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Chapter 3

Arakelov geometry in genus 3

In this chapter, we discuss Arakelov geometry with an emphasis on genus 3 curves. In
Section 3.1, based on the work of Z. Cinkir, we show a classification of pm-graphs of
genus 3 and compute admissible invariants associated to it. In Section 3.2, based on
the work of K. Yamaki, we show that for a genus 3 graphically hyperelliptic curve over
a function field, the height ⟨∆,∆⟩ vanishes if and only if the curve is hyperelliptic. In
Section 3.3, based on the work of R. de Jong, we show a unboundedness result of ⟨∆,∆⟩
for genus 3 curves over number fields.

We get a result on hyperelliptic graphs and apply it to genus 3 polarized graphs
(Proposition 3.2.20). In Theorem 3.3.12, we give a criterion for the unboundedness of
the heights of a family of curves over Q. To the best of the author’s knowledge, these
are new results.

3.1 Admissible invariants for genus 3 curves

Subsection 3.1.1 is about the explicit computation for genus 3 pm-graphs. We refer to
Section 1.4 for terminology on pm-graphs. Subsection 3.1.2 contains two tables for the
invariants on genus 3 pm-graphs with the first Betti number b1 = 0 or 1.

We will use results in this section to compute the admissible invariants of our main
curve CQ in Theorem 4.4.1.

3.1.1 Computation for genus 3 curves

In this subsection, we explain how to explicitly compute the six invariants discussed in
Theorem 1.4.39. To begin with, we specialize Theorem 1.4.39 to the case g = 3.
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3. ARAKELOV GEOMETRY IN GENUS 3

Proposition 3.1.1. Let Γ be a pm-graph of genus 3. Then we have

φ(Γ) = 13
3 τ(Γ) + θ(Γ)

12 − δ(Γ)
4 ,

λ(Γ) = 3
7τ(Γ) + θ(Γ)

56 + δ(Γ)
14 ,

ϵ(Γ) = 8
3τ(Γ) + θ(Γ)

6 .

Proof. Substitute g = 3 to Theorem 1.4.39.

Now we show how to compute the six invariants of Γex (Figure 3.1.1), a genus 3 pm-
graph with no eliminable points. This pm-graph is non-irreducible and contains 1 cycle.
We would like to use this example to show that it is possible to compute the invariants
by techniques described. This method is also used by Z. Cinkir in [9]. Letters are the
lengths of edges and integers are the polarization.

b

c

a
0 11

Figure 3.1.1: Γex

Proposition 3.1.2. For the pm-graph Γex, we have

δ(Γex) = a+ b+ c,

τ(Γex) = δ(Γex)
12 + a

6 ,

θ(Γex) = 6a+ 8bc
b+ c

,

φ(Γex) = δ(Γex)
9 + 6bc+ 11a(b+ c)

9(b+ c) ,

λ(Γex) = 3δ(Γex)
28 + 4bc+ 5a(b+ c)

28(b+ c) ,

ϵ(Γex) = 2δ(Γex)
9 + 12bc+ 13a(b+ c)

9(b+ c) .

Proof. As a metrized graph, Γex can be written as the wedge sum of two irreducible
components Γa ∨ Γbc, where Γa is obtained by contracting the edges of length b and c

and Γbc is obtained by contracting the edge of length a. By the additivity of the six
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3. ARAKELOV GEOMETRY IN GENUS 3

1 2a 1 1
b

c

Γa Γbc

Figure 3.1.2: Irreducible components

invariants (Remark 1.4.41), we just need to compute the invariants on Γa and Γbc, where
the polarization is induced from that on Γex. Figure 3.1.2 is an illustration for this.

For δ, it is trivial that δ(Γa) = a and δ(Γbc) = b+ c, thus

δ(Γex) = a+ b+ c.

For θ, by Equation (1.17), we have

θ(Γa) = 2 × (1 − 2 + 2) × (1 − 2 + 4) × a = 6a,

θ(Γbc) = 2 × (2 − 2 + 2) × (2 − 2 + 2) × bc

b+ c
= 8bc
b+ c

,

thus

θ(Γex) = 6a+ 8bc
b+ c

.

Recall the interpretation of τ in Definition 1.4.37. For Γa, we take y to be a vertex
p, and then we get r(x, p) = d(x, p), where d(·, ·) is the path distance function. Thus we
have

τ(Γa) = 1
4

∫
Γa

rx(x, p)2dx = 1
4

∫ a

0
dx = a

4 .

For Γbc, by the formula of electrical resistance in a parallel connection, we get

r(x, y) = d(x, y)(b+ c− d(x, y))
b+ c

.

Taking y to be a vertex p, we have

τ(Γbc) = 1
4

∫
Γbc

rx(x, p)2dx = 1
4

∫ b+c

0

(
b+ c− 2x
b+ c

)2
dx = b+ c

12 .

By the additivity of τ , we get

τ(Γex) = δ(Γex)
12 + a

6 .

57



3. ARAKELOV GEOMETRY IN GENUS 3

According to Proposition 3.1.1, we get

φ(Γex) = a+ b+ c

9 + 6bc+ 11a(b+ c)
9(b+ c) ,

λ(Γex) = 3(a+ b+ c)
28 + 4bc+ 5a(b+ c)

28(b+ c) ,

ϵ(Γex) = 2(a+ b+ c)
9 + 12bc+ 13a(b+ c)

9(b+ c) .

The whole list of genus 3 pm-graphs without eliminable points and their invariants
can be found in [9]. In this thesis, we copy part of this list (containing those pm-graphs
with the first Betti number b1 = 0 or 1) in Table 3.1 and Table 3.2.

We can find from Table 3.2 that λ(Γ) ≥ 3δ(Γ)
28 and ϵ(Γ) ≥ 2δ(Γ)

9 . These two bounds
actually hold for all pm-graphs of genus 3.

The invariant φ(Γ) is more complicated. When b1 ≤ 1, we can find from Table 3.2
that φ(Γ) ≥ 1

9δ(Γ). This bound does not hold for a general genus 3 pm-graph. By
a technical analysis of inequalities, Z. Cinkir proved the following proposition which is
conjectured by X. Faber in Remark 5.1 in [22].

Proposition 3.1.3. For a pm-graph Γ of genus 3, we have φ(Γ) ≥ 17δ(Γ)
288 .

Proof. See the proof of Claim on Page 332 in [9].

Remark 3.1.4. Proposition 3.1.3 is not a corollary of Theorem 1.4.34 since c(3) ≤ 17
288 .
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3. ARAKELOV GEOMETRY IN GENUS 3

3.1.2 Tables for genus 3 pm-graphs

Γ δ(Γ) τ(Γ) θ(Γ)
0I 3 0 0 0

0II 2 1a
a δ(Γ)

4 6δ(Γ)

0III
1 11

a b

a+ b δ(Γ)
4 6δ(Γ)

0IV 1 10

1

a b
c

a+ b+ c δ(Γ)
4 6δ(Γ)

1I
2a

a δ(Γ)
12 0

1II
11

a

b

a+ b δ(Γ)
12

8ab
a+b

1III
ba

11
a+ b δ(Γ)

12 + a
6 6a

1IV
b

a
02

a+ b δ(Γ)
12 + a

6 6a

1V

b

c

a
0 11

a+ b+ c δ(Γ)
12 + a

6 6a+ 8bc
b+c

1V I

c

d

a

b
0

01
1

a+ b+ c+ d δ(Γ)
12 + a+b

6 6(a+ b) + 8cd
c+d

1V II

c
a

b

1

1
0

a+ b+ c δ(Γ)
12 + a+b

6 6(a+ b)

1V III

a b c1
1 0

a+ b+ c δ(Γ)
12 + a+b

6 6(a+ b)

1IX
a

b
c d

1

1

0 0
a+ b+ c+ d δ(Γ)

12 + a+b+c
6 6(a+ b+ c)

Table 3.1: Table of Γ, δ(Γ), θ(Γ) and τ(Γ)
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3. ARAKELOV GEOMETRY IN GENUS 3

φ(Γ) λ(Γ) ϵ(Γ)
0I 0 0 0
0II 4δ(Γ)

3
2δ(Γ)

7
5δ(Γ)

3

0III 4δ(Γ)
3

2δ(Γ)
7

5δ(Γ)
3

0IV 4δ(Γ)
3

2δ(Γ)
7

5δ(Γ)
3

1I δ(Γ)
9

3δ(Γ)
28

2δ(Γ)
9

1II δ(Γ)
9 + 2ab

3(a+b)
3δ(Γ)

28 + ab
7(a+b)

2δ(Γ)
9 + 4ab

3(a+b)

1III δ(Γ)
9 + 11a

9
3δ(Γ)

28 + 5a
28

2δ(Γ)
9 + 13a

9

1IV δ(Γ)
9 + 11a

9
3δ(Γ)

28 + 5a
28

2δ(Γ)
9 + 13a

9

1V δ(Γ)
9 + 6bc+11a(b+c)

9(b+c)
3δ(Γ)

28 + 4bc+5a(b+c)
28(b+c)

2δ(Γ)
9 + 12bc+13a(b+c)

9(b+c)

1V I δ(Γ)
9 + 6cd+11(a+b)(c+d)

9(c+d)
3δ(Γ)

28 + 4cd+5(a+b)(c+d)
28(c+d)

2δ(Γ)
9 + 12cd+13(a+b)(c+d)

9(c+d)

1V II δ(Γ)
9 + 11(a+b)

9
3δ(Γ)

28 + 5(a+b)
28

2δ(Γ)
9 + 13(a+b)

9

1V III δ(Γ)
9 + 11(a+b)

9
3δ(Γ)

28 + 5(a+b)
28

2δ(Γ)
9 + 13(a+b)

9

1IX δ(Γ)
9 + 11(a+b+c)

9
3δ(Γ)

28 + 5(a+b+c)
28

2δ(Γ)
9 + 13(a+b+c)

9

Table 3.2: Table of φ(Γ), λ(Γ) and ϵ(Γ)
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3. ARAKELOV GEOMETRY IN GENUS 3

3.2 Graphically hyperelliptic curves over function fields

In this section, B is a smooth curve over an algebraically closed field k with function field
K. Subsections 3.2.1-3.2.2 are still about pm-graphs of genus 3 (with an application to
the height ⟨∆,∆⟩). In Subsection 3.2.3, we show that the height ⟨∆,∆⟩ of a graphically
hyperelliptic genus 3 curve over K vanishes if and only the curve is hyperelliptic. We
refer to Section 1.4 for the terminology on pm-graphs and Subsection 1.5.2 for the theory
of Gross-Schoen cycles.

The number h(Γ) introduced in Equation (3.1) will be used in Theorem 3.3.12 and
Proposition 4.4.5.

3.2.1 An inequality for ⟨∆, ∆⟩

By a polarized graph, we mean a pm-graph without the metric, in other words, it is a
pair G = (G, q) where G = (V,E) is a graph and q is a polarization making the canonical
divisor (Definition 1.4.8) effective.

The polarized graphs H = (H, 0) and N = (N, 0) in Figure 3.2.1 are two irreducible
polarized graphs (the polarization is the constant function 0) without eliminable vertices,
and we call the two graphs maximal models.

Definition 3.2.1. We say H or N is a model for a polarized graph G if G is equivalent
to a contraction of H or N with the induced polarization.

Remark 3.2.2. For simplicity, we use the same notations for pm-graphs and polarized
graphs (like the contraction GS and GS). We also use Table 3.1 for the types of genus 3
polarized graphs when b1 = 0 or 1.

f1 f2 f3 f4

e1

e2

H

e1

e2

f1

f2

e3

f3

N

Figure 3.2.1: Maximal models
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3. ARAKELOV GEOMETRY IN GENUS 3

Lemma 3.2.3. Every polarized graph G of genus 3 with only edges of type 0 is equivalent
to a polarized graph having H or N as a model. If we assume further that G is not
equivalent to N, then it has H as a model.

Proof. This can be proven by a combinatorial checking.

Definition 3.2.4. Let G = (G, q) be a polarized graph of genus 3 with no eliminable
vertices. We say a pair of edges {e, e′} of G is of h-type if G{e,e′} is of type 1II in Table
3.1.

Example 3.2.5. In Figure 3.2.1, {e1, e2} is the only pair of h-type edges in H while N
has no edges of h-type.

Lemma 3.2.6. A polarized graph G of genus 3 without eliminable vertices has at most
one pair of edges of h-type.

Proof. If {e1, e2} is a pair of edges of h-type, then e1 and e2 sit in the same irreducible
component otherwise G{e1,e2} is reducible.

Let {e3, e4} be another pair of edges of h-type. The two pairs lie on the same ir-
reducible component of {e1, e2}, otherwise G

{e1,e2,e3,e4} can not be a graph without
eliminable vertices, which contradicts Lemma 1.4.17. We denote this irreducible com-
ponent with induced polarization by G1. By Lemma 3.2.3, the polarized graph G1 is
equivalent to a certain contraction of H or N with the induced polarization. Since H
and N have at most 1 pair of edges of h-type (Example 3.2.5), so does their contraction.
Thus {e1, e2} = {e3, e4}.

Since pm-graphs are polarized graphs with metrics, our discussion so far can be
extended to pm-graphs easily.

Let Γ = (G,w, q) be a genus 3 pm-graph with no eliminable vertices. If there exists
a pair of edges of h-type {e1, e2} on Γ, we define

h(Γ) := min{w(e1), w(e2)}, (3.1)

otherwise we set h(Γ) = 0. For a general pm-graph Γ which is equivalent to Γ0 with no
eliminable vertices, we define

h(Γ) := h(Γ0).

Lemma 3.2.7. h(·) is additive on pm-graphs of genus 3.

Proof. This is trivial from the definition of h(·).
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3. ARAKELOV GEOMETRY IN GENUS 3

Recall the definition of ψ(Γ) in Corollary 1.5.8. For a genus 3 pm-graph Γ with only
edges of type 0, we define

Φ(Γ) := 1
3δ0(Γ) + 4

3h(Γ) − ψ(Γ). (3.2)

Lemma 3.2.8. The invariant Φ is additive for pm-graphs with only type 0 edges.

Proof. The function ψ is additive since it is a linear combination of admissible invariants
(Corollary 1.5.8). On pm-graphs with only edges of type 0, the invariant δ0 is additive
since δ0 = δ. The additivity of h is trivial according to Lemma 3.2.6.

Lemma 3.2.9. For a tree pm-graph Γ of genus g, we have

ψ(Γ) =
⌊ g

2 ⌋∑
i=1

(
12i(g − i)

2g + 1 − 1
)
δi(Γ).

Proof. In this case, we have δ0(Γ) = 0 and h(Γ) = 0, thus ψ is a linear combination
of ϵ and φ (Equation (1.20)). Theorem 1.4.39 implies that we can reduce the problem
to the computation of τ , θ and δ. Since Γ is a tree, the underlying graph Γ is the
wedge sum of segments. By the additivity of these invariants, we only need to compute
them for the pm-graph with one segment and two endpoints polarized by i and g− i for
0 < i ≤ ⌊ g2 ⌋.

Now we give a lower bound of ⟨∆,∆⟩ for non-hyperelliptic curves by Lemma 3.2.11.
For a semistable curve f : X → B, we denote the dual graph at a closed point s ∈ B by
Γs. If the genus of f is 3, all edges in Γs are of type 0 or 1. We denote the contraction
of all type 1 (resp. 0) edges in Γs with the induced polarization by Γ◦

s (resp. Γ+
s ).

Remark 3.2.10. The pm-graph Γ◦
s is the wedge sum of irreducible components in Γs

which are not isomorphic to segments. And Γ+
s is a wedge sum of segment components

in Γs. Every edge in Γs corresponds to an edge in either Γ◦
s or Γ+

s . If F is an additive
function on pm-graphs, then F (Γs) = F (Γ◦

s) + F (Γ+
s ).

Lemma 3.2.11. Let f : X → B be a semistable curve of genus 3 with smooth non-
hyperelliptic generic fiber. We have

(ωX/B , ωX/B) ≥
∑
s∈B

(
δ0(Γs)

3 + 3δ1(Γs) + 4h(Γs)
3

)
,

where Γs is the dual graph over s ∈ B.

Proof. See Corollary 3.8 in [66].
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3. ARAKELOV GEOMETRY IN GENUS 3

Proposition 3.2.12. Let f : X → B be a semistable curve of genus 3 with smooth
non-hyperelliptic generic fiber C. Then we have

⟨∆,∆⟩ ≥ 7
4
∑
s

Φ(Γ◦
s) + δ1(C),

where δ1(C) :=
∑
s
δ1(Γs).

Proof. Every irreducible component of Γs is an irreducible component of Γ◦
s or Γ+

s and
vice versa (Remark 3.2.10). Thus by the additivity of ψ, we have

ψ(Γs) = ψ(Γ◦
s) + ψ(Γ+

s ).

From Corollary 1.5.8 and Lemma 3.2.11, we get

⟨∆,∆⟩ =7
4

(
(ωX/B , ωX/B) −

∑
s∈B

ψ(Γs)
)

≥7
4

∑
s∈B

Φ(Γ◦
s) +

∑
y∈B

(
3δ1(Γ+

s ) − ψ(Γ+
s )
) .

Since Γ+
s is a tree, by Lemma 3.2.9, we have ψ(Γ+

s ) = 17
7 δ1(Γ+

s ). Thus

3δ1(Γ+
s ) − ψ(Γ+

s ) = 4δ1(Γ+
s )

7 = 4δ1(Γs)
7 . (3.3)

We get the result by substituting Equation (3.3) into the inequality above.

Proposition 3.2.12 reduces the positivity of ⟨∆,∆⟩ to the computation for Φ and δ1

at special fibers. In [67], K. Yamaki shows the following result for Φ.

Theorem 3.2.13. Let Γ = (G,w, q) be a pm-graph of genus 3 without eliminable vertices.
Suppose that H is a model of Γ, then we have Φ(Γ) ≥ 0. Moreover, Φ(Γ) = 0 if and only
if one of the following cases occurs:

(1) Γ is the trivial pm-graph.

(2) Γ is isomorphic to E1 in Figure 3.2.2 with the weight condition

w(f1) = w(f2), w(f3) = w(f4), w(e) = w(f1) + w(f3).

(3) Γ is isomorphic to E2 in Figure 3.2.2 with the weight condition

w(e1) = w(e2) = w(e3).

64



3. ARAKELOV GEOMETRY IN GENUS 3

S T R

f1

f2

f3

f4

e

E1

P Q

e1

e2

e3

E2

Figure 3.2.2: Two polarized graphs with model H

Proof. See Theorem 2.7 in [67].

Corollary 3.2.14. Let f : X → B be a semistable curve of genus 3 with smooth non-
hyperelliptic generic fiber X. If Φ(Γs) ≥ 0 for all s that Γs is equivalent to N, then
⟨∆,∆⟩ ≥ 0. In addition, if there exists s such that Γs is not equivalent to one of the
pm-graphs in Theorem 3.2.13, then we have ⟨∆,∆⟩ > 0.

Proof. This is a consequence of Lemma 3.2.3 and Theorem 3.2.13.

3.2.2 Hyperelliptic polarized graph

Definition 3.2.15. A hyperelliptic graph G = (V,E) is either the one-point graph, or a
graph with an order 2 automorphism ι on G satisfying the following properties:

(1) G has no self-loops.

(2) ι(e) ̸= e for any e ∈ E.

(3) The quotient graph G/⟨ι⟩ is a tree.

(4) If a vertex n ∈ V is not fixed by ι, then the valence satisfies v(n) ≥ 3.

Lemma 3.2.16. Let (G, ι) be a non-trivial hyperelliptic graph with ι(e1) = e2. The graph
G{e1,e2} given by contracting edges e1 and e2 is either a one-point graph or a non-trivial
hyperelliptic graph with the induced automorphism ι0 of order 2.

Proof. We assume that G{e1,e2} is not a one-point graph, thus it has the induced auto-
morphism ι0 of order 2.

Condition (2) in Definition 3.2.15 is trivial.
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3. ARAKELOV GEOMETRY IN GENUS 3

The quotient graph (G{e1,e2}, ι0)/⟨ι0⟩ is given by contracting an edge from the tree
G/⟨ι⟩, thus is also a tree. So Condition (3) in Definition 3.2.15 is verified.

If c is a self-loop in G{e1,e2}, then Condition (2) says that ι(c) is a different self-loop.
Thus the quotient (G{e1,e2}, ι0)/⟨ι0⟩ must have at least 1 self-loop, which contradicts
Condition (3) we just proved. So Condition (1) in Definition 3.2.15 is verified.

We assume p to be a vertex in G{e1,e2} that is not fixed by ι0. If p is the contraction
point of e1 ∈ E, then by the assumption, neither of e1’s endpoints are fixed by ι. It
can be checked that e1 and e2 can not share the endpoints, otherwise G{e1,e2} contains
a self-loop. Then we obtain v(p) ≥ 3 + 3 − 2 = 4 by Condition (4) in Definition 3.2.15.

If p does not belong to the endpoints of contracting edges, then its valence is the
same as that of the original graph (we write p′ for this point in G). Since p is not fixed
by ι0, p′ cannot be fixed by ι and thus v(p) ≥ 3. So Condition (4) in Definition 3.2.15 is
verified.

In conclusion, (G{e1,e2}, ι0) is a hyperelliptic graph.

This lemma says that the hyperelliptic graph behaves well under the quotient map.

Proposition 3.2.17. A hyperelliptic graph G does not have vertices with valence 1.

Proof. Let p be a vertex of G with valence 1. By Condition (4) in Definition 3.2.15, it
is fixed by ι. Thus the only edge related to it is fixed by ι, which contradicts Condition
(2).

Lemma 3.2.18. Let G be a non-trivial graph. If ι and ι′ are two order 2 automorphisms
of G that make G a hyperelliptic graph, then ι = ι′.

Proof. See Lemma 3.1 in [67].

Definition 3.2.19. A polarized graph G = (V,E, q) is called a hyperelliptic polarized
graph if G is a one-point graph or the following are satisfied:

(1) G is a non-trivial hyperelliptic graph with the order 2 automorphism ι.

(2) ι preserves the polarization q.

(3) q(n) = 0 for any n ∈ V with ι(n) ̸= n.

If w : E → R>0 is a weight function on the edges of G with the property w(e) = w(ι(e))
for all e ∈ E, then we call (G,w) a hyperelliptic weighted polarized graph or a hyperelliptic
pm-graph.

Proposition 3.2.20. (1) Let e be an edge on a non-trivial hyperelliptic graph G (with
the order 2 automorphism ι). Then {e, ι(e)} is a pair of edges of h-type.
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3. ARAKELOV GEOMETRY IN GENUS 3

(2) All hyperelliptic polarized graphs of genus 3 without eliminable points are of type
1II in Table 3.1.

Proof. By applying Lemma 3.2.16 repeatedly, we find G{e,ι(e)} is a hyperelliptic graph.
Thus {e, ι(e)} has to be a pair of edges of h-type.

By Lemma 3.2.6, a polarized graph G of genus 3 without eliminable edges has at most
1 pair of edges of h-type. By the first assertion, the polarized graph G is equivalent to
the type 1II graph in Table 3.1.

Question 3.2.21. Can we have a clearer description of hyperelliptic polarized graphs?
What can we say for higher genus?

Proposition 3.2.22. A hyperelliptic polarized graph G only has edges of type 0.

Proof. If there is an edge e of positive type, then e′ := ι(e) is also an edge of positive
type. Thus G looks like the following figure, where G0, G1 and G′

1 are subgraphs instead
of vertices.

G1 G′
1

G0

e e′

The automorphism ι induces an isomorphism between G1 and G′
1, and an automor-

phism of G0. By Condition (3) in Definition 3.2.15, the quotient graph G/⟨ι⟩ is a tree,
thus G1 and G′

1 are non-trivial trees or the one-point graph. Both of the two cases will
lead to a vertex with valence 1, while this can not be true by Proposition 3.2.17.

3.2.3 Graphically hyperelliptic curves

In this subsection, we take X to be a smooth curve over K of genus g > 1 with a
semistable model f : X → B. Similarly to in Section 1.4.1, we denote Γs = (Gs, ws, qs)
the dual graph of X at a closed point s ∈ B. By Γ◦

s, we mean the induced pm-graph
given by contracting edges of positive type in Γs.

Definition 3.2.23. If Γ◦
s is equivalent to a hyperelliptic pm-graph for all closed points

s ∈ B, we call X or f a graphically hyperelliptic curve.

Theorem 3.2.24. Let X be a graphically hyperelliptic smooth genus 3 curve over K
with a semistable model X → B. If ⟨∆,∆⟩ = 0 and there is at least one closed point
s ∈ B such that Γ◦

s is non-trivial, then X is a hyperelliptic curve.

Proof. Since Γ◦
s is a hyperelliptic graph, it cannot be of the form N, E1 or E2. By

Corollary 3.2.14, the curve X cannot be non-hyperelliptic, otherwise we have ⟨∆,∆⟩ > 0.
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3.3 Non-hyperelliptic curves over number fields

In Subsection 3.3.1, we decompose ⟨∆,∆⟩ into the sum of contributions from (in)finite
places (Theorem 3.3.2). In Subsection 3.3.2, we give a lower bound for ordv(χ′

18) (Propo-
sition 3.3.4). In Subsection 3.3.3, we prove an unboundedness result of ⟨∆,∆⟩. We refer
to Section 1.5, Section 2.2 and Section 3.1 for terminology and theorems.

Theorem 3.3.2 will be the main tool for our computation of CQ in Chapter 4. The
Horikawa index will be used for the computation of ordv(χ′

18) at a finite place v.

3.3.1 ⟨∆, ∆⟩ for non-hyperelliptic curves of genus 3

Let k be a number field with M(k)0 (resp. M(k)∞) its finite (resp. infinite) places and
let M(k) be the union M(k)0 ∪M(k)∞. We denote Spec(Ok) by S. Let X be a smooth
curve of genus g ≥ 2 over k which also has semistable reduction over k.

By Theorem 1.5.6, the height of a canonical Gross-Schoen cycle of X is

⟨∆,∆⟩ = 2g + 1
2g − 2(ω̂, ω̂)ad −

∑
v∈M(k)

φ(X)logNv. (3.4)

Let f : X → S be a stable model of X and let ωX/S be the relative dualizing sheaf
on X . We endow the line bundle det f∗ωX/S with the metric induced by Equation (1.6)
at infinite places of k, and denote the metrized line bundle by det f∗ωX/S .

By Corollary 1.3.11 and Theorem 1.5.3, we get

(ω̂, ω̂)ad =12 deg det f∗ωX/S −
∑

v∈M(k)0

δ(Γv)log(Nv) +
∑

σ∈k(C)

δ(Xσ)

+
∑

v∈M(k)0

ϵ(Γs)log(Nv) + 4g[k : Q]log(2π).

Substituting the equation above, Equation (1.15) and Equation (1.18) to Equation (3.4),
we get the following proposition (Corollary 4.2 in [13]).

Proposition 3.3.1. Let X be a smooth curve of genus g ≥ 2 defined over the number
field k and also has semistable reduction over k. Let ∆ ∈ CH2(X3)Q be a canonical
Gross-Schoen cycle on X3. Then the equality

⟨∆,∆⟩ = 6(2g + 1)
g − 1

deg det f∗ωX/S −
∑

v∈M(k)

λ(Xv)logNv


holds.
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Let π : Cg → Mg be the universal stable curve of genus g ≥ 2 and let ΩCg/Mg
be

the universal relative dualizing sheaf. For the stable curve X → S, the pull-back of
Lπ := detπ∗ΩCg/Mg

along the classifying map S → Mg gives the metrized line bundle
det f∗ωX/S on S.

Recall that we introduced a geometric Siegel modular form χ′
18 ∈ S3,18(Z) in Subsec-

tion 2.2.1, which corresponds to an element in T3,18(Z) (also denoted by χ′
18). Thus χ′

18
can be considered as a rational section of L⊗18

π . Now we assume that the generic fiber
of X → S is non-hyperelliptic and also of genus 3. Then the pull-back of χ′

18 along the
classifying map S → M3 gives a non-zero rational section of L⊗18

f (Lemma 2.2.1). Over
C, the pullback of the Hodge metric (Equation (2.7)) on Lπ coincides with the metric
derived from Equation (1.5). Thus we have the following formula for deg det f∗ωX/S :

18deg det f∗ωX/S =
∑

v∈M(k)0

ordv(χ′
18)logNv −

∑
v∈M(k)∞

log∥χ′
18∥Hdg,v. (3.5)

Applying this to Proposition 3.3.1, we get the following result (Theorem 8.2 in [13]).

Theorem 3.3.2. Let X be a smooth non-hyperelliptic curve of genus 3 defined over the
number field k which has semistable reduction over k. Let f : X → Spec(Ok) be the stable
model of X over Ok and consider χ′

18 as a rational section of the line bundle L⊗18
f . Then

the height of a canonical Gross-Schoen cycle ∆ on X3 satisfies

⟨∆,∆⟩
21 =

∑
v∈M(k)0

(
1
18ordv(χ′

18) − λ(Xv)
)

logNv

+
∑

v∈M(k)∞

(
− 1

18 log∥χ′
18∥Hdg,v − λ(Xv)

)
.

3.3.2 The Horikawa index

In this subsection, S is the spectrum of a discrete valuation ring R with the closed point
s and fraction field K(S). Let f : X → S be a stable curve of genus 3 with smooth
non-hyperelliptic generic fiber.

Using the notation defined in the beginning of Subsection 2.2.1, the bundles Ef and
Gf are locally free and the morphism νf : Sym2Ef → Gf given by η1 · η2 → η1 ⊗ η2 is
generically surjective (both are K(S)-linear spaces of dimension 6 at the generic fiber of
S). Since R is a discrete valuation ring, we know Sym2Ef and Gf can be viewed as free
R-modules of rank 6. The generic surjectivity of νf also guarantees its global injectivity.
This induces a short exact sequence:

0 → Sym2Ef → Gf → Qf → 0. (3.6)
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Since Sym2Ef and Gf are isomorphic to R⊕6, we find that Qf is of finite length over R.
We define lengthOS

Qf as the Horikawa index of f at s, denoted by Inds(f).

Proposition 3.3.3. If we consider χ′
18 as a rational section of the line bundle L⊗18

f on
S, then we have the equality

ords(χ′
18) = 2Inds(f) + 2δ(Γs).

In particular, χ′
18 is a global section of L⊗18

f .

Proof. See Proposition 9.3 in [13].

Proposition 3.3.4. With the notation above, the inequality

ords(χ′
18) ≥ 2h(Γs) + 2δ0(Γs) + 6δ1(Γs)

holds.

Proof. By Proposition 3.7 in [66], we have

Inds(f) ≥ h(Γs) + 2δ1(Γs),

where h(·) is defined in Equation (3.1). We prove the assertion by combining this with
Proposition 3.3.3.

Let H be the closure of the hyperelliptic locus of M3 in M3. Pulling back the line
bundle OM3(H) and its canonical section along the classifying map S → M3, we can
define the multiplicity multsH.

Proposition 3.3.5. With the notation above, then we have

Inds(f) = multsH + 2δ1(Γs).

Proof. See Proposition 9.6 in [13].

3.3.3 An unboundedness property of ⟨∆, ∆⟩

In this subsection, we still write S for the spectrum of a discrete valuation ring. We
denote the closed point of S by s. Recall Definition 1.4.18 and the paragraph after it for
some graph-theoretic terminology.

Definition 3.3.6. We say a genus 3 pm-graph Γ = (G,w, q) satisfies Condition (H) if
Γ is equivalent to a pm-graph Γ′ = (G′, w′, q′) such that

(1) Γ′ has no eliminable vertices,
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(2) G′ is the wedge sum of trees, type 1I or type 1II graphs in Table 3.1.

Proposition 3.3.7. Let C → S be a genus 3 stable curve with smooth non-hyperelliptic
generic fiber. If the dual graph Γs satisfies Condition (H), then we have

1
18ords(χ′

18) − λ(Γs) ≥ 0,

where strict positivity holds if Γs is not trivial.

Proof. We mainly use the inequality in Proposition 3.3.4. Since the functions h(·), δ0(·)
and δ1(·) are additive (Example 1.4.22 and Lemma 3.2.7), it remains to prove the asser-
tion for trees, type 1I graphs and type 1II graphs in Table 3.1.

Claim 3.3.8. If Γs is a tree, then 1
18 ords(χ′

18) − λ(Γs) ≥ 1
21δ(Γs).

Proof of claim: Table 3.1 contains all possible tree pm-graph of genus 3, then we
have λ(Γs) = 2

7δ(Γs). A tree graph has no edges of type 0 thus δ1(Γs) = δ(Γs), so we
obtain

1
18ords(χ′

18) − λ(Γs) ≥ 6δ(Γs)
18 − 2

7δ(Γs) = 1
21δ(Γs)

by Proposition 3.3.4. CLAIM PROVEN

Claim 3.3.9. If Γs is of type 1I or 1II in Table 3.1, then 1
18 ords(χ′

18) − λ(Γs) > 0.

Proof of claim: For type 1I in Table 3.1, it is easy to see
1
18ords(χ′

18) − λ(Γs) ≥ a

9 − 3a
28 = a

252 > 0.

Now we consider 1II in Table 3.1. If we write m1, m2 ∈ Z>0 for the thicknesses of
the two nodal points in Cs, then we get

1
18ords(χ′

18) − λ(Γs) ≥ m1 +m2

252 + min{m1,m2}
9 − m1m2

7(m1 +m2)

by Proposition 3.3.4 and Table 3.2. We assume m1 ≥ m2. If we denote m1
m2

by m3, then
the right side of the inequality above becomes

m2 · m
2
3 + 2m3 + 1 + 28(1 +m3) − 36m3

252(1 +m3)

=m2 · m
2
3 − 6m3 + 29
252(1 +m3)

=m2 · (m3 − 3)3 + 20
252(1 +m3) ,

which proves the positivity. CLAIM PROVEN
Thus we have proved the proposition.
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The main tool we used in the proof of the last proposition is Proposition 3.3.4. This
lower bound is not enough for our purposes if the dual graph contains more than 1 cycle
(for example, the type 2III in [9]). However, even for type 2III, we can prove

1
18ords(χ′

18) − λ(Γs) ≥ 0

where the equality holds when all edges are of the same length. Thus we would like to
believe that the positivity holds in general. However, the inequality in Proposition 3.3.4
is not enough for this goal in the general case.

Conjecture 3.3.10. Let C → S be a genus 3 stable curve whose generic fiber is non-
hyperelliptic and smooth. We conjecture

1
18ords(χ′

18) − λ(Γs) ≥ 0,

where strict positivity holds if Γs is not a one-point graph.

The theory of stable curves over Dedekind schemes can be extended to a complex
manifold analogue. Let D be the complex unit disk. For a family of complex curves
gC : Y → D which is smooth over D∗, there is a ramified map j : D → D such that the
pullback of gC along j has a stable model over D. See Proposition 7.2 in [38] and Page
173 in [49].

Lemma 3.3.11. Let f : Y → D be a generically non-hyperelliptic stable curve of genus
3 that is smooth over D∗. We consider χ′

18 as a rational section of the line bundle L⊗18
f

on D. Then the following asymptotics

− 1
18 log∥χ′

18∥Hdg(Yt) − λ(Yt) ∼ −
(

1
18ord0(χ′

18) − λ(Γ0)
)

log|t|

holds as t → 0, where the ∥ · ∥Hdg is defined in Equation (2.7). The symbol ∼ here means
that the difference of both sides can be extended to a continuous function on D∗.

Proof. By Proposition 7.4 in [13], this is equivalent to

λ(Yt) ∼ −λ(Γ0)log|t| − 1
2 logdet Im Ω(t),

as t → 0. This asymptotic formula for λ was proven by R. de Jong and F. Shokrieh as
Theorem C in [15].

Let {pm}m∈N+ be a family of points in the orbifold M3(C). Let f : U → M3(C) be
an étale map such that {pm+n0}m∈N+ ⊂ f(U) for some positive integer n0. Each point
pm+n0 can have several preimages on U along f . If there is a preimage p′

m+n0
of pm+n0
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for each m ∈ N+ such that {p′
m+n0

}m∈N+ converges to a point p′
s on U in the Euclidean

topology, we say the family of points {pm}m∈N+ converges to the point f(p′
s) on M3(C).

If a family of points on M3(C) converges, then the converging point is well-defined (does
not depend on the choices of f and the family of preimages).

Theorem 3.3.12. Let {Lm}m∈N+ be a family of smooth non-hyperelliptic curves of genus
3 over Q. If the following properties hold:

(1) considering {Lm ⊗Q C}m∈N+ as a family of points in M3(C), this family of points
lies on a curve in M3(C) and converges to a point in M3(C)\M3(C) which has a
non-trivial dual graph satisfying Condition (H),

(2) the dual graphs of their stable models (which exist over finite extensions of the base
field Q, see Theorem 1.1.16) over finite places satisfy Condition (H),

then their heights of canonical Gross-Schoen cycles ⟨∆m,∆m⟩ go to infinity.

Proof. We assume that Lm has semistable reduction over km with [km : Q] < +∞ for
all m ∈ N+. Then we can decompose the height ⟨∆m,∆m⟩ with the formula in Theorem
3.3.2:

⟨∆m,∆m⟩ = 21
[km : Q]

 ∑
v∈M(km)0

(
1
18ordv(χ′

18) − λ(Lm,v)
)

logNv


− 1

18 log∥χ′
18∥Hdg(Lm) − λ(Lm).

Condition (2) implies that the contribution from finite places is non-negative (Propo-
sition 3.3.7). It remains to show that the contribution from the infinite place Q → C
goes to infinity as m → ∞.

By Condition (1), after discarding finitely many curves in {Lm}, we can assume that
there is a family of complex genus 3 curves f : X → D such that:

(1) f is smooth over D∗, and is singular at the centre of D,

(2) there exists a series of points {tm}m∈N+ on D∗ approaching to the centre as m → ∞
such that Lm ⊗Q C ≃ Xtm .

Taking a suitable ramified map [n] : D → D defined by t → tn, we can pass to a stable
model f′ : X ′ → D of f and a family of points t′m such that [n](t′m) = tm. Condition (1)
implies that the fiber of f′ at the origin 0 is a singular stable curve satisfying Condition
(H). By Lemma 3.3.11, we have

− 1
18 log∥χ′

18∥Hdg(X ′
t′m

) − λ(X ′
t′m

) ∼ −
(

1
18ord0(χ′

18) − λ(Γ0)
)

log|t′m|.
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Thus we get

− 1
18 log∥χ′

18∥Hdg(Xtm) − λ(Xtm) ∼ − 1
n

·
(

1
18ord0(χ′

18) − λ(Γ0)
)

log|tm|.

According to Proposition 3.3.7, we can say ⟨∆m,∆m⟩ → ∞ as m → ∞.

Remark 3.3.13. If we can prove Conjecture 3.3.10, then we can discard mentioning the
Condition (H) in (1) and remove the condition (2) in Theorem 3.3.12.

3.3.4 An application of Theorem 3.3.12

In this subsection, we give an explicit family of curves that satisfies the conditions in
Theorem 3.3.12.

We define a family of plane curves by

{Cn : y4 = x4 − (4n− 2)x2 + 1}n∈N,

where N = {n ∈ N+|n ≡ 2(mod 3), n ̸≡ 0, 1(mod 25)}.
J. Guàrdia proved that the dual graphs of the stable models of these curves over Kn

(Notation 3.2 in [32]) are in Table 3.1 (all pm-graphs in Table 3.1 satisfy Condition (H))
for all finite places. This means that Condition (2) in Theorem 3.3.12 is satisfied.

As a compact Riemann surface, the curve Cn is isomorphic toD1/n : y4 = x(x−1)(x− 1
n ).

The family of curves Dκ : y4 = x(x − 1)(x − κ) over D (parametrized by κ) is smooth
over D∗ and singular at κ = 0 (the tacnodal curve y4 = x2(x− 1)).

Lemma 3.3.14. Let Dκ be the stable reduction of Dκ → D. Then D0 is the union of
two copies of the elliptic curve E given by the equation y2 = x3 −x, joined at two points.

Proof. See Proposition 8 in [34].

By the lemma above, Condition (1) in Theorem 3.3.12 is also satisfied. Thus the
heights of canonical Gross-Schoen cycles of {Cn}n∈N go to infinity as n → +∞.

Remark 3.3.15. The unboundedness of ⟨∆,∆⟩ for {Cn}n∈N was first proved by R.
de Jong in [13]. When the paper was written, the equality in Lemma 3.3.11 was only
established when the dual graph of Y0 is of type 1II.
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