can undergo differential regulation upon extended agonist
exposure [16]. Nevertheless, until now, the α1-AR regulation in HF has not been fully elucidated and
results might vary a lot between different studies. Against this background we discuss the expression
and function of α1-ARs and their subtypes in the heart and vasculature of patients with CHF and
animal models thereof based upon a systematic review of the literature.

2. Materials and Methods

A broad literature search was performed in 5 databases (PubMed/MEDLINE, Embase, Web of
Science, Cochrane Library, Emcare). The search was performed using the MeSH terms “Heart failure”
and “Receptors, Adrenergic alpha 1” and by combining each term with different keyword variations
and free text words. No language limits were applied. The final search was performed on the 15th of
April 2020. Details of the search strategy are provided in the Supplementary Materials.

Animal and human studies were included that investigated changes of cardiac and/or vascular
α1-AR expression or function in CHF. There were no limitations regarding the study design or the
etiology/model of CHF. Two independent reviewers (GKM and OP) assessed all articles for eligibility
that the search strategy had yielded. The first screening was performed by assessing only the titles
and abstracts of the articles, while the final decision for inclusion was based upon reading the full
text of the selected articles. The reference lists of all relevant articles and reviews were manually
checked for inclusion of additional eligible studies that were not identified by the primary search
strategy. Any disagreements that emerged during the study selection process were resolved by
discussion. A Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA,
www.prisma-statement.org) flowchart is shown as Figure 1.

The data from the eligible studies were retrieved and recorded in predefined Google Spreadsheet
forms that offer the possibility of auditing. Data collection included study characteristics and study
design information and changes that were identified regarding the expression and function of α1-ARs
in cells, tissue and in vivo.

3. Considerations Related to Data Interpretation

Most investigators have reported mRNA levels after normalization to a reference gene, often
glyceraldehyde-3-phosphate dehydrogenase (GADPH) [17]. However, they typically failed to
document whether the expression of the reference gene was stable. A stable expression of reference
genes cannot necessarily be expected [18]. Specifically, studies in multiple cell types and tissues [19]
including the heart [2] have found that exposure to β-AR agonists can down-regulate GAPDH
expression; based on the elevated plasma catecholamine levels in CHF [10,11] this is likely to be of
relevance for the mRNA data discussed below.

Cardiac α1-AR expression at the protein level has primarily been studied by radioligand binding and
antibody-based techniques. While radioligands such as [3H]-prazosin or [125I]-BE 2254 (also known as
[125I]-HEAT) have high specificity for α1-ARs, they do not discriminate between subtypes and, particularly in
thecaseof [3H]-prazosin, arenotverysensitive. Incontrast, antibody-basedapproachessuchas immunoblotting
or immunohistochemistry potentially can be subtype-selective and be used to examine distribution within a
tissue. However, multiple studies have demonstrated that the vast majority of commercially available α1-AR
subtype antibodies lack target specificity when tested under stringent conditions [20–22]. These limitations
need to be considered in the interpretation of the subsequently discussed studies.

Another important factor that might influence the results of different studies is the exact location
of α1-ARs in the peripheral vasculature. It has been demonstrated that α1-AR receptors are located not
only on smooth muscle cells, but, also on endothelial, adventitial and nerve cells [23,24]. This is a rather
important finding that should be taken into account when interpreting results from expression and
functional studies, since the total α1-AR mRNA and the actual role of specific α1-subtypes mediating
vascular responses might differ depending on the specific cell on which they are expressed.

www.prisma-statement.org
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CHF can be caused by different pathologies, for instance by chronic myocardial ischemia, valvular
heart disease or viruses, or can be idiopathic. As CHF in humans can be caused by a variety of
pathophysiologic mechanisms, it is important to realize that subjects within an animal model typically are
more homogeneous than patient cohorts; on the other hand, each model reflects a different cause and,
potentially, a different pathophysiology. Among the many reported animal models of CHF, post-myocardial
infarction [25–27], cardiac pacing causing tachycardiomyopathy [28], drug-induced [29,30] and hereditary
models [31] have been applied to studies of cardiovascular α1-ARs. Finally, pathophysiology and
regulation of α1-ARs may not only differ between patients and experimental models but also between
species. While most animal studies related to cardiovascular α1-ARs in CHF were done with rats [2,26,32],
guinea pigs [33,34], mice [27,29], hamster [35], cats [36] and dogs [37,38] have also been used.

4. Results

4.1. Study Selection

The literature search resulted in 1461 unique, original articles. G.K.-M. and O.P. independently
screened the titles and abstracts of all the articles and excluded 1312 articles because of lack of relevance.
After assessing the full text of the remaining 149 potentially relevant articles, and resolving any
disagreements, the two reviewers decided to include 65 articles (Figure 1). Additional relevant studies
that were retrieved from other articles were also included. This study selection process led to an
inclusion of 33 unique reports on cardiac and 31 unique reports on vascular α1-AR. One study was
reviewed for both cardiac and vascular α1-ARs leading to a total number of included studies of 65.
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4.2. Cardiac α1-AR

4.2.1. mRNA Expression

There are three α1-AR subtypes: α1A-, α1B- and α1D-ARs which have been identified in both
animal and human hearts at the mRNA level [1,39,40]. All studies agree that α1A-AR is the most
abundant subtype in the heart but the presence of α1B- and α1D-AR mRNA were also confirmed [1].
Although animal hearts express more α1-AR in the heart, human and rodent hearts are reported to
locate α1-AR subtypes similarly, as α1A- and α1B-subtypes are predominantly found in myocardium
whereas the α1D-subtype is expressed in coronary arteries [40,41]. Myagmar et al. claimed that
α1A-ARs are present in a myocyte subset while α1B-ARs are in all cells [42]. Several studies reported
changes in α1-AR subtype mRNA levels in CHF, but the results are heterogeneous (Table 1).

Table 1. Summary of the changes in cardiac mRNA studies for total α1-adrenoceptors (AR) and their
subtypes in chronic heart failure.

mRNA Species Tissue α1A-AR α1B-AR α1D-AR Total α1-AR

Fischer et al. [43] human LV, RV, LA, RA ↑ ↑ - n/a

Jensen et al. [41] human LV and RV ↑ X X X

Monto et al. [17] human LV and RV X X X n/a

Brattelid et al. [2] rat LV X X ↓ n/a

↑: increased; ↓: decreased; X: unchanged; n/a: no data available; LV, left ventricle; RV, right ventricle; LA, left atrium;
RA, right atrium.

In human failing hearts, Fischer et al. demonstrated that mRNA of α1A- and α1B-ARs in the left
ventricle was increased while no change in mRNA levels was observed in other cardiac regions [43].
Similarly, Jensen et al. reported that α1A mRNA was increased in failing left ventricle LV and tended to
increase in failing RV, but there was no change in α1B and α1D mRNA in any region [41]. On the other
hand, Monto et al. did not confirm an altered expression of the three subtypes in human failing hearts;
however, the relative abundance increased when considering the reduced β-AR expression [17]. They
suggested that expression of α1A-ARs in the LV correlates with the left ventricular ejection fraction
(LVEF) suggesting that this subtype may contribute to maintain cardiac inotropy in the failing heart.
Moreover, a study in a rat coronary ligation model of CHF reported α1D-AR mRNA to be decreased; a
numerical reduction of α1A- and α1B-AR mRNA did not reach statistical significance [2].

4.2.2. Protein Expression

Cardiac α1-ARs were first identified at the protein level in rats by Williams and Lefkowitz [44]
and thereafter confirmed in many species. Their quantitative expression at the protein level ranges
from a relatively high expression in rodents to a low expression in humans, where their role appears
considerably lower than that of β-ARs [1,39,40]. Despite numerous studies, data on α1-AR binding
properties in human HF have remained inconsistent (Table 2). The density of α1-ARs was reported as
increased [45–48], unaltered [41,45,49–52], or decreased [43,53].
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Table 2. Summary of cardiac α1-adrenoceptor (AR) protein expression in chronic heart failure.

Binding Species Tissue α1A-AR α1B-AR α1D-AR Total α1-AR

Böhm et al. [49] human papillary n/a n/a n/a X

Bristow et al. [50] human LV and RV n/a n/a n/a X

Corr et al. [36] cat ventricle n/a n/a n/a ↑

Dixon et al. [54] rat LV n/a n/a n/a ↑

Erdmann and Böhm [51] human papillary n/a n/a n/a X

Fischer et al. [43] human LV, RV, LA, RA ↓ ↓ ↓ n/a

Gopalakrishnan et al. [32] rat LV and RV n/a n/a n/a X

Hwang et al. [45] human explanted hearts n/a n/a n/a ↑ (in ICM)
X (in DCM)

Jensen et al. [41] human LV and RV X (↑ in RV) X undetected X

Karliner et al. [33] GP whole heart n/a n/a n/a ↑

Limas et al. [52] human LV and RV n/a n/a n/a ↓ (in severe HF)
X (in mild)

Litwin et al. [25] rat LV n/a n/a n/a X

Maisel et al. [34] GP LV n/a n/a n/a

Meggs et al. [26] rat LV and RV n/a n/a n/a X

Re et al. [37] dog LV, RV, LA, RA n/a n/a n/a ↓

Shi et al. [53] human LV ↓ X n/a ↓

Sjaastad et al. [55] rat LV and RV n/a n/a n/a X

Steinfath et al. [46] human LV n/a n/a n/a ↑

Watanebe et al. [35] hamster whole heart n/a n/a n/a Slight↓

Zhao et al. [30] rat RA and LV n/a n/a n/a ↓

Rowley et al. [56] rat atria n/a n/a n/a X

Vago et al. [47] human LV n/a n/a n/a ↑

GP: guinea pig, ↑: increased; ↓: decreased; X: unchanged; n/a: no data available; LV, left ventricle; RV, right ventricle;
LA, left atrium; RA, right atrium.

However, even a lack of change in α1-AR protein expression may be biologically relevant for two
reasons: Firstly, it is interesting to note that expression does not consistently decrease despite exposure
to elevated plasma catecholamines [10,11]. However, studies outside the cardiovascular system have
found that prolonged agonist exposure does not always lead to down-regulation of α1-AR subtypes
and in some cases can even be associated with an up-regulation [16]. Secondly, an unaltered expression
of α1-ARs in face of a consistently found down-regulation of β-ARs [1,39] implies a change in the
relative role of the two adrenoceptor sub-families, which in its own right may have implications for the
regulation of cardiac function [50,55].

A possible explanation for the controversial results on the regulation of cardiac α1-AR mRNA
and protein is heterogeneity based on various etiologies of CHF. For instance, it was reported
that α1-AR protein was increased in ischemic human cardiomyopathy but remained constant in
dilated cardiomyopathy within the same study [45]. Similarly, the degree of HF may contribute to
heterogeneous findings. While α1-AR density was not changed in a mild-to-moderate heart failure
group, it was decreased in severely failing human hearts [52]. Finally, the change in α1-AR density
may depend on the cardiac region under investigation: α1A- and α1B-AR protein were not changed in
failing left ventricle, but α1A-AR binding was increased in right ventricle [41].

Studies in rats mainly found that α1-AR density remained constant after myocardial
infarction [25,26,32,55,56], which is in line with the lack of a consistent change in human CHF
(Table 2). However, an increase was also reported in a rat model of myocardial infarction [54].
Noradrenaline infusion, on the other hand, resulted in a decrease in α1-AR density in rats [30],
demonstrating that cardiac α1-ARs are in principle susceptible to agonist-induced down-regulation.

There is also a substantial number of studies investigating the changes in cardiac α1-ARs using
different animal models. Cardiomyopathic hamster [35] and dog [37] hearts were shown to have



Cells 2020, 9, 2412 6 of 23

decreased α1-AR concentrations. In contrast, an increase in cardiac α1-AR density was demonstrated
in a guinea pig model of HF caused by aortic constriction [33]. In addition, increase α1-AR densities
were reported in cat [36] and guinea pig [34] ischemia models following coronary ligation.

4.2.3. α1-AR Subtypes

For the interpretation of subtype expression data, there is a technical issue between α1-AR mRNA
and protein levels. While mRNA of all α1-AR subtypes were detected in animal and human hearts,
binding studies demonstrated the presence of only α1A- and α1B-subtypes, but not α1D-AR [39,41,57].
Lack ofα1D-AR expression at the protein level has been shown in many tissues expressing corresponding
mRNA [58].

Animal species do not only differ from humans by expressing more α1-AR in the heart but also
by exhibiting a different subtype expression profile. For instance, rat [59] and mouse [58] hearts
were reported to express α1A/α1B-AR in an approximate 20/80 ratio. Moreover, previous studies
suggest that the three subtypes mediate different effects in the heart. α1A-AR has been reported to
mediate positive inotropy in right ventricles of human hearts and this response has been found to
be reduced only slightly in failing hearts. Thus, α1A-subtype-mediated inotropy is suggested to be
significant source of inotropic support [60]. However, in nonfailing murine hearts, stimulation by
the α1A-AR selective agonist, A61603 or the non-subtype-selective α1-AR agonist, phenylephrine
mediated negative inotropic effects in right ventricle which was switched to positive inotropy in failing
hearts [29]. On the other hand, the inotropic response mediated by α1B-subtype remained negative
and unaltered. In the light of these findings, the authors suggested that α1A-subtype may play a role in
improving contraction in RV failure and might be a therapeutic target. Another study using transgenic
mice with heart-specific overexpression of α1A-AR displayed enhanced inotropy after myocardial
infarction [61]. Moreover, α1D-AR mRNA decreased in rats after coronary ligation; however, this study
was inconclusive because there was a non-significant trend for reduced mRNA of α1A- and α1B-ARs [2].
Thus, the authors proposed that a decrease in α1D-AR might be a protective response of the failing
heart. However, the relevance of these data remains unclear because studies in several mouse tissues
have demonstrated that many tissues express α1D-AR at the mRNA but not at the protein level [58].

Patients who receive left ventricular assist device to unload the failing heart and improve cardiac
function were shown to have a redistribution of α1A-AR from a peri-myocytic to an intra-myocytic
location along with a rise in the overall density of receptors [62]. On the other hand, α1A-AR subtype
was decreased in human dilated cardiomyopathy and this result was concluded to be consistent with
the theory that α1A-AR agonism may be cardioprotective [53]. Fischer et al. demonstrated that α1A-
and α1B-AR mRNA levels in left ventricle of human failing hearts were increased, although α1A-, α1B-
and α1D-AR binding sites were decreased [43]. They suggested that a decrease of α1B-AR can have
cardioprotective effects while a decrease of α1A-AR is more likely the result of impaired heart function.

4.2.4. Signaling Pathways Involved

A schematic representation of α1-AR signal transduction is shown in Figure 2. The prototypical
signaling pathway of α1-ARs involves coupling to Gq with subsequent activation of phospholipase
C (PLC), which releases Ca2+ from intracellular stores and activates protein kinase C (PKC) [63].
However, cardiac α1-ARs can also couple to Gi [5,7], G12/13 [64], even Gs proteins [65] and Gh which
is a GTP-binding protein with Transglutaminase activity [66] and to pathways such as inhibition of
adenylyl cyclase [67], modulation of Ca2+, K+ and Cl- channel activity [7,68,69], ras activity [70] or
activation of various mitogen activated protein kinases [71]. Most of these pathways have also been
studied in human CHF or CHF animal models [72].
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Activation of Gq-signaling pathways mediates the development of hypertrophy and the transition
to HF [73]. Overexpression of Gq was demonstrated to result in marked hypertrophy [74] and HF [75].
Moreover, inhibition of Gq-mediated signaling was shown to inhibit cardiac dysfunction [76,77]. On the
other hand, multiple studies in humans and several animal species have shown that HF is accompanied
by an increased expression of Gi at the mRNA and protein level, whereas a reduced expression of
Gs has been found less consistently [78]. Reduced GTP binding with Transglutaminase activity of
Gαh were found in human HF [45]. α1-AR coupling to a GTP binding protein was detected only in
pathological, but not in healthy human hearts [47].

α1-AR-mediated phosphoinositol turnover is not changed in both animal and human studies
when accompanied by an unaltered receptor density in human [50] and rat [56] HF. On the other
hand, in a rat model of myocardial infarction, an increase in phosphoinositol turnover was reported
along with an increase in G-protein content and an upregulation of α-skeletal actin which suggests an
involvement of α1-ARs in the reactive hypertrophic response [26].

α1-AR stimulation increases both the intracellular Ca2+ concentration, which activates muscle
contraction, but also the Ca2+ sensitivity of cardiomyocytes. α1-AR-mediated Ca2+-transients and
phosphorylation of cardiac myosin regulatory light chain were increased in a mouse right ventricular
HF model [29]. The increase in Ca2+ sensitivity expected from these observations was reported in a
canine HF model, apparently occurring via the Gq-RhoA-ROCK signaling pathway [38]. Similarly, the
switch from negative to positive inotropy observed in mouse failing right ventricles (see below) was
claimed to be mediated through a pathway involving increased myofilament Ca2+ sensitivity [27].

4.2.5. Cell and Tissue Responses

α1-AR stimulation induces a positive inotropic effect in isolated cardiac preparations such as
atria, left and right ventricles (Table 3) [25,55,56,60]. The positive inotropic effect of α1-AR stimulation
involves multiple subtypes, but mostly occurs via α1B-AR in rodents; when these become inactivated
in vitro, the α1A-component becomes stronger and compensates for the loss of α1B response resulting
in overall maintained contractile responses [79]. However, depending on experimental conditions
α1-AR stimulation can also have negative inotropic effects (Table 3) [29]. Moreover, stimulation of
cardiac α1-AR can increase heart rate [56], but systemic stimulation can reduce heart rate secondary to
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an increase in total peripheral resistance and activation of the baroreflex [80], which can mask direct
chronotropic effects of α1-AR stimulation.

Table 3. Summary of changes in cardiac α1-adrenoceptor (AR)-mediated responses in chronic
heart failure.

Species Preparation α1-AR-mediated Responses

Böhm et al. [49] human papillary X

Erdmann and Böhm [51] human papillary X

Litwin et al. [25] rat papillary X

Sjaastad et al. [55] rat papillary X

Cowley et al. [29] mouse trabecula α1A–med↑
α1B–med X

Janssen et al. [60] human trabecula slight ↓

Steinfath et al. [46] human trabecula ↓

Wang et al. [27] mouse trabecula in RV switch from NIE to PIE
in LV X

Skomedal et al. [81] human trabecula PIE

Rowley et al. [56] rat atria ↓

↑: increased; ↓: decreased; X: unchanged; RV: rigt ventricle; LV: left ventricle; NIE: negative inotropic effect; PIE:
positive inotropic effect.

The chronotropic and inotropic responses to the α1-AR agonist phenylephrine were decreased in
isolated right and left atria of rats with myocardial infarction [56]. As this was not accompanied by
alterations of receptor density or phosphoinositol turnover, this may reflect changes of post-receptor
signaling (see above). In contrast, several studies in isolated papillary muscle from humans [49,51] or
rats [25,55] reported unaltered inotropic responses in CHF, which was in line with unaltered receptor
density reported in these studies. The positive inotropic response to α1A-AR stimulation in human right
ventricle also exhibited little change in HF in two studies [60,81]. In contrast, the phenylephrine-induced
positive inotropic response in human CHF was abolished in another study [46]. In mouse models,
negative inotropic effect observed in control animals was switched to positive inotropy in the failing
right ventricles [29]. However PE-mediated positive inotropy in LV of nonfailing hearts remained
unchanged in failing mouse hearts after myocardial infarction [27]. Cardiomyopathic hearts of Syrian
hamsters were shown to have increased inotropy accompanied by increased Ca2+ levels and pertussis
toxin-sensitive G-proteins [82]. Thus, with few exceptions, most studies reported little change in
inotropic responses in the failing heart across species and models. This may nonetheless be biologically
relevant because it would indicate an α1/β-AR balance in light of the consistently found reduction in
β-adrenergic function in CHF [50,55].

Moreover, there are opposing views on the role of α1-AR subtypes on hypertrophy. While some
suggest that α1A-AR were found to mediate hypertrophy development in neonatal rat cardiomyocytes
in vitro [8], transgenic overexpression of α1B-AR caused a hypertrophic response resulting in HF, while
α1A-AR overexpression did not affect hypertrophy and did not hasten development of HF [29,83].

4.3. Vascular α1-AR

4.3.1. mRNA Expression

Multiple studies have explored the expression of α1-AR subtype mRNA in arteries and veins of
various species including rat [84–88], rabbit [89–91] and human [89,92–94]. It appears from these and
many other studies, that all three α1-AR subtypes are expressed in the vasculature of these species
in a species- and vascular bed-dependent manner. This conclusion is in line with studies on the
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role of α1-AR subtypes in functional studies [3]. Our search did not identify any animal studies
reporting on the regulation of vascular α1-AR subtype mRNA in CHF. However, it is likely that such
regulation occurs because CHF is characterized by increased circulating catecholamine levels and the
endogenous agonist noradrenaline has been shown to transiently down-regulate α1-AR mRNA in
rabbit aortic smooth muscle cells whereas the down-regulation of α1-AR protein was longer lasting
(at least 96 h) [95]. Moreover, CHF can be associated with hypoperfusion and hypoxia of tissues
and vascular α1-AR mRNA expression can be regulated by hypoxia [96]. Vascular α1-AR mRNA
expression is also regulated by age [97]. HF did not appear to affect the total levels of α1-AR mRNA in
human coronary arteries [98]. On the contrary, the use of β-blockers was associated with a significant
decrease in both α1D and total α1-AR mRNA levels. α1D-AR appeared to be the principal receptor in
human epicardial coronary arteries, which resembles the mouse coronary arteries [99,100].

4.3.2. Protein Expression

Quantitative, ligand-binding studies have been performed in order to assess theα1-AR distribution
in the various vascular beds of different species. Existing discrepancies might be due to interspecies
differences, variant α1-AR subtype distribution in the peripheral vasculature, differences in models
of HF, for example pacing-induced HF versus myocardial infarction, or even due to poorly
reproducible results.

Such studies have been performed in animals and humans without coexisting diseases in order
to assess the physiological α1-ARs at the protein level. In humans a considerable difference in
α1-AR protein expression has been demonstrated between somatic (mammary artery) and splanchnic
arteries [97]. However, this was not true for veins, in which theα1-AR density seemed to be independent
from differences in vessel diameter. This might be explained by the importance of splanchnic circulation,
especially during a situation of hypovolemic shock. Sympathetic stimulation of α1-ARs in those
vascular territories leads to maintenance of blood flow and O2 delivery to vital organs. On the other
hand, constriction of conduit arteries and veins contribute to the preservation of blood pressure and
cardiac afterload. In human epicardial coronary arteries 8.7 fmol/mg protein of total α1-ARs were
found, of which 75% constituted of the α1D subtype, almost twice as much as in the left ventricle [41,98].

Considering that progression of HF is associated with a decrease in β-AR protein in the heart,
one could argue that similar findings would be expected for α1-ARs. On the contrary, α1-AR
density has been reported to be increased, yet not statistically significant, in studies with myocardial
infarction-induced CHF in rats [101,102]. However, the lack of statistical significance of this change
leads to rather inconclusive results.

4.3.3. α1-AR Subtypes

All three subtypes have been identified in the peripheral vasculature of various species, however
the subtype distribution varies between animals and humans, between different vascular beds and
with age. For instance, α1B and α1D subtype mRNAs have been detected in human aorta [93] and
are considered to mediate vascular constriction. A controversy exists in the rat aorta since some
studies have identified only the subtype α1D [103–105], while others report both α1B and α1D-ARs [101].
The α1B subtype has been recognized to mediate vasoconstriction after sympathetic stimulation in the
mouse, rabbit and dog aorta [106–108]. Similarly, mesenteric responses in humans have been found
to be mediated by all three α1-AR subtypes [109], whereas in rats mesenteric vascular constriction is
mediated by α1D and α1B subtypes in superior mesenteric artery and the mesenteric resistance arteries
respectively [101,104]. In the small mesenteric arteries the subtypeα1A has also been identified [101,110].
The same receptor was found to mediate contractile responses in rat small renal arteries [111].

Similarities in vascular tone regulation between different species also exist. As it was mentioned
before, α1D is recognized as the main subtype that mediate coronary contraction in humans [98] and
mice [99,100] and the same has also been reported in rats [105]. In this latter study, it was additionally
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shown that CHF did not modify the function of α1D-AR, neither in the carotid artery nor in the aorta,
whereas the α1D-AR-mediated vasoconstriction was enhanced in older animals.

Furthermore, blood pressure regulation in mice is considered to be achieved via the stimulation
of all three subtypes. This is confirmed in knockout mice studies in which deletion of any subtype
results in a decrease in resting blood pressure [106,112,113].

The heterogeneous α1-AR population in the various vascular beds might be modified depending
on the disease state. In support of this, antagonist studies have explicitly displayed an alteration
of the antagonism against α1-ARs before and after the onset of CHF [114–117] and showed changes
from competitive to non-competitive antagonism, or the other way around, which, however, was also
related to the specific agonist and vessel studied. Distinct patterns of antagonism have been identified
in different disease states and in different vessels. The specific subtype populations, however, and their
involvement in the vascular responses in different disease settings are still to be elucidated.

4.3.4. Signaling Pathways Involved

Changes in α1-AR responsiveness due to chronic exposure of the peripheral vasculature to the
endogenously released catecholamines might also derive from alterations in signal transduction.
These changes might be due to modification of Ca2+ sensitivity and/or other changes in the signaling
pathways involved. For example, the continuous exposure of smooth muscle cells from rabbit aorta to
α1-AR agonists led to a major loss in sensitivity, which did not seem to be due to down-regulation of
α1-ARs, but rather to blunting of phosphatidylinositol turnover [118].

Disease progression might also modify the dependency of α1-AR-mediated vascular contraction
on extracellular Ca2+ which seems to increase in end-stage HF [119,120]. More precisely, the existence
of a high affinity component of the α1-AR-mediated responses was identified which is inhibitable by a
PKC inhibitor, polymyxin B, and which becomes apparent with the progression of HF. Interestingly, in
this study, the dorsal pedal artery presented lower dependency on PKC activation than the saphenous
vein, which underlines the existing differences between separate vascular beds [120]. Likewise, after
investigating the α1-AR in mesenteric resistance arteries from CHF rats, it was confirmed that Ca2+

plays a more crucial role in the vascular contractility as CHF develops [121]. Furthermore, it has
been demonstrated that the diminished contractile response of rat mesenteric resistance arteries to
phenylephrine and Ca2+ is not due to changes in Ca2+ sensitivity, nor in intracellular Ca2+ release,
but rather to changes in the α1-AR-triggered Ca2+ influx [102].

Other studies, however, have identified a modification in the sensitivity of α1-AR vasoconstriction
to Ca2+. For instance, in CHF rats an increased responsiveness of CHF femoral resistance arteries was
identified which appeared to be the result of first, a RhoA/Rho kinase-depended increase in sensitivity
to Ca2+ and second, of the IP3-induced increase in intracellular Ca2+ [122]. On the contrary, this arterial
sensitivity to Ca2+ was reported to be decreased in femoral resistance and muscle resistance arteries of
CHF rats, which presented as a dissociation between the intracellular Ca2+ and the generated wall
tension [123].

4.3.5. Cell and Tissue Responses

α1-ARs constitute an important homeostatic mechanism that contributes to the maintenance of
peripheral vascular resistance at normal conditions and also in response to shock. Nevertheless, α1-AR
regulation and function might alter due to disease. Even though HF is characterized by enhanced
vascular resistance [124], there is little, and conflicting evidence to date concerning the vascular
contractile responses to α1-AR stimulation in HF vessels.

The chronic sympathetic stimulation during HF might result in the desensitization of vascular
α1-AR and consequently, in the failure of the contractile apparatus to function properly. Attenuation
of α1-AR responsiveness after continuous exposure to catecholamines has been validated in various
animal studies [125,126] but also in vitro [127,128]. However, despite the fact that several studies
have tried to assess the α1-AR mediated vascular responses in both animals and humans with HF,
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the findings are not unanimous (Table 4). Multiple studies have shown an increase in vascular
responsiveness to α1-AR stimulation in animals [114–117,119,120,122,129–131]. On the contrary, others
have reported desensitization of α1-ARs in the peripheral vasculature in animals [102,121,132–136]
and in humans [137–140], while numerous studies failed to demonstrate any alterations of the α1-AR
responsiveness in vessels from animals [105,123,133,141–143] and humans [144].

Table 4. Summary of changes in vascular α1-adrenoceptor (AR)-mediated responses in chronic
heart failure.

Species Preparation/Parameter Studied α1-AR-Mediated Responses

Goldsmith et al. [137] human In vivo hemodynamic responses ↓

Wilson et al. [141] dog In vivo hindlimb vascular responses X

Schwinn et al. [145] human In vivo BP response X (awake)/
↓ (on fentanyl anesthesia)

Borow et al. [138] human In vivo BP response ↓

Forster et al. [114] dog DPA and SV ↑

Forster et al. [115] dog DPA and SV ↑

Main et al. [132] dog LAD and LCX ↓

Forster et al. [119] dog DPA and SV ↑

Angus et al. [139] human Small arteries from gluteal skin biopsy ↓

Townsley et al. [129] dog Pulmonary arterial and venous pressure
response ↑

Indolfi et al. [144] human In-vivo forearm blood flow response X

Teerlink et al. [146] rat Thoracic aorta ↑ intact vessels/
↓ denuded vessels

Forster et al. [120] dog DPA and SV ↑ significant only in SV

Bergdahl et al. [130] rat Basilar, femoral, and renal artery and iliac vein ↑ arteries (NS)
↓ vein

Forster et al. [116] dog DPA and SV ↑

Stassen et al. [102] rat MSA ↓

Stassen et al. [133] rat Thoracic aorta, coronary arteries, MSA X thoracic aorta/
↑ coronary arteries (NS)/↓MSA

Mulder et al. [142] rat Abdominal aorta, Femoral artery, MSA X

Le Tran et al. [117] dog DPA and SV ↑ (significant only for NA in DPA)

Martinez et al. [105] rat Aorta, Carotid artery X

McMillon et al. [143] dog Intrapulmonary bronchial vessels X

Feng et al. [134] rat In vivo BP response ↓

Bergdahl et al. [121] rat MSA ↓

Ahmadiasl et al. [135] rabbit Thoracic aorta, left renal artery and vein, lateral
saphenous artery and vein, vena cava ↓ significant only in vena cava

Tamagawa et al. [131] dog LAD/ In vivo coronary pressure-flow
relationship response ↑

Trautner et al. [123] rat Femoral artery (2nd order side branches) and
muscle resistance arteries X

Koida et al. [122] rat Femoral resistance artery (small branch) ↑

Van Tassel et al. [147] human In vivo BP response ↑with up-titration of carvedilol

Ramchandra et al. [136] sheep Renal vessels/In vivo renal vasoconstrictor
response ↓

Barrett-O’Keefe et al. [140] human CFA and CFV/In vivo leg blood flow response ↓at rest

BP: blood pressure, CFA: common femoral artery, CFV: common femoral vein, DPA: dorsal pedal artery, LAD: left
anterior descending coronary artery, LCX: left circumflex coronary artery, MSA: mesenteric small artery, NS: not
significant, SV: saphenous vein, ↑: increase, ↓: decrease, X: similar.
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Inconsistency in findings might originate from differences in the anatomy and function of distinct
vascular beds. Additionally, differences in CHF model and disease state might also influence the
results of different studies. For example, in some studies it was demonstrated that the saphenous vein
of CHF dogs was at all times more sensitive than the dorsal pedal artery [114–116,120]. This might
be associated to a heterogeneous smooth muscle function between the artery and the vein, but, also,
to differences in receptor population in the canine vasculature [148]. In addition, differences in vascular
responsiveness between different vascular beds were also identified in rat models of HF [123,130].
Moreover, differences have also been identified between the various arteries studied. For example,
in similar models of pacing-induced CHF in dogs, some studies have demonstrated an increased
responsiveness to α1-AR stimulation in the dorsal pedal artery and the contralateral saphenous
vein [114–116,119], while others have identified a desensitization of α1-ARs in coronary arteries of
CHF dogs [132].

Other important parameters that influence the peripheral vascular responses are the integrity
and physiological function of endothelium. More specifically, the endothelium-induced vasodilation
counteracts the contraction via α1-ARs. Therefore, the malfunction of the endothelium might lead to
the absence of this inhibitory function in CHF vessels [143] and result in an enhancement of vascular
contraction. Increased vascular responses to noradrenaline were reported in the intact thoracic aorta
from HF rats compared to controls, however the actual vascular α1-AR responsiveness was diminished
when the endothelium was removed [146]. On the other hand, an increase in endothelial function
as was observed in other studies might oppose the α1-AR-mediated vascular contractions [131,132].
Others, however, did not demonstrate a difference in vascular responses between intact and denuded
vessels [123].

Even though the vascular responsiveness in patients with HF has not been widely investigated,
many studies have yielded data that might have important clinical implications. More precisely,
Schwinn et al. [145] reported on the vascular responsiveness of HF patients that underwent coronary
artery revascularization. The results from this study support that left ventricular dysfunction and
more precisely, left ventricular ejection fraction equal to or lower than 40% is associated with a
diminished vascular responsiveness during fentanyl anesthesia in this patient population. In contrast
to more recent reports that identify cardiac surgery and cardiopulmonary bypass as predisposing
factors for an attenuated vascular responsiveness [13,14,149], Schwinn et al. [145] reported that
phenylephrine-induced changes in systemic vascular resistance were increased during cardiopulmonary
bypass and aortic cross-clamp in both HF and control subjects. This vascular responsiveness is of
interest in HF patients that undergo cardiac surgery, since this patient population exhibits an increased
risk for post-operative vasoplegia [150]. This complication is characterized by low systemic vascular
resistance, severe hypotension, normal or increased cardiac output and a blunted or absent response
to the administration of vasopressors [151]. The diminished sensitivity of HF patients is thought to
originate from the continuous, chronic exposure of these patients’ vascular α1-ARs to catecholamines
which leads to desensitization and/or downregulation of those receptors. If vasoplegia is not promptly
treated, the resulted tissue malperfusion might lead to end-organ dysfunction and multiple organ
failure. Therefore, this post-operative complication significantly increases the risk of morbidity and
mortality [152,153]. Moreover, another study identified a maladapted sympathetic response of the
skeletal muscle vasculature to exercise that was characterized by sustained vascular constriction [140].
This can have serious implications on normal blood flow during physical movement and might hamper
the patient’s daily life. Furthermore, the apparent up-regulation of α1-AR responsiveness after chronic
carvedilol treatment in HF patients [147] and the lack of change after chronic angiotensin-converting
enzyme inhibitors [142] might yield important consequences regarding HF therapy.

5. Discussion

Understanding the role of α1-ARs is particularly important in HF because this condition is
associated with high adrenergic activation leading to down-regulation and desensitization of cardiac
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β-ARs. α1-ARs have been identified in both animal and human hearts and vasculature with a high
expression in rodents but a much lower abundance in humans. Thus, caution should be applied while
extrapolating data from animals to humans.

The α1A-AR is the most abundant subtype in the human heart and α1B-AR in the rodent heart,
while α1D-ARs are mainly found in coronary arteries (Figure 3). However, studies on a change in the
expression of the subtypes in failing hearts are inconsistent, which may indicate a relative α1/β-AR
imbalance in light of the well-known reduction in β-adrenergic function in CHF.
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Another important point is that, while in heart α1A- and α1B-ARs dominate, all three subtypes
are expressed in the vasculature and their relative expression and physiological role appear to differ
between vascular beds and species (Figure 3) [3]. This varied expression of α1-AR has been reported to
correlate with the adrenergic innervation in peripheral vessels [154]. Moreover, studies with transfected
receptors suggest that the three α1-AR subtypes undergo differential regulation upon exposure to
agonists [16]. Certainly, those discrepancies also affect the way in which blood pressure is regulated
depending on which α1-AR subtypes play the predominant role. For that reason, the differences in
subtype distribution might also have influenced studies that have investigated the function of α1-ARs
in vivo or in vitro, leading to conflicting results.

α1-ARs can couple to multiple intracellular signal transduction pathways in the heart. Under most
conditions α1-AR signal transduction results in enhanced inotropy. Although data on their role in
HF is limited, there is evidence indicating that they mediate enhanced positive inotropy, as well as
physiological hypertrophy and decreased apoptosis [46]. α1-AR occupancy was estimated as 10%
in failing human heart [155]. Thus, activation of unoccupied receptors with an exogenous ligand is
suggested to be cardioprotective [46]. Clinical trials such as ALLHAT in hypertension and V-HeFT
in CHF reported that treatment with α1-AR antagonists was associated with greater mortality and
apoptosis than with other treatments [156]. Moreover, double knockout of α1A- and α1B-AR was shown
to augment apoptosis, worsen cardiomyopathy and reduce survival [157]. Taken together, cardiac
α1-ARs appear to mediate cardioprotective effects. Data on the regulation of vascular α1-ARs in HF
are also conflicting. This is unfortunate because of their role in controlling total peripheral resistance
and the role of afterload reductions in the treatment of patients with HF. However, clinical studies
in hypertensive patients have shown that α1-AR antagonism provides less protection from HF than
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other classes of anti-hypertensive drugs [156]. More specifically, the non-selective α-blocker doxazosin
was associated with significantly higher risk of HF compared with the other treatment arms of this
trial. In the absence of a placebo arm, it remained unclear whether this reflects an adverse effect of
doxazosin or less protection against hypertension-induced HF. The results from the V-HeFT trial [158]
further support the detrimental effects of α-blocking therapy-, since prazosin use gave a signal for
possibly increased mortality that failed to reach statistical significance. The reason for those results
could possibly be explained by the findings from knock-out mice studies which confirm the importance
of α1-AR signaling for the adaptational mechanisms of cardiomyocytes in disease settings [157,159].

In contrast to those studies that investigated the effect of selective α-blockade and discouraged
their widespread use, the mixed β- and α1-AR antagonist carvedilol was demonstrated to be more
beneficial than the β1-selective antagonist metoprolol in diminishing the risk of mortality [155].
It could, therefore, be postulated that the favorable effects of carvedilol are to some extent related to its
α-blocking properties. Nevertheless, the combination of an α- with a β-blocker for long-term treatment
in chronic CHF patients, did not yield better clinical outcomes than β-blocker therapy alone [160],
which highlights the fact that such a combined therapy does not generate satisfactory outcomes similar
to that of carvedilol.

The exact reason for those discrepancies in effectiveness still remains unclear. One explanation
could be that carvedilol’s α-blocking properties are less potent compared to both its innate β-blocking
feature and to the α-blockade produced by a specific α-AR antagonist like prazosin. This is in fact
supported by the results of a small trial in which carvedilol did not antagonize phenylephrine induced
responses [161]. Another hypothesis is that the existence of distinct pharmacologic properties and
mechanisms of action between the various α- and β-blockers could also lead to the occurrence of
different side effects. Based on this assumption, one could possibly explain the contradictory findings
from studies with carvedilol versus studies investigating the combination of an α- with a β-blocker.
Last but not least, carvedilol use leads to pharmacologic tolerance after long term use [162]. This implies
that its beneficial effects at long-term use derive mostly from its β-blocking properties rather than
antagonizing α1-ARs.

In brief, one could state that α1-AR agonism could potentially be a valid treatment option for HF
patients that would stimulate innate adaptive signaling procedures and would eventually illustrate its
cardioprotective features. However, caution is required, since α1 agonism could also have detrimental
effects by increasing peripheral vascular resistance leading to an increased cardiac afterload and by
inducing coronary vasoconstriction in those patients. Therefore, future research is necessary which
should focus on compartment and/or subtype selective treatment in HF patients and which will
investigate in more detail the treatment modalities of α1 agonism.

On the other hand, carvedilol seems promising for the treatment of HF patients and might be an
option for the pretreatment of HF patients that will undergo cardiac surgery. Short term α1 antagonism
with carvedilol treatment could shield α1-ARs against continuous catecholamine exposure in the
preoperative period. This could perhaps increase the sensitivity of those receptors to the administration
of catecholamines for the treatment of vasoplegia during the postoperative course [147].

In conclusion, more research is required to further understand the complex mechanisms of α1

adrenergic function and adaptation in HF. Taking into account the existing differences between animals
and humans regarding the expression of α1-ARs, we should carefully consider our next steps and we
should promote additional research which would focus more on human tissue (heart and vessels).
Moreover, a cardioselective approach in the case of α1 agonism appears to be crucial for the exploitation
of only its advantageous characteristics by avoiding potential vascular side effects. A subtype approach
could also be beneficial but further studies are necessary in order to gain more insight in such treatment
techniques. Finally, in view of the positive outcomes from clinical studies with carvedilol, more
extensive investigation is to be expected so as to better comprehend the pharmacologic properties and
mechanism of action of this agent. It is, therefore, essential that we expand our knowledge, and we
apprehend current inconsistencies in order to pave the way to safer and more effective therapies.
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