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Chapter 1

Arithmetic surfaces and intersection theory

This chapter is devoted to arithmetic surfaces and Arakelov theory. In Section 1.1, we
discuss models of curves and general theory of arithmetic surfaces. Section 1.2 is about
the foundation of Arakelov intersection theory. Section 1.3 is about G. Faltings’ seminal
paper [23] on Arakelov theory. In Section 1.4, we discuss dual graphs associated to
semistable arithmetic surfaces and harmonic analysis on them. The heights of canonical
Gross-Schoen cycles introduced in Section 1.5 are the main theme of this thesis.

We prove that Zhang’s admissible invariants satisfy the contraction lemma (Propo-
sition 1.4.33), which we have not found in literature. In Theorem 1.5.17, we prove an
unboundedness property of the heights of canonical Gross-Schoen cycles for genus g ≥ 3
smooth curves over number fields. To the best of the author’s knowledge, this is a new
result.

1.1 Models of curves

In Subsection 1.1.1, we define semistability and thickness. In Subsection 1.1.2, we define
various kinds of models and state the semistable reduction theorem. In Subsection 1.1.3,
we introduce the Deligne pairing on arithmetic surfaces. Proofs can be found in [48] and
[52].

The definition of thickness appears in Proposition 1.1.8, which is essential for defining
the dual graph of a semistable curve.

For simplicity, S is a Dedekind scheme (that is, a normal, irreducible Noetherian
scheme of dimension 1) with function field K(S) throughout this section. We write k(p)
for the residue field of a point p in a scheme.
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1. ARITHMETIC SURFACES AND INTERSECTION THEORY

1.1.1 Semistability

Semistable curves are curves with mildest possible singularities. By ‘mildest’, we mean
intersections with two different tangent directions. In the graphs below, the singular
point on the left one is considered as a ‘mildest’ singularity while the singular point on
the right one is not.

(a) nodal point (b) cusp point

Figure 1.1.1: node and cusp

Definition 1.1.1. Let C be a curve over an algebraically closed field k. A point p on C

is called a nodal point or an ordinary double point if ÔC,p ≃ k[[u,v]]
(uv) .

Definition 1.1.2. A curve over an algebraically closed field k of arithmetic genus g is
called semistable (resp. stable) if g ≥ 1 (resp. g ≥ 2), all of its singular points are nodal
points and all of its components with arithmetic genus 0 meet other components in at
least 2 (resp. 3) points.

Remark 1.1.3. We repeat here that all curves over fields are assumed to be geometrically
connected.

Example 1.1.4. The curve Em : Y 2Z = X3 + X2Z in P2
C is semistable. It has only 1

nodal point at (0 : 0 : 1).

It is equivalent to define a stable curve as a curve having only nodal singularities
and a finite automorphism group. The finiteness of the automorphism groups of stable
curves can be compared with Hurwitz’s automorphism theorem for Riemann surfaces
which says that the automorphism group of a compact Riemann surface of genus g ≥ 2
is a finite group (containing at most 84(g − 1) elements).

Remark 1.1.5. From the definition, a semistable curve C over an algebraically closed
field is a local complete intersection of codimension n − 1 in Pn, thus Serre duality can
be applied and the dualizing sheaf of C is a line bundle (Theorem III.7.11 in [33]).
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1. ARITHMETIC SURFACES AND INTERSECTION THEORY

Let C0 be a semistable curve with 1 component and 1 node ps. We describe the
dualizing sheaf ωC0 of C0 as follows:

The normalization of C0 is a smooth curve C with two specified points p and q

(preimages of ps under the normalization map). Let Ω be the dualising sheaf of C, which
is isomorphic to the sheaf of differential forms on C. Then we have

ωC0 ≃ r∗Ω(p+ q),

where r∗ is the pushforward along the normalization map r.

Definition 1.1.6. For a general base scheme T , we define a curve over T to be a
scheme X with a proper flat and finitely presented morphism f : X → T of pure relative
dimension 1. We say f is a curve (resp. stable curve, resp. semistable curve) of genus g
if Xt̄ is a curve (resp. stable curve, resp. semistable curve) of genus g for all geometric
points t̄ of T .

Example 1.1.7. (Nice curves can be non-semistable) The curve CF in P2
Z defined by

Xn + Y n +Zn = 0 is not a semistable curve when n ≥ 2. For any prime number p|n we
have Xn + Y n +Zn = (Xn/p + Y n/p +Zn/p)p in Fp[X,Y, Z] and thus the fiber of CF at
p is not even reduced. More generally, a plane curve defined by G(Xp, Y p, Zp) = 0 for
some polynomial G ∈ Z[X,Y, Z] can not be semistable.

By Definition 1.1.6, we can define a semistable curve over a non-algebraically closed
field l. A point ps on a semistable curve C over l is called a split node if k(ps) = l and
ÔX,ps

≃ l[[u, v]]/(uv).

Proposition 1.1.8. Recall that S is a Dedekind scheme. Let X → S be a semistable
curve with smooth generic fiber Xη. For s ∈ S, let x ∈ Xs be a singular point of Xs.

(1) There exists a Dedekind scheme S′, with a surjective and étale morphism S′ → S,
such that any point x′ ∈ X ′ := X ×S S

′ lying above x, belonging to a fiber X ′
s′ , is

a split node of X ′
s′ → Spec k(s′).

(2) With the scheme S′ obtained in (1), we have an isomorphism

ÔX′,x′ ≃ ÔS′,s′ [[u, v]]/(uv − c)

for some non-zero c ∈ ms′OS′,s′ .

(3) Let ex be the valuation of c for the normalized valuation of OS′,s′ . Then ex is
independent of the choice of S′, s′, and of x′, and it is called the thickness of x in
X.
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1. ARITHMETIC SURFACES AND INTERSECTION THEORY

Proof. See Corollary 10.3.22 in [48].

Example 1.1.9. For a prime p ≥ 3 and a positive integer n, the equation

Y 2Z = X3 +X2Z + pnZ3

defines a semistable curve C in P2
Zp

with 1 nodal point at ps = (X,Y, p). It can be shown
that ÔC,ps

≃ Zp[[u, v]]/(uv − pn) and hence the thickness at ps is n. More precisely, at
the origin of the affine patch y2 − x2(1 + x) − pn = 0, we can construct g(x) ∈ Zp[[x]]
such that g2(x) = 1 + x, and this gives y2 − (xg(x))2 − pn = 0. Taking u = y + xg(x)
and v = y − xg(x), we get ÔC,ps

≃ Zp[[u,v]]
(uv−pn) .

Remark 1.1.10. Thickness can be considered as a measure of singularity in an arith-
metic sense.

1.1.2 Models

By a fibered surface over S, we mean an integral, projective, flat S-scheme π : X → S

of dimension 2 (S is a Dedekind scheme). We say the fibered surface π is normal if X is
normal.

Definition 1.1.11. Let C be a smooth curve over K(S). We call a normal fibered surface
X → S together with an isomorphism f : Xη ≃ C a model of C over S, where η is the
generic point of S. If X is regular, we call it a regular model. For a model X of C, if
every birational map Y 99K X of models can be extended to a morphism, we say X is
a minimal model for C. Moreover, we say a model (X, f) of C has property P if the
morphism X → S has the property P .

Theorem 1.1.12. For every excellent, reduced, Noetherian 2-dimensional scheme X,
there exists a proper birational morphism X ′ → X where X ′ is a regular scheme.

Sketch of proof : X ′ is attained by iteratively blowing up at the singular locus and
taking normalization. J. Lipman proved that this procedure terminates in finitely many
steps. See [47] for a complete proof. QED

Remark 1.1.13. Theorem 1.1.12 can be considered as the desingularization of 2-dimensional
schemes. For general dimensions, H. Hironaka proved that any variety over a field of
characteristic 0 can be desingularized into a regular variety. In [11], A. J. de Jong intro-
duced alteration and proved that a separated integral scheme of finite type over a complete
discrete valuation ring (this includes fields of characteristic p) always has an alteration
from a regular scheme (Theorem 6.5 in [11]).
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1. ARITHMETIC SURFACES AND INTERSECTION THEORY

Let C be a smooth curve over K(S). With Theorem 1.1.12, we can always get a
regular model X → S of C. If we assume further that the genus g > 0, then X → S has
a unique minimal regular model, up to a unique isomorphism (Theorem 9.3.21 in [48]).

Definition 1.1.14. Let C be a smooth curve over K(S). We say that C has good (resp.
stable, resp. semistable) reduction at a closed point s ∈ S if there exists a smooth (resp.
stable, resp. semistable) model X of C over Spec(OS,s). We say C has good (resp. stable,
resp. semistable) reduction over S if it has good reduction at every closed point s ∈ S.

Good reduction is easy to deal with since it has smooth special fiber, but it can
happen that a curve does not have good reduction.

Example 1.1.15. (A curve without good reduction) For a field k, set k((λ)) with the
natural discrete valuation, that is val(λ) = 1. Then E : Y 2Z = X(X − Z)(X − λZ) is
an elliptic curve over k((λ)) with the j invariant

j(E) = 28(λ2 − λ+ 1)3

λ2(λ− 1)2 .

The curve E does not have a smooth model since its j invariant is not in the valuation
ring of k((λ)) (Proposition 5.5 in [60]).

The following theorem, first proved by P. Deligne and D. Mumford, shows the exis-
tence of a stable model, after taking an adequate field extension.

Theorem 1.1.16. (Stable reduction theorem) Let R be a discrete valuation ring with
fraction field K. Let C be a smooth projective curve over K of genus g ≥ 2. Then
there exists an extension of discrete valuation rings R ⊂ R′ inducing a finite separable
extension of fraction fields K ′/K and a stable curve Y → Spec(R′) of genus g with
YK′ ≃ CK′ over K ′.

Proof. Tag 0E8C

Remark 1.1.17. The original version of this theorem in Stack Project also requires
H0(C,OC) = K. We omit this condition since we assume all curves to be geometrically
connected in this thesis.

1.1.3 Intersection theory on arithmetic surfaces

It is too much to require a curve over a general scheme to be smooth, and we will instead
consider regular objects. There are several advantages for restricting our discussion to
regular Noetherian schemes. First, the stalks of regular schemes are UFDs, thus there is a
1-1 correspondence between rational equivalence classes of Weil divisors and isomorphism
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1. ARITHMETIC SURFACES AND INTERSECTION THEORY

classes of line bundles. Second, the Grothendieck groups of coherent sheaves and vector
bundles on regular schemes coincide (Page 13 in [61]), thus the K-theory on regular
schemes behaves better. Third, regularity is strong enough for having a moving lemma
on schemes (Corollary 9.1.10 in [48]).

As in the last two subsections, we still write S for a Dedekind scheme with fraction
field K(S).

Definition 1.1.18. We call a regular fibered surface X → S an arithmetic surface when
Xη is smooth for the generic point η of S.

Definition 1.1.19. Let π : X → S be an arithmetic surface and let D be a prime Weil
divisor on X . We say D is horizontal if π|D : D → S is surjective. We say D is vertical
if its image is reduced to a point.

Remark 1.1.20. A prime horizontal divisor is just the Zariski closure of a L-point
in X where L is a finite extension of K(S). A prime vertical divisor is an irreducible
component of the fiber Xp over some closed point p in S.

Let D and E be two Weil divisors on an arithmetic surface π : X → S with no
common components. We define the intersection multiplicity of D and E at a closed
point x ∈ X as

ix(D,E) := lengthOX ,x
(OX ,x/(f, g)), (1.1)

where f and g are local equations of D and E at x. We obtain a 0-cycle on X that can
be written as

I(D,E) :=
∑
x

ix(D,E)x.

Then
π∗I(D,E) :=

∑
x

ix(D,E)[k(x) : k(π(x))]π(x)

is a divisor on S.
The intersection theory above is less satisfying since we have not defined the inter-

section between divisors with common components. This can be done by applying the
moving lemma (see Section 9.1 in [48]). The following theorem of P. Deligne generalizes
the intersection theory above using the language of line bundles.

Theorem 1.1.21. Let π : X → S be an arithmetic surface. Let L and M be two line
bundles on X . We can associate a line bundle ⟨L,M⟩ on S such that the following
properties are satisfied:

(1) If L′ ≃ L and M ′ ≃ M then ⟨L′,M ′⟩ ≃ ⟨L,M⟩.
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1. ARITHMETIC SURFACES AND INTERSECTION THEORY

(2) The pairing is symmetric and satisfies the following laws:

⟨L,M⟩ ≃ ⟨M,L⟩

⟨L,M ⊗N⟩ ≃ ⟨L,M⟩ ⊗ ⟨L,N⟩.

(3) Let l and m be two rational sections on L and M whose divisors have no common
components. Then there exists a non-zero rational section ⟨l,m⟩ of ⟨L,M⟩ such
that:

(a) Let f be a rational function on X such that fl and m have no common com-
ponents. Then

⟨fl,m⟩ = N(m)(f)⟨l,m⟩,

where the definition of N can be found in Page 19 in [52].

(b) There is an isomorphism

⟨L,M⟩ ≃ OS(N(l)(m)),

which sends ⟨l,m⟩ to 1N(l)(m). In fact, we have

div(⟨l,m⟩) = N(l)(m).

(4) Let D be a horizontal divisor on X. Then for a line bundle L on X, we have a
natural isomorphism ⟨L,OX(D)⟩ ≃ ND(L) which sends ⟨l, 1D⟩ to ND(l).

(5) Let ρ : S′ → S a flat morphism between connected Dedekind schemes and let
X ′ := X ×S S

′ be the base change of X → S by ρ with the following commutative
diagram.

X ′ X

S′ S

µ

ρ

Then there is a natural isomorphism

ρ∗(⟨L,M⟩) ≃ ⟨µ∗(L), µ∗(M)⟩.

Proof. See Theorem 4.7 in [52].
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1. ARITHMETIC SURFACES AND INTERSECTION THEORY

If S is a smooth curve over a field k or S is isomorphic to Spec(OK) for some number
field K, we can associate a degree map to the Deligne pairing in the following way.

When S is a smooth curve, we define deg⟨L,M⟩ as the degree of the line bundle
⟨L,M⟩ on the curve S. In the classical way, this is equal to∑

x

ix(D,E)[k(x) : k(π(x))] deg(π(x)), (1.2)

where D and E are divisors of some rational sections of L and M with no common
components.

Remark 1.1.22. For simplicity, we write (·, ·) for deg⟨·, ·⟩ in this case.

When S = Spec(OK) for some number field K, we want to define deg⟨L,M⟩ as∑
x

ix(D,E)[k(x) : k(π(x))]log(#k(π(x))), (1.3)

where D and E are divisors of some rational sections of L and M with no common
components. However, this is not good, since the number given by Equation (1.3) really
depends on the choice of rational sections. Instead, we will consider line bundles on X
with Hermitian metrics. Given two metrized line bundles L and M on X , we can endow
⟨L,M⟩ with a Hermitian metric (Section 3.3 in [52]). Then we define deg⟨L,M⟩ using
the following definition.

Definition 1.1.23. Let M be a Hermitian metrized line bundle on Spec(OK). We define
its degree by

deg(M) := log#(M/OK · s) −
∑

σ∈K(C)

log∥s∥σ

for an arbitrary non-zero element s of M . By the product formula, this degree does not
depend on the choice of s.

The degree of the Deligne pairing has a close relation with the Arakelov intersection
theory (Section 1.2). Actually, we have the following equality

(L,M)Ar = deg ⟨L,M⟩ (1.4)

for admissible line bundles L and M . See Section 6.3 in [18] for the construction of the
metric on ⟨L,M⟩ and further discussion on Equation (1.4).

Remark 1.1.24. For divisors D and E with no common components, we write (D,E)fin

for the number given by Equation (1.3).
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1. ARITHMETIC SURFACES AND INTERSECTION THEORY

1.2 Arakelov’s work

The main reference for this section is [1], in which Arakelov tried to establish an arithmetic
intersection theory on arithmetic surfaces over number fields.

In Subsection 1.2.1, we introduce the Green’s function on a Riemann surface which
gives a metric on the line bundles on this Riemann surface. In Subsection 1.2.2, we
explain Arakelov intersection theory and define the Arakelov dualising sheaf.

We will carry out some explicit computation for the Green’s function in Section 4.6.

1.2.1 Green’s functions on Riemann surfaces

In this subsection, X is a compact Riemann surface of genus g ≥ 1, and we write Ω1
X for

its sheaf of holomorphic differential forms.
We can define a Hermitian inner product on H0(X,Ω1

X) as follows:

⟨ω, η⟩ = i

2

∫
X

ω ∧ η. (1.5)

With this inner product, we can choose an orthonormal basis {ω1, ..., ωg}, and we define
the volume form or canonical form of X to be

µAr := i

2g

g∑
j=1

ωj ∧ ωj . (1.6)

The (1-1)-form µAr on X does not depend on the choice of orthonormal basis.

Remark 1.2.1. The word ‘volume’ comes from
∫
X
µAr = 1.

Definition 1.2.2. The canonical Arakelov-Green function of X is the unique function
G : X ×X → R≥0 that satisfies:

(1) Let P be any fixed point in an open set U with a local coordinate z on U . For
Q ∈ U , we have logG(P,Q) = log|z(Q)| + f(Q), where f is a C∞ function on U .

(2) G(·, ·)2 is a C∞ function on X×X and ∂Q∂QlogG(P,Q)2 = 2πiµAr(Q) for Q ̸= P .

(3)
∫
X

logG(P,Q)dµAr(Q) = 0.

(4) G vanishes at the diagonal of X ×X.

Remark 1.2.3. For simplicity, we will use the Green′s function of X instead of the
Arakelov-Green function of X in this thesis.
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1. ARITHMETIC SURFACES AND INTERSECTION THEORY

Example 1.2.4. Let τ ∈ C with Im τ > 0, and define a torus X by X ≃ C/⟨1, τ⟩. Let
z be the coordinate of C. Then the Green’s function on X is

logG(z1, z2) = logG(z1 − z2, 0) = log∥θ∥
(
τ, z1 − z2 + 1 + τ

2

)
− log∥η∥(τ),

where

∥θ∥(a+ bi, x+ yi) = b1/4e−πy2/b · |
∑
n∈Z

eπin
2(a+bi)e2πin(x+yi)|,

∥η∥(a+ bi) = b1/4 · |eπi(a+bi)/12
∞∏
n=1

(1 − e2πi(a+bi))|.

See Section 7 in [23] for details.

It can be proven by Green’s formula that the Green’s function is a symmetric function.
The existence of the Green’s function can be proven by partial differential equation tools
and the uniqueness is trivial. However, it is still not easy to construct it from the
definition. R. de Jong gave an explicit expression for the Green’s function (Theorem
2.1.2 [12]).

Next we will assign a Hermitian metric on O(D) to each divisor D on X. The trivial
line bundle is assigned with the constant function ∥1∥OX

= 1. For a prime divisor D = P ,
we assign the smooth Hermitian metric

∥1∥O(D)(Q) := G(P,Q) (1.7)

on O(D). If O(D1) and O(D2) are already assigned with metrics, we define

∥1∥O(D1+D2)(Q) := ∥1∥O(D1)(Q) · ∥1∥O(D2)(Q) (1.8)

to be the metric on O(D1 +D2). These can give a Hermitian metric on every line bundle
O(D) of X inductively.

Definition 1.2.5. Let ∥ · ∥ be a smooth Hermitian metric on a line bundle O(D) of X.
We say ∥ · ∥ is admissible if its curvature form is a multiple of µAr.

From Property (2) in Definition 1.2.2, we find that the curvature form of the metric
∥·∥O(D) is deg(D)µAr. This means that the metric we just defined on O(D) is admissible.

Remark 1.2.6. There is an admissible metric on a line bundle O(D), unique up to a
multiplicative scalar. This can be proven using Property (2) of the Green’s function.

We end this subsection by constructing an admissible metric on ΩX .
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1. ARITHMETIC SURFACES AND INTERSECTION THEORY

(1) For any point P ∈ X, we already have a metric on O(P ) given by the Green’s
function on X.

(2) The residue of rational sections of Ω1
X at P gives a natural isometry:

ΩX(P )|P ≃ C,

where C has the standard Euclidean metric.

(3) We assign Ω1
X with the metric such that the following isomorphism gives an isom-

etry at every point P :
ΩX(P ) ≃ O(P ) ⊗ ΩX .

Definition 1.2.7. The metric defined above, denoted by ∥ · ∥Ar, is called the Arakelov
metric on Ω1

X .

Let ∆ : X → X ×X be the diagonal map. Then we know that Ω1
X ≃ OX×X(−∆)|∆.

If we assign a metric on OX×X(−∆), then its pullback along the diagonal map will
induce a metric on Ω1

X . The metric ∥ · ∥Ar is equal to the pullback of the metric
∥1∥OX×X (−∆)(P,Q) := G−1(P,Q) along ∆.

Theorem 1.2.8. The Arakelov metric ∥ · ∥Ar is admissible.

Proof. See Section 4 in [1] or Section 4.5 in [52].

Remark 1.2.9. In fact, we can associate a Green’s function to any Kähler form on X

(modifying Property (2) in Definition 1.2.2). The reason we choose the canonical form
(Equation (1.6)) is that this is the only Kähler form, up to multiplicative scalar, that
induces an admissible metric on Ω1

X by the construction above (Lemma 4.25 in [52]).

1.2.2 Arakelov intersection theory

Now we are ready to show how Arakelov intersection theory is defined. In this subsection,
K is a number field with integer ring OK and S = Spec(OK).

Let π : X → S be an arithmetic surface of genus g ≥ 1 with smooth generic fiber XK .
A prime horizontal divisor D on X can be written in the form ϵ∗(Spec(OL)), where L is
a finite extension of K and Spec(OL) ϵ→ X is a section of π. Each embedding σ : K → C
corresponds to a compact Riemann surface Xσ. By µσ, we mean the canonical form on
Xσ defined in the last subsection.

In Arakelov intersection theory, the divisor group of X contains the divisors in the
usual sense, which are called finite divisors, and also contains real linear combinations
of Xσ, which are called infinite divisors. The advantage of including infinite divisors is
that we can make S into a ‘compact’ object by the product formula.

11



1. ARITHMETIC SURFACES AND INTERSECTION THEORY

Definition 1.2.10. An Arakelov divisor on X is a formal sum Dfin + Dinf, where Dfin

is a Weil divisor on X and Dinf =
∑

σ:K→C
cσXσ is a formal linear combination of infinite

fibers Xσ over R. We write DivAr(X ) for the group generated by Arakelov divisors. We
write Dfin,σ for the divisor on Xσ induced by Dfin.

For a rational section f of OX , we define a principal divisor associated to it as

divAr(f) := div(f) +
∑

σ∈K(C)

vXσ
Xσ,

where div(f) is the divisor of f in the usual sense and vXσ
:= −

∫
Xσ

log|f |σµσ. We say
two Arakelov divisors D1 and D2 are linearly equivalent if D1 = divAr(f)+D2 for some
rational section f of OX . We denote

Ĉl(X ) := DivAr(X )/(principal divisors).

We now construct an intersection pairing (·, ·)Ar on Ĉl(X ) which does not depend on
the choice of representatives.

(1) For an infinite prime divisor σ and a prime divisor D (finite or infinite), we define
(σ,D)Ar := d (resp. 0) if D is horizontal (resp. vertical or infinite), where d is the
degree of D over the generic fiber.

(2) Let D1 be a prime vertical divisor and let D2 be a finite divisor. If D1 and D2 have
no common components, then we define

(D1, D2)Ar := (D1, D2)fin,

where (·, ·)fin is defined in Equation (1.3).

(3) Let D1 : Spec(OL1) → X and D2 : Spec(OL2) → X be distinct prime horizontal
divisors of X . Then D1,σ and D2,σ determine two sets of points {Pσ1,j}1≤j≤[L1:K]

and {Pσ2,k}1≤k≤[L2:K] on Xσ for each embedding σ : K → C. We define

(D1, D2)Ar := (D1, D2)fin +
∑

σ∈K(C)

∑
1≤j≤[L1:K]

∑
1≤k≤[L2:K]

−logGσ(Pσ1,j , Pσ2,k).

We still need to define the intersection pairing when two Arakelov divisors have
common finite components. The following theorem will be useful.

Theorem 1.2.11. Let X → Spec(OK) be an arithmetic surface. Let D be an Arakelov
divisor and let f be a rational function on X . If divAr(f) and D have no common finite
components, then (D,divAr(f))Ar = 0.

12



1. ARITHMETIC SURFACES AND INTERSECTION THEORY

Sketch of proof : We only need to prove that (divAr(f), D)Ar = 0 for any prime
Arakelov divisor D. This is trivial if D is an infinite divisor. When D is a finite divisor,
we assume D is not in the support of divAr(f).

When D is a prime vertical divisor, this follows from Theorem 3.1 in [44]. It remains
to prove this for a horizontal prime divisor. For simplicity, we only consider the case
D = ϵ(Spec(OK)) for some section ϵ : Spec(OK) → X .

The divisor D corresponds to a point Pσ for each σ : K → C. A rational section f of
OX gives a meromorphic function fσ on Xσ. Since fσ is meromorphic, we have

∂σ∂σlog(|fσ(x)|) = 0

outside div(fσ). Since deg(fσ) = 0, we have

∂Pσ
∂Pσ

logGσ(div(fσ), Pσ) = 0

by Property (2) in Definition 1.2.2. This means that there exists a real constant α such
that

G(div(f), Pσ) = eα · |f |(Pσ).

According to Property (3) in Definition 1.2.2, we obtain α = −
∫

Xσ
log|fσ|µσ. Now we

can compute

(D, (f))Ar = (D,div(f) +
∑

σ∈K(C)

vXσ
(f) · Xσ)Ar

= (D,div(f))Ar +
∑

σ∈K(C)

vXσ
(f)

= (D,div(f))fin −
∑

σ∈K(C)

log |fσ|(Pσ) −
∑

σ∈K(C)

vXσ
(f) +

∑
σ∈K(C)

vXσ
(f)

= (D,div(f))fin −
∑

σ∈K(C)

log |fσ|(Pσ)

= 0,

where (D,div(f))fin is defined in Remark 1.1.24 and the last step is due to the product
formula for number fields. QED

We return to the Arakelov intersection pairing. The Moving Lemma (Corollary 9.1.10
in [48]) says that for any two Arakelov divisors E and F , we can find a rational function
h on X such that Efin + div(h) and Ffin have no common components. We define

(E,F )Ar := (E + divAr(h), F )Ar.

13
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Theorem 1.2.11 implies that the intersection number is well-defined and (·, ·)Ar factors
through Arakelov principal divisors, that is:

(·, ·)Ar : Ĉl(X ) × Ĉl(X ) → R.

We next define a dualising object ω for Arakelov divisors. The finite divisors of ω
should correspond to the usual dualising sheaf on X , and thus it remains to figure out
the infinite part. Before that, we introduce P̂ic(X ).

Definition 1.2.12. Let X → Spec(OK) be an arithmetic surface. An admissible line
bundle on X is the datum of a line bundle L on X and an admissible metric ∥ · ∥σ on the
line bundle Lσ on Xσ for each σ : K → C. The set of isomorphism classes of admissible
line bundles on X has a natural group structure, and we denote it by P̂ic(X ).

Theorem 1.2.13. There is a canonical isomorphism of groups Ĉl(X ) ≃ P̂ic(X ).

Sketch of proof : See Proposition 2.2 in [1] for details. We only give a description
of the map. Let D = Dfin +

∑
σ
cσ · Xσ be an Arakelov divisor. Then Dfin gives a line

bundle O(Dfin) on X . For each σ : K → C, we associate the line bundle O(Dfin,σ) on Xσ
with the admissible metric e−cσ · ∥ · ∥O(Dfin,σ), where ∥ · ∥O(Dfin,σ) is the metric induced
from the Green’s function on Xσ. QED

Definition 1.2.14. The Arakelov dualising sheaf ω on X → Spec(OK) consists of the
following datum:

(1) the usual dualising sheaf ωX/S on X ,

(2) the Arakelov metric ∥ · ∥Ar,σ on ΩXσ
for each σ : K → C.

According to Theorem 1.2.13, this dualising sheaf corresponds to a unique element in
Ĉl(X ).

We end this subsection with stating the adjunction formula in Arakelov intersection
theory, although we do not really use it in this thesis.

Theorem 1.2.15. The divisor D given by a section Spec(OK) → X leads to the following
equality

−(D,D)Ar = (D,ω)Ar.

Proof. See Lemma 4.26 in [52].

14
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1.3 Faltings’ work
In [23], G. Faltings established

(1) the Faltings-Riemann-Roch theorem,

(2) the arithmetic Noether’s formula,

(3) the positivity of the relative dualizing sheaf ωX (Arakelov theoretic version),

(4) the Hodge index theorem (Arakelov theoretic version).

In this section, we give a brief review of these results except the last one. Subsection
1.3.1 is about the Faltings metric on the determinant of cohomology. Subsection 1.3.2 is
about the Faltings-Riemann-Roch theorem and its corollaries.

Corollary 1.3.11 will be used to decompose ⟨∆,∆⟩ in Subsection 3.3.1. The Faltings
δ invariant introduced in Theorem 1.3.9 will be computed in Section 4.8.

1.3.1 Determinant of cohomology and Faltings metric

Let V be a complex vector space of dimension d. We can define detV := ΛdV as the top
exterior power of V .

Example 1.3.1. Let C be a compact Riemann surface of genus g ≥ 1. For an arbitrary
line bundle L on X, we have a 1-dimensional vector space over C

λ(L) := detH0(C,L) ⊗
(
detH1(C,L)

)−1
.

By Serre duality, we have a canonical morphism(
detH1(C,L)

)−1 ≃ detH0(X,ΩC ⊗ L−1).

In the above construction, we start from a line bundle on a Riemann surface and end
with a 1-dimensional complex vector space. The following theorem is a generalization of
this construction. We refer to Section 5 in [53] for the definition of Rp∗F .

Theorem 1.3.2. More generally, let p : Y → T be a proper morphism of Noetherian
schemes. Then for each coherent sheaf F on Y , flat over T , we can associate a line bundle
detRp∗F on T , called the determinant of cohomology of F , that satisfies the following
properties.

(1) detRp∗F is functorial for isomorphisms of coherent sheaves on Y .

(2) detRp∗F commutes with base change.

15
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(3) If
0 → F ′ → F → F ′′ → 0

is an exact sequence of coherent sheaves on Y flat over T , then there is an isomor-
phism

detRp∗F
∼→ detRp∗F

′ ⊗ detRp∗F
′′

which is functorial with respect to base changes and isomorphisms of exact se-
quences.

(4) Let
E : 0 → E0 → E1 → · · · → En → 0

be a complex of vector bundles of finite rank which gives a quasi-isomorphism

E ∼→ Rp∗F.

Then we have a canonical isomorphism

detRp∗F
∼→

n
⊗
k=0

(detEk)(−1)k

,

which commutes with base changes. Here detEk is the top exterior power of the
vector bundle Ek.

(5) If T is connected and F is fixed, then the function χ : s → χ(Fs) is a constant
function on T . Let u be a global section of O∗

T . The multiplication by u on F

induces an automorphism det(u) : detRp∗F
∼→ detRp∗F according to (1), and we

have
det(u) = uχ.

(6) If M is a line bundle on T (assume connected again), then there is a canonical
isomorphism

detRp∗(F ⊗ p∗M) ∼→ (detRp∗F ) ⊗M⊗χ

Proof. See Section 1 in [50].

Remark 1.3.3. By (4) in the above theorem, if the higher pushforward sheaves Rip∗F

(i ≥ 0) are vector bundles, then there is a natural isomorphism

detRp∗F
∼→

n
⊗
i=1

(detRip∗F )(−1)i

.
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Let f : X → S be a semistable arithmetic surface. The dualising sheaf ω is coherent
(even a line bundle) and the higher pushforwards Rif∗(ω) are coherent. Since coherent
sheaves on regular Noetherian schemes have finite free resolutions, we can apply (3)
and (4) to construct detRf∗ω. The following theorem shows the relation between the
determinant of cohomology and the Deligne pairing in Theorem 1.1.21.

Proposition 1.3.4. Let p : X → S be an arithmetic surface with line bundles L and M
on X . We have a canonical isomorphism

⟨L,M⟩ ∼→ detRp∗(L⊗M) ⊗ (detRp∗L)−1 ⊗ (detRp∗M)−1 ⊗ detp∗ωX/S .

Proof. See Page 14 in [12].

A corollary of the proposition above is that we have a Riemann-Roch theorem for
arithmetic surfaces.

Corollary 1.3.5. Let p : X → S be an arithmetic surface with line bundles L and M

on X . We have a canonical isomorphism

(detRp∗L)⊗2 ∼→ ⟨L,L⊗ ω−1
X/S⟩ ⊗ (detp∗ωX/S)⊗2.

Proof. See Theorem 9.9 in [18].

Now we return to Riemann surfaces. Let f : X → Spec(C) be a compact Riemann
surface of genus g > 0. By Theorem 1.3.2, or the beginning of this subsection, we have a
complex vector space λ(L) := detRf∗(L) for any line bundle L on X. In [23], G. Faltings
defined a metric on λ(L) which is known as the Faltings metric.

Theorem 1.3.6. There exists, for every line bundle L on X together with an admissible
Hermitian metric on L, a Hermitian metric on λ(L), such that the following properties
hold:

(1) An isometric isomorphism of line bundles induces an isometry on these λ(·).

(2) If the metric on L is changed by a factor α > 0, the metric on λ(L) is changed by
multiplying αχ(L), where

χ(L) = dimH0(X,L) − dimH1(X,L) = deg(L) + 1 − g.

(3) For a divisor D on X and a point P ∈ X, O(D) and O(D − P ) have canonical
admissible metrics (constructed by Equation (1.7) and Equation (1.8)). We set

17
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O(D)[P ] with the metric given by the restriction of the metric on O(D) to the fibre
over P . The exact sequence

0 → O(D − P ) → O(D) → O(D)[P ] → 0

induces an isomorphism

λ(O(D)) ≃ λ(O(D − P )) ⊗C O(D)[P ]

which is also an isometry.

(4) The metrics on the λ(·) are unique up to a common scalar factor.

(5) If L = ΩX , the metric on λ(L) = detH0(X,ΩX) is induced from the inner product
in Equation (1.5).

Proof. See Theorem 1 in [23]. Points (3) and (4) make it possible for us to construct
this metric inductively. The symmetry property of the Green’s function guarantees that
the order of points we choose in our construction does not matter. Point (1) is the most
technical one. An alternative proof using Proposition 1.3.4 can be found on Page 15 of
[12].

1.3.2 Faltings-Riemann-Roch theorem

In this subsection, we assume p : X → S to be a semistable arithmetic surface with
S = Spec(OK) for some number field K.

If L is an admissible line bundle on X , then L⊗ω−1 is also an admissible line bundle.
According to Theorem 1.3.6, we can assign metrics to detRp∗L and detRp∗ω. There is
a unique metric on ⟨L,L⊗ω−1⟩ such that Corollary 1.3.5 is an isometry with respect to
these metrics. We have following Faltings-Riemann-Roch theorem.

Theorem 1.3.7. deg detRp∗L = 1
2 (L,L⊗ ω−1)Ar + deg detp∗ωX/S .

Proof. See Theorem 3 in [23].

Let B be a smooth curve over a field l. If p : Y → B is a semistable curve with
smooth generic fiber, then we have

12 · deg(detp∗ωY) = (ωY , ωY) + δ,

where δ is the number of singular points, counted according to the degree of their residue
field extensions and thicknesses. This is known as the classical Noether’s formula.

18
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Let ω be the universal dualising sheaf of the universal curve π : Cg → Mg (see Tag
0DMG for details). Over the complex points of Mg, we can assign Arakelov metric (using
the Arakelov-Green function) to ω fiberwise. Then we can assign a metric on ⟨ω, ω⟩ (see
Section 9 in [14]).

Remark 1.3.8. (More about the metric on ⟨ω, ω⟩) Let Z be a smooth complex variety
and let p : Y → Z be a smooth proper curve of genus g ≥ 1. For two metrized line
bundles L (with a non-zero rational section l) and M (with a non-zero rational section
m) on Y, we can construct a line bundle ⟨L,M⟩ (with a non-zero rational section ⟨l,m⟩)
on Z. All these constructions are similar to the technique in Theorem 1.1.21. Then we
can assign a metric on ⟨L,M⟩ given by

log∥⟨l,m⟩∥ = (log∥m∥)[divl] +
∫
p

log∥l∥c1(M)

Theorem/Definition 1.3.9. There exists an isomorphism of line bundles

µ : (detπ∗ω)⊗12 ∼→ ⟨ω, ω⟩ ⊗ OMg
(∆)

on Mg, which is unique up to a sign. The Faltings delta invariant is defined to be the
number δ(·) such that (2π)−4gexp(δ(·)) is the norm of the above isomorphism on Mg(C).

Proof. See Theorem 2.1 in [51].

Remark 1.3.10. In [23], G. Faltings gave an interpretation of the Faltings delta invari-
ant using the theta divisor Θ associated to the corresponding compact Riemann surface.
In [12], R. de Jong gave a more explicit method for numerically computing this invariant.
We will apply this method in Section 4.7.

The following corollary is known as the Noether’s formula for an arithmetic surface
over a ring of integers OK . Recall that δ(X) is the Faltings delta invariant for the
Riemann surface X, δ(Γ) is the total volume of the pm-graph Γ (see Definition 1.4.8 and
the discussion after Remark 1.4.14), and p : X → S is a semistable arithmetic surface.

Corollary 1.3.11. We write detp∗ω for the line bundle detp∗ω with the metric induced
from Equation (1.5). Then we have

12 deg detp∗ω = (ω, ω)Ar +
∑
s

δ(Γs)log(#k(s)) +
∑

σ∈K(C)

δ(Xσ) − 4g[K : Q]log(2π),

where the first (resp. second) sum goes through all closed points s ∈ Spec(OK) (resp.
complex embeddings of K) and δ(Xσ) is the Faltings delta invariant (Theorem 1.3.9).
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Proof. We first pull back the isomorphism in Theorem 1.3.9 along the classifying map
Spec(OK) → Mg. Then the assertion is proved by taking the degree of both sides in
Theorem 1.3.9.

At the end of this subsection, we state the non-negativity of the self-intersection of
the Arakelov dualising sheaf, although we will not use it in an essential way.

Theorem 1.3.12. Let D be an effective divisor on the semistable arithmetic surface
X → Spec(OK) of genus g. We have the following results:

(1) (ω, ω)Ar ≥ 0,

(2) (ω,D)Ar ≥ (ω,ω)Ar

4g(g−1) · deg(D).

Proof. See Theorem 5 in [23].

1.4 Dual graph
In Subsection 1.4.1, we introduce pm-graphs and some basic notions. In Subsection 1.4.2,
we discuss the Green’s function on a pm-graph and the admissible invariants introduced
by S. Zhang. In Subsection 1.4.3, we will introduce more invariants on pm-graphs and
use them to prove the second half of Proposition 1.4.33. More details can be found in
[69] and [70].

We will return to the explicit computation of admissible invariants in Section 3.1.
And we will compute the admissible invariants of our main curve C in Proposition 4.4.1.

All graphs are assumed to be finite.

1.4.1 Polarized metrized graph

Definition 1.4.1. A star-shaped set of valence n and radius ϵ is a metric space that is
isometric to

S(n, ϵ) = {z ∈ C : z = te
2πik

n for some 0 ≤ t < ϵ and k ∈ Z}.

Definition 1.4.2. A metrized graph Γ is a compact connected metric space that either
is a point or satisfies that for each point p of Γ there exists a neighbourhood Up that is
isometric to a star-shaped set of finite valence and radius ϵ > 0. The valence is well-
defined and we denote the valence of a point p by v(p).

We define the canonical divisor of Γ as

KΓ :=
∑
x∈Γ

(v(x) − 2)x. (1.9)
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The canonical divisor is well-defined since all but finitely many points on Γ have valence
2. Let V0 be the set containing exactly points p ∈ Γ such that v(p) ̸= 2. Since we only
consider compact metrized graphs, V0 is a finite set. A non-empty finite set V ′ ⊂ Γ
containing V0 is called a vertex set of Γ. For a vertex set V ′, the complement Γ\V ′ is a
union of finitely many connected components. Each component e◦ in Γ\V ′ is called an
edge associated to V ′ and is isometric to an open interval. The closure of each edge e◦

in Γ is a closed segment (we call it an ordinary edge) or a circle (we call it a self -loop),
denoted by e. We call e\e◦ the endpoints of e◦ in Γ. We can associate a unique positive
number l(e◦) to each edge e◦ such that e◦ is isometric to the interval (0, l(e0)). The real
number l(e◦) is called the weight of e◦. For simplicity, we sometimes also say e is an
edge of weight l(e◦).

Remark 1.4.3. Note that we require a vertex set to be non-empty, thus the empty set is
not a vertex set for a 1-loop graph (containing 1 loop only).

Example 1.4.4. The following is an illustration of metrized graphs with specified vertex
sets. We omit the weight information in the figure.

v1

v2 v1

v2v3

v4

v5 v6

Figure 1.4.1: Metrized graphs with specified vertex sets

We can interpret metrized graphs in a graph-theoretic way. Let G = (V,E) be an
undirected graph with the vertex set V and the edge set E. Let w : E → R>0 be a
function on E, then we call the pair (G,w) a weighted graph.

There is a natural way to construct a metrized graph Γ with a specified vertex set
from a connected weighted graph (G,w): V gives the specified vertex set (V = V ′)
and the vertices are connected by e ∈ E with length w(e). On the other hand, given a
metrized graph Γ with a specified vertex set V ′, we can construct a connected weighted
graph (G,w) by taking V to be V ′, taking elements in E to be the components in Γ\V
and taking the induced weights from Γ\V . Thus we have a correspondence

(Γ, V ′) ⇌ (G,w),

from the set of metrized graphs with specified vertex sets to the set of connected weighted
graphs.

21



1. ARITHMETIC SURFACES AND INTERSECTION THEORY

Definition 1.4.5. Let (G,w) be a connected weighted graph. The first Betti number
of (G,w) is defined to be b1(Γ) := #E − #V + 1.

Remark 1.4.6. According to the correspondence, we can define the first Betti number
on a metrized graph Γ with a specified vertex set V . It is easy to show that this number
only depends on the metric graph Γ.

Definition 1.4.7. Let the pair (Γ, V ) be a metrized graph with a specified vertex set.
A divisor D on (Γ, V ) is an element in ZV . We define the degree of D (denoted by
deg(D)) to be the sum of all its values.

Definition 1.4.8. Fixing a map q : V → Z for (Γ, V ), we define the canonical divisor
to be

Kq :=
∑
p∈V

(v(p) − 2 + 2q(p))p.

We call the pair Γ = (Γ, q) a polarized metrized graph (or a pm-graph) if q is non-
negative and the associated canonical divisor Kq is effective. The function q is called a
polarization of (Γ, V ).

Remark 1.4.9. (Important) Throughout this thesis, we deal with pm-graphs in a flexible
way. We can denote a pm-graph by Γ, (G,w, q), (Γ, q), (V,E,w, q) and so on since they
are equivalent. Notions can also be translated freely between graph-theoretic objects and
metrized objects, for example, the first Betti number we already defined, the genus of a
pm-graph which we will define and so on. Furthermore, notions can also be inherited, for
example, pm-graphs inherit the notion the first Betti number from metrized graphs.

Definition 1.4.10. Suppose Γ = (Γ, q) is a pm-graph, the genus of Γ is defined to be

g(Γ) := 1
2(degKq + 2) = b1(Γ) +

∑
v∈V

q(v),

where b1(Γ) is the first Betti number of Γ.

Let e be an edge in a pm-graph Γ = (Γ, q). We say it is of type 0 if we get a connected
graph after removing the interior points of e from Γ. For an integer i in [1, g(Γ)/2], we
say e is of type i if the removal of its interior points from Γ gives two disjoint pm-graphs
of genus i and g(Γ) − i. We write δi(Γ) for the total weight of edges of type i and write

δ(Γ) for the total weight of Γ. It follows from the definition that δ(Γ) =
⌊ g(Γ)

2 ⌋∑
i=0

δi(Γ).

Definition 1.4.11. Let Γ = (Γ, q) be a pm-graph. We say the vertex p is eliminable if
v(p) = 2 and q(p) = 0.
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Remark 1.4.12. If v is an eliminable vertex on Γ and is the endpoint of edges e1 and
e2, then we can get a new pm-graph by removing v from the vertex set and connecting
e1 and e2 into one edge e with the weight l(e1) + l(e2). We can also get new pm-graphs
by adding eliminable vertices in an opposite way. This gives an equivalence relation for
pm-graphs. Every pm-graph Γ of genus g ̸= 1 is equivalent to a unique pm-graph with no
eliminable points. The assumption g ̸= 1 excludes the case when Γ is a genus 1 self-loop.

Lemma 1.4.13. A pm-graph Γ has no eliminable edges if and only if every coefficient
v(p) − 2 + 2q(p) in the canonical divisor (Definition 1.4.8) is positive.

Proof. This follows from the definition.

Remark 1.4.14. Most invariants that we already defined or will define only depend on
the equivalence class of the pm-graph.

Let R be a discrete valuation ring. Let f : X → Spec(R) be a semistable curve of
genus g with smooth generic fiber. We can associate a pm-graph Γ = (V,E,w, q) to f :

(1) Vertices in V correspond to irreducible components of its geometric special fiber
Xs.

(2) Edges in E correspond to nodal points and the endpoints correspond to the inter-
secting irreducible components. The weight w(e) is the thickness of the nodal point
corresponding to e.

(3) q(v) is the geometric genus of the component corresponding to v.

The assumption that f is semistable guarantees that the canonical divisor Kq is effective,
thus this is a pm-graph. In general, we denote this graph by Γs and we call it the dual
graph of f . We say the dual graph is trivial if it is a one-point graph.

Remark 1.4.15. The arithmetic genus of the special fiber Xs is equal to g(Γs) (see the
discussion at the end of Section 2 in [13]). For the dual graphs of stable curves, the pm-
graphs have no eliminable vertices and every coefficient v(p) − 2 + 2q(p) in the canonical
divisor (Definition 1.4.8) is positive.

For a general semistable curve over a Dedekind scheme C → S with smooth generic
fiber, we have a dual graph for each closed point s ∈ S. Since we assume the curve to be
generically smooth, the geometric special fiber Cs̄ is non-smooth only for a 0-dimensional
closed subset of S, which is finite. This means that we have trivial dual graphs for all
but finitely many closed points in S.

Now we are going to introduce two operations on pm-graphs and metrized graphs
which are the edge contraction and the wedge sum.
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Let Γ = (E, V,w, q) be a pm-graph of genus g and e ∈ E. We define a new pm-graph
Γ{e} as follows:

(1) If e is a self-loop with endpoint v0, then we define

Γ{e} := (E\{e}, V, w|E\{e}, q
′).

Here, q′(v) is the same as q(v) except q′(v0) = q(v0) + 1.

(2) If e is an ordinary edge with endpoints v0 and v1, then we define

Γ{e} := (E\{e}, V ′, w|E\{e}, q
′). (1.10)

Here, V ′ is induced from V with v0 and v1 identified (denoted by v′), and q′(v) = q(v)
except q′(v′) = q(v1) + q(v2).

We call this pm-graph Γ{e} the contraction of Γ at e.
Let U = {e1, e2, ..., en} be a subset of E. We can get a new graph by taking the

contraction of ei one by one. The pm-graph we get in this way is denoted by ΓU . We
write ΓU for ΓE\{U}. The contraction operation does not change the genus g.

Lemma 1.4.16. ΓU is well-defined, that is, taking contraction for edges in U in different
orders gives the same pm-graph ΓU .

Proof. We just need to consider the case U = {e1, e2}, which is easy to prove case-by-
case.

Lemma 1.4.17. If Γ has no eliminable vertices, then neither do its contractions.

Proof. We only need to check the endpoint(s) of the contracting edge e. We use Lemma
1.4.13 as the criterion for a pm-graph without eliminable edges.

Contracting a self-loop will make the endpoint have positive polarization. If e is an
ordinary edge in Γ, we only need to consider the case when endpoints of e are polarized
by 0. The summation of their valences is at least 6, thus the point corresponding the
contraction has valence at least 4.

Definition 1.4.18. A graph G is said to be reducible if there exist non-trivial subgraphs
G1 and G2 of G such that G = G1 ∪ G2 and G1 ∩ G2 is a point. We say a graph is
irreducible if it is not reducible.

When G1, G2 are subgraphs of G such that G = G1 ∪ G2 and G1 ∩ G2 consists of
one point, we say that G is the wedge sum of G1 and G2 (represented by G = G1 ∨G2).
We define G1 ∨ ... ∨ Gn to be (G1 ∨ ... ∨ Gn−1) ∨ Gn. Every graph can be decomposed
into a wedge sum of irreducible subgraphs, and the decomposition is unique up to order.
These irreducible subgraphs are called irreducible components of G
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Example 1.4.19. In Figure 1.4.1, the first example is irreducible and the second one
can be decomposed as a wedge sum of line segments.

We end this subsection by introducing two important properties of functions on pm-
graphs. We will mainly focus on functions satisfying these two properties.

Definition 1.4.20. Let F be a real-valued function on the set of pm-graphs, and let
Γ = (E, V,w, q) be a pm-graph. For any e ∈ E and l > 0, we can associate a pm-
graph Γe,l by taking w(e) = l with other parts unchanged. We say that F satisfies the
contraction lemma on Γ if

F (Γ{e}) = lim
l→0

F (Γe,l)

holds for all e ∈ E. We say the function F satisfies the contraction lemma if F satisfies
the contraction lemma on every pm-graph.

It might look strange to introduce this property since all thicknesses of nodes of
semistable curves are integers. A function satisfying the contraction lemma can be easier
to compute. Let F ′ be a function on pm-graphs satisfying the contraction lemma. Let
Γ be a pm-graph and e be an edge of Γ. To compute F ′(Γ{e}), we only need to compute
a limit related to F ′(Γ). This is especially useful for genus 3 pm-graphs with only type
0 edges since we only have two maximal models in that case (Lemma 3.2.3).

Definition 1.4.21. Let F be a real-valued function on the set of pm-graphs, and let
Γ = (E, V,w, q) be a pm-graph. Let {Γi}1≤i≤k be the irreducible components of Γ with
induced polarizations from contractions. We say the function F is additive on Γ if

F (Γ) =
k∑
i=1

F (Γi)

holds. We say the function F is additive if F is additive on every pm-graph.

Example 1.4.22. It is easy to see that δi(·) (defined before Definition 1.4.11) is additive.

1.4.2 Green’s functions and admissible invariants of Γ

Let Γ be a metrized graph. Let PS(Γ) be the space of real-valued continuous and
piecewise smooth functions on Γ.

Remark 1.4.23. By a piecewise smooth function, we mean a function f on Γ that
there exists a finite subset of points Xf ⊂ Γ such that Γ\Xf is a disjoint union of open
intervals, and the restriction of f on each of these intervals is a smooth function.
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We write PS(Γ)∧ for the vector space of linear maps from PS(Γ) to R. For a point u
on Γ of valence n and f ∈ PS(Γ), the function f has n directional derivatives at u. We
define δf(u) ∈ PS(Γ)∧ by δf(u)(g) := g(u)

n∑
i=1

lim
xi→0

f ′
i⃗
(xi) for g ∈ PS(Γ), where f ′

i⃗
(·) is

the i-th outward directional derivative of f . It is easy to see that δf(u) is zero for all
but finitely many u, thus δf :=

∑
u∈Γ

δf(u) is a well-defined element in PS(Γ)∧.

For f ∈ PS(Γ) and x ∈ Γ of valence 2, we define f ′′(x) as the second derivative of f
at x in an arbitrary direction. The metric on Γ induces a uniform measure on Γ which
we denote by µu (on each segment in Γ, the measure µu coincides with the Lebesgue
measure). Then we can define the Laplacian on Γ as follows.

Remark 1.4.24. f ′′ is well-defined at all but finitely many points on Γ. Assume f is
smooth in a neighbourhood of x0, we have two orientations for taking derivatives, denoted
by f ′

+(x0) and f ′
−(x0). We have f ′

+(x0) = −f ′
−(x0) and f ′′

+(x0) = (−1)2·f ′′
−(x0) = f ′′

−(x0),
thus the second derivatives are well-defined at all but finitely many points on Γ.

Definition 1.4.25. The Laplacian ∆ on a metrized graph Γ is defined as the linear map
from PS(Γ) to PS(Γ)∧ such that

∆f(g) = −
∫

Γ
f ′′gdµu − δf(g)

for all g ∈ PS(Γ).

Lemma 1.4.26. Let Γ be a metrized graph. There is a unique continuous, symmetric,
and piecewise smooth function g(x, y) on Γ × Γ satisfying:

∆yg(x, y) = δx − µu
δ(Γ) ,∫

Γ
g(x, y)dµu(y) = 0,

for all x ∈ Γ, where δx is the Dirac measure at x.

Proof. See Appendix in [70].

This function is called the Green′s function on Γ associated to µu. Now, for a general
measure µ on Γ with volume 1, we define:

gµ(x, y) := g(x, y)−
∫

Γ
g(x, y)dµ(y)−

∫
Γ
g(x, y)dµ(x)+

∫∫
Γ×Γ

g(x, y)dµ(x)dµ(y). (1.11)

Then gµ(x, y) is the unique function on G satisfying the following conditions:

∆yG(x, y) = δx − µ,∫
Γ
G(x, y)dµ(y) = 0.
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Definition 1.4.27. This function gµ(x, y) is called the Green′s function on Γ associated
to µ.

Remark 1.4.28. If we consider Γ as an electrical circuit such that the resistance is
locally induced from the distance, then gδp

(q, q) is equal to the electrical resistance r(p, q)
between p and q (Page 179 in [70]).

Lemma 1.4.29. On a metrized graph Γ, we have r(p, q) = gν(q, q) − 2gν(q, p) + gν(p, p),
where ν is any measure on Γ of volume 1.

Proof. It is easy to check the following linear dependence

gδp
(x, y) = gν(x, y) − gν(x, p) − gν(p, y) + gν(p, p).

By the remark above and the symmetry property of the Green’s function, we prove the
lemma by taking x = y = q.

Theorem 1.4.30. Let D =
n∑
i=1

ci · xi be a divisor on Γ with deg(D) ̸= 2. Then there is

a unique measure µD on Γ of volume 1 and a unique constant c such that the following
equality holds for any point x on Γ:

c+ gµD
(D,x) + gµD

(x, x) = 0, (1.12)

where gµD
(D,x) :=

n∑
i=1

cigµD
(xi, x).

Proof. See Theorem 3.2 in [70].

Remark 1.4.31. The theorem above is only part of Theorem 3.2 in [70], and the re-
maining part of that theorem says that µD is positive if D−KΓ is effective, where KΓ is
defined in Equation (1.9).

The function gµD
(x, y) is called the admissible Green function of (Γ, D) and µD is

called the admissible measure of (Γ, D). Recall the definition of Kq in Definition 1.4.8.
For a pm-graph Γ = (G,w, q), we denote by µad the measure µKq

and by gad(x, y) the
Green’s function gKq

(x, y). We are interested in the following three admissible invariants
(see Section 4.1 in [69] for details):

φ(Γ) := −1
4δ(Γ) + 1

4

∫
Γ
gad(x, x)((10g(Γ) + 2)dµad(x) − δKq

(x)), (1.13)

ϵ(Γ) :=
∫

Γ
gad(x, x)((2g(Γ) − 2)dµad(x) + δKq

(x)), (1.14)

λ(Γ) := g(Γ) − 1
6(2g(Γ) + 1)

φ(Γ) + 1
12(ϵ(Γ) + δ(Γ)). (1.15)
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By integrating with respect to the second variable in Lemma 1.4.29, we have

gad(x, x) =
∫

Γ
r(x, y)µad(y) − 1

2

∫
Γ
r(x, y)dµad(x)dµad(y).

Substituting the equation above to Equation (1.14), we get

ϵ(Γ) =
∫

Γ×Γ
r(x, y)δKq

(x)dµad(y). (1.16)

We can get similar expression of φ by r, δKq
and µad. In Section 3.1, we will use a more

explicit way to compute these invariants for pm-graphs of genus 3.

Remark 1.4.32. Many notions (including the Green function on metrized graphs we
just defined) introduced in this subsection are motivated by and similar to the notions
in Arakelov theory. The Green’s function on a metrized graph is an analogue of the
Arakelov-Green function on Riemann surfaces and so does these admissible invariants.
In [70], S. Zhang used these invariants on metrized graphs to establish the admissible
pairing theory.

Proposition 1.4.33. All the three invariants above satisfy the contraction lemma (Def-
inition 1.4.20) and are additive (Definition 1.4.21) for pm-graphs of genus g > 1.

Proof. For additivity, see Theorem 4.3.2 in [69]. For the contraction lemma, K. Yamaki
proved the case of g(Γ) = 3 in [66] Proposition 3.1. In Subsection 1.4.3, we will give a
proof of general pm-graphs of genus g > 1, based on the work of Z. Cinkir, R. de Jong
and F. Shokrieh.

The following property was conjectured by S. Zhang in [69], and proved by Z. Cinkir
(S. Zhang only conjectured the existence of the constant c(g)).

Theorem 1.4.34. Let Γ be a pm-graph with genus g > 1. Then we have

φ(Γ) ≥ c(g)δ0(Γ) +
⌊ g

2 ⌋∑
i=1

2i(g − i)
g

δi(Γ)

where c(2) = 1
27 and c(g) = (g−1)2

2g(7g+5) for g ≥ 3. In particular, c(3) = 1
39 .

Proof. See Theorem 2.11 in [8].

Corollary 1.4.35. Let Γ be a pm-graph of genus g > 1. Then we have φ(Γ) ≥ c(g)δ(Γ),
where c(2) = 1

27 and c(g) = (g−1)2

2g(7g+5) for g ≥ 3.

Proof. If i is an integer in [1, ⌊ g2 ⌋], then 2i(g−i)
g ≥ 1 and c(g) ≤ 1. By Theorem 1.4.34,

we get φ(Γ) ≥ c(g)δ(Γ).
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Corollary 1.4.36. For any ϵ > 0, there exists an integer gϵ such that φ(Γ) ≥ ( 1
14 −ϵ)δ(Γ)

for all pm-graphs Γ with g(Γ) > max{gϵ, 1}.

Proof. This follows from the corollary above.

1.4.3 Other invariants

When the genus g is fixed, there are only finitely many types of pm-graphs without
eliminable edges of genus g, and these can be computed combinatorically. We still write
Γ (resp. Γ) for a metrized graph (resp. pm-graph).

For metrized graphs, M. Baker and R. Rumely defined the τ(·) invariant (Section 14 in
[4]) which has the following elementary interpretation by the electrical resistance function
(Lemma 14.4 in [4]). We will use this interpretation to compute the τ(·) invariant.

Definition 1.4.37. Let r(x, y) be the resistance function on a metrized graph Γ (Remark
1.4.28). For any point y in Γ, we have

τ(Γ) = 1
4

∫
Γ
(rx(x, y))2dx,

where rx is the partial derivative of r with respect to the first variable x.

Remark 1.4.38. The τ invariant is defined on metrized graphs, and thus we can extend
it to pm-graphs. S. Zhang also defined a τ invariant on metrized graphs (Equation 4.1.2
in [69]), but that is different from our τ here.

In [8], Z. Cinkir defined the following invariant of a pm-graph Γ = (V,E,w, q):

θ(Γ) =
∑
p,q∈V

(v(p) − 2 + 2q(p))(v(q) − 2 + 2q(q))r(p, q). (1.17)

By Definition 1.4.8, all terms in θ(Γ) are non-negative, thus we have θ(Γ) ≥ 0.
The reason we introduce τ(Γ) and θ(Γ) is that Zhang’s admissible invariants can be

written as linear combinations of δ(Γ), θ(Γ) and τ(Γ).

Theorem 1.4.39. Let Γ be a pm-graph of genus g > 1. Then we have

ϵ(Γ) = (4g − 4)τ(Γ)
g

+ θ(Γ)
2g ,

φ(Γ) = (5g − 2)τ(Γ)
g

+ θ(Γ)
4g − δ(Γ)

4 ,

λ(Γ) = (3g − 3)τ(Γ)
4g + 2 + θ(Γ)

16g + 8 + (g + 1)δ(Γ)
16g + 8 .
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Proof. See Propositions 4.6, 4.9 and Theorem 4.8 in [8].

Corollary 1.4.40. If pm-graphs Γ1 and Γ2 are equivalent (Remark 1.4.12), then all the
six invariants are the same for the two pm-graphs.

Proof. δ(Γ1) = δ(Γ2) is trivial. From the definition of the θ invariant (Equation (1.17)),
we find v(p) − 2 + 2q(p) = 0 when p is eliminable, thus θ(Γ1) = θ(Γ2). Since the τ

invariant is defined on metrized graphs, the polarization will not make any difference.
By Theorem 1.4.39, Zhang’s invariants are determined by θ(Γ), τ(Γ) and δ(Γ), which

completes the proof.

Remark 1.4.41. The transformation matrix in Theorem 1.4.39 is invertible. Thus
computing φ(Γ), λ(Γ) and ϵ(Γ) is equivalent to computing θ(Γ), τ(Γ) and δ(Γ). As a
corollary, the additivity of Zhang’s admissible invariants is equivalent to the additivity of
θ(Γ), τ(Γ) and δ(Γ).

In the two lemmas below, we make the following assumptions. Let Γ be an irreducible
electrical circuit (weighted graph). We assume that e is an ordinary edge (an edge that
is not a self-loop) on Γ, and that it has endpoints p and q. Let Γ′ be the contraction
(Equation (1.10)) of Γ at e and let Γ − e be the graph given by removing the interior
points of e in Γ. We write l(e) for the length of e and write upq for the point given by
the contraction of e. We denote the electrical resistance between points x and y on Γ by
r(x, y; Γ).

Lemma 1.4.42. If Γ − e is connected, we have

τ(Γ′) − τ(Γ) = − l(e)
12 +Ap,q,Γ−e ·

(
1
R

− 1
l(e) +R

)
,

where R = r(p, q; Γ − e), and Ap,q,Γ−e only depends on p, q and Γ − e.

Proof. This is a direct result of Corollary 5.3 and Lemma 6.1 in [7].

Lemma 1.4.43. Let x and y be two points on Γ but not in the interior of e. Then we
have

r(x, y; Γ′) = r(x, y; Γ) − c(x, y, p, q; Γ),

where c(x, y, p, q; Γ) → 0 as l(e) → 0.

Proof. See Corollary 8.5 in [17].

We can now give a proof of the second half of Proposition 1.4.33 with the two lemmas
above.
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Proof of Proposition 1.4.33: By Theorem 1.4.39 and Remark 1.4.41, we only
need to prove that θ, δ and τ satisfy the contraction lemma for irreducible graphs (Defi-
nition 1.4.18).

When Γ has only 1 edge, the assertion is trivial. Thus we assume that Γ is an
irreducible pm-graph containing more than 1 edge. Let e be an edge on Γ. By the
irreducibility of Γ, the weighted graph Γ − e is connected and e cannot be a self-loop.
Thus we assume that e has endpoints p and q. It remains to show that the three invariants
θ, τ and δ satisfy the contraction lemma for the edge e.

It is easy to see that δ satisfies the contraction lemma, since δ is just the sum of all
lengths of the edges. Lemma 1.4.42 implies that τ also satisfies the contraction lemma.
Thus we only need to check θ.

When x and y are vertices on Γ but not the endpoints of e, the contraction does not
change the polarization of x and y, and r(x, y; Γ) → r(x, y; Γ′) as l(e) → 0 by Lemma
1.4.43. When x = p and y = q, we have r(x, y; Γ) → 0 = r(upq, upq; Γ′) as l(e) → 0.
When x = y = p or x = y = q, the claim is trivial. It remains to consider the case x = p

but y ̸= p or q.
When x = p but y ̸= p or q, we still have r(s, y; Γ) → r(upq, y; Γ) as l(e) → 0 for

s ∈ {p, q} by Lemma 1.4.43. We also have∑
s∈{p,q}

(v(s) − 2 + 2q(s)) = v′(upq) − 2 + 2q(upq)

by the construction of the contraction in Equation (1.10), where v′ (q) is the valence
(polarization) function on Γ′. Now we can say that∑

s∈{p,q}

(v(s) − 2 + 2q(s))(v(y) − 2 + 2q(y))r(s, y; Γ)

converges to

(v′(upq) − 2 + 2q′(upq))(v′(y) − 2 + 2q′(y))r(upq, y; Γ′)

as l(e) → 0. Thus the contraction lemma holds for θ. QED

Remark 1.4.44. Theorem 1.4.39 and Remark 1.4.41 reduce the computation of Zhang’s
admissible invariants on pm-graphs to the computation of θ(Γ), τ(Γ) and δ(Γ) on irre-
ducible pm-graphs. This decomposition simplifies the computation even more, since δ(Γ)
and θ(Γ) are finite sums and τ(Γ) is an integration of the derivative of r against the
natural measure (compared with Zhang’s admissible measure).

31



1. ARITHMETIC SURFACES AND INTERSECTION THEORY

1.5 Zhang’s work
Subsection 1.5.1 is a rather sketchy description about the admissible pairing. Subsec-
tion 1.5.2 is about the decomposition and the Northcott property of ⟨∆,∆⟩. The main
references for this section are [69] and [70].

Theorem 1.5.3 makes it possible to compute (ω̂, ω̂)ad. The whole of Chapter 4 is
devoted to the computation of ⟨∆,∆⟩ for a specific curve CQ by Theorem 1.5.6. The goal
of Sections 4.5-4.7 is numerically computing the λ invariant defined in Equation (1.18).

1.5.1 Admissible pairing

Let B be either a smooth curve over a field or the spectrum of a ring of a number field.
Let k be the fraction field of B. Let X be a smooth curve over k. Let X be an arithmetic
surface over B whose generic fiber is isomorphic to X over k. We write M(k) (resp.
M(k)0, resp. M(k)∞) for the set of places (resp. finite places, resp. infinite places) of k.

For a finite place v of k, we write N(v) for edeg(v) when B is a curve, for #k(v) (the
cardinality of the residue field of B at v) when B = SpecOk. We also write N(v) for e
(resp. e2) when v is a real (resp. complex) infinite place of k.

Remark 1.5.1. A complex infinite place is a pair of conjugate complex embeddings.

When B is a curve, we have a dualising sheaf ω on X that gives an adjunction formula
in the usual intersection theory. When B = SpecOk, by assigning admissible metrics to
the Archimedean places, there is an Arakelov dualising sheaf ω that gives an adjunction
formula (Theorem 1.2.15). G. Faltings proved a Hodge index theorem (Theorem 4 in
[23]) for Arakelov intersection theory.

Inspired by the above results, S. Zhang established the admissible intersection theory
(·, ·)ad for smooth curves over a global field in [70]. This intersection theory is done by
extending usual divisors on X to pairs (D,G), where D is a usual divisor on X (a model
of X) and G includes the Arakelov-Green function and the Green’s function on the dual
graphs. In this intersection theory, there is a Hodge index theorem and a dualising sheaf
ω̂ which gives an adjunction formula.

Remark 1.5.2. We do not give the expression of ω̂ in this thesis. Instead, we use
Theorem 1.5.3 to decompose it into the objects that we are more familiar with.

At Archimedean places, this adelic Green’s function contains information from the
Arakelov-Green function, and at non-Archimedean places, this adelic Green’s function
contains information from the Green’s function on the dual graphs we discussed in Section
1.4. Thus it makes sense to compare admissible intersection theory with two other
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intersection theories. The following theorem will be used repeatedly throughout this
thesis (recall the definition of ϵ(·) in Equation (1.14)).

Theorem 1.5.3. We have the following equalities

(ω̂, ω̂)ad = (ω, ω) −
∑

v∈M(l)0

ϵ(Γv)log(N(v)),

where (ω, ω) is the self-intersection of the Arakelov dualising sheaf when k is a number
field and is the self-intersection of the usual dualising sheaf when k is a function field.

Proof. See Theorem 5.5 in [70].

Corollary 1.5.4. (ω̂, ω̂)ad ≤ (ω, ω).

Proof. This comes from the fact that ϵ(Γ) ≥ 0, which is proven in Theorem 4.4 in [70].
Alternatively, we can also get this from Theorem 1.4.39.

1.5.2 Gross-Schoen cycle

Let X be a smooth curve over a field k. Let α =
t∑
i=1

aipi be a divisor on X over k with

rational coefficients and degree
t∑
i=1

ai deg pi = 1. We define cycles of X3 associated to α
as follows:

∆123 : = {(x, x, x) : x ∈ X},

∆12 : =
t∑
i=1

ai{(x, x, pi) : x ∈ X},

∆23 : =
t∑
i=1

ai{(pi, x, x) : x ∈ X},

∆31 : =
t∑
i=1

ai{(x, pi, x) : x ∈ X},

∆1 : =
t∑
i=1

t∑
j=1

aiaj{(x, pi, pj) : x ∈ X},

∆2 : =
t∑
i=1

t∑
j=1

aiaj{(pi, x, pj) : x ∈ X},

∆3 : =
t∑
i=1

t∑
j=1

aiaj{(pi, pj , x) : x ∈ X}.
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In [30], B. Gross and C. Schoen constructed an element ∆α ∈ CH2(X3)Q associated
to α as

∆α = ∆123 − ∆12 − ∆23 − ∆31 + ∆1 + ∆2 + ∆3 ∈ CH2(X3)Q.

They also proved that this cycle is homologous to 0 (Proposition 3.1 in [30]) and
is rationally equivalent to 0 if X is rational, or elliptic, or hyperelliptic and α is a
Weierstrass point (Section 4 in [30]). Thus it is natural to ask whether ∆α ̸= 0 when X

is non-hyperelliptic.
Now we assume that the base field k is a number field or the function field of a smooth

curve over a field. B. Gross and C. Schoen defined a canonical height ⟨∆α,∆α⟩ for ∆α,
which is actually a special case of the Beilinson-Bloch height.

Remark 1.5.5. For our goal, we will use the first formula in Theorem 1.5.6 as the
expression of ⟨∆α,∆α⟩.

From now, we assume g ≥ 2. Let xα be the divisor α − KX/(2g − 2) in Pic0(X)Q,
where KX is the canonical divisor of X. Then we have the following theorem by S.
Zhang.

Theorem 1.5.6. Let X be a smooth curve of genus g > 1 over a field k which is either
a number field or the function field of a smooth curve over a field. Assume that X has a
semistable model X over k. Then

⟨∆α,∆α⟩ = 2g + 1
2g − 2(ω̂, ω̂)ad + 6(g − 1)⟨xα, xα⟩ −

∑
v∈M(k)

φ(Xv)log(N(v)).

Here ⟨xα, xα⟩ is the Néron-Tate height of the class α − KX/(2g − 2) in Pic0(X)Q, and
the φ(Xv) are defined as follows.

(1) If v is an Archimedean place, then

φ(Xv) :=
∑
l∈N

1≤m,n≤g

2
λl

∣∣∣∣∫
Xv

ϕlωm(x)ωn(x)
∣∣∣∣2

where the ϕl are the normalized real eigenforms of the Arakelov Laplacian:

∂∂

πi
ϕl = λl · ϕl · dµv,

∫
ϕkϕldµ = δk,l,

and {ωi}1≤i≤g is an orthonormal basis of H0(Xv,ΩXv ) with respect to the inner
product in Equation (1.5). The eigenvalues λl are non-negative (see Section 3 in
[13]).
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(2) If v is a non-Archimedean place, then φ(Xv) := φ(Γv) which we defined in Equation
(1.13).

Proof. See Theorem 1.3.1 in [69].

Remark 1.5.7. The invariant φ at an Archimedean place is known as the Zhang-
Kawazumi invariant. Let δ(C) be the Faltings delta invariant of the compact Riemann
surface C (Theorem 1.3.9) and δ′(C) := δ(C) − 4glog(2π), then we define

λ(C) := g − 1
6(2g + 1)φ(C) + 1

12δ
′(C), (1.18)

where the definition of φ(C) can be found in Theorem 1.5.6.

After replacing k by a sufficiently large extension, we can assume (2g− 2)ξ = KX for
some ξ ∈ Pic(X). The height ⟨∆α,∆α⟩ reaches its minimal value precisely when α and
ξ are equal up to a torsion divisor (according to the non-negativity of the Néron-Tate
height). The cycle ∆ξ is known as a canonical Gross-Schoen cycle of X. The image
of ∆ξ in CH2(X3)Q does not depend on the choice of ξ, thus the number ⟨∆ξ,∆ξ⟩ is
well-defined.

Corollary 1.5.8. When k is the function field of a smooth curve B, we can rewrite
⟨∆ξ,∆ξ⟩ in the following way

⟨∆ξ,∆ξ⟩ = 2g + 1
2g − 2

(ωX/B , ωX/B) −
∑

s∈M(k)0

ψ(Γs)logN(s)

 , (1.19)

where s runs over all closed points of B and ψ is defined to be

ψ(Γ) := ϵ(Γ) + 2g − 2
2g + 1φ(Γ). (1.20)

Proof. This comes from Theorem 1.5.3 and Theorem 1.5.6.

When k is a function field of characteristic 0, the height ⟨∆ξ,∆ξ⟩ is non-negative by
the Hodge index theorem. When k is a number field or a function field with positive
characteristic, we have the following conjecture (Conjecture 1.4.1 in [69]).

Conjecture 1.5.9. Let k be a number field or a function field with positive characteristic,
then

⟨∆ξ,∆ξ⟩ ≥ 0

with equality if and only if ∆ξ is rationally equivalent to 0.
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B. Gross and C. Schoen’s work shows that the height vanishes when the curve is of
genus 0, 1 or hyperelliptic (including genus 2). This thesis is mainly about the height
for genus 3 curves. Is it unbounded (Theorem 1.5.17, Section 3.3), can it be explicitly
computed (Chapter 4)?

Remark 1.5.10. In [69], S. Zhang asked when will the height be zero. The height of a
canonical Gross-Schoen cycle on a hyperelliptic curve vanishes (Proposition 4.8 in [30]).
In Section 3.2, we explain a result of K. Yamaki which partially answers the converse of
this problem for genus 3 curves.

Now we shift our attention to the finiteness property of ⟨∆ξ,∆ξ⟩. For a variety T over
a field k and a geometric point t : Spec(k) → T , there exists a minimal finite extension
k0 of k such that t factors through Spec(k) → Spec(k0). The integer deg(t) := [k0 : k] is
well-defined, and we have the following theorem by S. Zhang.

Theorem 1.5.11. Let Y → T be a smooth and projective family of curves of genus g ≥ 3
over a projective variety T over a number field k, or the function field of a curve over a
finite field. If the classifying map T → Mg from T to the coarse moduli space of genus
g smooth curves over k is finite, then we have a Northcott property: for any positive
numbers D and H,

#
{
t ∈ T (k) : deg(t) ≤ D,

⟨∆ξ(Yt),∆ξ(Yt)⟩
deg(t) ≤ H

}
< ∞. (1.21)

Proof. See Theorem 1.3.5 in [69].

Remark 1.5.12. In the theorem above, we use a different convention from that of S.
Zhang. In Theorem 1.3.5 in [69], Zhang denoted ⟨∆ξ(Yt),∆ξ(Yt)⟩

deg(t) simply by ⟨∆ξ(Yt),∆ξ(Yt)⟩.

Remark 1.5.13. For a stable curve q : X → S of genus g ≥ 2 where S is either a
smooth curve over a field or the spectrum of a number ring, there is a height associated
to the Ceresa cycle c(X/S). We have the following relation between the two heights

c(X/S) = 2
3 ⟨∆ξ,∆ξ⟩. (1.22)

See Theorem 1.5.6 in [69] for more details.

In the remaining part of this subsection, we prove the unboundedness of the height
⟨∆ξ,∆ξ⟩ for genus g ≥ 3 curves over number fields.

Lemma 1.5.14. If g > 2, then there exists a finite morphism of schemes C → Mg,
where C is a smooth curve defined over k.
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Proof. We denote the coarse moduli space of principally polarized Abelian varieties by
Ag. The Torelli map Mg → Ag is an immersion (Corollary 1.5 and the remark after it
in [56]). We get a projective compactification M̃g for Mg in the Satake compactification
Ascg of Ag by taking the closure of its image. The boundary M̃g\Mg has codimension
≥ 2, since Astg = Ag ⊔Ag−1 · · ·A1 ⊔A0 and dim(Am) = m(m+1)

2 .
We can then get an irreducible curve T in Mg by cutting out sufficiently many hy-

persurfaces in general position (we might need to choose an irreducible component). The
induced morphism T → Mg is a closed immersion by the construction, thus it is also
finite. We write C → T for the normalization of T . Then we have a finite morphism
C → Mg since it is the composition of finite morphisms C → T and T → Mg.

Remark 1.5.15. The Satake compactification and the Torelli map can be defined over
k (even over Spec(Z)). See Page 179 in [10] and Page 150 in [24] for details. Explicit
curves on Mg for g > 2 can be found in [28] and [68].

Lemma 1.5.16. Let Z be an irreducible smooth projective variety of positive dimension
defined over a number field k. There exists a sufficiently large integer d such that there
are infinitely many closed points on Z whose degree is less than d.

Proof. We first fix a closed embedding Z → Pnk . By Bertini’s theorem, we can find
dim(Z) − 1 hyperplanes in Pnk whose intersection with Z is a 1-dimensional smooth
projective variety. We choose one irreducible component if there are more than one.
Thus, we just need to prove the lemma when is Z a smooth curve.

Every non-zero rational function f on Z gives a morphism Z → P1
k. We denote the

degree of this morphism by df . The fiber of every k-point in P1
k is an effective divisor

of Z of degree df , thus every closed point in the divisor is of degree not bigger than
df . Since there are infinitely many k-points in P1

k, we can obtain infinitely many closed
points on Z whose degree is not bigger than df .

Theorem 1.5.17. Let g ≥ 3 be an integer. There exists an integer Dg and a family of
genus g smooth curves {Ej}j∈N+ defined over Q such that

(1) For all j ∈ N+, the curve Ej has semistable model over a number field kj such that
[kj : Q] ≤ Dg,

(2) the normalized height of the canonical Gross-Schoen cycle on Ej, which is defined
as ⟨∆j ,∆j⟩

[kj :Q] , goes to infinity.

Proof. We can obtain a finite morphism C → Mg by Lemma 1.5.14, where C is a smooth
curve over k. According to Lemma 1.5.16, there exists an integer Dg such that there
are infinitely many points on C whose degree is smaller than Dg. Now we can prove the
assertion by applying the Northcott property in Theorem 1.5.11.
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So far, we know that ⟨∆ξ,∆ξ⟩ can be 0 and can be arbitrarily large. Nobody has yet
numerically computed ⟨∆ξ,∆ξ⟩ for a non-hyperelliptic curve of genus g ≥ 3. In Chapter
4, we will numerically compute ⟨∆ξ,∆ξ⟩ for a specific plane quartic curve over Q.

For simplicity, we will mainly use ⟨∆,∆⟩ to denote the height of a canonical Gross-
Schoen cycle from now on.
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