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Chapter 2

Arithmetic and geometric properties of genus

3 curves

In this chapter, we study geometric and arithmetic properties of genus 3 curves. In
Section [2.I], we recall general notions and results. In Section [2.2] we discuss properties of
X1s, including C. Ritzenthaler’s work on Klein’s formula. We will freely use the moduli

language.

2.1 General background

In Subsection 2.1:1] we explain the classification of stable curves of genus 3. In Subsection
[2:1:2] we explain the relation between various kinds of modular forms and state the Torelli
theorem. In Subsection [2.1.3] we recall some notions in invariant theory. In Subsection
we introduce bitangents of plane quartic curves, and explain their relation with
semicanonical divisors and theta characteristics.

The modular form yj defined in Equation will play an important role in Section
and Section Corollary will be used to evaluate ||0||4—1 in Section

2.1.1 Classification and moduli

We begin with a simple classification of smooth curves of genus 3 over an algebraically

closed field. Most statements in this subsection can be found in [19].

Proposition 2.1.1. Let k be an algebraically closed field. A non-hyperelliptic smooth

curve of genus 3 over k always has a plane quartic model in the projective plane P2.

Proof. See Page 519 in [63]. O

39



2. ARITHMETIC AND GEOMETRIC PROPERTIES OF GENUS 3 CURVES

We have the following models representing smooth genus 3 curves over an algebraically
closed field k. When char k # 2, hyperelliptic curves of genus 3 have the following affine

model
7

C:y? = H(x —¢;), wherec; €k

i=1

while when char k = 2 (Theorem 7.4.24 in [48]), they have the following affine model

C:y?+ f(a)y = g(x)

with
7 < max{2deg f(z),degg(z)} <8.

Plane quartic curves over k can be expressed as

> amnX'Y™Z" =0,
l+m-+n=4

where ¢ € k.

Example 2.1.2. (Klein quartic) The plane curve defined by X3Y +Y3Z + Z3X =0 is
called the Klein quartic curve. As a compact Riemann surface, it has 168 automorphisms.

As a curve over Z, it has potentially good reduction at 7 (Page 81 in [20]).

We write M3 (resp. Ms) for the moduli stack (resp. coarse moduli space) of smooth
genus 3 curves. Similarly, we write M3 (resp. M3) for the moduli stack (resp. coarse
moduli space) of stable curves of genus 3.

According to Theorem 3.19 and Theorem 5.1 in [58], we have the following results.
The moduli space M3 is an algebraic stack over Spec(Z) of relative dimension 6, which
contains M3 as an open substack.

Singular curves of genus 3 make up a divisor A in M3, which can be decomposed as
A=AgUAY,

where A( denotes the closure of the irreducible singular curves of geometric genus 2 with
exactly one nodal point, and A; denotes the closure of reducible curves with exactly
two components of genus 1 and 2. Both Ag and A; are prime divisors of Ms. General
statements for higher genus ¢ can be found in Page 411 in [23].

The hyperelliptic locus H in M3 is an irreducible algebraic stack of codimension 1
(Theorem 2.1 in [26]). Let H be the closure of H in Ms.
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2. ARITHMETIC AND GEOMETRIC PROPERTIES OF GENUS 3 CURVES

2.1.2 Modular forms and the Torelli theorem

The main references for this subsection are [I3] and [43]. We assume the integer g > 3
in this subsection.

Let A, be the moduli stack of principally polarized abelian schemes of relative di-
mension g and denote by p : U, — A, the universal abelian variety. Let (%, /4, denote
the sheaf of relative 1-forms of p. Then we get a rank g vector bundle & = p.{%y ,4,
(known as the Hodge bundle), and its determinant £ = det p.y, /4, on Aj.

Definition 2.1.3. An algebraic Siegel modular form of genus g and weight h € Z~q over

a commutative ring R is an element of the R-module
Sgn(R) =T (A, ® R, LZM).

Let 7 : Cy — M, be the universal smooth curve of genus g. We have a vector bundle

Er = mwe, ym, and an invertible bundle £ = det m.we,  aq, on My associated to .

Definition 2.1.4. A Teichmiiller modular form of genus g and weight h over R is an
element of the R-module
Tyn(R) =T(M,® R, LEM).

For a ring homomorphism R; — Rj, elements in Sy, (R1) (resp. Tgx(R1)) can
be mapped to elements in Sy ;(R2) (resp. Ty n(R2)). Thus it makes sense to ask if a
modular form in S; 5, (R2) (resp. Ty »(R2)) can be lifted to an element in S, 5 (R1) (resp.
Ty n(R1)). In Lemma we will find that the modular form x(7) in Sy 5(C) can be
lifted to an element in Sy ;(Z) (denoted by xJ,) with respect to the ring homomorphism
Z — C.

Now we take R to be a field k. For a principally polarized abelian variety (4, a) € Agy(k)
of dimension g over k (resp. a smooth curve C of genus g over k), we denote by

wy[A] = /\HO(AaQA/k) (resp. Ax[C] = /\HO(C» Qcyr))

the k-vector space of global sections of £ (resp. L) over (A, a) (resp. C). For f € S, 1(k)
(resp. f € Ty n(k)) and a basis w of wy[A] (resp. a basis A of A\;[C]), we put

f((A,a),w) = f(A,a)/w®" €k, (resp. f(C,\) = f(C)/\®" € k). (2.1)

This sends a algebraic Siegel modular form (resp. Teichmiiller modular form) to a k-
valued function on A, (k) (resp. My(k)).

The map t : My, — A, sending every smooth curve C of genus g to its Jacobian
with the canonical polarization (Jac(C), ) is known as the Torelli map. This gives a
translation from Sy (k) to Ty n(k).
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2. ARITHMETIC AND GEOMETRIC PROPERTIES OF GENUS 3 CURVES

Lemma 2.1.5. The Torelli map t satisfies t*L = L, and induces a linear map
1 Sy n(k) =T(A, @k, LO") = T, (k) =T(M, @k, LZ")
for any field k.

Proof. See Section 2.1 in [35]. O

On Page 89 in [42], we can find the following precise form of the Torelli theorem.

Theorem 2.1.6. Let (A,a) be a principally polarized abelian variety of dimension g > 1
over a field k. We assume (A, a) is isomorphic over k to the Jacobian of a curve Xo of
genus g defined over k. Then the following holds :

(1) If Xo is hyperelliptic, then there is a curve X/k isomorphic to Xo over k such that
(A, a) is k-isomorphic to (JacX,j) where j is the canonical polarization.

(2) If Xo is not hyperelliptic, there is a curve X/k isomorphic to Xy over k, and a
quadratic character

e : Gal(ksep/k) — {£1}

such that the twisted abelian variety (A,a). (see X.5 in [60] for the explanation
of ‘twisted’) is k-isomorphic to (JacX,j). The character € is trivial if and only if
(A, a) is k-isomorphic to a Jacobian.

Now we shift our attention to the case k = C. Let Hy := {7 € Mat(gxg,C)|‘r = 7,Im7 > 0}
be the Siegel upper half space of genus g.

Definition 2.1.7. An analytic Siegel modular form of genus g and weight h is a
complex holomorphic function ¢(-) on H, satisfying

d(MT) = det(er + d)h < o(1),

b

where M = (a
c d

) € Spgy(Z) for matrices a, b, ¢, d € Mat(g x g,Z), and

Mt = (a1 +b)(cT +d) 1.
We denote the C-vector space of such functions by Rg .

There is a complex torus over H given by

H, x CY
((11,2) ~ (T2,22) if and only if 71 = 75 and 21 — 23 € Z9 + 7 Z9)°

U, =
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2. ARITHMETIC AND GEOMETRIC PROPERTIES OF GENUS 3 CURVES

We have a map of complex manifolds u : H; — A4(C) and an isomorphism

Hy/Sp(29,Z) = Ag(C).

The map v induces an isomorphism between U, and the pull-back of ¢/, (C) along u. The
tangent space along the unit section of U, — H, is canonically identified with CY, giving

a trivialization on the Hodge bundle £ = ¢y, /m, on Hy by the frame

(d¢1/Cay---,dCy/Cq) = (2midza, . .., 2midzg),

where ¢; = exp(2miz;). Then the line bundle £ = det€ is trivialized by the frame

w= % AREEWA % = (2mi)9(dz1 N - -- Ndzg). See Pages 141-142 in [24] for details.

Proposition 2.1.8. We write (A;,a,) for a principally polarized complex abelian variety
with the period matrix 7. Let f € Sy n(C) and let f be the following C-valued function
on H,

f(r) = 2mi) 9" f(A,,ar)/(dzr A -+~ Adzy)®",
where (z1,...,24) is the canonical basis of C9. The map f — f induces an tsomorphism
Sgn(C) >~ Ry p.

Proof. See Page 141 in [24]. O

We denote the subset of 179 /79 x $7.9 /79 containing exactly all elements € = (a’,a”)
such that 4a’-a” = 0(mod 2) by S,. We take h = @ and define a holomorphic function

on H, by
gh/2
Xn(T) = 22g 1(29 5 H 0.(0,7) (2.2)
eesS,

0c(z,7) Z exp(mi‘(n+a)r(n+ad') 4+ 2ri'(n+d')(z +d")), zeCI.
nezI

Under the assumption g > 3, we have x5, € Ry, (Lemma 10 in [37]). By Proposition
this corresponds to a algebraic Siegel modular form

Xn(Ar) = (21)9" - Xu(7)(dzy A - A dzg)®" € Sy 1 (C). (2.3)

By Lemma we can get a Teichmiiller modular form in T ,(C). Actually, we have

the following result.

Lemma 2.1.9. The algebraic Siegel modular form xyp, is a primitive (not congruent to
0 modulo p for any prime p) element in Sy n(Z). Moreover, there exists a Teichmiller

modular form puy, /o € Ty p/2(Z) such that
(xn) = (ny2)*
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2. ARITHMETIC AND GEOMETRIC PROPERTIES OF GENUS 3 CURVES

Proof. See Proposition 3.4 in [35] and Proposition 4.5 in [36]. O

Remark 2.1.10. To distinguish from the modular form x, in Sg,(C), we denote this
modular form in Sy n(Z) by X},

Let (A, a) be a principally polarized complex abelian variety with a fixed basis of
differential 1-forms {w;}1<i<4 and a symplectic homology basis of Hi(A,Z). We can
obtain a period matrix (21|€Q22) by taking the integration of the differential forms along
the homology basis. Using the notations in Equation and Proposition we
have the following proposition.

Proposition 2.1.11. Let f be an algebraic Siegel modular form in Sy (ko) for some
subfield kg C C. Let w =wi A--- Awy € wy,y[A]. Then

o gh F(T)
f(4,a),w) = (2m) hdet 0

Proof. See Proposition 1.2.4 in [43]. O

2.1.3 Notions in invariant theory

Let d be a positive integer. Let L be an algebraically closed field such that d is invertible
in L. Let V be an n-dimensional vector space over L. We have the following two

interpretations of X4 := Symd(V*) which we will use freely.

(1) Fixing a basis v = (vy,...,v,) of V, elements in Sym?(V*) can be considered as

degree d homogeneous polynomials (or d-forms) in k[z1, ..., z,] where z;(v;) = d;;.

(2) We can also consider X4 as an affine scheme which is isomorphic to A®, where
0 = dim(Sym?(V*)).

We define an action of GL(V') (resp. SL(V)) on X, by
r(s): Fay,...,2n) = (8- F)(x1,...,2n) = F(s(z1,...,2,))

for s € GL(V) (resp. SL(V)). This induces a natural action of GL(V) (or SL(V)) on
regular (or rational) functions on Xj.

Definition 2.1.12. Let U be a Zariski open set of Xy that is stable under the action
of SL(V). An element ¥ of O(U) is called an invariant on U if ¥ = s- U for all
s € SL(V). We denote the subspace of O(U) consisting of homogeneous invariants of
degree h by Invy,(U).

44



2. ARITHMETIC AND GEOMETRIC PROPERTIES OF GENUS 3 CURVES

If ¥ € OU), and if w and h are integers such that hd = nw, then ¥ € Inv,(U) if
and only if

s- U = (dets)”¥ for every s € GL(V),

where w is called the weight of U (Section 2.1 in [43]).

In the following part of this subsection, we assume n = 3. Let J; be the set of all
non-negative integer tuples (ci,ca,c3) such that ¢; + ¢o + ¢3 = d. Let Res(-) be the
multivariate resultant (Theorem I1X.3.5 in [45]). We write z for the tuple (z1, 22, z3) and

write x(¢1:2:¢3) for the monomial 2§'25?25*. We call the polynomial  :== > cz! over

I1€T,
Llcrres, the universal ternary form of degree d. The polynomial
. —((d=1)"—(=1)" OB OB OB
D = g~ ((@d=1)"=(=1)")/dR, gy v Y 24
sop o 81‘1 ’ 8$2 ’ 81‘3 ( )

in Llcr]res, has the property that its zero locus classifies exactly all non-smooth plane
curves of degree d (Section 2.2 in [42]). For a specific ternary form F' of degree d, we
write Disc(F') for the value of Discy at F.

By the universal plane curve of degree d over X4, we mean the variety

Ug = {(F,r) € Xg x P?| F(r) = 0}.
We write Xg for the Zariski open set
X7 = (Xa)Discyy = {F € Xq|Disc(F) # 0}.

of Xg4. We write 1 for the universal curve over the non-singular locus XJ with the
smooth projection map
49 — X9
Explicitly speaking, invariants for ternary quartic forms (d = 4, n = 3) are poly-
nomials in 15 coefficient variables that are stable under the action of SLs(L) (this is
compatible with Definition . The discriminant is an invariant of degree 27 (Sec-
tion 7 in [21]).

2.1.4 Bitangents

A plane smooth quartic curve C' C ]P’% intersects a straight line I C P? at 4 points,
counted with multiplicity (Bézout’s theorem). We say [ is a bitangent of C if | is tangent

to C' at two distinct points. The following theorem was proven by J. Pliicker in [57].

Theorem 2.1.13. FEvery smooth plane quartic curve over C has precisely 28 bitangent

lines.
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2. ARITHMETIC AND GEOMETRIC PROPERTIES OF GENUS 3 CURVES

Remark 2.1.14. Theorem also holds for plane quartics over a separably closed
field k with char k # 2.

The following result of D. Lehavi implies a close relation between plane quartics and

their bitangents.

Theorem 2.1.15. Every smooth plane quartic curve over C can be reconstructed from

its bitangents.
Proof. See Theorem 1.4 in [46]. O

Now we consider plane quartics over a general separably closed field k with char k # 2.

Let f: C < P? be a smooth plane quartic over k.

Lemma 2.1.16. The effective canonical divisors on C are exactly the divisors (C - L),
the intersection of C and L, for arbitrary lines L C IP?.

Proof. This comes from the fact that Q¢ ~ Oc(1) = f*O(1) for plane smooth quartics.
O

Definition 2.1.17. A theta characteristic on a smooth plane quartic curve C is a line
bundle L on C such that L @ L ~ Q¢. A theta characteristic is said to be odd (resp.
even) if h°(C, L) is odd (resp. even). We denote the set of odd theta characteristics of
C by OT(C).

We have the following well-known correspondence (see Page 289 in [31]).

Theorem 2.1.18. There is a canonical bijection of bitangents of a smooth plane quartic

C' and odd theta characteristics of C given by
1
L— 5((] - L).

Proof. Let L be a bitangent of C, then the divisor F := 1(C'- L) is a theta characteristic
by Lemma Since F is effective, we have h°(C,O(F)) > 1. Since F = Q¢ (—F)
and deg(F) = 2, we get h(C, O(F)) < 1 by Clifford’s theorem (Theorem IV.5.4 in [33]).
Thus h°(C,O(F)) = 1 and F is an odd characteristic. It remains to prove that this is a
bijection.

Let D be an odd theta characteristic on C. Since we have h°(C,O(D)) > 0, the
linear system |D| is non-empty with an effective representative E = P + (). Since 2FE
is canonical, we have 2E = (C - L) for some line L by Lemma This proves the
surjectivity in the theorem.

Suppose bitangents L; and Lo give the same theta characteristic, then we have
LinC =2P+Q) and Ly N C = 2(R + S) for points P, Q, R and S on C such
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2. ARITHMETIC AND GEOMETRIC PROPERTIES OF GENUS 3 CURVES

that {P,Q} # {R,S}. Thus P+ Q — R — S = div(g) for some rational function g on
C. This is impossible, otherwise g gives an hyperelliptic map C — P!. This proves the
injectivity in the theorem. O

Now we shift our attention to Jac(C), an abelian variety of dimension 3. We denote
the group of 2-torsion k-points of Jac(C) by Jac(C)[2]. Since chark # 2, Jac(C)[2] is
isomorphic to F¥°. We have the Weil pairing

(-, Yw = Jac(C)[2] x Jac(C)[2] — Fs.
There exists a symplectic basis {g1, g2, g3, h1, ha, hs} of Jac(C)[2] such that
(9i,95)w = (hi, hj)w =0

and
(g hj)w = 05 5.
We call @ : Jac(C)[2] — F3 a quadratic form with polar form (-, )y if

Qr+y) —Qz) — Qy) = (z,y)w for all z,y € Jac(O)[2].

We denote the set of quadratic forms with polar form {(-,-)y by T¢. Then the Arf
tnvariant of an element Q(-) in T¢ is

Arf(Q) = Z Q(9:)Q(h;) € Fo,

1<i<3

which is independent on the choice of the symplectic basis. The set of quadratic forms
with polar form (-, -}y forms a torsor over Jac(C')[2]. This structure is defined by

(Q+n)(z) =Q(z) + (z,mw = Q(z +n) + Q(n)

for Q(-) € T¢ and 7 € Jac(C)[2] ~ F$°.
We denote the subset of T¢ consisting of quadratic forms of Arf invariant 0 (resp.
1) by E¢ (resp. O¢). The set E¢ (resp. O¢) contains 36 (resp. 28) elements. The

symplectic group Spg(F2) gives a natural action on O¢ and E¢, which is also transitive.

Theorem 2.1.19. There is a canonical bijection between the set O¢ and the set of
bitangents of C.

Proof. See Proposition 6.2 in [39] and the end of Section 2 in [40]. O
Corollary 2.1.20. We have a 1-1 correspondence among the three sets

Bitangents(C) «+» O¢ + OT(C)

47



2. ARITHMETIC AND GEOMETRIC PROPERTIES OF GENUS 3 CURVES

Proof. This is a trivial corollary from Theorem [2.1.18| and Theorem 2.1.19] O

Remark 2.1.21. The set of theta characteristics for complexr smooth curves of genus
g has a bijection to the set %ZQ/ZQ X %ZQ/Zg. The even characteristics correspond
to elements (a,b) € $79/79 x L7979 such that 4 x (a-b) = Omod2, and the odd
characteristics correspond to other elements in %Zg/Zg X %Zg/Zg. This interpretation

appears in Riemann’s theta function with characteristic 0.(z,7), which we already used

in the definition of Sy in Equation .
We give two examples of plane quartics with special behaviour of their bitangents.

Example 2.1.22. Let k be a field with chark # 2,7. Let  be a primitive 7-th root of
ungty in k5P, We set €1 = C+( 71, €9 = (2+(72, €3 := (*+ (. Then the 28 bitangents
of the Klein curve (Ea:ample over k°°P are

loj:Z=—CY —-(YX,

Lj:Z=—Y - ¥ X,
lhj:Z =Y — ¥e?X,
ls;: Z =—C3Y — (¥e; X,

where 7 =0,1,...,6.
Example 2.1.23. The following plane quartic over Q has 28 bitangents over Q.

3X37Z + X (Y3 — 11054979Y Z% — 1482244313473) + 38Y* 4 243542Y3 7
+631949994Y 2 Z2 + 822588784146Y Z> + 4605878924287447* = 0

Details can be found in (6.6) in [59].

We end this subsection with a short discussion of the case char k = 2.

When char k = 2 and k = k°°P, the dimension 7 of Jac(C)[2] over Fy and number [ of
bitangents satisfy the following condition: » = |1/2] with [ € {1,2,4,7}. See Page 60 in
[62] for details.

Example 2.1.24. Let k be an algebraically closed field with chark = 2. Then all smooth

plane quartic curves over k with only 1 bitangent can be represented as
(aX?2+bY? +cZ? +dXY +eYZ+ fZX)? = X (Y3 + X22),
where ¢ € k*. See Proposition 2.1 in [54)] for details.
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2. ARITHMETIC AND GEOMETRIC PROPERTIES OF GENUS 3 CURVES

2.2 x)g and Klein’s formula

In Subsection we show how Y/ behaves on Mj, and define the Hodge metric on
det ¢.Qy, /m,. In Subsection @ we talk about the Klein’s formula for plane quartics.
The main references for this section are [I3] and [43].

We will use Propositionand Equation to compute ord, (x}g) at finite places
and ||x1slludag at the infinite place in Section

2.2.1 Moduli property of x/q

In this section we assume g > 2 (we will specialise to g = 3 soon) and use the notation
introduced in Subsection Let t: My, — A, be the Torelli map. For the universal
stable curve 7 : ég — Mg, we can define vector bundles & and L=. For a stable curve
f: X — S over a scheme S, we denote the pullback of &= (resp. Lz) along the classifying
map J : S — M, by & (resp. Ly).

By Lemma [2.1.5] there are natural isomorphisms &, ~ t*€ and L, ~ t*£. We can get
a algebraic Siegel modular form x}g € S5,15(C) by taking g = 3 and h = 18 in Equation
. By Lemma this can be lifted to a modular form in S5 15(Z) which we denote
by X}s. The pullback of x}g along the Torelli map gives a Teichmiiller modular form in
T3 18(Z) which we also denote by xs. Now x)g can be considered as a global section of
the line bundle £&'® on M3 and a rational section of the line bundle £LE'® on Ms.

Lemma 2.2.1. The divisor of x|s on M3 equals 2H, where H is the hyperelliptic locus.

Proof. See Theorem 8.1 in [13]. O

In this paragraph, S is the spectrum of a discrete valuation ring. Let f: X — S be a
stable curve of genus 3 with smooth and non-hyperelliptic generic fiber. By the lemma
above, we know Xg is a non-zero rational section of 5?18 on S. Thus we can define
ord, (x}s), where v is the closed point of S.

Returning to the case where S is an arbitrary integral scheme. Then we have vector

bundles £ = f.wx /s and Gy = f*w?éas on S.

Lemma 2.2.2. Let f: X — S be a stable curve of genus 3 with smooth and non-
hyperelliptic generic fiber. Then both Ef and Gy are of rank 6.

Proof. The ranks of these vector bundles can be computed over any point in S. Thus
we only need to compute dim(Sym*(H°(X,Qx))) and h°(X, Q5?) for smooth curves X

of genus 3.
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2. ARITHMETIC AND GEOMETRIC PROPERTIES OF GENUS 3 CURVES

By Riemann-Roch, we have h%(X,Qx) = 3 and h%(X, Q?}Q) = 6. This implies that

dim(Sym?(H°(X, Qx))) = h°(X,Q%?) = 6.

We have a canonical map
vp: Sym®Ep > Gy, miome @, (2.5)

which is functorial in f. Both Sym?€ ¢+ and Gy are vector bundles of rank 6 and thus we
have a natural map of invertible sheaves

det vy : det Sym?E; — det Gy, (2.6)

which is functorial in f. The map vy is surjective if f is smooth and nowhere hyperelliptic.
We can view det v as a global section s of the invertible sheaf (det Sym*£;)®~ ! @det G;
on S. Then the zero locus of s is contained in the hyperelliptic locus. Standard multi-

linear algebra yields a canonical isomorphism
20 ~ 4
det Sym“Ey — L

of invertible sheaves on S, where Ly = det &y as before, and this shows that we may
as well view sy as a global section of the invertible sheaf E;‘?% ® detGy on S. Let
7 : C3 — M3 be the universal smooth curve of genus 3, then we can associate a section

S

Lemma 2.2.3. The section s, is not identically equal to 0, and the divisor of s, on Ms

s equal to the reduced hyperelliptic divisor H.

Proof. See Proposition 9.1 in [I3]. O

Now we want to consider div(x}g) on Ms. We denote the divisor of sz on M3 by K,

and denote the divisor of singular curves on M3z by A.

Proposition 2.2.4. If we take x}g as a rational section of the line bundle E?lg on Ms,

then we have the equality of effective divisors
div(xig) = 2K +2A
on Ms.
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2. ARITHMETIC AND GEOMETRIC PROPERTIES OF GENUS 3 CURVES

Sketch of proof : See Proposition 9.2 in [I3] for a complete proof.

Let H be the hyperelliptic locus of M3 with closure H in Mj3. By Lemma we
have divs, = H on M3. By Lemma the modular form x/g is a global section of
L218 with divisor 2H. Thus y}s ® s272 is a trivializing section of £L£2¢ ® (det G,)®~2
over Ms.

We have a canonical isomorphism of line bundles on M3
w:det G, ~ Ef?l?’,

which comes from the Mumford’s functorial Riemann-Roch (Theorem 2.1 and Equation
2.1.2 in [51]). Then u®2 gives another trivialization section of £L&20®(det G, )®~2, denoted
by w. Since the only invertible regular functions on M3 are +1, this means that w and
Xis ® s€72 are equal up to a sign.

Mumford’s functorial Riemann-Roch on M3 extends p to an isomorphism

det G= ® O(A) =~ £L213

T

of line bundles on Mj. This extends x}s ® s272 on the trivial line bundle
LE% @ (det G=)® 2 @ O(—2A).

The assertion is proven by taking the divisor of the trivial section on the line bundle
above. QED

At the end of this subsection, we explain the relation between x)g and the Faltings
height. Details can be found in Section 6 in [I3].
For a metrized line bundle (L, (|| - |»)ve m(k).. ) on a ring of integers Oy, its arithmetic

degree is given by choosing a non-zero rational section s of L and setting

deg(L, (Il lo)oemmy) = D ordu(s)log(Nv) — > loglls|o,
veM (k)o vEM (k)oo

where M (k)o (resp. M (k)oo) is the set of finite (resp. infinite) places of Oy.
Recall that q : U, — H, is the universal principally polarized complex abelian variety
over the Siegel upper-half space. We write £ for the line bundle detg, Qu, m,- The Hodge

metric of L is given by
ldz1 A ... dzg|lHag(T) = Vdet ImT (2.7)
for all 7 € H,.
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2. ARITHMETIC AND GEOMETRIC PROPERTIES OF GENUS 3 CURVES

Let f : X — Spec(Og) be a semistable arithmetic surface of genus 3 over a ring of
integers with non-hyperelliptic smooth generic fiber. Let @ be the Arakelov dualising
sheaf. The Faltings height of f is given by

> ordy(xg)log(Nv) > logllxisllHag.o
veM (k)o vEM (K)o

18 B 18

degdet fulx s = (2.8)

2.2.2 Klein formula

Recall that S, is the set of even theta characteristics of genus g. By Page 851 in [37],
the function

5140 = H 96<O,T)8
€ES3
e#0

is an analytic Siegel modular form of weight 140.

Theorem 2.2.5. Let (A,a) be a principally polarized abelian variety of dimension 3
defined over k C C. Let wy,wq,ws be a basis of H(A, Q}L‘/k) and y1,...v6 a symplectic
basis of H1(A,Z). Then we can associate the period matriz Q = [Q1, Q] of (A,a). Put
=070, € H;.

(1) If S140(7) = 0 and §15(7) = 0, then (A, a) is decomposable over k. In particular it

is not a Jacobian.

(2) If S140(7) # 0 and 51s(7) = 0, then there exists a hyperelliptic curve X/k such
that (JacX, j) ~ (A, a).

(3) If x18(7) # 0 then (A,a) is isomorphic to a non-hyperelliptic Jacobian if and only
if

x18((4,a),w) = (27”.)54dfil(é;?(:))18

s a square in k, where w = wy A wa A ws.

Sketch of proof : The first two are proven in Lemma 10, Lemma 11 in [37]. By
Proposition [2.1.11], we have the equality in (3). We give a sketch for the remaining part
of (3), and a complete proof can be found in Theorem 1.3.3 in [43].

We assume (A4, a) to be isomorphic to the Jacobian of a non-hyperelliptic genus 3

curve C'/k. By Lemma and Lemma we have
x18((4,a),w) = t"(x18)(C, A) = po(C, )‘)2 € kX27
with A = t*w.
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Now we assume (A, a) is not isomorphic to the Jacobian of a non-hyperelliptic genus
3 curve C/k. By (3) in Theorem we know (A, a) is a quadratic twist of a Jacobian
(A’,a’). Then it can be shown that

x18((A4,a),w) = x18((A', d),w')(mod k*18)

for some non-square element ¢ € k* (Corollary 1.2.3 in [43]). This implies that x15((4, a),w)
is not a square, which completes the proof. QED

With this theorem, we can show the following formula of Klein in [41] which links the
discriminant of a plane quartic and the analytic Siegel modular form Yis.

We fix a smooth plane curve Cp defined by a homogeneous degree d polynomial
F(X,Y,Z) =0. We write f for F(x,y,1) and write k[z,y]<q4 for the subspace of k[z,y]
containing polynomials of degree less than d. By a classical basis of Q¢,., we mean

a basis of Q¢,. in the form ggfvl}1<i<(d—1)(d—2) where {gi}1<i<(d—1)(d,—2) is a basis of
Em St> 2 S 2

k[x,y]<a (see Theorem [4.6.10)). ’

Theorem 2.2.6. Let Cr be a smooth plane quartic curve over C defined by F(X,Y,Z) = 0.
Let Q = (21|Q2) be the period matriz of Cr with respect to a classical basis of differential

orms and a symplectic homology basis. We denote Q7 'Qy by 7. Then we have
1

54 X18(7)

Disc(F)? = (2n) det(@)

Sketch of proof : See Theorem 2.2.3 in [43] for a complete proof.

We define a function I on X as

. 4 Xas(7)
I(F) == (27)° det ()

It can be shown that [ is an invariant of degree 54 in the sense of Definition [2.1.12
(Corollary 2.2.2 in [43]). This means that I(F) is a degree 54 homogeneous polynomial
of the coefficients of F.

By Theorem we have I(F) # 0 for all F' € XJ. Recall that the discriminant is
a multiple of the resultant (Equation ) which is an irreducible polynomial of degree
27 (Page 113 Section 7 in [21]). By Hilbert’s Nullstellensatz, we have I = ¢Discy for
some constant ¢ € C*.

The exponent n can be computed by the degree counting n = 54/27 = 2. The
constant ¢ can be computed for Ciani curves, which is equal to 1 (Corollary 4.2 in [42]).
QED
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Remark 2.2.7. The Ciani curves are plane curves defined by
X4 Y 4 24 4+ aX?Y?2 +0Y2 2% + ¢Z°X? =0,

fora, band c € k.
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