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Chapter 2

Arithmetic and geometric properties of genus
3 curves

In this chapter, we study geometric and arithmetic properties of genus 3 curves. In
Section 2.1, we recall general notions and results. In Section 2.2, we discuss properties of
χ′

18, including C. Ritzenthaler’s work on Klein’s formula. We will freely use the moduli
language.

2.1 General background
In Subsection 2.1.1, we explain the classification of stable curves of genus 3. In Subsection
2.1.2, we explain the relation between various kinds of modular forms and state the Torelli
theorem. In Subsection 2.1.3, we recall some notions in invariant theory. In Subsection
2.1.4, we introduce bitangents of plane quartic curves, and explain their relation with
semicanonical divisors and theta characteristics.

The modular form χh defined in Equation (2.3) will play an important role in Section
2.2 and Section 3.3. Corollary 2.1.20 will be used to evaluate ∥θ∥g−1 in Section 4.5.

2.1.1 Classification and moduli

We begin with a simple classification of smooth curves of genus 3 over an algebraically
closed field. Most statements in this subsection can be found in [19].

Proposition 2.1.1. Let k be an algebraically closed field. A non-hyperelliptic smooth
curve of genus 3 over k always has a plane quartic model in the projective plane P2.

Proof. See Page 519 in [63].
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2. ARITHMETIC AND GEOMETRIC PROPERTIES OF GENUS 3 CURVES

We have the following models representing smooth genus 3 curves over an algebraically
closed field k. When char k ̸= 2, hyperelliptic curves of genus 3 have the following affine
model

C : y2 =
7∏
i=1

(x− ci), where ci ∈ k

while when char k = 2 (Theorem 7.4.24 in [48]), they have the following affine model

C : y2 + f(x)y = g(x)

with
7 ≤ max{2 deg f(x),deg g(x)} ≤ 8.

Plane quartic curves over k can be expressed as∑
l+m+n=4

clmnX
lY mZn = 0,

where clmn ∈ k.

Example 2.1.2. (Klein quartic) The plane curve defined by X3Y + Y 3Z + Z3X = 0 is
called the Klein quartic curve. As a compact Riemann surface, it has 168 automorphisms.
As a curve over Z, it has potentially good reduction at 7 (Page 81 in [20]).

We write M3 (resp. M3) for the moduli stack (resp. coarse moduli space) of smooth
genus 3 curves. Similarly, we write M3 (resp. M3) for the moduli stack (resp. coarse
moduli space) of stable curves of genus 3.

According to Theorem 3.19 and Theorem 5.1 in [58], we have the following results.
The moduli space M3 is an algebraic stack over Spec(Z) of relative dimension 6, which
contains M3 as an open substack.

Singular curves of genus 3 make up a divisor ∆ in M3, which can be decomposed as

∆ = ∆0 ∪ ∆1,

where ∆0 denotes the closure of the irreducible singular curves of geometric genus 2 with
exactly one nodal point, and ∆1 denotes the closure of reducible curves with exactly
two components of genus 1 and 2. Both ∆0 and ∆1 are prime divisors of M3. General
statements for higher genus g can be found in Page 411 in [23].

The hyperelliptic locus H in M3 is an irreducible algebraic stack of codimension 1
(Theorem 2.1 in [26]). Let H be the closure of H in M3.
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2. ARITHMETIC AND GEOMETRIC PROPERTIES OF GENUS 3 CURVES

2.1.2 Modular forms and the Torelli theorem

The main references for this subsection are [13] and [43]. We assume the integer g ≥ 3
in this subsection.

Let Ag be the moduli stack of principally polarized abelian schemes of relative di-
mension g and denote by p : Ug → Ag the universal abelian variety. Let ΩUg/Ag

denote
the sheaf of relative 1-forms of p. Then we get a rank g vector bundle E = p∗ΩUg/Ag

(known as the Hodge bundle), and its determinant L = det p∗ΩUg/Ag
on Ag.

Definition 2.1.3. An algebraic Siegel modular form of genus g and weight h ∈ Z>0 over
a commutative ring R is an element of the R-module

Sg,h(R) = Γ(Ag ⊗R,L⊗h).

Let π : Cg → Mg be the universal smooth curve of genus g. We have a vector bundle
Eπ = π∗ωCg/Mg

and an invertible bundle Lπ = detπ∗ωCg/Mg
on Mg associated to π.

Definition 2.1.4. A Teichmüller modular form of genus g and weight h over R is an
element of the R-module

Tg,h(R) = Γ(Mg ⊗R,L⊗h
π ).

For a ring homomorphism R1 → R2, elements in Sg,h(R1) (resp. Tg,h(R1)) can
be mapped to elements in Sg,h(R2) (resp. Tg,h(R2)). Thus it makes sense to ask if a
modular form in Sg,h(R2) (resp. Tg,h(R2)) can be lifted to an element in Sg,h(R1) (resp.
Tg,h(R1)). In Lemma 2.1.9, we will find that the modular form χh(τ) in Sg,h(C) can be
lifted to an element in Sg,h(Z) (denoted by χ′

h) with respect to the ring homomorphism
Z → C.

Now we takeR to be a field k. For a principally polarized abelian variety (A, a) ∈ Ag(k)
of dimension g over k (resp. a smooth curve C of genus g over k), we denote by

ωk[A] :=
g∧
H0(A,ΩA/k) (resp. λk[C] :=

g∧
H0(C,ΩC/k))

the k-vector space of global sections of L (resp. Lπ) over (A, a) (resp. C). For f ∈ Sg,h(k)
(resp. f ∈ Tg,h(k)) and a basis ω of ωk[A] (resp. a basis λ of λk[C]), we put

f((A, a), ω) = f(A, a)/ω⊗h ∈ k, (resp. f(C, λ) = f(C)/λ⊗h ∈ k). (2.1)

This sends a algebraic Siegel modular form (resp. Teichmüller modular form) to a k-
valued function on Ag(k) (resp. Mg(k)).

The map t : Mg → Ag sending every smooth curve C of genus g to its Jacobian
with the canonical polarization (Jac(C), j) is known as the Torelli map. This gives a
translation from Sg,h(k) to Tg,h(k).
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2. ARITHMETIC AND GEOMETRIC PROPERTIES OF GENUS 3 CURVES

Lemma 2.1.5. The Torelli map t satisfies t∗L = Lπ and induces a linear map

t∗ : Sg,h(k) = Γ(Ag ⊗ k,L⊗h) → Tg,h(k) = Γ(Mg ⊗ k,L⊗h
π )

for any field k.

Proof. See Section 2.1 in [35].

On Page 89 in [42], we can find the following precise form of the Torelli theorem.

Theorem 2.1.6. Let (A, a) be a principally polarized abelian variety of dimension g ≥ 1
over a field k. We assume (A, a) is isomorphic over k to the Jacobian of a curve X0 of
genus g defined over k. Then the following holds :

(1) If X0 is hyperelliptic, then there is a curve X/k isomorphic to X0 over k such that
(A, a) is k-isomorphic to (JacX, j) where j is the canonical polarization.

(2) If X0 is not hyperelliptic, there is a curve X/k isomorphic to X0 over k, and a
quadratic character

ε : Gal(ksep/k) −→ {±1}

such that the twisted abelian variety (A, a)ε (see X.5 in [60] for the explanation
of ‘twisted’) is k-isomorphic to (JacX, j). The character ε is trivial if and only if
(A, a) is k-isomorphic to a Jacobian.

Now we shift our attention to the case k = C. Let Hg := {τ ∈ Mat(g×g,C)| tτ = τ, Imτ > 0}
be the Siegel upper half space of genus g.

Definition 2.1.7. An analytic Siegel modular form of genus g and weight h is a
complex holomorphic function ϕ(·) on Hg satisfying

ϕ(Mτ) = det(cτ + d)h · ϕ(τ),

where M =
(
a b

c d

)
∈ Sp2g(Z) for matrices a, b, c, d ∈ Mat(g × g,Z), and

Mτ := (aτ + b)(cτ + d)−1.

We denote the C-vector space of such functions by Rg,h.

There is a complex torus over Hg given by

Ug := Hg × Cg

((τ1, z) ∼ (τ2, z2) if and only if τ1 = τ2 and z1 − z2 ∈ Zg + τ1Zg)
.
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2. ARITHMETIC AND GEOMETRIC PROPERTIES OF GENUS 3 CURVES

We have a map of complex manifolds u : Hg → Ag(C) and an isomorphism

Hg/Sp(2g,Z) ∼→ Ag(C).

The map u induces an isomorphism between Ug and the pull-back of Ug(C) along u. The
tangent space along the unit section of Ug → Hg is canonically identified with Cg, giving
a trivialization on the Hodge bundle Ẽ = q∗ΩUg/Hg

on Hg by the frame

(dζ1/ζ1, . . . , dζg/ζg) = (2πidz1, . . . , 2πidzg),

where ζi = exp(2πizi). Then the line bundle L̃ = det Ẽ is trivialized by the frame
ω = dζ1

ζ1
∧ · · · ∧ dζg

ζg
= (2πi)g(dz1 ∧ · · · ∧ dzg). See Pages 141-142 in [24] for details.

Proposition 2.1.8. We write (Aτ , aτ ) for a principally polarized complex abelian variety
with the period matrix τ . Let f ∈ Sg,h(C) and let f̃ be the following C-valued function
on Hg

f̃(τ) := (2πi)−ghf(Aτ , aτ )/(dz1 ∧ · · · ∧ dzg)⊗h,

where (z1, . . . , zg) is the canonical basis of Cg. The map f → f̃ induces an isomorphism
Sg,h(C) ≃ Rg,h.

Proof. See Page 141 in [24].

We denote the subset of 1
2Z

g/Zg× 1
2Z

g/Zg containing exactly all elements ϵ = (a′, a′′)
such that 4a′ ·a′′ ≡ 0(mod 2) by Sg. We take h = #Sg

2 and define a holomorphic function
on Hg by

χ̃h(τ) := (−1)gh/2

22g−1(2g−1) ·
∏
ϵ∈Sg

θϵ(0, τ), (2.2)

where

θϵ(z, τ) :=
∑
n∈Zg

exp(πi t(n+ a′)τ(n+ a′) + 2πi t(n+ a′)(z + a′′)), z ∈ Cg.

Under the assumption g ≥ 3, we have χ̃h ∈ Rg,h (Lemma 10 in [37]). By Proposition
2.1.8, this corresponds to a algebraic Siegel modular form

χh(Aτ ) := (2πi)gh · χ̃h(τ)(dz1 ∧ · · · ∧ dzg)⊗h ∈ Sg,h(C). (2.3)

By Lemma 2.1.5, we can get a Teichmüller modular form in Tg,h(C). Actually, we have
the following result.

Lemma 2.1.9. The algebraic Siegel modular form χh is a primitive (not congruent to
0 modulo p for any prime p) element in Sg,h(Z). Moreover, there exists a Teichmüller
modular form µh/2 ∈ Tg,h/2(Z) such that

t∗(χh) = (µh/2)2.
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2. ARITHMETIC AND GEOMETRIC PROPERTIES OF GENUS 3 CURVES

Proof. See Proposition 3.4 in [35] and Proposition 4.5 in [36].

Remark 2.1.10. To distinguish from the modular form χh in Sg,h(C), we denote this
modular form in Sg,h(Z) by χ′

h.

Let (A, a) be a principally polarized complex abelian variety with a fixed basis of
differential 1-forms {ωi}1≤i≤g and a symplectic homology basis of H1(A,Z). We can
obtain a period matrix (Ω1|Ω2) by taking the integration of the differential forms along
the homology basis. Using the notations in Equation (2.1) and Proposition 2.1.8, we
have the following proposition.

Proposition 2.1.11. Let f be an algebraic Siegel modular form in Sg,h(k0) for some
subfield k0 ⊂ C. Let ω = ω1 ∧ · · · ∧ ωg ∈ ωk0 [A]. Then

f((A, a), ω) = (2πi)gh f̃(τ)
det Ωh1

.

Proof. See Proposition 1.2.4 in [43].

2.1.3 Notions in invariant theory

Let d be a positive integer. Let L be an algebraically closed field such that d is invertible
in L. Let V be an n-dimensional vector space over L. We have the following two
interpretations of Xd := Symd(V ∗) which we will use freely.

(1) Fixing a basis v = (v1, . . . , vn) of V , elements in Symd(V ∗) can be considered as
degree d homogeneous polynomials (or d-forms) in k[x1, . . . , xn] where xi(vj) = δij .

(2) We can also consider Xd as an affine scheme which is isomorphic to Ad, where
d = dim(Symd(V ∗)).

We define an action of GL(V ) (resp. SL(V )) on Xd by

r(s) : F (x1, . . . , xn) → (s · F )(x1, . . . , xn) = F (s(x1, . . . , xn))

for s ∈ GL(V ) (resp. SL(V )). This induces a natural action of GL(V ) (or SL(V )) on
regular (or rational) functions on Xd.

Definition 2.1.12. Let U be a Zariski open set of Xd that is stable under the action
of SL(V ). An element Ψ of O(U) is called an invariant on U if Ψ = s · Ψ for all
s ∈ SL(V ). We denote the subspace of O(U) consisting of homogeneous invariants of
degree h by Invh(U).
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2. ARITHMETIC AND GEOMETRIC PROPERTIES OF GENUS 3 CURVES

If Ψ ∈ O(U), and if w and h are integers such that hd = nw, then Ψ ∈ Invh(U) if
and only if

s · Ψ = (det s)wΨ for every s ∈ GL(V ),

where w is called the weight of Ψ (Section 2.1 in [43]).
In the following part of this subsection, we assume n = 3. Let Id be the set of all

non-negative integer tuples (c1, c2, c3) such that c1 + c2 + c3 = d. Let Res(·) be the
multivariate resultant (Theorem IX.3.5 in [45]). We write x for the tuple (x1, x2, x3) and
write x(c1,c2,c3) for the monomial xc1

1 x
c2
2 x

c3
3 . We call the polynomial P :=

∑
I∈Id

cIx
I over

L[cI ]I∈Id
the universal ternary form of degree d. The polynomial

DiscP := d−((d−1)n−(−1)n)/dRes
(
∂P

∂x1
,
∂P

∂x2
,
∂P

∂x3

)
(2.4)

in L[cI ]I∈Id
has the property that its zero locus classifies exactly all non-smooth plane

curves of degree d (Section 2.2 in [42]). For a specific ternary form F of degree d, we
write Disc(F ) for the value of DiscP at F .

By the universal plane curve of degree d over Xd, we mean the variety

Ud := {(F, x) ∈ Xd × P2|F (x) = 0}.

We write X0
d for the Zariski open set

X0
d := (Xd)DiscP = {F ∈ Xd| Disc(F ) ̸= 0}.

of Xd. We write U0
d for the universal curve over the non-singular locus X0

d with the
smooth projection map

U0
d → X0

d .

Explicitly speaking, invariants for ternary quartic forms (d = 4, n = 3) are poly-
nomials in 15 coefficient variables that are stable under the action of SL3(L) (this is
compatible with Definition 2.1.12). The discriminant is an invariant of degree 27 (Sec-
tion 7 in [21]).

2.1.4 Bitangents

A plane smooth quartic curve C ⊂ P2
C intersects a straight line l ⊂ P2 at 4 points,

counted with multiplicity (Bézout’s theorem). We say l is a bitangent of C if l is tangent
to C at two distinct points. The following theorem was proven by J. Plücker in [57].

Theorem 2.1.13. Every smooth plane quartic curve over C has precisely 28 bitangent
lines.
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2. ARITHMETIC AND GEOMETRIC PROPERTIES OF GENUS 3 CURVES

Remark 2.1.14. Theorem 2.1.13 also holds for plane quartics over a separably closed
field k with char k ̸= 2.

The following result of D. Lehavi implies a close relation between plane quartics and
their bitangents.

Theorem 2.1.15. Every smooth plane quartic curve over C can be reconstructed from
its bitangents.

Proof. See Theorem 1.4 in [46].

Now we consider plane quartics over a general separably closed field k with char k ̸= 2.
Let f : C ↪→ P2 be a smooth plane quartic over k.

Lemma 2.1.16. The effective canonical divisors on C are exactly the divisors (C · L),
the intersection of C and L, for arbitrary lines L ⊂ P2.

Proof. This comes from the fact that ΩC ≃ OC(1) = f∗O(1) for plane smooth quartics.

Definition 2.1.17. A theta characteristic on a smooth plane quartic curve C is a line
bundle L on C such that L ⊗ L ≃ ΩC . A theta characteristic is said to be odd (resp.
even) if h0(C,L) is odd (resp. even). We denote the set of odd theta characteristics of
C by OT (C).

We have the following well-known correspondence (see Page 289 in [31]).

Theorem 2.1.18. There is a canonical bijection of bitangents of a smooth plane quartic
C and odd theta characteristics of C given by

L → 1
2(C · L).

Proof. Let L be a bitangent of C, then the divisor F := 1
2 (C ·L) is a theta characteristic

by Lemma 2.1.16. Since F is effective, we have h0(C,O(F )) ≥ 1. Since F = ΩC(−F )
and deg(F ) = 2, we get h0(C,O(F )) ≤ 1 by Clifford’s theorem (Theorem IV.5.4 in [33]).
Thus h0(C,O(F )) = 1 and F is an odd characteristic. It remains to prove that this is a
bijection.

Let D be an odd theta characteristic on C. Since we have h0(C,O(D)) > 0, the
linear system |D| is non-empty with an effective representative E = P + Q. Since 2E
is canonical, we have 2E = (C · L) for some line L by Lemma 2.1.16. This proves the
surjectivity in the theorem.

Suppose bitangents L1 and L2 give the same theta characteristic, then we have
L1 ∩ C = 2(P + Q) and L2 ∩ C = 2(R + S) for points P , Q, R and S on C such
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2. ARITHMETIC AND GEOMETRIC PROPERTIES OF GENUS 3 CURVES

that {P,Q} ̸= {R,S}. Thus P + Q − R − S = div(g) for some rational function g on
C. This is impossible, otherwise g gives an hyperelliptic map C → P1. This proves the
injectivity in the theorem.

Now we shift our attention to Jac(C), an abelian variety of dimension 3. We denote
the group of 2-torsion k-points of Jac(C) by Jac(C)[2]. Since char k ̸= 2, Jac(C)[2] is
isomorphic to F⊕6

2 . We have the Weil pairing

⟨·, ·⟩W : Jac(C)[2] × Jac(C)[2] → F2.

There exists a symplectic basis {g1, g2, g3, h1, h2, h3} of Jac(C)[2] such that

⟨gi, gj⟩W = ⟨hi, hj⟩W = 0

and
⟨gi, hj⟩W = δi,j .

We call Q : Jac(C)[2] → F2 a quadratic form with polar form ⟨·, ·⟩W if

Q(x+ y) −Q(x) −Q(y) = ⟨x, y⟩W for all x, y ∈ Jac(C)[2].

We denote the set of quadratic forms with polar form ⟨·, ·⟩W by TC . Then the Arf

invariant of an element Q(·) in TC is

Arf(Q) :=
∑

1≤i≤3
Q(gi)Q(hi) ∈ F2,

which is independent on the choice of the symplectic basis. The set of quadratic forms
with polar form ⟨·, ·⟩W forms a torsor over Jac(C)[2]. This structure is defined by

(Q+ η)(x) = Q(x) + ⟨x, η⟩W = Q(x+ η) +Q(η)

for Q(·) ∈ TC and η ∈ Jac(C)[2] ≃ F⊕6
2 .

We denote the subset of TC consisting of quadratic forms of Arf invariant 0 (resp.
1) by EC (resp. OC). The set EC (resp. OC) contains 36 (resp. 28) elements. The
symplectic group Sp6(F2) gives a natural action on OC and EC , which is also transitive.

Theorem 2.1.19. There is a canonical bijection between the set OC and the set of
bitangents of C.

Proof. See Proposition 6.2 in [39] and the end of Section 2 in [40].

Corollary 2.1.20. We have a 1-1 correspondence among the three sets

Bitangents(C) ↔ OC ↔ OT (C)
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2. ARITHMETIC AND GEOMETRIC PROPERTIES OF GENUS 3 CURVES

Proof. This is a trivial corollary from Theorem 2.1.18 and Theorem 2.1.19.

Remark 2.1.21. The set of theta characteristics for complex smooth curves of genus
g has a bijection to the set 1

2Z
g/Zg × 1

2Z
g/Zg. The even characteristics correspond

to elements (a, b) ∈ 1
2Z

g/Zg × 1
2Z

g/Zg such that 4 × (a · b) ≡ 0 mod 2, and the odd
characteristics correspond to other elements in 1

2Z
g/Zg × 1

2Z
g/Zg. This interpretation

appears in Riemann’s theta function with characteristic θϵ(z, τ), which we already used
in the definition of Sg in Equation (2.2).

We give two examples of plane quartics with special behaviour of their bitangents.

Example 2.1.22. Let k be a field with char k ̸= 2, 7. Let ζ be a primitive 7-th root of
unity in ksep. We set ϵ1 := ζ+ζ−1, ϵ2 = ζ2 +ζ−2, ϵ3 := ζ4 +ζ−4. Then the 28 bitangents
of the Klein curve (Example 2.1.2) over ksep are

l0,j : Z = −ζjY − ζ3jX,

l1,j : Z = −ζjϵ21Y − ζ3jϵ−2
3 X,

l2,j : Z = −ζjϵ22Y − ζ3jϵ−2
1 X,

l3,j : Z = −ζjϵ23Y − ζ3jϵ−2
2 X,

where j = 0, 1, . . . , 6.

Example 2.1.23. The following plane quartic over Q has 28 bitangents over Q.

3X3Z +X(Y 3 − 11054979Y Z2 − 14822443134Z3) + 38Y 4 + 243542Y 3Z

+631949994Y 2Z2 + 822588784146Y Z3 + 460587892428744Z4 = 0

Details can be found in (6.6) in [59].

We end this subsection with a short discussion of the case char k = 2.
When char k = 2 and k = ksep, the dimension r of Jac(C)[2] over F2 and number l of

bitangents satisfy the following condition: r = ⌊l/2⌋ with l ∈ {1, 2, 4, 7}. See Page 60 in
[62] for details.

Example 2.1.24. Let k be an algebraically closed field with char k = 2. Then all smooth
plane quartic curves over k with only 1 bitangent can be represented as

(aX2 + bY 2 + cZ2 + dXY + eY Z + fZX)2 = X(Y 3 +X2Z),

where c ∈ k∗. See Proposition 2.1 in [54] for details.
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2. ARITHMETIC AND GEOMETRIC PROPERTIES OF GENUS 3 CURVES

2.2 χ′
18 and Klein’s formula

In Subsection 2.2.1, we show how χ′
18 behaves on M3, and define the Hodge metric on

det q∗ΩUg/Hg
. In Subsection 2.2.2, we talk about the Klein’s formula for plane quartics.

The main references for this section are [13] and [43].
We will use Proposition 2.2.4 and Equation (2.7) to compute ordv(χ′

18) at finite places
and ∥χ′

18∥Hdg at the infinite place in Section 4.4.

2.2.1 Moduli property of χ′
18

In this section we assume g ≥ 2 (we will specialise to g = 3 soon) and use the notation
introduced in Subsection 2.1.2. Let t : Mg → Ag be the Torelli map. For the universal
stable curve π : Cg → Mg, we can define vector bundles Eπ and Lπ. For a stable curve
f : X → S over a scheme S, we denote the pullback of Eπ (resp. Lπ) along the classifying
map J : S → Mg by Ef (resp. Lf ).

By Lemma 2.1.5, there are natural isomorphisms Eπ ≃ t∗E and Lπ ≃ t∗L. We can get
a algebraic Siegel modular form χ′

18 ∈ S3,18(C) by taking g = 3 and h = 18 in Equation
(2.3). By Lemma 2.1.9, this can be lifted to a modular form in S3,18(Z) which we denote
by χ′

18. The pullback of χ′
18 along the Torelli map gives a Teichmüller modular form in

T3,18(Z) which we also denote by χ′
18. Now χ′

18 can be considered as a global section of
the line bundle L⊗18

π on M3 and a rational section of the line bundle L⊗18
π on M3.

Lemma 2.2.1. The divisor of χ′
18 on M3 equals 2H, where H is the hyperelliptic locus.

Proof. See Theorem 8.1 in [13].

In this paragraph, S is the spectrum of a discrete valuation ring. Let f : X → S be a
stable curve of genus 3 with smooth and non-hyperelliptic generic fiber. By the lemma
above, we know χ′

18 is a non-zero rational section of L⊗18
f on S. Thus we can define

ordv(χ′
18), where v is the closed point of S.

Returning to the case where S is an arbitrary integral scheme. Then we have vector
bundles Ef = f∗ωX/S and Gf = f∗ω

⊗2
X/S on S.

Lemma 2.2.2. Let f : X → S be a stable curve of genus 3 with smooth and non-
hyperelliptic generic fiber. Then both Ef and Gf are of rank 6.

Proof. The ranks of these vector bundles can be computed over any point in S. Thus
we only need to compute dim(Sym2(H0(X,ΩX))) and h0(X,Ω⊗2

X ) for smooth curves X
of genus 3.
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By Riemann-Roch, we have h0(X,ΩX) = 3 and h0(X,Ω⊗2
X ) = 6. This implies that

dim(Sym2(H0(X,ΩX))) = h0(X,Ω⊗2
X ) = 6.

We have a canonical map

νf : Sym2Ef → Gf , η1 · η2 7→ η1 ⊗ η2 , (2.5)

which is functorial in f . Both Sym2Ef and Gf are vector bundles of rank 6 and thus we
have a natural map of invertible sheaves

det νf : det Sym2Ef → det Gf , (2.6)

which is functorial in f . The map νf is surjective if f is smooth and nowhere hyperelliptic.
We can view det νf as a global section sf of the invertible sheaf (det Sym2Ef )⊗−1 ⊗det Gf
on S. Then the zero locus of sf is contained in the hyperelliptic locus. Standard multi-
linear algebra yields a canonical isomorphism

det Sym2Ef
∼−→ L⊗4

f

of invertible sheaves on S, where Lf = det Ef as before, and this shows that we may
as well view sf as a global section of the invertible sheaf L⊗−4

f ⊗ det Gf on S. Let
π : C3 → M3 be the universal smooth curve of genus 3, then we can associate a section
sπ.

Lemma 2.2.3. The section sπ is not identically equal to 0, and the divisor of sπ on M3

is equal to the reduced hyperelliptic divisor H.

Proof. See Proposition 9.1 in [13].

Now we want to consider div(χ′
18) on M3. We denote the divisor of sπ on M3 by K,

and denote the divisor of singular curves on M3 by ∆.

Proposition 2.2.4. If we take χ′
18 as a rational section of the line bundle L⊗18

π on M3,
then we have the equality of effective divisors

div(χ′
18) = 2K + 2∆

on M3.
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Sketch of proof : See Proposition 9.2 in [13] for a complete proof.
Let H be the hyperelliptic locus of M3 with closure H in M3. By Lemma 2.2.3, we

have div sπ = H on M3. By Lemma 2.2.1, the modular form χ′
18 is a global section of

L⊗18
π with divisor 2H. Thus χ′

18 ⊗ s⊗−2
π is a trivializing section of L⊗26

π ⊗ (det Gπ)⊗−2

over M3.
We have a canonical isomorphism of line bundles on M3

µ : det Gπ ≃ L⊗13
π ,

which comes from the Mumford’s functorial Riemann-Roch (Theorem 2.1 and Equation
2.1.2 in [51]). Then µ⊗2 gives another trivialization section of L⊗26

π ⊗(det Gπ)⊗−2, denoted
by w. Since the only invertible regular functions on M3 are ±1, this means that w and
χ′

18 ⊗ s⊗−2
π are equal up to a sign.

Mumford’s functorial Riemann-Roch on M3 extends µ to an isomorphism

det Gπ ⊗ O(∆) ≃ L⊗13
π

of line bundles on M3. This extends χ′
18 ⊗ s⊗−2

π on the trivial line bundle

L⊗26
π ⊗ (det Gπ)⊗−2 ⊗ O(−2∆).

The assertion is proven by taking the divisor of the trivial section on the line bundle
above. QED

At the end of this subsection, we explain the relation between χ′
18 and the Faltings

height. Details can be found in Section 6 in [13].
For a metrized line bundle (L, (∥·∥v)v∈M(k)∞) on a ring of integers Ok, its arithmetic

degree is given by choosing a non-zero rational section s of L and setting

deg(L, (∥ · ∥v)v∈M(k)∞) :=
∑

v∈M(k)0

ordv(s)log(Nv) −
∑

v∈M(k)∞

log∥s∥v,

where M(k)0 (resp. M(k)∞) is the set of finite (resp. infinite) places of Ok.
Recall that q : Ug → Hg is the universal principally polarized complex abelian variety

over the Siegel upper-half space. We write L̃ for the line bundle detq∗ΩUg/Hg
. The Hodge

metric of L̃ is given by

∥dz1 ∧ . . . dzg∥Hdg(τ) =
√

det Imτ (2.7)

for all τ ∈ Hg.
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Let f : X → Spec(Ok) be a semistable arithmetic surface of genus 3 over a ring of
integers with non-hyperelliptic smooth generic fiber. Let ω be the Arakelov dualising
sheaf. The Faltings height of f is given by

deg det f∗ωX/S =

∑
v∈M(k)0

ordv(χ′
18)log(Nv)

18 −

∑
v∈M(k)∞

log∥χ′
18∥Hdg,v

18 . (2.8)

2.2.2 Klein formula

Recall that Sg is the set of even theta characteristics of genus g. By Page 851 in [37],
the function

Σ̃140 :=
∏
ϵ∈S3
ϵ ̸=0

θϵ(0, τ)8

is an analytic Siegel modular form of weight 140.

Theorem 2.2.5. Let (A, a) be a principally polarized abelian variety of dimension 3
defined over k ⊂ C. Let ω1, ω2, ω3 be a basis of H0(A,Ω1

A/k) and γ1, . . . γ6 a symplectic
basis of H1(A,Z). Then we can associate the period matrix Ω = [Ω1,Ω2] of (A, a). Put
τ = Ω−1

1 Ω2 ∈ H3.

(1) If Σ̃140(τ) = 0 and χ̃18(τ) = 0, then (A, a) is decomposable over k. In particular it
is not a Jacobian.

(2) If Σ̃140(τ) ̸= 0 and χ̃18(τ) = 0, then there exists a hyperelliptic curve X/k such
that (JacX, j) ≃ (A, a).

(3) If χ̃18(τ) ̸= 0 then (A, a) is isomorphic to a non-hyperelliptic Jacobian if and only
if

χ18((A, a), ω) = (2πi)54 χ̃18(τ)
det(Ω1)18

is a square in k, where ω := ω1 ∧ ω2 ∧ ω3.

Sketch of proof : The first two are proven in Lemma 10, Lemma 11 in [37]. By
Proposition 2.1.11, we have the equality in (3). We give a sketch for the remaining part
of (3), and a complete proof can be found in Theorem 1.3.3 in [43].

We assume (A, a) to be isomorphic to the Jacobian of a non-hyperelliptic genus 3
curve C/k. By Lemma 2.1.5 and Lemma 2.1.9, we have

χ18((A, a), ω) = t∗(χ18)(C, λ) = µ9(C, λ)2 ∈ k×2,

with λ = t∗ω.
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Now we assume (A, a) is not isomorphic to the Jacobian of a non-hyperelliptic genus
3 curve C/k. By (3) in Theorem 2.1.6, we know (A, a) is a quadratic twist of a Jacobian
(A′, a′). Then it can be shown that

χ18((A, a), ω) ≡ c9χ18((A′, a′), ω′)(mod k×18)

for some non-square element c ∈ k∗ (Corollary 1.2.3 in [43]). This implies that χ18((A, a), ω)
is not a square, which completes the proof. QED

With this theorem, we can show the following formula of Klein in [41] which links the
discriminant of a plane quartic and the analytic Siegel modular form χ̃18.

We fix a smooth plane curve CF defined by a homogeneous degree d polynomial
F (X,Y, Z) = 0. We write f for F (x, y, 1) and write k[x, y]<d for the subspace of k[x, y]
containing polynomials of degree less than d. By a classical basis of ΩCF

, we mean
a basis of ΩCF

in the form { gidx
∂f
∂y

}1≤i≤ (d−1)(d−2)
2

where {gi}1≤i≤ (d−1)(d−2)
2

is a basis of
k[x, y]<d (see Theorem 4.6.10).

Theorem 2.2.6. Let CF be a smooth plane quartic curve over C defined by F (X,Y, Z) = 0.
Let Ω = (Ω1|Ω2) be the period matrix of CF with respect to a classical basis of differential
forms and a symplectic homology basis. We denote Ω−1

1 Ω2 by τ . Then we have

Disc(F )2 = (2π)54 χ̃18(τ)
det(Ω1)18 .

Sketch of proof : See Theorem 2.2.3 in [43] for a complete proof.
We define a function I on X0

4 as

I(F ) := (2π)54 χ̃18(τ)
det(Ω1)18 .

It can be shown that I is an invariant of degree 54 in the sense of Definition 2.1.12
(Corollary 2.2.2 in [43]). This means that I(F ) is a degree 54 homogeneous polynomial
of the coefficients of F .

By Theorem 2.2.5, we have I(F ) ̸= 0 for all F ∈ X0
4 . Recall that the discriminant is

a multiple of the resultant (Equation (2.4)) which is an irreducible polynomial of degree
27 (Page 113 Section 7 in [21]). By Hilbert’s Nullstellensatz, we have I = cDiscnU for
some constant c ∈ C×.

The exponent n can be computed by the degree counting n = 54/27 = 2. The
constant c can be computed for Ciani curves, which is equal to 1 (Corollary 4.2 in [42]).
QED
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Remark 2.2.7. The Ciani curves are plane curves defined by

X4 + Y 4 + Z4 + aX2Y 2 + bY 2Z2 + cZ2X2 = 0,

for a, b and c ∈ k.
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