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Introduction

In this thesis, we study the Beilinson-Bloch heights of canonical Gross-Schoen cycles of
genus 3 smooth curves.

Let X be a smooth projective curve defined over a field K (either a number field or the
function field of a smooth curve over a field). We write ∆ for a canonical Gross-Schoen
cycle on X, an element in CH2(X3)Q, and write ⟨∆,∆⟩ for its Beilinson-Bloch height.
The height is well-defined although the cycle depends on a choice of a torsion point in
Pic(X) (see Subsection 1.5.2 for further explanation).

There are several reasons for studying the height of this special cycle. According
to some standard conjectures on cycles, the height should be non-negative (Conjecture
1.5.9). When the height ⟨∆,∆⟩ is positive, the cycle ∆ ∈ CH2(X3)Q is non-zero. Let M
be the Chow motive corresponding to the kernel of the map

3∧
H1(X)(2) → H1(X)(1)

a ∧ b ∧ c → a(b ∪ c) + b(c ∪ a) + c(a ∪ b).

In this situation, A. Beilinson and S. Bloch conjectured the following equality:

rank(CH(M)) = ords=1L(M, s),

where L(M, s) is the L-series associated to M . Then cycle ∆ lies in the group CH(M).
If ⟨∆,∆⟩ does not vanish, then the L-series vanishes at s = 1. Then the cycle is non-zero
in CH2(X3)Q. More details can be found in Section 1.5 in [69].

In Sections 1.1-1.3, we recall results on models of curves and Arakelov intersection
theory. In Section 1.4, we study the pm-graphs associated to semistable curves. With
these preparations, we state Zhang’s main results on ⟨∆,∆⟩ (see Section 1.3 in [69]) in
Section 1.5: a decomposition of ⟨∆,∆⟩ (Theorem 1.5.6) and a Northcott property of
⟨∆,∆⟩ (Theorem 1.5.11). Over number fields, we prove the following unboundedness
property of the normalized heights in Theorem 1.5.17.
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INTRODUCTION

Theorem 0.0.1. Let g ≥ 3 be an integer. There exists an integer Dg and a family of
genus g smooth curves {Ej}j∈N+ defined over Q such that

(1) For all j ∈ N+, the curve Ej has a semistable model over a number field kj such
that [kj : Q] ≤ Dg,

(2) the normalized height of the canonical Gross-Schoen cycle on Ej, which is defined
as ⟨∆j ,∆j⟩

[kj :Q] , goes to infinity.

In Chapter 2, we study arithmetic and geometric properties of genus 3 curves. We
first describe the moduli behaviour of semistable genus 3 curves. Then we introduce
algebraic modular forms and bitangents of smooth plane quartics. We study the divisor
of the modular form χ′

18 on M3 and Klein’s formula for smooth plane quartics. These
will be used in Chapter 3 and Chapter 4 for the decomposition of the height ⟨∆,∆⟩
(Theorem 3.3.2) and for a sanity check for our main computation (Section 4.9).

In Chapter 3, we turn to the study of the height ⟨∆,∆⟩ for smooth plane quartics.
In Section 3.1, we show how to compute admissible invariants on dual graphs in genus
3. We give a proof of the contraction lemma (Proposition 1.4.33) for these invariants
(Definition 1.4.20), which we have not been able to find in the literature. In Section
3.2, we recall K. Yamaki’s result on genus 3 curves over function fields. A constant h(Γ)
introduced in Equation (3.1) will be used for computing ordv(χ′

18) for finite places v in
Subsection 4.4.2. In Section 3.3, we show the following property of ⟨∆,∆⟩, based on the
work of R. de Jong in [13].

Theorem 0.0.2. Let {Lm}m∈N+ be a family of smooth non-hyperelliptic curves of genus
3 over Q. If the following properties hold:

(1) considering {Lm ⊗Q C}m∈N+ as a family of points in M3(C), this family of points
lies on a curve in M3(C) and converges to a point in M3(C)\M3(C) which has a
non-trivial dual graph satisfying Condition (H) (see Definition 3.3.6),

(2) the dual graphs of their stable models (which exist over finite extensions of the base
field Q, see Theorem 1.1.16) over finite places satisfy Condition (H),

then their heights of canonical Gross-Schoen cycles ⟨∆m,∆m⟩ go to infinity.

Basically, Condition (H) is to make sure that the contribution from finite places
are non-negative and the contribution from infinite places approaches to infinity. In
Subsection 3.3.4, we give an application of our criterion, and this is the main result of
[13].

Theorem 0.0.1 holds for all genus g ≥ 3 while Theorem 0.0.2 only works for g = 3.
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INTRODUCTION

Chapter 4 contains the main result of this thesis. We compute the height ⟨∆,∆⟩ for a
specific plane quartic curve CQ that has semistable reduction over Q. As far as we know,
this is the first attempt to numerically compute the height for a non-hyperelliptic curve
of genus ≥ 3. Our computation can be summarized as follows.

Computation 0.0.3. For the plane quartic curve C → Spec(Z) defined by

−X3Y +X2Y 2 −XY 2Z + Y 3Z +X2Z2 +XZ3 = 0,

we have the following results:

(1) δ(CC) ≈ −24.87 (Faltings delta invariant),

(2) φ(CC) ≈ 1.17 (Faltings phi invariant),

(3) deg detf∗ωC ≈ −2.9190567336 (Faltings height),

(4) (ω, ω)Ar ≈ 3.43 (self-intersection of the Arakelov dualising sheaf),

(5) (ω̂, ω̂)ad ≈ 1.55 (self-intersection of the admissible dualising sheaf),

(6) ⟨∆,∆⟩ ≈ 0.60 (height of the canonical Gross-Schoen cycle),

where notations can be found in Equation (2.8) (for deg detf∗ωC), Definition 1.2.14 (for
(ω, ω)Ar), Theorem 1.5.3 (for (ω̂, ω̂)ad) and Theorem 1.5.6 (for ⟨∆,∆⟩).

In Subsection 4.9, we discuss potential numerical issues in our computation, and
explain why we are reasonably confident in their correctness. Code is attached in Ap-
pendices I-IX.

Throughout this thesis, a curve over a field k is a reduced, geometrically connected,
projective k-scheme of pure dimension 1. All Dedekind schemes are assumed to have
dimension 1. For a number field K, we write K(C) for the set of complex embeddings of
K. We write N+ for the set of positive integers.
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Chapter 1

Arithmetic surfaces and intersection theory

This chapter is devoted to arithmetic surfaces and Arakelov theory. In Section 1.1, we
discuss models of curves and general theory of arithmetic surfaces. Section 1.2 is about
the foundation of Arakelov intersection theory. Section 1.3 is about G. Faltings’ seminal
paper [23] on Arakelov theory. In Section 1.4, we discuss dual graphs associated to
semistable arithmetic surfaces and harmonic analysis on them. The heights of canonical
Gross-Schoen cycles introduced in Section 1.5 are the main theme of this thesis.

We prove that Zhang’s admissible invariants satisfy the contraction lemma (Propo-
sition 1.4.33), which we have not found in literature. In Theorem 1.5.17, we prove an
unboundedness property of the heights of canonical Gross-Schoen cycles for genus g ≥ 3
smooth curves over number fields. To the best of the author’s knowledge, this is a new
result.

1.1 Models of curves

In Subsection 1.1.1, we define semistability and thickness. In Subsection 1.1.2, we define
various kinds of models and state the semistable reduction theorem. In Subsection 1.1.3,
we introduce the Deligne pairing on arithmetic surfaces. Proofs can be found in [48] and
[52].

The definition of thickness appears in Proposition 1.1.8, which is essential for defining
the dual graph of a semistable curve.

For simplicity, S is a Dedekind scheme (that is, a normal, irreducible Noetherian
scheme of dimension 1) with function field K(S) throughout this section. We write k(p)
for the residue field of a point p in a scheme.

1



1. ARITHMETIC SURFACES AND INTERSECTION THEORY

1.1.1 Semistability

Semistable curves are curves with mildest possible singularities. By ‘mildest’, we mean
intersections with two different tangent directions. In the graphs below, the singular
point on the left one is considered as a ‘mildest’ singularity while the singular point on
the right one is not.

(a) nodal point (b) cusp point

Figure 1.1.1: node and cusp

Definition 1.1.1. Let C be a curve over an algebraically closed field k. A point p on C

is called a nodal point or an ordinary double point if ÔC,p ≃ k[[u,v]]
(uv) .

Definition 1.1.2. A curve over an algebraically closed field k of arithmetic genus g is
called semistable (resp. stable) if g ≥ 1 (resp. g ≥ 2), all of its singular points are nodal
points and all of its components with arithmetic genus 0 meet other components in at
least 2 (resp. 3) points.

Remark 1.1.3. We repeat here that all curves over fields are assumed to be geometrically
connected.

Example 1.1.4. The curve Em : Y 2Z = X3 + X2Z in P2
C is semistable. It has only 1

nodal point at (0 : 0 : 1).

It is equivalent to define a stable curve as a curve having only nodal singularities
and a finite automorphism group. The finiteness of the automorphism groups of stable
curves can be compared with Hurwitz’s automorphism theorem for Riemann surfaces
which says that the automorphism group of a compact Riemann surface of genus g ≥ 2
is a finite group (containing at most 84(g − 1) elements).

Remark 1.1.5. From the definition, a semistable curve C over an algebraically closed
field is a local complete intersection of codimension n − 1 in Pn, thus Serre duality can
be applied and the dualizing sheaf of C is a line bundle (Theorem III.7.11 in [33]).

2



1. ARITHMETIC SURFACES AND INTERSECTION THEORY

Let C0 be a semistable curve with 1 component and 1 node ps. We describe the
dualizing sheaf ωC0 of C0 as follows:

The normalization of C0 is a smooth curve C with two specified points p and q

(preimages of ps under the normalization map). Let Ω be the dualising sheaf of C, which
is isomorphic to the sheaf of differential forms on C. Then we have

ωC0 ≃ r∗Ω(p+ q),

where r∗ is the pushforward along the normalization map r.

Definition 1.1.6. For a general base scheme T , we define a curve over T to be a
scheme X with a proper flat and finitely presented morphism f : X → T of pure relative
dimension 1. We say f is a curve (resp. stable curve, resp. semistable curve) of genus g
if Xt̄ is a curve (resp. stable curve, resp. semistable curve) of genus g for all geometric
points t̄ of T .

Example 1.1.7. (Nice curves can be non-semistable) The curve CF in P2
Z defined by

Xn + Y n +Zn = 0 is not a semistable curve when n ≥ 2. For any prime number p|n we
have Xn + Y n +Zn = (Xn/p + Y n/p +Zn/p)p in Fp[X,Y, Z] and thus the fiber of CF at
p is not even reduced. More generally, a plane curve defined by G(Xp, Y p, Zp) = 0 for
some polynomial G ∈ Z[X,Y, Z] can not be semistable.

By Definition 1.1.6, we can define a semistable curve over a non-algebraically closed
field l. A point ps on a semistable curve C over l is called a split node if k(ps) = l and
ÔX,ps

≃ l[[u, v]]/(uv).

Proposition 1.1.8. Recall that S is a Dedekind scheme. Let X → S be a semistable
curve with smooth generic fiber Xη. For s ∈ S, let x ∈ Xs be a singular point of Xs.

(1) There exists a Dedekind scheme S′, with a surjective and étale morphism S′ → S,
such that any point x′ ∈ X ′ := X ×S S

′ lying above x, belonging to a fiber X ′
s′ , is

a split node of X ′
s′ → Spec k(s′).

(2) With the scheme S′ obtained in (1), we have an isomorphism

ÔX′,x′ ≃ ÔS′,s′ [[u, v]]/(uv − c)

for some non-zero c ∈ ms′OS′,s′ .

(3) Let ex be the valuation of c for the normalized valuation of OS′,s′ . Then ex is
independent of the choice of S′, s′, and of x′, and it is called the thickness of x in
X.

3



1. ARITHMETIC SURFACES AND INTERSECTION THEORY

Proof. See Corollary 10.3.22 in [48].

Example 1.1.9. For a prime p ≥ 3 and a positive integer n, the equation

Y 2Z = X3 +X2Z + pnZ3

defines a semistable curve C in P2
Zp

with 1 nodal point at ps = (X,Y, p). It can be shown
that ÔC,ps

≃ Zp[[u, v]]/(uv − pn) and hence the thickness at ps is n. More precisely, at
the origin of the affine patch y2 − x2(1 + x) − pn = 0, we can construct g(x) ∈ Zp[[x]]
such that g2(x) = 1 + x, and this gives y2 − (xg(x))2 − pn = 0. Taking u = y + xg(x)
and v = y − xg(x), we get ÔC,ps

≃ Zp[[u,v]]
(uv−pn) .

Remark 1.1.10. Thickness can be considered as a measure of singularity in an arith-
metic sense.

1.1.2 Models

By a fibered surface over S, we mean an integral, projective, flat S-scheme π : X → S

of dimension 2 (S is a Dedekind scheme). We say the fibered surface π is normal if X is
normal.

Definition 1.1.11. Let C be a smooth curve over K(S). We call a normal fibered surface
X → S together with an isomorphism f : Xη ≃ C a model of C over S, where η is the
generic point of S. If X is regular, we call it a regular model. For a model X of C, if
every birational map Y 99K X of models can be extended to a morphism, we say X is
a minimal model for C. Moreover, we say a model (X, f) of C has property P if the
morphism X → S has the property P .

Theorem 1.1.12. For every excellent, reduced, Noetherian 2-dimensional scheme X,
there exists a proper birational morphism X ′ → X where X ′ is a regular scheme.

Sketch of proof : X ′ is attained by iteratively blowing up at the singular locus and
taking normalization. J. Lipman proved that this procedure terminates in finitely many
steps. See [47] for a complete proof. QED

Remark 1.1.13. Theorem 1.1.12 can be considered as the desingularization of 2-dimensional
schemes. For general dimensions, H. Hironaka proved that any variety over a field of
characteristic 0 can be desingularized into a regular variety. In [11], A. J. de Jong intro-
duced alteration and proved that a separated integral scheme of finite type over a complete
discrete valuation ring (this includes fields of characteristic p) always has an alteration
from a regular scheme (Theorem 6.5 in [11]).

4



1. ARITHMETIC SURFACES AND INTERSECTION THEORY

Let C be a smooth curve over K(S). With Theorem 1.1.12, we can always get a
regular model X → S of C. If we assume further that the genus g > 0, then X → S has
a unique minimal regular model, up to a unique isomorphism (Theorem 9.3.21 in [48]).

Definition 1.1.14. Let C be a smooth curve over K(S). We say that C has good (resp.
stable, resp. semistable) reduction at a closed point s ∈ S if there exists a smooth (resp.
stable, resp. semistable) model X of C over Spec(OS,s). We say C has good (resp. stable,
resp. semistable) reduction over S if it has good reduction at every closed point s ∈ S.

Good reduction is easy to deal with since it has smooth special fiber, but it can
happen that a curve does not have good reduction.

Example 1.1.15. (A curve without good reduction) For a field k, set k((λ)) with the
natural discrete valuation, that is val(λ) = 1. Then E : Y 2Z = X(X − Z)(X − λZ) is
an elliptic curve over k((λ)) with the j invariant

j(E) = 28(λ2 − λ+ 1)3

λ2(λ− 1)2 .

The curve E does not have a smooth model since its j invariant is not in the valuation
ring of k((λ)) (Proposition 5.5 in [60]).

The following theorem, first proved by P. Deligne and D. Mumford, shows the exis-
tence of a stable model, after taking an adequate field extension.

Theorem 1.1.16. (Stable reduction theorem) Let R be a discrete valuation ring with
fraction field K. Let C be a smooth projective curve over K of genus g ≥ 2. Then
there exists an extension of discrete valuation rings R ⊂ R′ inducing a finite separable
extension of fraction fields K ′/K and a stable curve Y → Spec(R′) of genus g with
YK′ ≃ CK′ over K ′.

Proof. Tag 0E8C

Remark 1.1.17. The original version of this theorem in Stack Project also requires
H0(C,OC) = K. We omit this condition since we assume all curves to be geometrically
connected in this thesis.

1.1.3 Intersection theory on arithmetic surfaces

It is too much to require a curve over a general scheme to be smooth, and we will instead
consider regular objects. There are several advantages for restricting our discussion to
regular Noetherian schemes. First, the stalks of regular schemes are UFDs, thus there is a
1-1 correspondence between rational equivalence classes of Weil divisors and isomorphism

5
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classes of line bundles. Second, the Grothendieck groups of coherent sheaves and vector
bundles on regular schemes coincide (Page 13 in [61]), thus the K-theory on regular
schemes behaves better. Third, regularity is strong enough for having a moving lemma
on schemes (Corollary 9.1.10 in [48]).

As in the last two subsections, we still write S for a Dedekind scheme with fraction
field K(S).

Definition 1.1.18. We call a regular fibered surface X → S an arithmetic surface when
Xη is smooth for the generic point η of S.

Definition 1.1.19. Let π : X → S be an arithmetic surface and let D be a prime Weil
divisor on X . We say D is horizontal if π|D : D → S is surjective. We say D is vertical
if its image is reduced to a point.

Remark 1.1.20. A prime horizontal divisor is just the Zariski closure of a L-point
in X where L is a finite extension of K(S). A prime vertical divisor is an irreducible
component of the fiber Xp over some closed point p in S.

Let D and E be two Weil divisors on an arithmetic surface π : X → S with no
common components. We define the intersection multiplicity of D and E at a closed
point x ∈ X as

ix(D,E) := lengthOX ,x
(OX ,x/(f, g)), (1.1)

where f and g are local equations of D and E at x. We obtain a 0-cycle on X that can
be written as

I(D,E) :=
∑
x

ix(D,E)x.

Then
π∗I(D,E) :=

∑
x

ix(D,E)[k(x) : k(π(x))]π(x)

is a divisor on S.
The intersection theory above is less satisfying since we have not defined the inter-

section between divisors with common components. This can be done by applying the
moving lemma (see Section 9.1 in [48]). The following theorem of P. Deligne generalizes
the intersection theory above using the language of line bundles.

Theorem 1.1.21. Let π : X → S be an arithmetic surface. Let L and M be two line
bundles on X . We can associate a line bundle ⟨L,M⟩ on S such that the following
properties are satisfied:

(1) If L′ ≃ L and M ′ ≃ M then ⟨L′,M ′⟩ ≃ ⟨L,M⟩.

6
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(2) The pairing is symmetric and satisfies the following laws:

⟨L,M⟩ ≃ ⟨M,L⟩

⟨L,M ⊗N⟩ ≃ ⟨L,M⟩ ⊗ ⟨L,N⟩.

(3) Let l and m be two rational sections on L and M whose divisors have no common
components. Then there exists a non-zero rational section ⟨l,m⟩ of ⟨L,M⟩ such
that:

(a) Let f be a rational function on X such that fl and m have no common com-
ponents. Then

⟨fl,m⟩ = N(m)(f)⟨l,m⟩,

where the definition of N can be found in Page 19 in [52].

(b) There is an isomorphism

⟨L,M⟩ ≃ OS(N(l)(m)),

which sends ⟨l,m⟩ to 1N(l)(m). In fact, we have

div(⟨l,m⟩) = N(l)(m).

(4) Let D be a horizontal divisor on X. Then for a line bundle L on X, we have a
natural isomorphism ⟨L,OX(D)⟩ ≃ ND(L) which sends ⟨l, 1D⟩ to ND(l).

(5) Let ρ : S′ → S a flat morphism between connected Dedekind schemes and let
X ′ := X ×S S

′ be the base change of X → S by ρ with the following commutative
diagram.

X ′ X

S′ S

µ

ρ

Then there is a natural isomorphism

ρ∗(⟨L,M⟩) ≃ ⟨µ∗(L), µ∗(M)⟩.

Proof. See Theorem 4.7 in [52].

7
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If S is a smooth curve over a field k or S is isomorphic to Spec(OK) for some number
field K, we can associate a degree map to the Deligne pairing in the following way.

When S is a smooth curve, we define deg⟨L,M⟩ as the degree of the line bundle
⟨L,M⟩ on the curve S. In the classical way, this is equal to∑

x

ix(D,E)[k(x) : k(π(x))] deg(π(x)), (1.2)

where D and E are divisors of some rational sections of L and M with no common
components.

Remark 1.1.22. For simplicity, we write (·, ·) for deg⟨·, ·⟩ in this case.

When S = Spec(OK) for some number field K, we want to define deg⟨L,M⟩ as∑
x

ix(D,E)[k(x) : k(π(x))]log(#k(π(x))), (1.3)

where D and E are divisors of some rational sections of L and M with no common
components. However, this is not good, since the number given by Equation (1.3) really
depends on the choice of rational sections. Instead, we will consider line bundles on X
with Hermitian metrics. Given two metrized line bundles L and M on X , we can endow
⟨L,M⟩ with a Hermitian metric (Section 3.3 in [52]). Then we define deg⟨L,M⟩ using
the following definition.

Definition 1.1.23. Let M be a Hermitian metrized line bundle on Spec(OK). We define
its degree by

deg(M) := log#(M/OK · s) −
∑

σ∈K(C)

log∥s∥σ

for an arbitrary non-zero element s of M . By the product formula, this degree does not
depend on the choice of s.

The degree of the Deligne pairing has a close relation with the Arakelov intersection
theory (Section 1.2). Actually, we have the following equality

(L,M)Ar = deg ⟨L,M⟩ (1.4)

for admissible line bundles L and M . See Section 6.3 in [18] for the construction of the
metric on ⟨L,M⟩ and further discussion on Equation (1.4).

Remark 1.1.24. For divisors D and E with no common components, we write (D,E)fin

for the number given by Equation (1.3).

8
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1.2 Arakelov’s work

The main reference for this section is [1], in which Arakelov tried to establish an arithmetic
intersection theory on arithmetic surfaces over number fields.

In Subsection 1.2.1, we introduce the Green’s function on a Riemann surface which
gives a metric on the line bundles on this Riemann surface. In Subsection 1.2.2, we
explain Arakelov intersection theory and define the Arakelov dualising sheaf.

We will carry out some explicit computation for the Green’s function in Section 4.6.

1.2.1 Green’s functions on Riemann surfaces

In this subsection, X is a compact Riemann surface of genus g ≥ 1, and we write Ω1
X for

its sheaf of holomorphic differential forms.
We can define a Hermitian inner product on H0(X,Ω1

X) as follows:

⟨ω, η⟩ = i

2

∫
X

ω ∧ η. (1.5)

With this inner product, we can choose an orthonormal basis {ω1, ..., ωg}, and we define
the volume form or canonical form of X to be

µAr := i

2g

g∑
j=1

ωj ∧ ωj . (1.6)

The (1-1)-form µAr on X does not depend on the choice of orthonormal basis.

Remark 1.2.1. The word ‘volume’ comes from
∫
X
µAr = 1.

Definition 1.2.2. The canonical Arakelov-Green function of X is the unique function
G : X ×X → R≥0 that satisfies:

(1) Let P be any fixed point in an open set U with a local coordinate z on U . For
Q ∈ U , we have logG(P,Q) = log|z(Q)| + f(Q), where f is a C∞ function on U .

(2) G(·, ·)2 is a C∞ function on X×X and ∂Q∂QlogG(P,Q)2 = 2πiµAr(Q) for Q ̸= P .

(3)
∫
X

logG(P,Q)dµAr(Q) = 0.

(4) G vanishes at the diagonal of X ×X.

Remark 1.2.3. For simplicity, we will use the Green′s function of X instead of the
Arakelov-Green function of X in this thesis.
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Example 1.2.4. Let τ ∈ C with Im τ > 0, and define a torus X by X ≃ C/⟨1, τ⟩. Let
z be the coordinate of C. Then the Green’s function on X is

logG(z1, z2) = logG(z1 − z2, 0) = log∥θ∥
(
τ, z1 − z2 + 1 + τ

2

)
− log∥η∥(τ),

where

∥θ∥(a+ bi, x+ yi) = b1/4e−πy2/b · |
∑
n∈Z

eπin
2(a+bi)e2πin(x+yi)|,

∥η∥(a+ bi) = b1/4 · |eπi(a+bi)/12
∞∏
n=1

(1 − e2πi(a+bi))|.

See Section 7 in [23] for details.

It can be proven by Green’s formula that the Green’s function is a symmetric function.
The existence of the Green’s function can be proven by partial differential equation tools
and the uniqueness is trivial. However, it is still not easy to construct it from the
definition. R. de Jong gave an explicit expression for the Green’s function (Theorem
2.1.2 [12]).

Next we will assign a Hermitian metric on O(D) to each divisor D on X. The trivial
line bundle is assigned with the constant function ∥1∥OX

= 1. For a prime divisor D = P ,
we assign the smooth Hermitian metric

∥1∥O(D)(Q) := G(P,Q) (1.7)

on O(D). If O(D1) and O(D2) are already assigned with metrics, we define

∥1∥O(D1+D2)(Q) := ∥1∥O(D1)(Q) · ∥1∥O(D2)(Q) (1.8)

to be the metric on O(D1 +D2). These can give a Hermitian metric on every line bundle
O(D) of X inductively.

Definition 1.2.5. Let ∥ · ∥ be a smooth Hermitian metric on a line bundle O(D) of X.
We say ∥ · ∥ is admissible if its curvature form is a multiple of µAr.

From Property (2) in Definition 1.2.2, we find that the curvature form of the metric
∥·∥O(D) is deg(D)µAr. This means that the metric we just defined on O(D) is admissible.

Remark 1.2.6. There is an admissible metric on a line bundle O(D), unique up to a
multiplicative scalar. This can be proven using Property (2) of the Green’s function.

We end this subsection by constructing an admissible metric on ΩX .
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(1) For any point P ∈ X, we already have a metric on O(P ) given by the Green’s
function on X.

(2) The residue of rational sections of Ω1
X at P gives a natural isometry:

ΩX(P )|P ≃ C,

where C has the standard Euclidean metric.

(3) We assign Ω1
X with the metric such that the following isomorphism gives an isom-

etry at every point P :
ΩX(P ) ≃ O(P ) ⊗ ΩX .

Definition 1.2.7. The metric defined above, denoted by ∥ · ∥Ar, is called the Arakelov
metric on Ω1

X .

Let ∆ : X → X ×X be the diagonal map. Then we know that Ω1
X ≃ OX×X(−∆)|∆.

If we assign a metric on OX×X(−∆), then its pullback along the diagonal map will
induce a metric on Ω1

X . The metric ∥ · ∥Ar is equal to the pullback of the metric
∥1∥OX×X (−∆)(P,Q) := G−1(P,Q) along ∆.

Theorem 1.2.8. The Arakelov metric ∥ · ∥Ar is admissible.

Proof. See Section 4 in [1] or Section 4.5 in [52].

Remark 1.2.9. In fact, we can associate a Green’s function to any Kähler form on X

(modifying Property (2) in Definition 1.2.2). The reason we choose the canonical form
(Equation (1.6)) is that this is the only Kähler form, up to multiplicative scalar, that
induces an admissible metric on Ω1

X by the construction above (Lemma 4.25 in [52]).

1.2.2 Arakelov intersection theory

Now we are ready to show how Arakelov intersection theory is defined. In this subsection,
K is a number field with integer ring OK and S = Spec(OK).

Let π : X → S be an arithmetic surface of genus g ≥ 1 with smooth generic fiber XK .
A prime horizontal divisor D on X can be written in the form ϵ∗(Spec(OL)), where L is
a finite extension of K and Spec(OL) ϵ→ X is a section of π. Each embedding σ : K → C
corresponds to a compact Riemann surface Xσ. By µσ, we mean the canonical form on
Xσ defined in the last subsection.

In Arakelov intersection theory, the divisor group of X contains the divisors in the
usual sense, which are called finite divisors, and also contains real linear combinations
of Xσ, which are called infinite divisors. The advantage of including infinite divisors is
that we can make S into a ‘compact’ object by the product formula.

11
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Definition 1.2.10. An Arakelov divisor on X is a formal sum Dfin + Dinf, where Dfin

is a Weil divisor on X and Dinf =
∑

σ:K→C
cσXσ is a formal linear combination of infinite

fibers Xσ over R. We write DivAr(X ) for the group generated by Arakelov divisors. We
write Dfin,σ for the divisor on Xσ induced by Dfin.

For a rational section f of OX , we define a principal divisor associated to it as

divAr(f) := div(f) +
∑

σ∈K(C)

vXσ
Xσ,

where div(f) is the divisor of f in the usual sense and vXσ
:= −

∫
Xσ

log|f |σµσ. We say
two Arakelov divisors D1 and D2 are linearly equivalent if D1 = divAr(f)+D2 for some
rational section f of OX . We denote

Ĉl(X ) := DivAr(X )/(principal divisors).

We now construct an intersection pairing (·, ·)Ar on Ĉl(X ) which does not depend on
the choice of representatives.

(1) For an infinite prime divisor σ and a prime divisor D (finite or infinite), we define
(σ,D)Ar := d (resp. 0) if D is horizontal (resp. vertical or infinite), where d is the
degree of D over the generic fiber.

(2) Let D1 be a prime vertical divisor and let D2 be a finite divisor. If D1 and D2 have
no common components, then we define

(D1, D2)Ar := (D1, D2)fin,

where (·, ·)fin is defined in Equation (1.3).

(3) Let D1 : Spec(OL1) → X and D2 : Spec(OL2) → X be distinct prime horizontal
divisors of X . Then D1,σ and D2,σ determine two sets of points {Pσ1,j}1≤j≤[L1:K]

and {Pσ2,k}1≤k≤[L2:K] on Xσ for each embedding σ : K → C. We define

(D1, D2)Ar := (D1, D2)fin +
∑

σ∈K(C)

∑
1≤j≤[L1:K]

∑
1≤k≤[L2:K]

−logGσ(Pσ1,j , Pσ2,k).

We still need to define the intersection pairing when two Arakelov divisors have
common finite components. The following theorem will be useful.

Theorem 1.2.11. Let X → Spec(OK) be an arithmetic surface. Let D be an Arakelov
divisor and let f be a rational function on X . If divAr(f) and D have no common finite
components, then (D,divAr(f))Ar = 0.

12
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Sketch of proof : We only need to prove that (divAr(f), D)Ar = 0 for any prime
Arakelov divisor D. This is trivial if D is an infinite divisor. When D is a finite divisor,
we assume D is not in the support of divAr(f).

When D is a prime vertical divisor, this follows from Theorem 3.1 in [44]. It remains
to prove this for a horizontal prime divisor. For simplicity, we only consider the case
D = ϵ(Spec(OK)) for some section ϵ : Spec(OK) → X .

The divisor D corresponds to a point Pσ for each σ : K → C. A rational section f of
OX gives a meromorphic function fσ on Xσ. Since fσ is meromorphic, we have

∂σ∂σlog(|fσ(x)|) = 0

outside div(fσ). Since deg(fσ) = 0, we have

∂Pσ
∂Pσ

logGσ(div(fσ), Pσ) = 0

by Property (2) in Definition 1.2.2. This means that there exists a real constant α such
that

G(div(f), Pσ) = eα · |f |(Pσ).

According to Property (3) in Definition 1.2.2, we obtain α = −
∫

Xσ
log|fσ|µσ. Now we

can compute

(D, (f))Ar = (D,div(f) +
∑

σ∈K(C)

vXσ
(f) · Xσ)Ar

= (D,div(f))Ar +
∑

σ∈K(C)

vXσ
(f)

= (D,div(f))fin −
∑

σ∈K(C)

log |fσ|(Pσ) −
∑

σ∈K(C)

vXσ
(f) +

∑
σ∈K(C)

vXσ
(f)

= (D,div(f))fin −
∑

σ∈K(C)

log |fσ|(Pσ)

= 0,

where (D,div(f))fin is defined in Remark 1.1.24 and the last step is due to the product
formula for number fields. QED

We return to the Arakelov intersection pairing. The Moving Lemma (Corollary 9.1.10
in [48]) says that for any two Arakelov divisors E and F , we can find a rational function
h on X such that Efin + div(h) and Ffin have no common components. We define

(E,F )Ar := (E + divAr(h), F )Ar.

13
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Theorem 1.2.11 implies that the intersection number is well-defined and (·, ·)Ar factors
through Arakelov principal divisors, that is:

(·, ·)Ar : Ĉl(X ) × Ĉl(X ) → R.

We next define a dualising object ω for Arakelov divisors. The finite divisors of ω
should correspond to the usual dualising sheaf on X , and thus it remains to figure out
the infinite part. Before that, we introduce P̂ic(X ).

Definition 1.2.12. Let X → Spec(OK) be an arithmetic surface. An admissible line
bundle on X is the datum of a line bundle L on X and an admissible metric ∥ · ∥σ on the
line bundle Lσ on Xσ for each σ : K → C. The set of isomorphism classes of admissible
line bundles on X has a natural group structure, and we denote it by P̂ic(X ).

Theorem 1.2.13. There is a canonical isomorphism of groups Ĉl(X ) ≃ P̂ic(X ).

Sketch of proof : See Proposition 2.2 in [1] for details. We only give a description
of the map. Let D = Dfin +

∑
σ
cσ · Xσ be an Arakelov divisor. Then Dfin gives a line

bundle O(Dfin) on X . For each σ : K → C, we associate the line bundle O(Dfin,σ) on Xσ
with the admissible metric e−cσ · ∥ · ∥O(Dfin,σ), where ∥ · ∥O(Dfin,σ) is the metric induced
from the Green’s function on Xσ. QED

Definition 1.2.14. The Arakelov dualising sheaf ω on X → Spec(OK) consists of the
following datum:

(1) the usual dualising sheaf ωX/S on X ,

(2) the Arakelov metric ∥ · ∥Ar,σ on ΩXσ
for each σ : K → C.

According to Theorem 1.2.13, this dualising sheaf corresponds to a unique element in
Ĉl(X ).

We end this subsection with stating the adjunction formula in Arakelov intersection
theory, although we do not really use it in this thesis.

Theorem 1.2.15. The divisor D given by a section Spec(OK) → X leads to the following
equality

−(D,D)Ar = (D,ω)Ar.

Proof. See Lemma 4.26 in [52].
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1.3 Faltings’ work
In [23], G. Faltings established

(1) the Faltings-Riemann-Roch theorem,

(2) the arithmetic Noether’s formula,

(3) the positivity of the relative dualizing sheaf ωX (Arakelov theoretic version),

(4) the Hodge index theorem (Arakelov theoretic version).

In this section, we give a brief review of these results except the last one. Subsection
1.3.1 is about the Faltings metric on the determinant of cohomology. Subsection 1.3.2 is
about the Faltings-Riemann-Roch theorem and its corollaries.

Corollary 1.3.11 will be used to decompose ⟨∆,∆⟩ in Subsection 3.3.1. The Faltings
δ invariant introduced in Theorem 1.3.9 will be computed in Section 4.8.

1.3.1 Determinant of cohomology and Faltings metric

Let V be a complex vector space of dimension d. We can define detV := ΛdV as the top
exterior power of V .

Example 1.3.1. Let C be a compact Riemann surface of genus g ≥ 1. For an arbitrary
line bundle L on X, we have a 1-dimensional vector space over C

λ(L) := detH0(C,L) ⊗
(
detH1(C,L)

)−1
.

By Serre duality, we have a canonical morphism(
detH1(C,L)

)−1 ≃ detH0(X,ΩC ⊗ L−1).

In the above construction, we start from a line bundle on a Riemann surface and end
with a 1-dimensional complex vector space. The following theorem is a generalization of
this construction. We refer to Section 5 in [53] for the definition of Rp∗F .

Theorem 1.3.2. More generally, let p : Y → T be a proper morphism of Noetherian
schemes. Then for each coherent sheaf F on Y , flat over T , we can associate a line bundle
detRp∗F on T , called the determinant of cohomology of F , that satisfies the following
properties.

(1) detRp∗F is functorial for isomorphisms of coherent sheaves on Y .

(2) detRp∗F commutes with base change.
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(3) If
0 → F ′ → F → F ′′ → 0

is an exact sequence of coherent sheaves on Y flat over T , then there is an isomor-
phism

detRp∗F
∼→ detRp∗F

′ ⊗ detRp∗F
′′

which is functorial with respect to base changes and isomorphisms of exact se-
quences.

(4) Let
E : 0 → E0 → E1 → · · · → En → 0

be a complex of vector bundles of finite rank which gives a quasi-isomorphism

E ∼→ Rp∗F.

Then we have a canonical isomorphism

detRp∗F
∼→

n
⊗
k=0

(detEk)(−1)k

,

which commutes with base changes. Here detEk is the top exterior power of the
vector bundle Ek.

(5) If T is connected and F is fixed, then the function χ : s → χ(Fs) is a constant
function on T . Let u be a global section of O∗

T . The multiplication by u on F

induces an automorphism det(u) : detRp∗F
∼→ detRp∗F according to (1), and we

have
det(u) = uχ.

(6) If M is a line bundle on T (assume connected again), then there is a canonical
isomorphism

detRp∗(F ⊗ p∗M) ∼→ (detRp∗F ) ⊗M⊗χ

Proof. See Section 1 in [50].

Remark 1.3.3. By (4) in the above theorem, if the higher pushforward sheaves Rip∗F

(i ≥ 0) are vector bundles, then there is a natural isomorphism

detRp∗F
∼→

n
⊗
i=1

(detRip∗F )(−1)i

.
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Let f : X → S be a semistable arithmetic surface. The dualising sheaf ω is coherent
(even a line bundle) and the higher pushforwards Rif∗(ω) are coherent. Since coherent
sheaves on regular Noetherian schemes have finite free resolutions, we can apply (3)
and (4) to construct detRf∗ω. The following theorem shows the relation between the
determinant of cohomology and the Deligne pairing in Theorem 1.1.21.

Proposition 1.3.4. Let p : X → S be an arithmetic surface with line bundles L and M
on X . We have a canonical isomorphism

⟨L,M⟩ ∼→ detRp∗(L⊗M) ⊗ (detRp∗L)−1 ⊗ (detRp∗M)−1 ⊗ detp∗ωX/S .

Proof. See Page 14 in [12].

A corollary of the proposition above is that we have a Riemann-Roch theorem for
arithmetic surfaces.

Corollary 1.3.5. Let p : X → S be an arithmetic surface with line bundles L and M

on X . We have a canonical isomorphism

(detRp∗L)⊗2 ∼→ ⟨L,L⊗ ω−1
X/S⟩ ⊗ (detp∗ωX/S)⊗2.

Proof. See Theorem 9.9 in [18].

Now we return to Riemann surfaces. Let f : X → Spec(C) be a compact Riemann
surface of genus g > 0. By Theorem 1.3.2, or the beginning of this subsection, we have a
complex vector space λ(L) := detRf∗(L) for any line bundle L on X. In [23], G. Faltings
defined a metric on λ(L) which is known as the Faltings metric.

Theorem 1.3.6. There exists, for every line bundle L on X together with an admissible
Hermitian metric on L, a Hermitian metric on λ(L), such that the following properties
hold:

(1) An isometric isomorphism of line bundles induces an isometry on these λ(·).

(2) If the metric on L is changed by a factor α > 0, the metric on λ(L) is changed by
multiplying αχ(L), where

χ(L) = dimH0(X,L) − dimH1(X,L) = deg(L) + 1 − g.

(3) For a divisor D on X and a point P ∈ X, O(D) and O(D − P ) have canonical
admissible metrics (constructed by Equation (1.7) and Equation (1.8)). We set
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O(D)[P ] with the metric given by the restriction of the metric on O(D) to the fibre
over P . The exact sequence

0 → O(D − P ) → O(D) → O(D)[P ] → 0

induces an isomorphism

λ(O(D)) ≃ λ(O(D − P )) ⊗C O(D)[P ]

which is also an isometry.

(4) The metrics on the λ(·) are unique up to a common scalar factor.

(5) If L = ΩX , the metric on λ(L) = detH0(X,ΩX) is induced from the inner product
in Equation (1.5).

Proof. See Theorem 1 in [23]. Points (3) and (4) make it possible for us to construct
this metric inductively. The symmetry property of the Green’s function guarantees that
the order of points we choose in our construction does not matter. Point (1) is the most
technical one. An alternative proof using Proposition 1.3.4 can be found on Page 15 of
[12].

1.3.2 Faltings-Riemann-Roch theorem

In this subsection, we assume p : X → S to be a semistable arithmetic surface with
S = Spec(OK) for some number field K.

If L is an admissible line bundle on X , then L⊗ω−1 is also an admissible line bundle.
According to Theorem 1.3.6, we can assign metrics to detRp∗L and detRp∗ω. There is
a unique metric on ⟨L,L⊗ω−1⟩ such that Corollary 1.3.5 is an isometry with respect to
these metrics. We have following Faltings-Riemann-Roch theorem.

Theorem 1.3.7. deg detRp∗L = 1
2 (L,L⊗ ω−1)Ar + deg detp∗ωX/S .

Proof. See Theorem 3 in [23].

Let B be a smooth curve over a field l. If p : Y → B is a semistable curve with
smooth generic fiber, then we have

12 · deg(detp∗ωY) = (ωY , ωY) + δ,

where δ is the number of singular points, counted according to the degree of their residue
field extensions and thicknesses. This is known as the classical Noether’s formula.
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Let ω be the universal dualising sheaf of the universal curve π : Cg → Mg (see Tag
0DMG for details). Over the complex points of Mg, we can assign Arakelov metric (using
the Arakelov-Green function) to ω fiberwise. Then we can assign a metric on ⟨ω, ω⟩ (see
Section 9 in [14]).

Remark 1.3.8. (More about the metric on ⟨ω, ω⟩) Let Z be a smooth complex variety
and let p : Y → Z be a smooth proper curve of genus g ≥ 1. For two metrized line
bundles L (with a non-zero rational section l) and M (with a non-zero rational section
m) on Y, we can construct a line bundle ⟨L,M⟩ (with a non-zero rational section ⟨l,m⟩)
on Z. All these constructions are similar to the technique in Theorem 1.1.21. Then we
can assign a metric on ⟨L,M⟩ given by

log∥⟨l,m⟩∥ = (log∥m∥)[divl] +
∫
p

log∥l∥c1(M)

Theorem/Definition 1.3.9. There exists an isomorphism of line bundles

µ : (detπ∗ω)⊗12 ∼→ ⟨ω, ω⟩ ⊗ OMg
(∆)

on Mg, which is unique up to a sign. The Faltings delta invariant is defined to be the
number δ(·) such that (2π)−4gexp(δ(·)) is the norm of the above isomorphism on Mg(C).

Proof. See Theorem 2.1 in [51].

Remark 1.3.10. In [23], G. Faltings gave an interpretation of the Faltings delta invari-
ant using the theta divisor Θ associated to the corresponding compact Riemann surface.
In [12], R. de Jong gave a more explicit method for numerically computing this invariant.
We will apply this method in Section 4.7.

The following corollary is known as the Noether’s formula for an arithmetic surface
over a ring of integers OK . Recall that δ(X) is the Faltings delta invariant for the
Riemann surface X, δ(Γ) is the total volume of the pm-graph Γ (see Definition 1.4.8 and
the discussion after Remark 1.4.14), and p : X → S is a semistable arithmetic surface.

Corollary 1.3.11. We write detp∗ω for the line bundle detp∗ω with the metric induced
from Equation (1.5). Then we have

12 deg detp∗ω = (ω, ω)Ar +
∑
s

δ(Γs)log(#k(s)) +
∑

σ∈K(C)

δ(Xσ) − 4g[K : Q]log(2π),

where the first (resp. second) sum goes through all closed points s ∈ Spec(OK) (resp.
complex embeddings of K) and δ(Xσ) is the Faltings delta invariant (Theorem 1.3.9).
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Proof. We first pull back the isomorphism in Theorem 1.3.9 along the classifying map
Spec(OK) → Mg. Then the assertion is proved by taking the degree of both sides in
Theorem 1.3.9.

At the end of this subsection, we state the non-negativity of the self-intersection of
the Arakelov dualising sheaf, although we will not use it in an essential way.

Theorem 1.3.12. Let D be an effective divisor on the semistable arithmetic surface
X → Spec(OK) of genus g. We have the following results:

(1) (ω, ω)Ar ≥ 0,

(2) (ω,D)Ar ≥ (ω,ω)Ar

4g(g−1) · deg(D).

Proof. See Theorem 5 in [23].

1.4 Dual graph
In Subsection 1.4.1, we introduce pm-graphs and some basic notions. In Subsection 1.4.2,
we discuss the Green’s function on a pm-graph and the admissible invariants introduced
by S. Zhang. In Subsection 1.4.3, we will introduce more invariants on pm-graphs and
use them to prove the second half of Proposition 1.4.33. More details can be found in
[69] and [70].

We will return to the explicit computation of admissible invariants in Section 3.1.
And we will compute the admissible invariants of our main curve C in Proposition 4.4.1.

All graphs are assumed to be finite.

1.4.1 Polarized metrized graph

Definition 1.4.1. A star-shaped set of valence n and radius ϵ is a metric space that is
isometric to

S(n, ϵ) = {z ∈ C : z = te
2πik

n for some 0 ≤ t < ϵ and k ∈ Z}.

Definition 1.4.2. A metrized graph Γ is a compact connected metric space that either
is a point or satisfies that for each point p of Γ there exists a neighbourhood Up that is
isometric to a star-shaped set of finite valence and radius ϵ > 0. The valence is well-
defined and we denote the valence of a point p by v(p).

We define the canonical divisor of Γ as

KΓ :=
∑
x∈Γ

(v(x) − 2)x. (1.9)
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The canonical divisor is well-defined since all but finitely many points on Γ have valence
2. Let V0 be the set containing exactly points p ∈ Γ such that v(p) ̸= 2. Since we only
consider compact metrized graphs, V0 is a finite set. A non-empty finite set V ′ ⊂ Γ
containing V0 is called a vertex set of Γ. For a vertex set V ′, the complement Γ\V ′ is a
union of finitely many connected components. Each component e◦ in Γ\V ′ is called an
edge associated to V ′ and is isometric to an open interval. The closure of each edge e◦

in Γ is a closed segment (we call it an ordinary edge) or a circle (we call it a self -loop),
denoted by e. We call e\e◦ the endpoints of e◦ in Γ. We can associate a unique positive
number l(e◦) to each edge e◦ such that e◦ is isometric to the interval (0, l(e0)). The real
number l(e◦) is called the weight of e◦. For simplicity, we sometimes also say e is an
edge of weight l(e◦).

Remark 1.4.3. Note that we require a vertex set to be non-empty, thus the empty set is
not a vertex set for a 1-loop graph (containing 1 loop only).

Example 1.4.4. The following is an illustration of metrized graphs with specified vertex
sets. We omit the weight information in the figure.

v1

v2 v1

v2v3

v4

v5 v6

Figure 1.4.1: Metrized graphs with specified vertex sets

We can interpret metrized graphs in a graph-theoretic way. Let G = (V,E) be an
undirected graph with the vertex set V and the edge set E. Let w : E → R>0 be a
function on E, then we call the pair (G,w) a weighted graph.

There is a natural way to construct a metrized graph Γ with a specified vertex set
from a connected weighted graph (G,w): V gives the specified vertex set (V = V ′)
and the vertices are connected by e ∈ E with length w(e). On the other hand, given a
metrized graph Γ with a specified vertex set V ′, we can construct a connected weighted
graph (G,w) by taking V to be V ′, taking elements in E to be the components in Γ\V
and taking the induced weights from Γ\V . Thus we have a correspondence

(Γ, V ′) ⇌ (G,w),

from the set of metrized graphs with specified vertex sets to the set of connected weighted
graphs.
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Definition 1.4.5. Let (G,w) be a connected weighted graph. The first Betti number
of (G,w) is defined to be b1(Γ) := #E − #V + 1.

Remark 1.4.6. According to the correspondence, we can define the first Betti number
on a metrized graph Γ with a specified vertex set V . It is easy to show that this number
only depends on the metric graph Γ.

Definition 1.4.7. Let the pair (Γ, V ) be a metrized graph with a specified vertex set.
A divisor D on (Γ, V ) is an element in ZV . We define the degree of D (denoted by
deg(D)) to be the sum of all its values.

Definition 1.4.8. Fixing a map q : V → Z for (Γ, V ), we define the canonical divisor
to be

Kq :=
∑
p∈V

(v(p) − 2 + 2q(p))p.

We call the pair Γ = (Γ, q) a polarized metrized graph (or a pm-graph) if q is non-
negative and the associated canonical divisor Kq is effective. The function q is called a
polarization of (Γ, V ).

Remark 1.4.9. (Important) Throughout this thesis, we deal with pm-graphs in a flexible
way. We can denote a pm-graph by Γ, (G,w, q), (Γ, q), (V,E,w, q) and so on since they
are equivalent. Notions can also be translated freely between graph-theoretic objects and
metrized objects, for example, the first Betti number we already defined, the genus of a
pm-graph which we will define and so on. Furthermore, notions can also be inherited, for
example, pm-graphs inherit the notion the first Betti number from metrized graphs.

Definition 1.4.10. Suppose Γ = (Γ, q) is a pm-graph, the genus of Γ is defined to be

g(Γ) := 1
2(degKq + 2) = b1(Γ) +

∑
v∈V

q(v),

where b1(Γ) is the first Betti number of Γ.

Let e be an edge in a pm-graph Γ = (Γ, q). We say it is of type 0 if we get a connected
graph after removing the interior points of e from Γ. For an integer i in [1, g(Γ)/2], we
say e is of type i if the removal of its interior points from Γ gives two disjoint pm-graphs
of genus i and g(Γ) − i. We write δi(Γ) for the total weight of edges of type i and write

δ(Γ) for the total weight of Γ. It follows from the definition that δ(Γ) =
⌊ g(Γ)

2 ⌋∑
i=0

δi(Γ).

Definition 1.4.11. Let Γ = (Γ, q) be a pm-graph. We say the vertex p is eliminable if
v(p) = 2 and q(p) = 0.
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Remark 1.4.12. If v is an eliminable vertex on Γ and is the endpoint of edges e1 and
e2, then we can get a new pm-graph by removing v from the vertex set and connecting
e1 and e2 into one edge e with the weight l(e1) + l(e2). We can also get new pm-graphs
by adding eliminable vertices in an opposite way. This gives an equivalence relation for
pm-graphs. Every pm-graph Γ of genus g ̸= 1 is equivalent to a unique pm-graph with no
eliminable points. The assumption g ̸= 1 excludes the case when Γ is a genus 1 self-loop.

Lemma 1.4.13. A pm-graph Γ has no eliminable edges if and only if every coefficient
v(p) − 2 + 2q(p) in the canonical divisor (Definition 1.4.8) is positive.

Proof. This follows from the definition.

Remark 1.4.14. Most invariants that we already defined or will define only depend on
the equivalence class of the pm-graph.

Let R be a discrete valuation ring. Let f : X → Spec(R) be a semistable curve of
genus g with smooth generic fiber. We can associate a pm-graph Γ = (V,E,w, q) to f :

(1) Vertices in V correspond to irreducible components of its geometric special fiber
Xs.

(2) Edges in E correspond to nodal points and the endpoints correspond to the inter-
secting irreducible components. The weight w(e) is the thickness of the nodal point
corresponding to e.

(3) q(v) is the geometric genus of the component corresponding to v.

The assumption that f is semistable guarantees that the canonical divisor Kq is effective,
thus this is a pm-graph. In general, we denote this graph by Γs and we call it the dual
graph of f . We say the dual graph is trivial if it is a one-point graph.

Remark 1.4.15. The arithmetic genus of the special fiber Xs is equal to g(Γs) (see the
discussion at the end of Section 2 in [13]). For the dual graphs of stable curves, the pm-
graphs have no eliminable vertices and every coefficient v(p) − 2 + 2q(p) in the canonical
divisor (Definition 1.4.8) is positive.

For a general semistable curve over a Dedekind scheme C → S with smooth generic
fiber, we have a dual graph for each closed point s ∈ S. Since we assume the curve to be
generically smooth, the geometric special fiber Cs̄ is non-smooth only for a 0-dimensional
closed subset of S, which is finite. This means that we have trivial dual graphs for all
but finitely many closed points in S.

Now we are going to introduce two operations on pm-graphs and metrized graphs
which are the edge contraction and the wedge sum.
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Let Γ = (E, V,w, q) be a pm-graph of genus g and e ∈ E. We define a new pm-graph
Γ{e} as follows:

(1) If e is a self-loop with endpoint v0, then we define

Γ{e} := (E\{e}, V, w|E\{e}, q
′).

Here, q′(v) is the same as q(v) except q′(v0) = q(v0) + 1.

(2) If e is an ordinary edge with endpoints v0 and v1, then we define

Γ{e} := (E\{e}, V ′, w|E\{e}, q
′). (1.10)

Here, V ′ is induced from V with v0 and v1 identified (denoted by v′), and q′(v) = q(v)
except q′(v′) = q(v1) + q(v2).

We call this pm-graph Γ{e} the contraction of Γ at e.
Let U = {e1, e2, ..., en} be a subset of E. We can get a new graph by taking the

contraction of ei one by one. The pm-graph we get in this way is denoted by ΓU . We
write ΓU for ΓE\{U}. The contraction operation does not change the genus g.

Lemma 1.4.16. ΓU is well-defined, that is, taking contraction for edges in U in different
orders gives the same pm-graph ΓU .

Proof. We just need to consider the case U = {e1, e2}, which is easy to prove case-by-
case.

Lemma 1.4.17. If Γ has no eliminable vertices, then neither do its contractions.

Proof. We only need to check the endpoint(s) of the contracting edge e. We use Lemma
1.4.13 as the criterion for a pm-graph without eliminable edges.

Contracting a self-loop will make the endpoint have positive polarization. If e is an
ordinary edge in Γ, we only need to consider the case when endpoints of e are polarized
by 0. The summation of their valences is at least 6, thus the point corresponding the
contraction has valence at least 4.

Definition 1.4.18. A graph G is said to be reducible if there exist non-trivial subgraphs
G1 and G2 of G such that G = G1 ∪ G2 and G1 ∩ G2 is a point. We say a graph is
irreducible if it is not reducible.

When G1, G2 are subgraphs of G such that G = G1 ∪ G2 and G1 ∩ G2 consists of
one point, we say that G is the wedge sum of G1 and G2 (represented by G = G1 ∨G2).
We define G1 ∨ ... ∨ Gn to be (G1 ∨ ... ∨ Gn−1) ∨ Gn. Every graph can be decomposed
into a wedge sum of irreducible subgraphs, and the decomposition is unique up to order.
These irreducible subgraphs are called irreducible components of G
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Example 1.4.19. In Figure 1.4.1, the first example is irreducible and the second one
can be decomposed as a wedge sum of line segments.

We end this subsection by introducing two important properties of functions on pm-
graphs. We will mainly focus on functions satisfying these two properties.

Definition 1.4.20. Let F be a real-valued function on the set of pm-graphs, and let
Γ = (E, V,w, q) be a pm-graph. For any e ∈ E and l > 0, we can associate a pm-
graph Γe,l by taking w(e) = l with other parts unchanged. We say that F satisfies the
contraction lemma on Γ if

F (Γ{e}) = lim
l→0

F (Γe,l)

holds for all e ∈ E. We say the function F satisfies the contraction lemma if F satisfies
the contraction lemma on every pm-graph.

It might look strange to introduce this property since all thicknesses of nodes of
semistable curves are integers. A function satisfying the contraction lemma can be easier
to compute. Let F ′ be a function on pm-graphs satisfying the contraction lemma. Let
Γ be a pm-graph and e be an edge of Γ. To compute F ′(Γ{e}), we only need to compute
a limit related to F ′(Γ). This is especially useful for genus 3 pm-graphs with only type
0 edges since we only have two maximal models in that case (Lemma 3.2.3).

Definition 1.4.21. Let F be a real-valued function on the set of pm-graphs, and let
Γ = (E, V,w, q) be a pm-graph. Let {Γi}1≤i≤k be the irreducible components of Γ with
induced polarizations from contractions. We say the function F is additive on Γ if

F (Γ) =
k∑
i=1

F (Γi)

holds. We say the function F is additive if F is additive on every pm-graph.

Example 1.4.22. It is easy to see that δi(·) (defined before Definition 1.4.11) is additive.

1.4.2 Green’s functions and admissible invariants of Γ

Let Γ be a metrized graph. Let PS(Γ) be the space of real-valued continuous and
piecewise smooth functions on Γ.

Remark 1.4.23. By a piecewise smooth function, we mean a function f on Γ that
there exists a finite subset of points Xf ⊂ Γ such that Γ\Xf is a disjoint union of open
intervals, and the restriction of f on each of these intervals is a smooth function.
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We write PS(Γ)∧ for the vector space of linear maps from PS(Γ) to R. For a point u
on Γ of valence n and f ∈ PS(Γ), the function f has n directional derivatives at u. We
define δf(u) ∈ PS(Γ)∧ by δf(u)(g) := g(u)

n∑
i=1

lim
xi→0

f ′
i⃗
(xi) for g ∈ PS(Γ), where f ′

i⃗
(·) is

the i-th outward directional derivative of f . It is easy to see that δf(u) is zero for all
but finitely many u, thus δf :=

∑
u∈Γ

δf(u) is a well-defined element in PS(Γ)∧.

For f ∈ PS(Γ) and x ∈ Γ of valence 2, we define f ′′(x) as the second derivative of f
at x in an arbitrary direction. The metric on Γ induces a uniform measure on Γ which
we denote by µu (on each segment in Γ, the measure µu coincides with the Lebesgue
measure). Then we can define the Laplacian on Γ as follows.

Remark 1.4.24. f ′′ is well-defined at all but finitely many points on Γ. Assume f is
smooth in a neighbourhood of x0, we have two orientations for taking derivatives, denoted
by f ′

+(x0) and f ′
−(x0). We have f ′

+(x0) = −f ′
−(x0) and f ′′

+(x0) = (−1)2·f ′′
−(x0) = f ′′

−(x0),
thus the second derivatives are well-defined at all but finitely many points on Γ.

Definition 1.4.25. The Laplacian ∆ on a metrized graph Γ is defined as the linear map
from PS(Γ) to PS(Γ)∧ such that

∆f(g) = −
∫

Γ
f ′′gdµu − δf(g)

for all g ∈ PS(Γ).

Lemma 1.4.26. Let Γ be a metrized graph. There is a unique continuous, symmetric,
and piecewise smooth function g(x, y) on Γ × Γ satisfying:

∆yg(x, y) = δx − µu
δ(Γ) ,∫

Γ
g(x, y)dµu(y) = 0,

for all x ∈ Γ, where δx is the Dirac measure at x.

Proof. See Appendix in [70].

This function is called the Green′s function on Γ associated to µu. Now, for a general
measure µ on Γ with volume 1, we define:

gµ(x, y) := g(x, y)−
∫

Γ
g(x, y)dµ(y)−

∫
Γ
g(x, y)dµ(x)+

∫∫
Γ×Γ

g(x, y)dµ(x)dµ(y). (1.11)

Then gµ(x, y) is the unique function on G satisfying the following conditions:

∆yG(x, y) = δx − µ,∫
Γ
G(x, y)dµ(y) = 0.
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Definition 1.4.27. This function gµ(x, y) is called the Green′s function on Γ associated
to µ.

Remark 1.4.28. If we consider Γ as an electrical circuit such that the resistance is
locally induced from the distance, then gδp

(q, q) is equal to the electrical resistance r(p, q)
between p and q (Page 179 in [70]).

Lemma 1.4.29. On a metrized graph Γ, we have r(p, q) = gν(q, q) − 2gν(q, p) + gν(p, p),
where ν is any measure on Γ of volume 1.

Proof. It is easy to check the following linear dependence

gδp
(x, y) = gν(x, y) − gν(x, p) − gν(p, y) + gν(p, p).

By the remark above and the symmetry property of the Green’s function, we prove the
lemma by taking x = y = q.

Theorem 1.4.30. Let D =
n∑
i=1

ci · xi be a divisor on Γ with deg(D) ̸= 2. Then there is

a unique measure µD on Γ of volume 1 and a unique constant c such that the following
equality holds for any point x on Γ:

c+ gµD
(D,x) + gµD

(x, x) = 0, (1.12)

where gµD
(D,x) :=

n∑
i=1

cigµD
(xi, x).

Proof. See Theorem 3.2 in [70].

Remark 1.4.31. The theorem above is only part of Theorem 3.2 in [70], and the re-
maining part of that theorem says that µD is positive if D−KΓ is effective, where KΓ is
defined in Equation (1.9).

The function gµD
(x, y) is called the admissible Green function of (Γ, D) and µD is

called the admissible measure of (Γ, D). Recall the definition of Kq in Definition 1.4.8.
For a pm-graph Γ = (G,w, q), we denote by µad the measure µKq

and by gad(x, y) the
Green’s function gKq

(x, y). We are interested in the following three admissible invariants
(see Section 4.1 in [69] for details):

φ(Γ) := −1
4δ(Γ) + 1

4

∫
Γ
gad(x, x)((10g(Γ) + 2)dµad(x) − δKq

(x)), (1.13)

ϵ(Γ) :=
∫

Γ
gad(x, x)((2g(Γ) − 2)dµad(x) + δKq

(x)), (1.14)

λ(Γ) := g(Γ) − 1
6(2g(Γ) + 1)

φ(Γ) + 1
12(ϵ(Γ) + δ(Γ)). (1.15)
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By integrating with respect to the second variable in Lemma 1.4.29, we have

gad(x, x) =
∫

Γ
r(x, y)µad(y) − 1

2

∫
Γ
r(x, y)dµad(x)dµad(y).

Substituting the equation above to Equation (1.14), we get

ϵ(Γ) =
∫

Γ×Γ
r(x, y)δKq

(x)dµad(y). (1.16)

We can get similar expression of φ by r, δKq
and µad. In Section 3.1, we will use a more

explicit way to compute these invariants for pm-graphs of genus 3.

Remark 1.4.32. Many notions (including the Green function on metrized graphs we
just defined) introduced in this subsection are motivated by and similar to the notions
in Arakelov theory. The Green’s function on a metrized graph is an analogue of the
Arakelov-Green function on Riemann surfaces and so does these admissible invariants.
In [70], S. Zhang used these invariants on metrized graphs to establish the admissible
pairing theory.

Proposition 1.4.33. All the three invariants above satisfy the contraction lemma (Def-
inition 1.4.20) and are additive (Definition 1.4.21) for pm-graphs of genus g > 1.

Proof. For additivity, see Theorem 4.3.2 in [69]. For the contraction lemma, K. Yamaki
proved the case of g(Γ) = 3 in [66] Proposition 3.1. In Subsection 1.4.3, we will give a
proof of general pm-graphs of genus g > 1, based on the work of Z. Cinkir, R. de Jong
and F. Shokrieh.

The following property was conjectured by S. Zhang in [69], and proved by Z. Cinkir
(S. Zhang only conjectured the existence of the constant c(g)).

Theorem 1.4.34. Let Γ be a pm-graph with genus g > 1. Then we have

φ(Γ) ≥ c(g)δ0(Γ) +
⌊ g

2 ⌋∑
i=1

2i(g − i)
g

δi(Γ)

where c(2) = 1
27 and c(g) = (g−1)2

2g(7g+5) for g ≥ 3. In particular, c(3) = 1
39 .

Proof. See Theorem 2.11 in [8].

Corollary 1.4.35. Let Γ be a pm-graph of genus g > 1. Then we have φ(Γ) ≥ c(g)δ(Γ),
where c(2) = 1

27 and c(g) = (g−1)2

2g(7g+5) for g ≥ 3.

Proof. If i is an integer in [1, ⌊ g2 ⌋], then 2i(g−i)
g ≥ 1 and c(g) ≤ 1. By Theorem 1.4.34,

we get φ(Γ) ≥ c(g)δ(Γ).

28



1. ARITHMETIC SURFACES AND INTERSECTION THEORY

Corollary 1.4.36. For any ϵ > 0, there exists an integer gϵ such that φ(Γ) ≥ ( 1
14 −ϵ)δ(Γ)

for all pm-graphs Γ with g(Γ) > max{gϵ, 1}.

Proof. This follows from the corollary above.

1.4.3 Other invariants

When the genus g is fixed, there are only finitely many types of pm-graphs without
eliminable edges of genus g, and these can be computed combinatorically. We still write
Γ (resp. Γ) for a metrized graph (resp. pm-graph).

For metrized graphs, M. Baker and R. Rumely defined the τ(·) invariant (Section 14 in
[4]) which has the following elementary interpretation by the electrical resistance function
(Lemma 14.4 in [4]). We will use this interpretation to compute the τ(·) invariant.

Definition 1.4.37. Let r(x, y) be the resistance function on a metrized graph Γ (Remark
1.4.28). For any point y in Γ, we have

τ(Γ) = 1
4

∫
Γ
(rx(x, y))2dx,

where rx is the partial derivative of r with respect to the first variable x.

Remark 1.4.38. The τ invariant is defined on metrized graphs, and thus we can extend
it to pm-graphs. S. Zhang also defined a τ invariant on metrized graphs (Equation 4.1.2
in [69]), but that is different from our τ here.

In [8], Z. Cinkir defined the following invariant of a pm-graph Γ = (V,E,w, q):

θ(Γ) =
∑
p,q∈V

(v(p) − 2 + 2q(p))(v(q) − 2 + 2q(q))r(p, q). (1.17)

By Definition 1.4.8, all terms in θ(Γ) are non-negative, thus we have θ(Γ) ≥ 0.
The reason we introduce τ(Γ) and θ(Γ) is that Zhang’s admissible invariants can be

written as linear combinations of δ(Γ), θ(Γ) and τ(Γ).

Theorem 1.4.39. Let Γ be a pm-graph of genus g > 1. Then we have

ϵ(Γ) = (4g − 4)τ(Γ)
g

+ θ(Γ)
2g ,

φ(Γ) = (5g − 2)τ(Γ)
g

+ θ(Γ)
4g − δ(Γ)

4 ,

λ(Γ) = (3g − 3)τ(Γ)
4g + 2 + θ(Γ)

16g + 8 + (g + 1)δ(Γ)
16g + 8 .
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Proof. See Propositions 4.6, 4.9 and Theorem 4.8 in [8].

Corollary 1.4.40. If pm-graphs Γ1 and Γ2 are equivalent (Remark 1.4.12), then all the
six invariants are the same for the two pm-graphs.

Proof. δ(Γ1) = δ(Γ2) is trivial. From the definition of the θ invariant (Equation (1.17)),
we find v(p) − 2 + 2q(p) = 0 when p is eliminable, thus θ(Γ1) = θ(Γ2). Since the τ

invariant is defined on metrized graphs, the polarization will not make any difference.
By Theorem 1.4.39, Zhang’s invariants are determined by θ(Γ), τ(Γ) and δ(Γ), which

completes the proof.

Remark 1.4.41. The transformation matrix in Theorem 1.4.39 is invertible. Thus
computing φ(Γ), λ(Γ) and ϵ(Γ) is equivalent to computing θ(Γ), τ(Γ) and δ(Γ). As a
corollary, the additivity of Zhang’s admissible invariants is equivalent to the additivity of
θ(Γ), τ(Γ) and δ(Γ).

In the two lemmas below, we make the following assumptions. Let Γ be an irreducible
electrical circuit (weighted graph). We assume that e is an ordinary edge (an edge that
is not a self-loop) on Γ, and that it has endpoints p and q. Let Γ′ be the contraction
(Equation (1.10)) of Γ at e and let Γ − e be the graph given by removing the interior
points of e in Γ. We write l(e) for the length of e and write upq for the point given by
the contraction of e. We denote the electrical resistance between points x and y on Γ by
r(x, y; Γ).

Lemma 1.4.42. If Γ − e is connected, we have

τ(Γ′) − τ(Γ) = − l(e)
12 +Ap,q,Γ−e ·

(
1
R

− 1
l(e) +R

)
,

where R = r(p, q; Γ − e), and Ap,q,Γ−e only depends on p, q and Γ − e.

Proof. This is a direct result of Corollary 5.3 and Lemma 6.1 in [7].

Lemma 1.4.43. Let x and y be two points on Γ but not in the interior of e. Then we
have

r(x, y; Γ′) = r(x, y; Γ) − c(x, y, p, q; Γ),

where c(x, y, p, q; Γ) → 0 as l(e) → 0.

Proof. See Corollary 8.5 in [17].

We can now give a proof of the second half of Proposition 1.4.33 with the two lemmas
above.
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Proof of Proposition 1.4.33: By Theorem 1.4.39 and Remark 1.4.41, we only
need to prove that θ, δ and τ satisfy the contraction lemma for irreducible graphs (Defi-
nition 1.4.18).

When Γ has only 1 edge, the assertion is trivial. Thus we assume that Γ is an
irreducible pm-graph containing more than 1 edge. Let e be an edge on Γ. By the
irreducibility of Γ, the weighted graph Γ − e is connected and e cannot be a self-loop.
Thus we assume that e has endpoints p and q. It remains to show that the three invariants
θ, τ and δ satisfy the contraction lemma for the edge e.

It is easy to see that δ satisfies the contraction lemma, since δ is just the sum of all
lengths of the edges. Lemma 1.4.42 implies that τ also satisfies the contraction lemma.
Thus we only need to check θ.

When x and y are vertices on Γ but not the endpoints of e, the contraction does not
change the polarization of x and y, and r(x, y; Γ) → r(x, y; Γ′) as l(e) → 0 by Lemma
1.4.43. When x = p and y = q, we have r(x, y; Γ) → 0 = r(upq, upq; Γ′) as l(e) → 0.
When x = y = p or x = y = q, the claim is trivial. It remains to consider the case x = p

but y ̸= p or q.
When x = p but y ̸= p or q, we still have r(s, y; Γ) → r(upq, y; Γ) as l(e) → 0 for

s ∈ {p, q} by Lemma 1.4.43. We also have∑
s∈{p,q}

(v(s) − 2 + 2q(s)) = v′(upq) − 2 + 2q(upq)

by the construction of the contraction in Equation (1.10), where v′ (q) is the valence
(polarization) function on Γ′. Now we can say that∑

s∈{p,q}

(v(s) − 2 + 2q(s))(v(y) − 2 + 2q(y))r(s, y; Γ)

converges to

(v′(upq) − 2 + 2q′(upq))(v′(y) − 2 + 2q′(y))r(upq, y; Γ′)

as l(e) → 0. Thus the contraction lemma holds for θ. QED

Remark 1.4.44. Theorem 1.4.39 and Remark 1.4.41 reduce the computation of Zhang’s
admissible invariants on pm-graphs to the computation of θ(Γ), τ(Γ) and δ(Γ) on irre-
ducible pm-graphs. This decomposition simplifies the computation even more, since δ(Γ)
and θ(Γ) are finite sums and τ(Γ) is an integration of the derivative of r against the
natural measure (compared with Zhang’s admissible measure).
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1.5 Zhang’s work
Subsection 1.5.1 is a rather sketchy description about the admissible pairing. Subsec-
tion 1.5.2 is about the decomposition and the Northcott property of ⟨∆,∆⟩. The main
references for this section are [69] and [70].

Theorem 1.5.3 makes it possible to compute (ω̂, ω̂)ad. The whole of Chapter 4 is
devoted to the computation of ⟨∆,∆⟩ for a specific curve CQ by Theorem 1.5.6. The goal
of Sections 4.5-4.7 is numerically computing the λ invariant defined in Equation (1.18).

1.5.1 Admissible pairing

Let B be either a smooth curve over a field or the spectrum of a ring of a number field.
Let k be the fraction field of B. Let X be a smooth curve over k. Let X be an arithmetic
surface over B whose generic fiber is isomorphic to X over k. We write M(k) (resp.
M(k)0, resp. M(k)∞) for the set of places (resp. finite places, resp. infinite places) of k.

For a finite place v of k, we write N(v) for edeg(v) when B is a curve, for #k(v) (the
cardinality of the residue field of B at v) when B = SpecOk. We also write N(v) for e
(resp. e2) when v is a real (resp. complex) infinite place of k.

Remark 1.5.1. A complex infinite place is a pair of conjugate complex embeddings.

When B is a curve, we have a dualising sheaf ω on X that gives an adjunction formula
in the usual intersection theory. When B = SpecOk, by assigning admissible metrics to
the Archimedean places, there is an Arakelov dualising sheaf ω that gives an adjunction
formula (Theorem 1.2.15). G. Faltings proved a Hodge index theorem (Theorem 4 in
[23]) for Arakelov intersection theory.

Inspired by the above results, S. Zhang established the admissible intersection theory
(·, ·)ad for smooth curves over a global field in [70]. This intersection theory is done by
extending usual divisors on X to pairs (D,G), where D is a usual divisor on X (a model
of X) and G includes the Arakelov-Green function and the Green’s function on the dual
graphs. In this intersection theory, there is a Hodge index theorem and a dualising sheaf
ω̂ which gives an adjunction formula.

Remark 1.5.2. We do not give the expression of ω̂ in this thesis. Instead, we use
Theorem 1.5.3 to decompose it into the objects that we are more familiar with.

At Archimedean places, this adelic Green’s function contains information from the
Arakelov-Green function, and at non-Archimedean places, this adelic Green’s function
contains information from the Green’s function on the dual graphs we discussed in Section
1.4. Thus it makes sense to compare admissible intersection theory with two other
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intersection theories. The following theorem will be used repeatedly throughout this
thesis (recall the definition of ϵ(·) in Equation (1.14)).

Theorem 1.5.3. We have the following equalities

(ω̂, ω̂)ad = (ω, ω) −
∑

v∈M(l)0

ϵ(Γv)log(N(v)),

where (ω, ω) is the self-intersection of the Arakelov dualising sheaf when k is a number
field and is the self-intersection of the usual dualising sheaf when k is a function field.

Proof. See Theorem 5.5 in [70].

Corollary 1.5.4. (ω̂, ω̂)ad ≤ (ω, ω).

Proof. This comes from the fact that ϵ(Γ) ≥ 0, which is proven in Theorem 4.4 in [70].
Alternatively, we can also get this from Theorem 1.4.39.

1.5.2 Gross-Schoen cycle

Let X be a smooth curve over a field k. Let α =
t∑
i=1

aipi be a divisor on X over k with

rational coefficients and degree
t∑
i=1

ai deg pi = 1. We define cycles of X3 associated to α
as follows:

∆123 : = {(x, x, x) : x ∈ X},

∆12 : =
t∑
i=1

ai{(x, x, pi) : x ∈ X},

∆23 : =
t∑
i=1

ai{(pi, x, x) : x ∈ X},

∆31 : =
t∑
i=1

ai{(x, pi, x) : x ∈ X},

∆1 : =
t∑
i=1

t∑
j=1

aiaj{(x, pi, pj) : x ∈ X},

∆2 : =
t∑
i=1

t∑
j=1

aiaj{(pi, x, pj) : x ∈ X},

∆3 : =
t∑
i=1

t∑
j=1

aiaj{(pi, pj , x) : x ∈ X}.
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In [30], B. Gross and C. Schoen constructed an element ∆α ∈ CH2(X3)Q associated
to α as

∆α = ∆123 − ∆12 − ∆23 − ∆31 + ∆1 + ∆2 + ∆3 ∈ CH2(X3)Q.

They also proved that this cycle is homologous to 0 (Proposition 3.1 in [30]) and
is rationally equivalent to 0 if X is rational, or elliptic, or hyperelliptic and α is a
Weierstrass point (Section 4 in [30]). Thus it is natural to ask whether ∆α ̸= 0 when X

is non-hyperelliptic.
Now we assume that the base field k is a number field or the function field of a smooth

curve over a field. B. Gross and C. Schoen defined a canonical height ⟨∆α,∆α⟩ for ∆α,
which is actually a special case of the Beilinson-Bloch height.

Remark 1.5.5. For our goal, we will use the first formula in Theorem 1.5.6 as the
expression of ⟨∆α,∆α⟩.

From now, we assume g ≥ 2. Let xα be the divisor α − KX/(2g − 2) in Pic0(X)Q,
where KX is the canonical divisor of X. Then we have the following theorem by S.
Zhang.

Theorem 1.5.6. Let X be a smooth curve of genus g > 1 over a field k which is either
a number field or the function field of a smooth curve over a field. Assume that X has a
semistable model X over k. Then

⟨∆α,∆α⟩ = 2g + 1
2g − 2(ω̂, ω̂)ad + 6(g − 1)⟨xα, xα⟩ −

∑
v∈M(k)

φ(Xv)log(N(v)).

Here ⟨xα, xα⟩ is the Néron-Tate height of the class α − KX/(2g − 2) in Pic0(X)Q, and
the φ(Xv) are defined as follows.

(1) If v is an Archimedean place, then

φ(Xv) :=
∑
l∈N

1≤m,n≤g

2
λl

∣∣∣∣∫
Xv

ϕlωm(x)ωn(x)
∣∣∣∣2

where the ϕl are the normalized real eigenforms of the Arakelov Laplacian:

∂∂

πi
ϕl = λl · ϕl · dµv,

∫
ϕkϕldµ = δk,l,

and {ωi}1≤i≤g is an orthonormal basis of H0(Xv,ΩXv ) with respect to the inner
product in Equation (1.5). The eigenvalues λl are non-negative (see Section 3 in
[13]).
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(2) If v is a non-Archimedean place, then φ(Xv) := φ(Γv) which we defined in Equation
(1.13).

Proof. See Theorem 1.3.1 in [69].

Remark 1.5.7. The invariant φ at an Archimedean place is known as the Zhang-
Kawazumi invariant. Let δ(C) be the Faltings delta invariant of the compact Riemann
surface C (Theorem 1.3.9) and δ′(C) := δ(C) − 4glog(2π), then we define

λ(C) := g − 1
6(2g + 1)φ(C) + 1

12δ
′(C), (1.18)

where the definition of φ(C) can be found in Theorem 1.5.6.

After replacing k by a sufficiently large extension, we can assume (2g− 2)ξ = KX for
some ξ ∈ Pic(X). The height ⟨∆α,∆α⟩ reaches its minimal value precisely when α and
ξ are equal up to a torsion divisor (according to the non-negativity of the Néron-Tate
height). The cycle ∆ξ is known as a canonical Gross-Schoen cycle of X. The image
of ∆ξ in CH2(X3)Q does not depend on the choice of ξ, thus the number ⟨∆ξ,∆ξ⟩ is
well-defined.

Corollary 1.5.8. When k is the function field of a smooth curve B, we can rewrite
⟨∆ξ,∆ξ⟩ in the following way

⟨∆ξ,∆ξ⟩ = 2g + 1
2g − 2

(ωX/B , ωX/B) −
∑

s∈M(k)0

ψ(Γs)logN(s)

 , (1.19)

where s runs over all closed points of B and ψ is defined to be

ψ(Γ) := ϵ(Γ) + 2g − 2
2g + 1φ(Γ). (1.20)

Proof. This comes from Theorem 1.5.3 and Theorem 1.5.6.

When k is a function field of characteristic 0, the height ⟨∆ξ,∆ξ⟩ is non-negative by
the Hodge index theorem. When k is a number field or a function field with positive
characteristic, we have the following conjecture (Conjecture 1.4.1 in [69]).

Conjecture 1.5.9. Let k be a number field or a function field with positive characteristic,
then

⟨∆ξ,∆ξ⟩ ≥ 0

with equality if and only if ∆ξ is rationally equivalent to 0.
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B. Gross and C. Schoen’s work shows that the height vanishes when the curve is of
genus 0, 1 or hyperelliptic (including genus 2). This thesis is mainly about the height
for genus 3 curves. Is it unbounded (Theorem 1.5.17, Section 3.3), can it be explicitly
computed (Chapter 4)?

Remark 1.5.10. In [69], S. Zhang asked when will the height be zero. The height of a
canonical Gross-Schoen cycle on a hyperelliptic curve vanishes (Proposition 4.8 in [30]).
In Section 3.2, we explain a result of K. Yamaki which partially answers the converse of
this problem for genus 3 curves.

Now we shift our attention to the finiteness property of ⟨∆ξ,∆ξ⟩. For a variety T over
a field k and a geometric point t : Spec(k) → T , there exists a minimal finite extension
k0 of k such that t factors through Spec(k) → Spec(k0). The integer deg(t) := [k0 : k] is
well-defined, and we have the following theorem by S. Zhang.

Theorem 1.5.11. Let Y → T be a smooth and projective family of curves of genus g ≥ 3
over a projective variety T over a number field k, or the function field of a curve over a
finite field. If the classifying map T → Mg from T to the coarse moduli space of genus
g smooth curves over k is finite, then we have a Northcott property: for any positive
numbers D and H,

#
{
t ∈ T (k) : deg(t) ≤ D,

⟨∆ξ(Yt),∆ξ(Yt)⟩
deg(t) ≤ H

}
< ∞. (1.21)

Proof. See Theorem 1.3.5 in [69].

Remark 1.5.12. In the theorem above, we use a different convention from that of S.
Zhang. In Theorem 1.3.5 in [69], Zhang denoted ⟨∆ξ(Yt),∆ξ(Yt)⟩

deg(t) simply by ⟨∆ξ(Yt),∆ξ(Yt)⟩.

Remark 1.5.13. For a stable curve q : X → S of genus g ≥ 2 where S is either a
smooth curve over a field or the spectrum of a number ring, there is a height associated
to the Ceresa cycle c(X/S). We have the following relation between the two heights

c(X/S) = 2
3 ⟨∆ξ,∆ξ⟩. (1.22)

See Theorem 1.5.6 in [69] for more details.

In the remaining part of this subsection, we prove the unboundedness of the height
⟨∆ξ,∆ξ⟩ for genus g ≥ 3 curves over number fields.

Lemma 1.5.14. If g > 2, then there exists a finite morphism of schemes C → Mg,
where C is a smooth curve defined over k.
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Proof. We denote the coarse moduli space of principally polarized Abelian varieties by
Ag. The Torelli map Mg → Ag is an immersion (Corollary 1.5 and the remark after it
in [56]). We get a projective compactification M̃g for Mg in the Satake compactification
Ascg of Ag by taking the closure of its image. The boundary M̃g\Mg has codimension
≥ 2, since Astg = Ag ⊔Ag−1 · · ·A1 ⊔A0 and dim(Am) = m(m+1)

2 .
We can then get an irreducible curve T in Mg by cutting out sufficiently many hy-

persurfaces in general position (we might need to choose an irreducible component). The
induced morphism T → Mg is a closed immersion by the construction, thus it is also
finite. We write C → T for the normalization of T . Then we have a finite morphism
C → Mg since it is the composition of finite morphisms C → T and T → Mg.

Remark 1.5.15. The Satake compactification and the Torelli map can be defined over
k (even over Spec(Z)). See Page 179 in [10] and Page 150 in [24] for details. Explicit
curves on Mg for g > 2 can be found in [28] and [68].

Lemma 1.5.16. Let Z be an irreducible smooth projective variety of positive dimension
defined over a number field k. There exists a sufficiently large integer d such that there
are infinitely many closed points on Z whose degree is less than d.

Proof. We first fix a closed embedding Z → Pnk . By Bertini’s theorem, we can find
dim(Z) − 1 hyperplanes in Pnk whose intersection with Z is a 1-dimensional smooth
projective variety. We choose one irreducible component if there are more than one.
Thus, we just need to prove the lemma when is Z a smooth curve.

Every non-zero rational function f on Z gives a morphism Z → P1
k. We denote the

degree of this morphism by df . The fiber of every k-point in P1
k is an effective divisor

of Z of degree df , thus every closed point in the divisor is of degree not bigger than
df . Since there are infinitely many k-points in P1

k, we can obtain infinitely many closed
points on Z whose degree is not bigger than df .

Theorem 1.5.17. Let g ≥ 3 be an integer. There exists an integer Dg and a family of
genus g smooth curves {Ej}j∈N+ defined over Q such that

(1) For all j ∈ N+, the curve Ej has semistable model over a number field kj such that
[kj : Q] ≤ Dg,

(2) the normalized height of the canonical Gross-Schoen cycle on Ej, which is defined
as ⟨∆j ,∆j⟩

[kj :Q] , goes to infinity.

Proof. We can obtain a finite morphism C → Mg by Lemma 1.5.14, where C is a smooth
curve over k. According to Lemma 1.5.16, there exists an integer Dg such that there
are infinitely many points on C whose degree is smaller than Dg. Now we can prove the
assertion by applying the Northcott property in Theorem 1.5.11.
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So far, we know that ⟨∆ξ,∆ξ⟩ can be 0 and can be arbitrarily large. Nobody has yet
numerically computed ⟨∆ξ,∆ξ⟩ for a non-hyperelliptic curve of genus g ≥ 3. In Chapter
4, we will numerically compute ⟨∆ξ,∆ξ⟩ for a specific plane quartic curve over Q.

For simplicity, we will mainly use ⟨∆,∆⟩ to denote the height of a canonical Gross-
Schoen cycle from now on.
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Chapter 2

Arithmetic and geometric properties of genus
3 curves

In this chapter, we study geometric and arithmetic properties of genus 3 curves. In
Section 2.1, we recall general notions and results. In Section 2.2, we discuss properties of
χ′

18, including C. Ritzenthaler’s work on Klein’s formula. We will freely use the moduli
language.

2.1 General background
In Subsection 2.1.1, we explain the classification of stable curves of genus 3. In Subsection
2.1.2, we explain the relation between various kinds of modular forms and state the Torelli
theorem. In Subsection 2.1.3, we recall some notions in invariant theory. In Subsection
2.1.4, we introduce bitangents of plane quartic curves, and explain their relation with
semicanonical divisors and theta characteristics.

The modular form χh defined in Equation (2.3) will play an important role in Section
2.2 and Section 3.3. Corollary 2.1.20 will be used to evaluate ∥θ∥g−1 in Section 4.5.

2.1.1 Classification and moduli

We begin with a simple classification of smooth curves of genus 3 over an algebraically
closed field. Most statements in this subsection can be found in [19].

Proposition 2.1.1. Let k be an algebraically closed field. A non-hyperelliptic smooth
curve of genus 3 over k always has a plane quartic model in the projective plane P2.

Proof. See Page 519 in [63].

39



2. ARITHMETIC AND GEOMETRIC PROPERTIES OF GENUS 3 CURVES

We have the following models representing smooth genus 3 curves over an algebraically
closed field k. When char k ̸= 2, hyperelliptic curves of genus 3 have the following affine
model

C : y2 =
7∏
i=1

(x− ci), where ci ∈ k

while when char k = 2 (Theorem 7.4.24 in [48]), they have the following affine model

C : y2 + f(x)y = g(x)

with
7 ≤ max{2 deg f(x),deg g(x)} ≤ 8.

Plane quartic curves over k can be expressed as∑
l+m+n=4

clmnX
lY mZn = 0,

where clmn ∈ k.

Example 2.1.2. (Klein quartic) The plane curve defined by X3Y + Y 3Z + Z3X = 0 is
called the Klein quartic curve. As a compact Riemann surface, it has 168 automorphisms.
As a curve over Z, it has potentially good reduction at 7 (Page 81 in [20]).

We write M3 (resp. M3) for the moduli stack (resp. coarse moduli space) of smooth
genus 3 curves. Similarly, we write M3 (resp. M3) for the moduli stack (resp. coarse
moduli space) of stable curves of genus 3.

According to Theorem 3.19 and Theorem 5.1 in [58], we have the following results.
The moduli space M3 is an algebraic stack over Spec(Z) of relative dimension 6, which
contains M3 as an open substack.

Singular curves of genus 3 make up a divisor ∆ in M3, which can be decomposed as

∆ = ∆0 ∪ ∆1,

where ∆0 denotes the closure of the irreducible singular curves of geometric genus 2 with
exactly one nodal point, and ∆1 denotes the closure of reducible curves with exactly
two components of genus 1 and 2. Both ∆0 and ∆1 are prime divisors of M3. General
statements for higher genus g can be found in Page 411 in [23].

The hyperelliptic locus H in M3 is an irreducible algebraic stack of codimension 1
(Theorem 2.1 in [26]). Let H be the closure of H in M3.
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2.1.2 Modular forms and the Torelli theorem

The main references for this subsection are [13] and [43]. We assume the integer g ≥ 3
in this subsection.

Let Ag be the moduli stack of principally polarized abelian schemes of relative di-
mension g and denote by p : Ug → Ag the universal abelian variety. Let ΩUg/Ag

denote
the sheaf of relative 1-forms of p. Then we get a rank g vector bundle E = p∗ΩUg/Ag

(known as the Hodge bundle), and its determinant L = det p∗ΩUg/Ag
on Ag.

Definition 2.1.3. An algebraic Siegel modular form of genus g and weight h ∈ Z>0 over
a commutative ring R is an element of the R-module

Sg,h(R) = Γ(Ag ⊗R,L⊗h).

Let π : Cg → Mg be the universal smooth curve of genus g. We have a vector bundle
Eπ = π∗ωCg/Mg

and an invertible bundle Lπ = detπ∗ωCg/Mg
on Mg associated to π.

Definition 2.1.4. A Teichmüller modular form of genus g and weight h over R is an
element of the R-module

Tg,h(R) = Γ(Mg ⊗R,L⊗h
π ).

For a ring homomorphism R1 → R2, elements in Sg,h(R1) (resp. Tg,h(R1)) can
be mapped to elements in Sg,h(R2) (resp. Tg,h(R2)). Thus it makes sense to ask if a
modular form in Sg,h(R2) (resp. Tg,h(R2)) can be lifted to an element in Sg,h(R1) (resp.
Tg,h(R1)). In Lemma 2.1.9, we will find that the modular form χh(τ) in Sg,h(C) can be
lifted to an element in Sg,h(Z) (denoted by χ′

h) with respect to the ring homomorphism
Z → C.

Now we takeR to be a field k. For a principally polarized abelian variety (A, a) ∈ Ag(k)
of dimension g over k (resp. a smooth curve C of genus g over k), we denote by

ωk[A] :=
g∧
H0(A,ΩA/k) (resp. λk[C] :=

g∧
H0(C,ΩC/k))

the k-vector space of global sections of L (resp. Lπ) over (A, a) (resp. C). For f ∈ Sg,h(k)
(resp. f ∈ Tg,h(k)) and a basis ω of ωk[A] (resp. a basis λ of λk[C]), we put

f((A, a), ω) = f(A, a)/ω⊗h ∈ k, (resp. f(C, λ) = f(C)/λ⊗h ∈ k). (2.1)

This sends a algebraic Siegel modular form (resp. Teichmüller modular form) to a k-
valued function on Ag(k) (resp. Mg(k)).

The map t : Mg → Ag sending every smooth curve C of genus g to its Jacobian
with the canonical polarization (Jac(C), j) is known as the Torelli map. This gives a
translation from Sg,h(k) to Tg,h(k).
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Lemma 2.1.5. The Torelli map t satisfies t∗L = Lπ and induces a linear map

t∗ : Sg,h(k) = Γ(Ag ⊗ k,L⊗h) → Tg,h(k) = Γ(Mg ⊗ k,L⊗h
π )

for any field k.

Proof. See Section 2.1 in [35].

On Page 89 in [42], we can find the following precise form of the Torelli theorem.

Theorem 2.1.6. Let (A, a) be a principally polarized abelian variety of dimension g ≥ 1
over a field k. We assume (A, a) is isomorphic over k to the Jacobian of a curve X0 of
genus g defined over k. Then the following holds :

(1) If X0 is hyperelliptic, then there is a curve X/k isomorphic to X0 over k such that
(A, a) is k-isomorphic to (JacX, j) where j is the canonical polarization.

(2) If X0 is not hyperelliptic, there is a curve X/k isomorphic to X0 over k, and a
quadratic character

ε : Gal(ksep/k) −→ {±1}

such that the twisted abelian variety (A, a)ε (see X.5 in [60] for the explanation
of ‘twisted’) is k-isomorphic to (JacX, j). The character ε is trivial if and only if
(A, a) is k-isomorphic to a Jacobian.

Now we shift our attention to the case k = C. Let Hg := {τ ∈ Mat(g×g,C)| tτ = τ, Imτ > 0}
be the Siegel upper half space of genus g.

Definition 2.1.7. An analytic Siegel modular form of genus g and weight h is a
complex holomorphic function ϕ(·) on Hg satisfying

ϕ(Mτ) = det(cτ + d)h · ϕ(τ),

where M =
(
a b

c d

)
∈ Sp2g(Z) for matrices a, b, c, d ∈ Mat(g × g,Z), and

Mτ := (aτ + b)(cτ + d)−1.

We denote the C-vector space of such functions by Rg,h.

There is a complex torus over Hg given by

Ug := Hg × Cg

((τ1, z) ∼ (τ2, z2) if and only if τ1 = τ2 and z1 − z2 ∈ Zg + τ1Zg)
.
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We have a map of complex manifolds u : Hg → Ag(C) and an isomorphism

Hg/Sp(2g,Z) ∼→ Ag(C).

The map u induces an isomorphism between Ug and the pull-back of Ug(C) along u. The
tangent space along the unit section of Ug → Hg is canonically identified with Cg, giving
a trivialization on the Hodge bundle Ẽ = q∗ΩUg/Hg

on Hg by the frame

(dζ1/ζ1, . . . , dζg/ζg) = (2πidz1, . . . , 2πidzg),

where ζi = exp(2πizi). Then the line bundle L̃ = det Ẽ is trivialized by the frame
ω = dζ1

ζ1
∧ · · · ∧ dζg

ζg
= (2πi)g(dz1 ∧ · · · ∧ dzg). See Pages 141-142 in [24] for details.

Proposition 2.1.8. We write (Aτ , aτ ) for a principally polarized complex abelian variety
with the period matrix τ . Let f ∈ Sg,h(C) and let f̃ be the following C-valued function
on Hg

f̃(τ) := (2πi)−ghf(Aτ , aτ )/(dz1 ∧ · · · ∧ dzg)⊗h,

where (z1, . . . , zg) is the canonical basis of Cg. The map f → f̃ induces an isomorphism
Sg,h(C) ≃ Rg,h.

Proof. See Page 141 in [24].

We denote the subset of 1
2Z

g/Zg× 1
2Z

g/Zg containing exactly all elements ϵ = (a′, a′′)
such that 4a′ ·a′′ ≡ 0(mod 2) by Sg. We take h = #Sg

2 and define a holomorphic function
on Hg by

χ̃h(τ) := (−1)gh/2

22g−1(2g−1) ·
∏
ϵ∈Sg

θϵ(0, τ), (2.2)

where

θϵ(z, τ) :=
∑
n∈Zg

exp(πi t(n+ a′)τ(n+ a′) + 2πi t(n+ a′)(z + a′′)), z ∈ Cg.

Under the assumption g ≥ 3, we have χ̃h ∈ Rg,h (Lemma 10 in [37]). By Proposition
2.1.8, this corresponds to a algebraic Siegel modular form

χh(Aτ ) := (2πi)gh · χ̃h(τ)(dz1 ∧ · · · ∧ dzg)⊗h ∈ Sg,h(C). (2.3)

By Lemma 2.1.5, we can get a Teichmüller modular form in Tg,h(C). Actually, we have
the following result.

Lemma 2.1.9. The algebraic Siegel modular form χh is a primitive (not congruent to
0 modulo p for any prime p) element in Sg,h(Z). Moreover, there exists a Teichmüller
modular form µh/2 ∈ Tg,h/2(Z) such that

t∗(χh) = (µh/2)2.
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Proof. See Proposition 3.4 in [35] and Proposition 4.5 in [36].

Remark 2.1.10. To distinguish from the modular form χh in Sg,h(C), we denote this
modular form in Sg,h(Z) by χ′

h.

Let (A, a) be a principally polarized complex abelian variety with a fixed basis of
differential 1-forms {ωi}1≤i≤g and a symplectic homology basis of H1(A,Z). We can
obtain a period matrix (Ω1|Ω2) by taking the integration of the differential forms along
the homology basis. Using the notations in Equation (2.1) and Proposition 2.1.8, we
have the following proposition.

Proposition 2.1.11. Let f be an algebraic Siegel modular form in Sg,h(k0) for some
subfield k0 ⊂ C. Let ω = ω1 ∧ · · · ∧ ωg ∈ ωk0 [A]. Then

f((A, a), ω) = (2πi)gh f̃(τ)
det Ωh1

.

Proof. See Proposition 1.2.4 in [43].

2.1.3 Notions in invariant theory

Let d be a positive integer. Let L be an algebraically closed field such that d is invertible
in L. Let V be an n-dimensional vector space over L. We have the following two
interpretations of Xd := Symd(V ∗) which we will use freely.

(1) Fixing a basis v = (v1, . . . , vn) of V , elements in Symd(V ∗) can be considered as
degree d homogeneous polynomials (or d-forms) in k[x1, . . . , xn] where xi(vj) = δij .

(2) We can also consider Xd as an affine scheme which is isomorphic to Ad, where
d = dim(Symd(V ∗)).

We define an action of GL(V ) (resp. SL(V )) on Xd by

r(s) : F (x1, . . . , xn) → (s · F )(x1, . . . , xn) = F (s(x1, . . . , xn))

for s ∈ GL(V ) (resp. SL(V )). This induces a natural action of GL(V ) (or SL(V )) on
regular (or rational) functions on Xd.

Definition 2.1.12. Let U be a Zariski open set of Xd that is stable under the action
of SL(V ). An element Ψ of O(U) is called an invariant on U if Ψ = s · Ψ for all
s ∈ SL(V ). We denote the subspace of O(U) consisting of homogeneous invariants of
degree h by Invh(U).
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If Ψ ∈ O(U), and if w and h are integers such that hd = nw, then Ψ ∈ Invh(U) if
and only if

s · Ψ = (det s)wΨ for every s ∈ GL(V ),

where w is called the weight of Ψ (Section 2.1 in [43]).
In the following part of this subsection, we assume n = 3. Let Id be the set of all

non-negative integer tuples (c1, c2, c3) such that c1 + c2 + c3 = d. Let Res(·) be the
multivariate resultant (Theorem IX.3.5 in [45]). We write x for the tuple (x1, x2, x3) and
write x(c1,c2,c3) for the monomial xc1

1 x
c2
2 x

c3
3 . We call the polynomial P :=

∑
I∈Id

cIx
I over

L[cI ]I∈Id
the universal ternary form of degree d. The polynomial

DiscP := d−((d−1)n−(−1)n)/dRes
(
∂P

∂x1
,
∂P

∂x2
,
∂P

∂x3

)
(2.4)

in L[cI ]I∈Id
has the property that its zero locus classifies exactly all non-smooth plane

curves of degree d (Section 2.2 in [42]). For a specific ternary form F of degree d, we
write Disc(F ) for the value of DiscP at F .

By the universal plane curve of degree d over Xd, we mean the variety

Ud := {(F, x) ∈ Xd × P2|F (x) = 0}.

We write X0
d for the Zariski open set

X0
d := (Xd)DiscP = {F ∈ Xd| Disc(F ) ̸= 0}.

of Xd. We write U0
d for the universal curve over the non-singular locus X0

d with the
smooth projection map

U0
d → X0

d .

Explicitly speaking, invariants for ternary quartic forms (d = 4, n = 3) are poly-
nomials in 15 coefficient variables that are stable under the action of SL3(L) (this is
compatible with Definition 2.1.12). The discriminant is an invariant of degree 27 (Sec-
tion 7 in [21]).

2.1.4 Bitangents

A plane smooth quartic curve C ⊂ P2
C intersects a straight line l ⊂ P2 at 4 points,

counted with multiplicity (Bézout’s theorem). We say l is a bitangent of C if l is tangent
to C at two distinct points. The following theorem was proven by J. Plücker in [57].

Theorem 2.1.13. Every smooth plane quartic curve over C has precisely 28 bitangent
lines.
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Remark 2.1.14. Theorem 2.1.13 also holds for plane quartics over a separably closed
field k with char k ̸= 2.

The following result of D. Lehavi implies a close relation between plane quartics and
their bitangents.

Theorem 2.1.15. Every smooth plane quartic curve over C can be reconstructed from
its bitangents.

Proof. See Theorem 1.4 in [46].

Now we consider plane quartics over a general separably closed field k with char k ̸= 2.
Let f : C ↪→ P2 be a smooth plane quartic over k.

Lemma 2.1.16. The effective canonical divisors on C are exactly the divisors (C · L),
the intersection of C and L, for arbitrary lines L ⊂ P2.

Proof. This comes from the fact that ΩC ≃ OC(1) = f∗O(1) for plane smooth quartics.

Definition 2.1.17. A theta characteristic on a smooth plane quartic curve C is a line
bundle L on C such that L ⊗ L ≃ ΩC . A theta characteristic is said to be odd (resp.
even) if h0(C,L) is odd (resp. even). We denote the set of odd theta characteristics of
C by OT (C).

We have the following well-known correspondence (see Page 289 in [31]).

Theorem 2.1.18. There is a canonical bijection of bitangents of a smooth plane quartic
C and odd theta characteristics of C given by

L → 1
2(C · L).

Proof. Let L be a bitangent of C, then the divisor F := 1
2 (C ·L) is a theta characteristic

by Lemma 2.1.16. Since F is effective, we have h0(C,O(F )) ≥ 1. Since F = ΩC(−F )
and deg(F ) = 2, we get h0(C,O(F )) ≤ 1 by Clifford’s theorem (Theorem IV.5.4 in [33]).
Thus h0(C,O(F )) = 1 and F is an odd characteristic. It remains to prove that this is a
bijection.

Let D be an odd theta characteristic on C. Since we have h0(C,O(D)) > 0, the
linear system |D| is non-empty with an effective representative E = P + Q. Since 2E
is canonical, we have 2E = (C · L) for some line L by Lemma 2.1.16. This proves the
surjectivity in the theorem.

Suppose bitangents L1 and L2 give the same theta characteristic, then we have
L1 ∩ C = 2(P + Q) and L2 ∩ C = 2(R + S) for points P , Q, R and S on C such
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that {P,Q} ̸= {R,S}. Thus P + Q − R − S = div(g) for some rational function g on
C. This is impossible, otherwise g gives an hyperelliptic map C → P1. This proves the
injectivity in the theorem.

Now we shift our attention to Jac(C), an abelian variety of dimension 3. We denote
the group of 2-torsion k-points of Jac(C) by Jac(C)[2]. Since char k ̸= 2, Jac(C)[2] is
isomorphic to F⊕6

2 . We have the Weil pairing

⟨·, ·⟩W : Jac(C)[2] × Jac(C)[2] → F2.

There exists a symplectic basis {g1, g2, g3, h1, h2, h3} of Jac(C)[2] such that

⟨gi, gj⟩W = ⟨hi, hj⟩W = 0

and
⟨gi, hj⟩W = δi,j .

We call Q : Jac(C)[2] → F2 a quadratic form with polar form ⟨·, ·⟩W if

Q(x+ y) −Q(x) −Q(y) = ⟨x, y⟩W for all x, y ∈ Jac(C)[2].

We denote the set of quadratic forms with polar form ⟨·, ·⟩W by TC . Then the Arf

invariant of an element Q(·) in TC is

Arf(Q) :=
∑

1≤i≤3
Q(gi)Q(hi) ∈ F2,

which is independent on the choice of the symplectic basis. The set of quadratic forms
with polar form ⟨·, ·⟩W forms a torsor over Jac(C)[2]. This structure is defined by

(Q+ η)(x) = Q(x) + ⟨x, η⟩W = Q(x+ η) +Q(η)

for Q(·) ∈ TC and η ∈ Jac(C)[2] ≃ F⊕6
2 .

We denote the subset of TC consisting of quadratic forms of Arf invariant 0 (resp.
1) by EC (resp. OC). The set EC (resp. OC) contains 36 (resp. 28) elements. The
symplectic group Sp6(F2) gives a natural action on OC and EC , which is also transitive.

Theorem 2.1.19. There is a canonical bijection between the set OC and the set of
bitangents of C.

Proof. See Proposition 6.2 in [39] and the end of Section 2 in [40].

Corollary 2.1.20. We have a 1-1 correspondence among the three sets

Bitangents(C) ↔ OC ↔ OT (C)
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Proof. This is a trivial corollary from Theorem 2.1.18 and Theorem 2.1.19.

Remark 2.1.21. The set of theta characteristics for complex smooth curves of genus
g has a bijection to the set 1

2Z
g/Zg × 1

2Z
g/Zg. The even characteristics correspond

to elements (a, b) ∈ 1
2Z

g/Zg × 1
2Z

g/Zg such that 4 × (a · b) ≡ 0 mod 2, and the odd
characteristics correspond to other elements in 1

2Z
g/Zg × 1

2Z
g/Zg. This interpretation

appears in Riemann’s theta function with characteristic θϵ(z, τ), which we already used
in the definition of Sg in Equation (2.2).

We give two examples of plane quartics with special behaviour of their bitangents.

Example 2.1.22. Let k be a field with char k ̸= 2, 7. Let ζ be a primitive 7-th root of
unity in ksep. We set ϵ1 := ζ+ζ−1, ϵ2 = ζ2 +ζ−2, ϵ3 := ζ4 +ζ−4. Then the 28 bitangents
of the Klein curve (Example 2.1.2) over ksep are

l0,j : Z = −ζjY − ζ3jX,

l1,j : Z = −ζjϵ21Y − ζ3jϵ−2
3 X,

l2,j : Z = −ζjϵ22Y − ζ3jϵ−2
1 X,

l3,j : Z = −ζjϵ23Y − ζ3jϵ−2
2 X,

where j = 0, 1, . . . , 6.

Example 2.1.23. The following plane quartic over Q has 28 bitangents over Q.

3X3Z +X(Y 3 − 11054979Y Z2 − 14822443134Z3) + 38Y 4 + 243542Y 3Z

+631949994Y 2Z2 + 822588784146Y Z3 + 460587892428744Z4 = 0

Details can be found in (6.6) in [59].

We end this subsection with a short discussion of the case char k = 2.
When char k = 2 and k = ksep, the dimension r of Jac(C)[2] over F2 and number l of

bitangents satisfy the following condition: r = ⌊l/2⌋ with l ∈ {1, 2, 4, 7}. See Page 60 in
[62] for details.

Example 2.1.24. Let k be an algebraically closed field with char k = 2. Then all smooth
plane quartic curves over k with only 1 bitangent can be represented as

(aX2 + bY 2 + cZ2 + dXY + eY Z + fZX)2 = X(Y 3 +X2Z),

where c ∈ k∗. See Proposition 2.1 in [54] for details.
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2.2 χ′
18 and Klein’s formula

In Subsection 2.2.1, we show how χ′
18 behaves on M3, and define the Hodge metric on

det q∗ΩUg/Hg
. In Subsection 2.2.2, we talk about the Klein’s formula for plane quartics.

The main references for this section are [13] and [43].
We will use Proposition 2.2.4 and Equation (2.7) to compute ordv(χ′

18) at finite places
and ∥χ′

18∥Hdg at the infinite place in Section 4.4.

2.2.1 Moduli property of χ′
18

In this section we assume g ≥ 2 (we will specialise to g = 3 soon) and use the notation
introduced in Subsection 2.1.2. Let t : Mg → Ag be the Torelli map. For the universal
stable curve π : Cg → Mg, we can define vector bundles Eπ and Lπ. For a stable curve
f : X → S over a scheme S, we denote the pullback of Eπ (resp. Lπ) along the classifying
map J : S → Mg by Ef (resp. Lf ).

By Lemma 2.1.5, there are natural isomorphisms Eπ ≃ t∗E and Lπ ≃ t∗L. We can get
a algebraic Siegel modular form χ′

18 ∈ S3,18(C) by taking g = 3 and h = 18 in Equation
(2.3). By Lemma 2.1.9, this can be lifted to a modular form in S3,18(Z) which we denote
by χ′

18. The pullback of χ′
18 along the Torelli map gives a Teichmüller modular form in

T3,18(Z) which we also denote by χ′
18. Now χ′

18 can be considered as a global section of
the line bundle L⊗18

π on M3 and a rational section of the line bundle L⊗18
π on M3.

Lemma 2.2.1. The divisor of χ′
18 on M3 equals 2H, where H is the hyperelliptic locus.

Proof. See Theorem 8.1 in [13].

In this paragraph, S is the spectrum of a discrete valuation ring. Let f : X → S be a
stable curve of genus 3 with smooth and non-hyperelliptic generic fiber. By the lemma
above, we know χ′

18 is a non-zero rational section of L⊗18
f on S. Thus we can define

ordv(χ′
18), where v is the closed point of S.

Returning to the case where S is an arbitrary integral scheme. Then we have vector
bundles Ef = f∗ωX/S and Gf = f∗ω

⊗2
X/S on S.

Lemma 2.2.2. Let f : X → S be a stable curve of genus 3 with smooth and non-
hyperelliptic generic fiber. Then both Ef and Gf are of rank 6.

Proof. The ranks of these vector bundles can be computed over any point in S. Thus
we only need to compute dim(Sym2(H0(X,ΩX))) and h0(X,Ω⊗2

X ) for smooth curves X
of genus 3.
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By Riemann-Roch, we have h0(X,ΩX) = 3 and h0(X,Ω⊗2
X ) = 6. This implies that

dim(Sym2(H0(X,ΩX))) = h0(X,Ω⊗2
X ) = 6.

We have a canonical map

νf : Sym2Ef → Gf , η1 · η2 7→ η1 ⊗ η2 , (2.5)

which is functorial in f . Both Sym2Ef and Gf are vector bundles of rank 6 and thus we
have a natural map of invertible sheaves

det νf : det Sym2Ef → det Gf , (2.6)

which is functorial in f . The map νf is surjective if f is smooth and nowhere hyperelliptic.
We can view det νf as a global section sf of the invertible sheaf (det Sym2Ef )⊗−1 ⊗det Gf
on S. Then the zero locus of sf is contained in the hyperelliptic locus. Standard multi-
linear algebra yields a canonical isomorphism

det Sym2Ef
∼−→ L⊗4

f

of invertible sheaves on S, where Lf = det Ef as before, and this shows that we may
as well view sf as a global section of the invertible sheaf L⊗−4

f ⊗ det Gf on S. Let
π : C3 → M3 be the universal smooth curve of genus 3, then we can associate a section
sπ.

Lemma 2.2.3. The section sπ is not identically equal to 0, and the divisor of sπ on M3

is equal to the reduced hyperelliptic divisor H.

Proof. See Proposition 9.1 in [13].

Now we want to consider div(χ′
18) on M3. We denote the divisor of sπ on M3 by K,

and denote the divisor of singular curves on M3 by ∆.

Proposition 2.2.4. If we take χ′
18 as a rational section of the line bundle L⊗18

π on M3,
then we have the equality of effective divisors

div(χ′
18) = 2K + 2∆

on M3.
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Sketch of proof : See Proposition 9.2 in [13] for a complete proof.
Let H be the hyperelliptic locus of M3 with closure H in M3. By Lemma 2.2.3, we

have div sπ = H on M3. By Lemma 2.2.1, the modular form χ′
18 is a global section of

L⊗18
π with divisor 2H. Thus χ′

18 ⊗ s⊗−2
π is a trivializing section of L⊗26

π ⊗ (det Gπ)⊗−2

over M3.
We have a canonical isomorphism of line bundles on M3

µ : det Gπ ≃ L⊗13
π ,

which comes from the Mumford’s functorial Riemann-Roch (Theorem 2.1 and Equation
2.1.2 in [51]). Then µ⊗2 gives another trivialization section of L⊗26

π ⊗(det Gπ)⊗−2, denoted
by w. Since the only invertible regular functions on M3 are ±1, this means that w and
χ′

18 ⊗ s⊗−2
π are equal up to a sign.

Mumford’s functorial Riemann-Roch on M3 extends µ to an isomorphism

det Gπ ⊗ O(∆) ≃ L⊗13
π

of line bundles on M3. This extends χ′
18 ⊗ s⊗−2

π on the trivial line bundle

L⊗26
π ⊗ (det Gπ)⊗−2 ⊗ O(−2∆).

The assertion is proven by taking the divisor of the trivial section on the line bundle
above. QED

At the end of this subsection, we explain the relation between χ′
18 and the Faltings

height. Details can be found in Section 6 in [13].
For a metrized line bundle (L, (∥·∥v)v∈M(k)∞) on a ring of integers Ok, its arithmetic

degree is given by choosing a non-zero rational section s of L and setting

deg(L, (∥ · ∥v)v∈M(k)∞) :=
∑

v∈M(k)0

ordv(s)log(Nv) −
∑

v∈M(k)∞

log∥s∥v,

where M(k)0 (resp. M(k)∞) is the set of finite (resp. infinite) places of Ok.
Recall that q : Ug → Hg is the universal principally polarized complex abelian variety

over the Siegel upper-half space. We write L̃ for the line bundle detq∗ΩUg/Hg
. The Hodge

metric of L̃ is given by

∥dz1 ∧ . . . dzg∥Hdg(τ) =
√

det Imτ (2.7)

for all τ ∈ Hg.
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Let f : X → Spec(Ok) be a semistable arithmetic surface of genus 3 over a ring of
integers with non-hyperelliptic smooth generic fiber. Let ω be the Arakelov dualising
sheaf. The Faltings height of f is given by

deg det f∗ωX/S =

∑
v∈M(k)0

ordv(χ′
18)log(Nv)

18 −

∑
v∈M(k)∞

log∥χ′
18∥Hdg,v

18 . (2.8)

2.2.2 Klein formula

Recall that Sg is the set of even theta characteristics of genus g. By Page 851 in [37],
the function

Σ̃140 :=
∏
ϵ∈S3
ϵ ̸=0

θϵ(0, τ)8

is an analytic Siegel modular form of weight 140.

Theorem 2.2.5. Let (A, a) be a principally polarized abelian variety of dimension 3
defined over k ⊂ C. Let ω1, ω2, ω3 be a basis of H0(A,Ω1

A/k) and γ1, . . . γ6 a symplectic
basis of H1(A,Z). Then we can associate the period matrix Ω = [Ω1,Ω2] of (A, a). Put
τ = Ω−1

1 Ω2 ∈ H3.

(1) If Σ̃140(τ) = 0 and χ̃18(τ) = 0, then (A, a) is decomposable over k. In particular it
is not a Jacobian.

(2) If Σ̃140(τ) ̸= 0 and χ̃18(τ) = 0, then there exists a hyperelliptic curve X/k such
that (JacX, j) ≃ (A, a).

(3) If χ̃18(τ) ̸= 0 then (A, a) is isomorphic to a non-hyperelliptic Jacobian if and only
if

χ18((A, a), ω) = (2πi)54 χ̃18(τ)
det(Ω1)18

is a square in k, where ω := ω1 ∧ ω2 ∧ ω3.

Sketch of proof : The first two are proven in Lemma 10, Lemma 11 in [37]. By
Proposition 2.1.11, we have the equality in (3). We give a sketch for the remaining part
of (3), and a complete proof can be found in Theorem 1.3.3 in [43].

We assume (A, a) to be isomorphic to the Jacobian of a non-hyperelliptic genus 3
curve C/k. By Lemma 2.1.5 and Lemma 2.1.9, we have

χ18((A, a), ω) = t∗(χ18)(C, λ) = µ9(C, λ)2 ∈ k×2,

with λ = t∗ω.
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Now we assume (A, a) is not isomorphic to the Jacobian of a non-hyperelliptic genus
3 curve C/k. By (3) in Theorem 2.1.6, we know (A, a) is a quadratic twist of a Jacobian
(A′, a′). Then it can be shown that

χ18((A, a), ω) ≡ c9χ18((A′, a′), ω′)(mod k×18)

for some non-square element c ∈ k∗ (Corollary 1.2.3 in [43]). This implies that χ18((A, a), ω)
is not a square, which completes the proof. QED

With this theorem, we can show the following formula of Klein in [41] which links the
discriminant of a plane quartic and the analytic Siegel modular form χ̃18.

We fix a smooth plane curve CF defined by a homogeneous degree d polynomial
F (X,Y, Z) = 0. We write f for F (x, y, 1) and write k[x, y]<d for the subspace of k[x, y]
containing polynomials of degree less than d. By a classical basis of ΩCF

, we mean
a basis of ΩCF

in the form { gidx
∂f
∂y

}1≤i≤ (d−1)(d−2)
2

where {gi}1≤i≤ (d−1)(d−2)
2

is a basis of
k[x, y]<d (see Theorem 4.6.10).

Theorem 2.2.6. Let CF be a smooth plane quartic curve over C defined by F (X,Y, Z) = 0.
Let Ω = (Ω1|Ω2) be the period matrix of CF with respect to a classical basis of differential
forms and a symplectic homology basis. We denote Ω−1

1 Ω2 by τ . Then we have

Disc(F )2 = (2π)54 χ̃18(τ)
det(Ω1)18 .

Sketch of proof : See Theorem 2.2.3 in [43] for a complete proof.
We define a function I on X0

4 as

I(F ) := (2π)54 χ̃18(τ)
det(Ω1)18 .

It can be shown that I is an invariant of degree 54 in the sense of Definition 2.1.12
(Corollary 2.2.2 in [43]). This means that I(F ) is a degree 54 homogeneous polynomial
of the coefficients of F .

By Theorem 2.2.5, we have I(F ) ̸= 0 for all F ∈ X0
4 . Recall that the discriminant is

a multiple of the resultant (Equation (2.4)) which is an irreducible polynomial of degree
27 (Page 113 Section 7 in [21]). By Hilbert’s Nullstellensatz, we have I = cDiscnU for
some constant c ∈ C×.

The exponent n can be computed by the degree counting n = 54/27 = 2. The
constant c can be computed for Ciani curves, which is equal to 1 (Corollary 4.2 in [42]).
QED
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Remark 2.2.7. The Ciani curves are plane curves defined by

X4 + Y 4 + Z4 + aX2Y 2 + bY 2Z2 + cZ2X2 = 0,

for a, b and c ∈ k.
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Chapter 3

Arakelov geometry in genus 3

In this chapter, we discuss Arakelov geometry with an emphasis on genus 3 curves. In
Section 3.1, based on the work of Z. Cinkir, we show a classification of pm-graphs of
genus 3 and compute admissible invariants associated to it. In Section 3.2, based on
the work of K. Yamaki, we show that for a genus 3 graphically hyperelliptic curve over
a function field, the height ⟨∆,∆⟩ vanishes if and only if the curve is hyperelliptic. In
Section 3.3, based on the work of R. de Jong, we show a unboundedness result of ⟨∆,∆⟩
for genus 3 curves over number fields.

We get a result on hyperelliptic graphs and apply it to genus 3 polarized graphs
(Proposition 3.2.20). In Theorem 3.3.12, we give a criterion for the unboundedness of
the heights of a family of curves over Q. To the best of the author’s knowledge, these
are new results.

3.1 Admissible invariants for genus 3 curves

Subsection 3.1.1 is about the explicit computation for genus 3 pm-graphs. We refer to
Section 1.4 for terminology on pm-graphs. Subsection 3.1.2 contains two tables for the
invariants on genus 3 pm-graphs with the first Betti number b1 = 0 or 1.

We will use results in this section to compute the admissible invariants of our main
curve CQ in Theorem 4.4.1.

3.1.1 Computation for genus 3 curves

In this subsection, we explain how to explicitly compute the six invariants discussed in
Theorem 1.4.39. To begin with, we specialize Theorem 1.4.39 to the case g = 3.
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3. ARAKELOV GEOMETRY IN GENUS 3

Proposition 3.1.1. Let Γ be a pm-graph of genus 3. Then we have

φ(Γ) = 13
3 τ(Γ) + θ(Γ)

12 − δ(Γ)
4 ,

λ(Γ) = 3
7τ(Γ) + θ(Γ)

56 + δ(Γ)
14 ,

ϵ(Γ) = 8
3τ(Γ) + θ(Γ)

6 .

Proof. Substitute g = 3 to Theorem 1.4.39.

Now we show how to compute the six invariants of Γex (Figure 3.1.1), a genus 3 pm-
graph with no eliminable points. This pm-graph is non-irreducible and contains 1 cycle.
We would like to use this example to show that it is possible to compute the invariants
by techniques described. This method is also used by Z. Cinkir in [9]. Letters are the
lengths of edges and integers are the polarization.

b

c

a
0 11

Figure 3.1.1: Γex

Proposition 3.1.2. For the pm-graph Γex, we have

δ(Γex) = a+ b+ c,

τ(Γex) = δ(Γex)
12 + a

6 ,

θ(Γex) = 6a+ 8bc
b+ c

,

φ(Γex) = δ(Γex)
9 + 6bc+ 11a(b+ c)

9(b+ c) ,

λ(Γex) = 3δ(Γex)
28 + 4bc+ 5a(b+ c)

28(b+ c) ,

ϵ(Γex) = 2δ(Γex)
9 + 12bc+ 13a(b+ c)

9(b+ c) .

Proof. As a metrized graph, Γex can be written as the wedge sum of two irreducible
components Γa ∨ Γbc, where Γa is obtained by contracting the edges of length b and c

and Γbc is obtained by contracting the edge of length a. By the additivity of the six
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1 2a 1 1
b

c

Γa Γbc

Figure 3.1.2: Irreducible components

invariants (Remark 1.4.41), we just need to compute the invariants on Γa and Γbc, where
the polarization is induced from that on Γex. Figure 3.1.2 is an illustration for this.

For δ, it is trivial that δ(Γa) = a and δ(Γbc) = b+ c, thus

δ(Γex) = a+ b+ c.

For θ, by Equation (1.17), we have

θ(Γa) = 2 × (1 − 2 + 2) × (1 − 2 + 4) × a = 6a,

θ(Γbc) = 2 × (2 − 2 + 2) × (2 − 2 + 2) × bc

b+ c
= 8bc
b+ c

,

thus

θ(Γex) = 6a+ 8bc
b+ c

.

Recall the interpretation of τ in Definition 1.4.37. For Γa, we take y to be a vertex
p, and then we get r(x, p) = d(x, p), where d(·, ·) is the path distance function. Thus we
have

τ(Γa) = 1
4

∫
Γa

rx(x, p)2dx = 1
4

∫ a

0
dx = a

4 .

For Γbc, by the formula of electrical resistance in a parallel connection, we get

r(x, y) = d(x, y)(b+ c− d(x, y))
b+ c

.

Taking y to be a vertex p, we have

τ(Γbc) = 1
4

∫
Γbc

rx(x, p)2dx = 1
4

∫ b+c

0

(
b+ c− 2x
b+ c

)2
dx = b+ c

12 .

By the additivity of τ , we get

τ(Γex) = δ(Γex)
12 + a

6 .
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According to Proposition 3.1.1, we get

φ(Γex) = a+ b+ c

9 + 6bc+ 11a(b+ c)
9(b+ c) ,

λ(Γex) = 3(a+ b+ c)
28 + 4bc+ 5a(b+ c)

28(b+ c) ,

ϵ(Γex) = 2(a+ b+ c)
9 + 12bc+ 13a(b+ c)

9(b+ c) .

The whole list of genus 3 pm-graphs without eliminable points and their invariants
can be found in [9]. In this thesis, we copy part of this list (containing those pm-graphs
with the first Betti number b1 = 0 or 1) in Table 3.1 and Table 3.2.

We can find from Table 3.2 that λ(Γ) ≥ 3δ(Γ)
28 and ϵ(Γ) ≥ 2δ(Γ)

9 . These two bounds
actually hold for all pm-graphs of genus 3.

The invariant φ(Γ) is more complicated. When b1 ≤ 1, we can find from Table 3.2
that φ(Γ) ≥ 1

9δ(Γ). This bound does not hold for a general genus 3 pm-graph. By
a technical analysis of inequalities, Z. Cinkir proved the following proposition which is
conjectured by X. Faber in Remark 5.1 in [22].

Proposition 3.1.3. For a pm-graph Γ of genus 3, we have φ(Γ) ≥ 17δ(Γ)
288 .

Proof. See the proof of Claim on Page 332 in [9].

Remark 3.1.4. Proposition 3.1.3 is not a corollary of Theorem 1.4.34 since c(3) ≤ 17
288 .
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3.1.2 Tables for genus 3 pm-graphs

Γ δ(Γ) τ(Γ) θ(Γ)
0I 3 0 0 0

0II 2 1a
a δ(Γ)

4 6δ(Γ)

0III
1 11

a b

a+ b δ(Γ)
4 6δ(Γ)

0IV 1 10

1

a b
c

a+ b+ c δ(Γ)
4 6δ(Γ)

1I
2a

a δ(Γ)
12 0

1II
11

a

b

a+ b δ(Γ)
12

8ab
a+b

1III
ba

11
a+ b δ(Γ)

12 + a
6 6a

1IV
b

a
02

a+ b δ(Γ)
12 + a

6 6a

1V

b

c

a
0 11

a+ b+ c δ(Γ)
12 + a

6 6a+ 8bc
b+c

1V I

c

d

a

b
0

01
1

a+ b+ c+ d δ(Γ)
12 + a+b

6 6(a+ b) + 8cd
c+d

1V II

c
a

b

1

1
0

a+ b+ c δ(Γ)
12 + a+b

6 6(a+ b)

1V III

a b c1
1 0

a+ b+ c δ(Γ)
12 + a+b

6 6(a+ b)

1IX
a

b
c d

1

1

0 0
a+ b+ c+ d δ(Γ)

12 + a+b+c
6 6(a+ b+ c)

Table 3.1: Table of Γ, δ(Γ), θ(Γ) and τ(Γ)
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3. ARAKELOV GEOMETRY IN GENUS 3

φ(Γ) λ(Γ) ϵ(Γ)
0I 0 0 0
0II 4δ(Γ)

3
2δ(Γ)

7
5δ(Γ)

3

0III 4δ(Γ)
3

2δ(Γ)
7

5δ(Γ)
3

0IV 4δ(Γ)
3

2δ(Γ)
7

5δ(Γ)
3

1I δ(Γ)
9

3δ(Γ)
28

2δ(Γ)
9

1II δ(Γ)
9 + 2ab

3(a+b)
3δ(Γ)

28 + ab
7(a+b)

2δ(Γ)
9 + 4ab

3(a+b)

1III δ(Γ)
9 + 11a

9
3δ(Γ)

28 + 5a
28

2δ(Γ)
9 + 13a

9

1IV δ(Γ)
9 + 11a

9
3δ(Γ)

28 + 5a
28

2δ(Γ)
9 + 13a

9

1V δ(Γ)
9 + 6bc+11a(b+c)

9(b+c)
3δ(Γ)

28 + 4bc+5a(b+c)
28(b+c)

2δ(Γ)
9 + 12bc+13a(b+c)

9(b+c)

1V I δ(Γ)
9 + 6cd+11(a+b)(c+d)

9(c+d)
3δ(Γ)

28 + 4cd+5(a+b)(c+d)
28(c+d)

2δ(Γ)
9 + 12cd+13(a+b)(c+d)

9(c+d)

1V II δ(Γ)
9 + 11(a+b)

9
3δ(Γ)

28 + 5(a+b)
28

2δ(Γ)
9 + 13(a+b)

9

1V III δ(Γ)
9 + 11(a+b)

9
3δ(Γ)

28 + 5(a+b)
28

2δ(Γ)
9 + 13(a+b)

9

1IX δ(Γ)
9 + 11(a+b+c)

9
3δ(Γ)

28 + 5(a+b+c)
28

2δ(Γ)
9 + 13(a+b+c)

9

Table 3.2: Table of φ(Γ), λ(Γ) and ϵ(Γ)
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3.2 Graphically hyperelliptic curves over function fields

In this section, B is a smooth curve over an algebraically closed field k with function field
K. Subsections 3.2.1-3.2.2 are still about pm-graphs of genus 3 (with an application to
the height ⟨∆,∆⟩). In Subsection 3.2.3, we show that the height ⟨∆,∆⟩ of a graphically
hyperelliptic genus 3 curve over K vanishes if and only the curve is hyperelliptic. We
refer to Section 1.4 for the terminology on pm-graphs and Subsection 1.5.2 for the theory
of Gross-Schoen cycles.

The number h(Γ) introduced in Equation (3.1) will be used in Theorem 3.3.12 and
Proposition 4.4.5.

3.2.1 An inequality for ⟨∆, ∆⟩

By a polarized graph, we mean a pm-graph without the metric, in other words, it is a
pair G = (G, q) where G = (V,E) is a graph and q is a polarization making the canonical
divisor (Definition 1.4.8) effective.

The polarized graphs H = (H, 0) and N = (N, 0) in Figure 3.2.1 are two irreducible
polarized graphs (the polarization is the constant function 0) without eliminable vertices,
and we call the two graphs maximal models.

Definition 3.2.1. We say H or N is a model for a polarized graph G if G is equivalent
to a contraction of H or N with the induced polarization.

Remark 3.2.2. For simplicity, we use the same notations for pm-graphs and polarized
graphs (like the contraction GS and GS). We also use Table 3.1 for the types of genus 3
polarized graphs when b1 = 0 or 1.

f1 f2 f3 f4

e1

e2

H

e1

e2

f1

f2

e3

f3

N

Figure 3.2.1: Maximal models
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3. ARAKELOV GEOMETRY IN GENUS 3

Lemma 3.2.3. Every polarized graph G of genus 3 with only edges of type 0 is equivalent
to a polarized graph having H or N as a model. If we assume further that G is not
equivalent to N, then it has H as a model.

Proof. This can be proven by a combinatorial checking.

Definition 3.2.4. Let G = (G, q) be a polarized graph of genus 3 with no eliminable
vertices. We say a pair of edges {e, e′} of G is of h-type if G{e,e′} is of type 1II in Table
3.1.

Example 3.2.5. In Figure 3.2.1, {e1, e2} is the only pair of h-type edges in H while N
has no edges of h-type.

Lemma 3.2.6. A polarized graph G of genus 3 without eliminable vertices has at most
one pair of edges of h-type.

Proof. If {e1, e2} is a pair of edges of h-type, then e1 and e2 sit in the same irreducible
component otherwise G{e1,e2} is reducible.

Let {e3, e4} be another pair of edges of h-type. The two pairs lie on the same ir-
reducible component of {e1, e2}, otherwise G

{e1,e2,e3,e4} can not be a graph without
eliminable vertices, which contradicts Lemma 1.4.17. We denote this irreducible com-
ponent with induced polarization by G1. By Lemma 3.2.3, the polarized graph G1 is
equivalent to a certain contraction of H or N with the induced polarization. Since H
and N have at most 1 pair of edges of h-type (Example 3.2.5), so does their contraction.
Thus {e1, e2} = {e3, e4}.

Since pm-graphs are polarized graphs with metrics, our discussion so far can be
extended to pm-graphs easily.

Let Γ = (G,w, q) be a genus 3 pm-graph with no eliminable vertices. If there exists
a pair of edges of h-type {e1, e2} on Γ, we define

h(Γ) := min{w(e1), w(e2)}, (3.1)

otherwise we set h(Γ) = 0. For a general pm-graph Γ which is equivalent to Γ0 with no
eliminable vertices, we define

h(Γ) := h(Γ0).

Lemma 3.2.7. h(·) is additive on pm-graphs of genus 3.

Proof. This is trivial from the definition of h(·).
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Recall the definition of ψ(Γ) in Corollary 1.5.8. For a genus 3 pm-graph Γ with only
edges of type 0, we define

Φ(Γ) := 1
3δ0(Γ) + 4

3h(Γ) − ψ(Γ). (3.2)

Lemma 3.2.8. The invariant Φ is additive for pm-graphs with only type 0 edges.

Proof. The function ψ is additive since it is a linear combination of admissible invariants
(Corollary 1.5.8). On pm-graphs with only edges of type 0, the invariant δ0 is additive
since δ0 = δ. The additivity of h is trivial according to Lemma 3.2.6.

Lemma 3.2.9. For a tree pm-graph Γ of genus g, we have

ψ(Γ) =
⌊ g

2 ⌋∑
i=1

(
12i(g − i)

2g + 1 − 1
)
δi(Γ).

Proof. In this case, we have δ0(Γ) = 0 and h(Γ) = 0, thus ψ is a linear combination
of ϵ and φ (Equation (1.20)). Theorem 1.4.39 implies that we can reduce the problem
to the computation of τ , θ and δ. Since Γ is a tree, the underlying graph Γ is the
wedge sum of segments. By the additivity of these invariants, we only need to compute
them for the pm-graph with one segment and two endpoints polarized by i and g− i for
0 < i ≤ ⌊ g2 ⌋.

Now we give a lower bound of ⟨∆,∆⟩ for non-hyperelliptic curves by Lemma 3.2.11.
For a semistable curve f : X → B, we denote the dual graph at a closed point s ∈ B by
Γs. If the genus of f is 3, all edges in Γs are of type 0 or 1. We denote the contraction
of all type 1 (resp. 0) edges in Γs with the induced polarization by Γ◦

s (resp. Γ+
s ).

Remark 3.2.10. The pm-graph Γ◦
s is the wedge sum of irreducible components in Γs

which are not isomorphic to segments. And Γ+
s is a wedge sum of segment components

in Γs. Every edge in Γs corresponds to an edge in either Γ◦
s or Γ+

s . If F is an additive
function on pm-graphs, then F (Γs) = F (Γ◦

s) + F (Γ+
s ).

Lemma 3.2.11. Let f : X → B be a semistable curve of genus 3 with smooth non-
hyperelliptic generic fiber. We have

(ωX/B , ωX/B) ≥
∑
s∈B

(
δ0(Γs)

3 + 3δ1(Γs) + 4h(Γs)
3

)
,

where Γs is the dual graph over s ∈ B.

Proof. See Corollary 3.8 in [66].
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Proposition 3.2.12. Let f : X → B be a semistable curve of genus 3 with smooth
non-hyperelliptic generic fiber C. Then we have

⟨∆,∆⟩ ≥ 7
4
∑
s

Φ(Γ◦
s) + δ1(C),

where δ1(C) :=
∑
s
δ1(Γs).

Proof. Every irreducible component of Γs is an irreducible component of Γ◦
s or Γ+

s and
vice versa (Remark 3.2.10). Thus by the additivity of ψ, we have

ψ(Γs) = ψ(Γ◦
s) + ψ(Γ+

s ).

From Corollary 1.5.8 and Lemma 3.2.11, we get

⟨∆,∆⟩ =7
4

(
(ωX/B , ωX/B) −

∑
s∈B

ψ(Γs)
)

≥7
4

∑
s∈B

Φ(Γ◦
s) +

∑
y∈B

(
3δ1(Γ+

s ) − ψ(Γ+
s )
) .

Since Γ+
s is a tree, by Lemma 3.2.9, we have ψ(Γ+

s ) = 17
7 δ1(Γ+

s ). Thus

3δ1(Γ+
s ) − ψ(Γ+

s ) = 4δ1(Γ+
s )

7 = 4δ1(Γs)
7 . (3.3)

We get the result by substituting Equation (3.3) into the inequality above.

Proposition 3.2.12 reduces the positivity of ⟨∆,∆⟩ to the computation for Φ and δ1

at special fibers. In [67], K. Yamaki shows the following result for Φ.

Theorem 3.2.13. Let Γ = (G,w, q) be a pm-graph of genus 3 without eliminable vertices.
Suppose that H is a model of Γ, then we have Φ(Γ) ≥ 0. Moreover, Φ(Γ) = 0 if and only
if one of the following cases occurs:

(1) Γ is the trivial pm-graph.

(2) Γ is isomorphic to E1 in Figure 3.2.2 with the weight condition

w(f1) = w(f2), w(f3) = w(f4), w(e) = w(f1) + w(f3).

(3) Γ is isomorphic to E2 in Figure 3.2.2 with the weight condition

w(e1) = w(e2) = w(e3).
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S T R

f1

f2

f3

f4

e

E1

P Q

e1

e2

e3

E2

Figure 3.2.2: Two polarized graphs with model H

Proof. See Theorem 2.7 in [67].

Corollary 3.2.14. Let f : X → B be a semistable curve of genus 3 with smooth non-
hyperelliptic generic fiber X. If Φ(Γs) ≥ 0 for all s that Γs is equivalent to N, then
⟨∆,∆⟩ ≥ 0. In addition, if there exists s such that Γs is not equivalent to one of the
pm-graphs in Theorem 3.2.13, then we have ⟨∆,∆⟩ > 0.

Proof. This is a consequence of Lemma 3.2.3 and Theorem 3.2.13.

3.2.2 Hyperelliptic polarized graph

Definition 3.2.15. A hyperelliptic graph G = (V,E) is either the one-point graph, or a
graph with an order 2 automorphism ι on G satisfying the following properties:

(1) G has no self-loops.

(2) ι(e) ̸= e for any e ∈ E.

(3) The quotient graph G/⟨ι⟩ is a tree.

(4) If a vertex n ∈ V is not fixed by ι, then the valence satisfies v(n) ≥ 3.

Lemma 3.2.16. Let (G, ι) be a non-trivial hyperelliptic graph with ι(e1) = e2. The graph
G{e1,e2} given by contracting edges e1 and e2 is either a one-point graph or a non-trivial
hyperelliptic graph with the induced automorphism ι0 of order 2.

Proof. We assume that G{e1,e2} is not a one-point graph, thus it has the induced auto-
morphism ι0 of order 2.

Condition (2) in Definition 3.2.15 is trivial.
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The quotient graph (G{e1,e2}, ι0)/⟨ι0⟩ is given by contracting an edge from the tree
G/⟨ι⟩, thus is also a tree. So Condition (3) in Definition 3.2.15 is verified.

If c is a self-loop in G{e1,e2}, then Condition (2) says that ι(c) is a different self-loop.
Thus the quotient (G{e1,e2}, ι0)/⟨ι0⟩ must have at least 1 self-loop, which contradicts
Condition (3) we just proved. So Condition (1) in Definition 3.2.15 is verified.

We assume p to be a vertex in G{e1,e2} that is not fixed by ι0. If p is the contraction
point of e1 ∈ E, then by the assumption, neither of e1’s endpoints are fixed by ι. It
can be checked that e1 and e2 can not share the endpoints, otherwise G{e1,e2} contains
a self-loop. Then we obtain v(p) ≥ 3 + 3 − 2 = 4 by Condition (4) in Definition 3.2.15.

If p does not belong to the endpoints of contracting edges, then its valence is the
same as that of the original graph (we write p′ for this point in G). Since p is not fixed
by ι0, p′ cannot be fixed by ι and thus v(p) ≥ 3. So Condition (4) in Definition 3.2.15 is
verified.

In conclusion, (G{e1,e2}, ι0) is a hyperelliptic graph.

This lemma says that the hyperelliptic graph behaves well under the quotient map.

Proposition 3.2.17. A hyperelliptic graph G does not have vertices with valence 1.

Proof. Let p be a vertex of G with valence 1. By Condition (4) in Definition 3.2.15, it
is fixed by ι. Thus the only edge related to it is fixed by ι, which contradicts Condition
(2).

Lemma 3.2.18. Let G be a non-trivial graph. If ι and ι′ are two order 2 automorphisms
of G that make G a hyperelliptic graph, then ι = ι′.

Proof. See Lemma 3.1 in [67].

Definition 3.2.19. A polarized graph G = (V,E, q) is called a hyperelliptic polarized
graph if G is a one-point graph or the following are satisfied:

(1) G is a non-trivial hyperelliptic graph with the order 2 automorphism ι.

(2) ι preserves the polarization q.

(3) q(n) = 0 for any n ∈ V with ι(n) ̸= n.

If w : E → R>0 is a weight function on the edges of G with the property w(e) = w(ι(e))
for all e ∈ E, then we call (G,w) a hyperelliptic weighted polarized graph or a hyperelliptic
pm-graph.

Proposition 3.2.20. (1) Let e be an edge on a non-trivial hyperelliptic graph G (with
the order 2 automorphism ι). Then {e, ι(e)} is a pair of edges of h-type.
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(2) All hyperelliptic polarized graphs of genus 3 without eliminable points are of type
1II in Table 3.1.

Proof. By applying Lemma 3.2.16 repeatedly, we find G{e,ι(e)} is a hyperelliptic graph.
Thus {e, ι(e)} has to be a pair of edges of h-type.

By Lemma 3.2.6, a polarized graph G of genus 3 without eliminable edges has at most
1 pair of edges of h-type. By the first assertion, the polarized graph G is equivalent to
the type 1II graph in Table 3.1.

Question 3.2.21. Can we have a clearer description of hyperelliptic polarized graphs?
What can we say for higher genus?

Proposition 3.2.22. A hyperelliptic polarized graph G only has edges of type 0.

Proof. If there is an edge e of positive type, then e′ := ι(e) is also an edge of positive
type. Thus G looks like the following figure, where G0, G1 and G′

1 are subgraphs instead
of vertices.

G1 G′
1

G0

e e′

The automorphism ι induces an isomorphism between G1 and G′
1, and an automor-

phism of G0. By Condition (3) in Definition 3.2.15, the quotient graph G/⟨ι⟩ is a tree,
thus G1 and G′

1 are non-trivial trees or the one-point graph. Both of the two cases will
lead to a vertex with valence 1, while this can not be true by Proposition 3.2.17.

3.2.3 Graphically hyperelliptic curves

In this subsection, we take X to be a smooth curve over K of genus g > 1 with a
semistable model f : X → B. Similarly to in Section 1.4.1, we denote Γs = (Gs, ws, qs)
the dual graph of X at a closed point s ∈ B. By Γ◦

s, we mean the induced pm-graph
given by contracting edges of positive type in Γs.

Definition 3.2.23. If Γ◦
s is equivalent to a hyperelliptic pm-graph for all closed points

s ∈ B, we call X or f a graphically hyperelliptic curve.

Theorem 3.2.24. Let X be a graphically hyperelliptic smooth genus 3 curve over K
with a semistable model X → B. If ⟨∆,∆⟩ = 0 and there is at least one closed point
s ∈ B such that Γ◦

s is non-trivial, then X is a hyperelliptic curve.

Proof. Since Γ◦
s is a hyperelliptic graph, it cannot be of the form N, E1 or E2. By

Corollary 3.2.14, the curve X cannot be non-hyperelliptic, otherwise we have ⟨∆,∆⟩ > 0.
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3.3 Non-hyperelliptic curves over number fields

In Subsection 3.3.1, we decompose ⟨∆,∆⟩ into the sum of contributions from (in)finite
places (Theorem 3.3.2). In Subsection 3.3.2, we give a lower bound for ordv(χ′

18) (Propo-
sition 3.3.4). In Subsection 3.3.3, we prove an unboundedness result of ⟨∆,∆⟩. We refer
to Section 1.5, Section 2.2 and Section 3.1 for terminology and theorems.

Theorem 3.3.2 will be the main tool for our computation of CQ in Chapter 4. The
Horikawa index will be used for the computation of ordv(χ′

18) at a finite place v.

3.3.1 ⟨∆, ∆⟩ for non-hyperelliptic curves of genus 3

Let k be a number field with M(k)0 (resp. M(k)∞) its finite (resp. infinite) places and
let M(k) be the union M(k)0 ∪M(k)∞. We denote Spec(Ok) by S. Let X be a smooth
curve of genus g ≥ 2 over k which also has semistable reduction over k.

By Theorem 1.5.6, the height of a canonical Gross-Schoen cycle of X is

⟨∆,∆⟩ = 2g + 1
2g − 2(ω̂, ω̂)ad −

∑
v∈M(k)

φ(X)logNv. (3.4)

Let f : X → S be a stable model of X and let ωX/S be the relative dualizing sheaf
on X . We endow the line bundle det f∗ωX/S with the metric induced by Equation (1.6)
at infinite places of k, and denote the metrized line bundle by det f∗ωX/S .

By Corollary 1.3.11 and Theorem 1.5.3, we get

(ω̂, ω̂)ad =12 deg det f∗ωX/S −
∑

v∈M(k)0

δ(Γv)log(Nv) +
∑

σ∈k(C)

δ(Xσ)

+
∑

v∈M(k)0

ϵ(Γs)log(Nv) + 4g[k : Q]log(2π).

Substituting the equation above, Equation (1.15) and Equation (1.18) to Equation (3.4),
we get the following proposition (Corollary 4.2 in [13]).

Proposition 3.3.1. Let X be a smooth curve of genus g ≥ 2 defined over the number
field k and also has semistable reduction over k. Let ∆ ∈ CH2(X3)Q be a canonical
Gross-Schoen cycle on X3. Then the equality

⟨∆,∆⟩ = 6(2g + 1)
g − 1

deg det f∗ωX/S −
∑

v∈M(k)

λ(Xv)logNv


holds.
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Let π : Cg → Mg be the universal stable curve of genus g ≥ 2 and let ΩCg/Mg
be

the universal relative dualizing sheaf. For the stable curve X → S, the pull-back of
Lπ := detπ∗ΩCg/Mg

along the classifying map S → Mg gives the metrized line bundle
det f∗ωX/S on S.

Recall that we introduced a geometric Siegel modular form χ′
18 ∈ S3,18(Z) in Subsec-

tion 2.2.1, which corresponds to an element in T3,18(Z) (also denoted by χ′
18). Thus χ′

18
can be considered as a rational section of L⊗18

π . Now we assume that the generic fiber
of X → S is non-hyperelliptic and also of genus 3. Then the pull-back of χ′

18 along the
classifying map S → M3 gives a non-zero rational section of L⊗18

f (Lemma 2.2.1). Over
C, the pullback of the Hodge metric (Equation (2.7)) on Lπ coincides with the metric
derived from Equation (1.5). Thus we have the following formula for deg det f∗ωX/S :

18deg det f∗ωX/S =
∑

v∈M(k)0

ordv(χ′
18)logNv −

∑
v∈M(k)∞

log∥χ′
18∥Hdg,v. (3.5)

Applying this to Proposition 3.3.1, we get the following result (Theorem 8.2 in [13]).

Theorem 3.3.2. Let X be a smooth non-hyperelliptic curve of genus 3 defined over the
number field k which has semistable reduction over k. Let f : X → Spec(Ok) be the stable
model of X over Ok and consider χ′

18 as a rational section of the line bundle L⊗18
f . Then

the height of a canonical Gross-Schoen cycle ∆ on X3 satisfies

⟨∆,∆⟩
21 =

∑
v∈M(k)0

(
1
18ordv(χ′

18) − λ(Xv)
)

logNv

+
∑

v∈M(k)∞

(
− 1

18 log∥χ′
18∥Hdg,v − λ(Xv)

)
.

3.3.2 The Horikawa index

In this subsection, S is the spectrum of a discrete valuation ring R with the closed point
s and fraction field K(S). Let f : X → S be a stable curve of genus 3 with smooth
non-hyperelliptic generic fiber.

Using the notation defined in the beginning of Subsection 2.2.1, the bundles Ef and
Gf are locally free and the morphism νf : Sym2Ef → Gf given by η1 · η2 → η1 ⊗ η2 is
generically surjective (both are K(S)-linear spaces of dimension 6 at the generic fiber of
S). Since R is a discrete valuation ring, we know Sym2Ef and Gf can be viewed as free
R-modules of rank 6. The generic surjectivity of νf also guarantees its global injectivity.
This induces a short exact sequence:

0 → Sym2Ef → Gf → Qf → 0. (3.6)

69



3. ARAKELOV GEOMETRY IN GENUS 3

Since Sym2Ef and Gf are isomorphic to R⊕6, we find that Qf is of finite length over R.
We define lengthOS

Qf as the Horikawa index of f at s, denoted by Inds(f).

Proposition 3.3.3. If we consider χ′
18 as a rational section of the line bundle L⊗18

f on
S, then we have the equality

ords(χ′
18) = 2Inds(f) + 2δ(Γs).

In particular, χ′
18 is a global section of L⊗18

f .

Proof. See Proposition 9.3 in [13].

Proposition 3.3.4. With the notation above, the inequality

ords(χ′
18) ≥ 2h(Γs) + 2δ0(Γs) + 6δ1(Γs)

holds.

Proof. By Proposition 3.7 in [66], we have

Inds(f) ≥ h(Γs) + 2δ1(Γs),

where h(·) is defined in Equation (3.1). We prove the assertion by combining this with
Proposition 3.3.3.

Let H be the closure of the hyperelliptic locus of M3 in M3. Pulling back the line
bundle OM3(H) and its canonical section along the classifying map S → M3, we can
define the multiplicity multsH.

Proposition 3.3.5. With the notation above, then we have

Inds(f) = multsH + 2δ1(Γs).

Proof. See Proposition 9.6 in [13].

3.3.3 An unboundedness property of ⟨∆, ∆⟩

In this subsection, we still write S for the spectrum of a discrete valuation ring. We
denote the closed point of S by s. Recall Definition 1.4.18 and the paragraph after it for
some graph-theoretic terminology.

Definition 3.3.6. We say a genus 3 pm-graph Γ = (G,w, q) satisfies Condition (H) if
Γ is equivalent to a pm-graph Γ′ = (G′, w′, q′) such that

(1) Γ′ has no eliminable vertices,
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(2) G′ is the wedge sum of trees, type 1I or type 1II graphs in Table 3.1.

Proposition 3.3.7. Let C → S be a genus 3 stable curve with smooth non-hyperelliptic
generic fiber. If the dual graph Γs satisfies Condition (H), then we have

1
18ords(χ′

18) − λ(Γs) ≥ 0,

where strict positivity holds if Γs is not trivial.

Proof. We mainly use the inequality in Proposition 3.3.4. Since the functions h(·), δ0(·)
and δ1(·) are additive (Example 1.4.22 and Lemma 3.2.7), it remains to prove the asser-
tion for trees, type 1I graphs and type 1II graphs in Table 3.1.

Claim 3.3.8. If Γs is a tree, then 1
18 ords(χ′

18) − λ(Γs) ≥ 1
21δ(Γs).

Proof of claim: Table 3.1 contains all possible tree pm-graph of genus 3, then we
have λ(Γs) = 2

7δ(Γs). A tree graph has no edges of type 0 thus δ1(Γs) = δ(Γs), so we
obtain

1
18ords(χ′

18) − λ(Γs) ≥ 6δ(Γs)
18 − 2

7δ(Γs) = 1
21δ(Γs)

by Proposition 3.3.4. CLAIM PROVEN

Claim 3.3.9. If Γs is of type 1I or 1II in Table 3.1, then 1
18 ords(χ′

18) − λ(Γs) > 0.

Proof of claim: For type 1I in Table 3.1, it is easy to see
1
18ords(χ′

18) − λ(Γs) ≥ a

9 − 3a
28 = a

252 > 0.

Now we consider 1II in Table 3.1. If we write m1, m2 ∈ Z>0 for the thicknesses of
the two nodal points in Cs, then we get

1
18ords(χ′

18) − λ(Γs) ≥ m1 +m2

252 + min{m1,m2}
9 − m1m2

7(m1 +m2)

by Proposition 3.3.4 and Table 3.2. We assume m1 ≥ m2. If we denote m1
m2

by m3, then
the right side of the inequality above becomes

m2 · m
2
3 + 2m3 + 1 + 28(1 +m3) − 36m3

252(1 +m3)

=m2 · m
2
3 − 6m3 + 29
252(1 +m3)

=m2 · (m3 − 3)3 + 20
252(1 +m3) ,

which proves the positivity. CLAIM PROVEN
Thus we have proved the proposition.
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The main tool we used in the proof of the last proposition is Proposition 3.3.4. This
lower bound is not enough for our purposes if the dual graph contains more than 1 cycle
(for example, the type 2III in [9]). However, even for type 2III, we can prove

1
18ords(χ′

18) − λ(Γs) ≥ 0

where the equality holds when all edges are of the same length. Thus we would like to
believe that the positivity holds in general. However, the inequality in Proposition 3.3.4
is not enough for this goal in the general case.

Conjecture 3.3.10. Let C → S be a genus 3 stable curve whose generic fiber is non-
hyperelliptic and smooth. We conjecture

1
18ords(χ′

18) − λ(Γs) ≥ 0,

where strict positivity holds if Γs is not a one-point graph.

The theory of stable curves over Dedekind schemes can be extended to a complex
manifold analogue. Let D be the complex unit disk. For a family of complex curves
gC : Y → D which is smooth over D∗, there is a ramified map j : D → D such that the
pullback of gC along j has a stable model over D. See Proposition 7.2 in [38] and Page
173 in [49].

Lemma 3.3.11. Let f : Y → D be a generically non-hyperelliptic stable curve of genus
3 that is smooth over D∗. We consider χ′

18 as a rational section of the line bundle L⊗18
f

on D. Then the following asymptotics

− 1
18 log∥χ′

18∥Hdg(Yt) − λ(Yt) ∼ −
(

1
18ord0(χ′

18) − λ(Γ0)
)

log|t|

holds as t → 0, where the ∥ · ∥Hdg is defined in Equation (2.7). The symbol ∼ here means
that the difference of both sides can be extended to a continuous function on D∗.

Proof. By Proposition 7.4 in [13], this is equivalent to

λ(Yt) ∼ −λ(Γ0)log|t| − 1
2 logdet Im Ω(t),

as t → 0. This asymptotic formula for λ was proven by R. de Jong and F. Shokrieh as
Theorem C in [15].

Let {pm}m∈N+ be a family of points in the orbifold M3(C). Let f : U → M3(C) be
an étale map such that {pm+n0}m∈N+ ⊂ f(U) for some positive integer n0. Each point
pm+n0 can have several preimages on U along f . If there is a preimage p′

m+n0
of pm+n0
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for each m ∈ N+ such that {p′
m+n0

}m∈N+ converges to a point p′
s on U in the Euclidean

topology, we say the family of points {pm}m∈N+ converges to the point f(p′
s) on M3(C).

If a family of points on M3(C) converges, then the converging point is well-defined (does
not depend on the choices of f and the family of preimages).

Theorem 3.3.12. Let {Lm}m∈N+ be a family of smooth non-hyperelliptic curves of genus
3 over Q. If the following properties hold:

(1) considering {Lm ⊗Q C}m∈N+ as a family of points in M3(C), this family of points
lies on a curve in M3(C) and converges to a point in M3(C)\M3(C) which has a
non-trivial dual graph satisfying Condition (H),

(2) the dual graphs of their stable models (which exist over finite extensions of the base
field Q, see Theorem 1.1.16) over finite places satisfy Condition (H),

then their heights of canonical Gross-Schoen cycles ⟨∆m,∆m⟩ go to infinity.

Proof. We assume that Lm has semistable reduction over km with [km : Q] < +∞ for
all m ∈ N+. Then we can decompose the height ⟨∆m,∆m⟩ with the formula in Theorem
3.3.2:

⟨∆m,∆m⟩ = 21
[km : Q]

 ∑
v∈M(km)0

(
1
18ordv(χ′

18) − λ(Lm,v)
)

logNv


− 1

18 log∥χ′
18∥Hdg(Lm) − λ(Lm).

Condition (2) implies that the contribution from finite places is non-negative (Propo-
sition 3.3.7). It remains to show that the contribution from the infinite place Q → C
goes to infinity as m → ∞.

By Condition (1), after discarding finitely many curves in {Lm}, we can assume that
there is a family of complex genus 3 curves f : X → D such that:

(1) f is smooth over D∗, and is singular at the centre of D,

(2) there exists a series of points {tm}m∈N+ on D∗ approaching to the centre as m → ∞
such that Lm ⊗Q C ≃ Xtm .

Taking a suitable ramified map [n] : D → D defined by t → tn, we can pass to a stable
model f′ : X ′ → D of f and a family of points t′m such that [n](t′m) = tm. Condition (1)
implies that the fiber of f′ at the origin 0 is a singular stable curve satisfying Condition
(H). By Lemma 3.3.11, we have

− 1
18 log∥χ′

18∥Hdg(X ′
t′m

) − λ(X ′
t′m

) ∼ −
(

1
18ord0(χ′

18) − λ(Γ0)
)

log|t′m|.
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Thus we get

− 1
18 log∥χ′

18∥Hdg(Xtm) − λ(Xtm) ∼ − 1
n

·
(

1
18ord0(χ′

18) − λ(Γ0)
)

log|tm|.

According to Proposition 3.3.7, we can say ⟨∆m,∆m⟩ → ∞ as m → ∞.

Remark 3.3.13. If we can prove Conjecture 3.3.10, then we can discard mentioning the
Condition (H) in (1) and remove the condition (2) in Theorem 3.3.12.

3.3.4 An application of Theorem 3.3.12

In this subsection, we give an explicit family of curves that satisfies the conditions in
Theorem 3.3.12.

We define a family of plane curves by

{Cn : y4 = x4 − (4n− 2)x2 + 1}n∈N,

where N = {n ∈ N+|n ≡ 2(mod 3), n ̸≡ 0, 1(mod 25)}.
J. Guàrdia proved that the dual graphs of the stable models of these curves over Kn

(Notation 3.2 in [32]) are in Table 3.1 (all pm-graphs in Table 3.1 satisfy Condition (H))
for all finite places. This means that Condition (2) in Theorem 3.3.12 is satisfied.

As a compact Riemann surface, the curve Cn is isomorphic toD1/n : y4 = x(x−1)(x− 1
n ).

The family of curves Dκ : y4 = x(x − 1)(x − κ) over D (parametrized by κ) is smooth
over D∗ and singular at κ = 0 (the tacnodal curve y4 = x2(x− 1)).

Lemma 3.3.14. Let Dκ be the stable reduction of Dκ → D. Then D0 is the union of
two copies of the elliptic curve E given by the equation y2 = x3 −x, joined at two points.

Proof. See Proposition 8 in [34].

By the lemma above, Condition (1) in Theorem 3.3.12 is also satisfied. Thus the
heights of canonical Gross-Schoen cycles of {Cn}n∈N go to infinity as n → +∞.

Remark 3.3.15. The unboundedness of ⟨∆,∆⟩ for {Cn}n∈N was first proved by R.
de Jong in [13]. When the paper was written, the equality in Lemma 3.3.11 was only
established when the dual graph of Y0 is of type 1II.
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Chapter 4

Explicit Computations

This chapter is devoted to explicit computations for the height ⟨∆,∆⟩ of the following
plane curve over Q, using SageMath and Magma. As far as we know, this is the first
attempt to numerically compute ⟨∆,∆⟩ for a non-hyperelliptic curve of genus g > 2.

Main Curve : −X3Y +X2Y 2 −XY 2Z + Y 3Z +X2Z2 +XZ3 = 0

We denote this plane curve over Z by C and we use subscripts to distinguish its base
changes, for example CZp

, CQ and so on. We denote the affine patch Z = 1 of C by UC.
We denote the polynomial on the left hand side by F and we write f for F(x, y, 1).

There are several reasons for choosing this curve. First, the curve C is a stable model
of CQ over Z. Second, all its residue fields at singular points are in the type Fp for some
prime p (instead of the type Fpm for some integer m > 1), which makes it easy to compute
its thicknesses (Subsection 4.3). Third, it has no bad hyperelliptic reduction, thus we do
not need to compute the hyperelliptic multiplicity in Corollary 4.4.4. The thicknesses
and the hyperelliptic multiplicity are the main restrictions of our computation method.
Other parts of our computation (like these numerical approximations in Sections 4.5-4.7)
can be used for a general curve.

We sketch our plan of the computation as follows.

In Section 4.1, 4.2 and 4.3, we prove that CQ has semistable reduction over Q
and that C is a regular stable model for it. Thus we can apply Theorem 3.3.2.

The reduction types of C are summarized in Proposition 4.2.4 and Corollary 4.3.9.
In Section 4.4, we show that all invariants except the infinite λ(CC) in Theorem 3.3.2

75



4. EXPLICIT COMPUTATIONS

are computable. By Remark 1.5.7, to compute λ(CC) we only need to compute φ(CC)
and δ(CC).

In Section 4.5, we show how to evaluate the theta function ∥θ∥g−1 on Picg−1(CC).
Using ∥θ∥g−1, we numerically compute log(S(CC)) in Section 4.6. In Subsection 4.7.1,
we compute another invariant T (CC). With log(S(CC)) and T (CC), the invariant
δ(CC) can be computed by Theorem 4.7.3. Now, it remains to compute φ(CC).

By Theorem 4.7.7, we reduce the problem to the computation of H(CC). In the
second half of Subsection 4.7.2, we explain the strategy for computing H(CC).

The results of our computation are summarized in Section 4.8. In Section 4.9,
we explain the reliability of our results.

Longer sections of the code in this chapter can be found in Appendix I-IX.

4.1 Smoothness and bad reduction of C

In Subsection 4.1.1, we will show that CQ is a smooth curve over Q. In Subsection 4.1.2,
we show CZp has bad reduction at p = 29, 163 and good reduction at other primes.

4.1.1 Smoothness at the infinite place

By the Jacobian criterion for smoothness, we need to show that:√
(F,FX ,FY ,FZ) = (X,Y, Z).

This can be checked in SageMath by the following lines, thus CQ is a smooth curve over
Q.

1 R.<x , y , z>=PolynomialRing (QQ)
f=−x^3∗y + x^2∗y^2 − x∗y^2∗ z + y^3∗ z + x^2∗ z ^2 + x∗z ^3

3 I=R. i d e a l ( f , d e r i v a t i v e ( f , x ) , d e r i v a t i v e ( f , y ) , d e r i v a t i v e ( f , z ) )
I . r a d i c a l ( )

5 I d e a l ( z , y , x ) o f M u l t i v a r i a t e Polynomial Ring in x , y , z over Rat iona l
F i e ld

4.1.2 Bad reduction at finite places

We first consider the reduction of the affine patch UC. Since UC ≃ Spec(Z[x,y]
(f) ) has

smooth generic fiber, by the Jacobian criterion, the ideal IQ = (f, ∂f∂x ,
∂f
∂y ) is the unit ideal
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in Q[x, y]. This means that if we consider I = (f, ∂f∂x ,
∂f
∂y ) as an ideal in Z[x, y], then

I ∩ Z = (n) for some positive integer n. Let p be a prime, then we can see that p ∤ n if
and only if the reduction of I to Fp[x, y] contains a unit n ∈ F∗

p which is equivalent to
saying that UC has good reduction at p. Thus UC has bad reduction exactly at the prime
divisors of n.

By the above discussion, we have positive integers n1, n2 and n3 for three affine
patches. The curve C has bad reduction exactly at the prime divisors of n1n2n3. The
following SageMath code can be used for computing the primes of bad reduction.

1 sage :PP.<x , y , z> = Pro j ec t i veSpace (QQ, 2 )
sage :C = Curve(−x^3∗y+x^2∗y^2−x∗y^2∗ z+y^3∗ z+x^2∗ z^2+x∗z ^3 , PP)

3 sage : de f MyBadPrimes (C) : #f i n d i n g bad reduct i on primes
sage : f = C. de f in ing_polynomia l ( )

5 sage : RZ.<xZ , yZ , zZ> = PolynomialRing (ZZ , 3)
sage : c o e f f s = f . c o e f f i c i e n t s ( )

7 sage : dens = [ c . denominator ( ) f o r c in c o e f f s ]
sage : den = lcm ( dens )

9 sage : F = RZ( f ∗den )
sage : Fx = F . d e r i v a t i v e (xZ)

11 sage : Fy = F . d e r i v a t i v e (yZ)
sage : Fz = F . d e r i v a t i v e ( zZ )

13 sage : NaiveDisc = 1
sage : f o r P in [ [ xZ , yZ , 1 ] , [ xZ , 1 , zZ ] , [ 1 , yZ , zZ ] ] :

15 sage : I = i d e a l ( [ g (P) f o r g in [ F , Fx , Fy , Fz ] ] )
sage : G = I . groebner_bas i s ( )

17 sage : n = G[ l en (G) −1]
sage : NaiveDisc = lcm (n , NaiveDisc )

19 sage : r e turn [ a [ 0 ] f o r a in f a c t o r ( NaiveDisc ) ]

Bad reduction

Remark 4.1.1. There exists an explicit formula for the discriminant of a plane quartic
curve (Page 9 in [55]), and we can also find out the primes of bad reduction by factoring it.
This computation is implemented in Magma (http : //magma.maths.usyd.edu.au/magm
a/handbook/text/1547#17791).

With the code above, we can obtain the following proposition.

Proposition 4.1.2. The main curve C has bad reduction at 29 and 163, and good re-
duction at every other prime.
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4.2 Semistability of C

In Subsection 4.2.1, we develop an algorithm for checking whether a singular point on
a generically smooth plane curve over Zp is a nodal singularity. In Subsection 4.2.2, we
prove that CZp

is semistable over p = 29 or 163. Notions can be found in Section 1.1.

4.2.1 Algorithm for checking nodal singularities

By Definition 1.1.14, a generically smooth curve of genus g ≥ 1 over Zp is semistable if
its geometric fiber at Fp has only nodal singularities and all components of arithmetic
genus 0 intersect other components in at least 2 points.

Let C be a generically smooth plane curve over Z. Similar to Subsection 4.1.2, we
check the nodal singularities on one affine patch at one time. We assume the curve is
defined by f(x, y) = 0 on the affine patch Z = 1 of ProjZ[X,Y, Z], and we denote the
reduction of C and f at p by CFp

and fp. We sketch our strategy of checking nodal
singularities of CFp

as follows:

(1) We first check that the singular locus of CFp
is 0-dimensional. It is possible that

a curve over Zp is smooth over Qp but totally singular over Fp, for example, the
plane curve defined by X2 + pXY + pY 2 = 0.

(2) If (1) is true, then we find out the coordinates of singular points in CFp
. Since we

start from base field Fp, we will extend it to a field FpD such that all singular points
have coordinates in FpD .

(3) Fixing an arbitrary singular point of CFp
, for example ps = (x0, y0), we trans-

late ps to the origin of the affine patch Z = 1. This induces a new polynomial
g(x, y) = f(x+ x0, y + y0).

(4) After (3), we will check the singularity type of g(x, y) at O = (0, 0) in A2 by its
non-zero homogeneous part of lowest degree.

For step (1), computing the height of an ideal is implemented in SageMath.
For step (2), computing associated primes is implemented in SageMath and the fol-

lowing lemma implies that the associated prime ideals of FpD [x,y]
(f, ∂f

∂x ,
∂f
∂y )

are exactly the singular
points of CFp

|Z=1.

Lemma 4.2.1. Let A be a Noetherian ring. Then the minimal prime ideals of A belong
to Ass(A).

Proof. See Corollary 7.1.3 in [48].
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For step (4), we first point out g ∈ FpD [x, y] is square-free since otherwise the singular
locus is of dimension 1 (contradicting (1)). Its singularity type at O is determined by
its non-zero homogeneous part of lowest degree gmin. To be more precise, O is a smooth
point if deg(gmin) = 1, and O is a nodal (resp. cusp) point if deg(gmin) = 2 and gmin

can be factored into a product of two different (resp. the same) straight lines ([27] Page
66). This is also where we use the condition that C is a plane curve.

Example 4.2.2. Let k be a field with char k ̸= 2, 3. The two plane curves En : y2−x3−x2 = 0
and Ec : y2 − x3 = 0 have nodal and cusp points at the origin respectively. This can be
observed by their homogeneous parts of lowest degree, which are (y − x)(y + x) and y2.

The following is the pseudocode for our algorithm. The SageMath code can be found
in Appendix IV.

Algorithm 1 (1) Checking the singular dimension
Input: f : a polynomial in Fp[x, y]
Output: d: the dimension of singular locus of f = 0
1: Taking partial derivative fx and fy of f .
2: I = (f, fx, fy)
3: d = dimension of I = 2 − ht(I)
4: return d

Algorithm 1 (2) Finding out singular points
Input: I = (f, fx, fy): an ideal in Fp[x, y] of height 2
Output: LST : list of singular points
Fieldext = 1

2: find = False

while find = False do
4: primeideals = associated prime ideals of I

for P in primeideals do
6: if elements in Gröbner basis of P are not of degree 1 then

break the for iteration
8: end if

find = True

10: D = Fieldext

end for
12: Fieldext = Fieldext+ 1

end while
14: change base field to FpD

LST = list of associated prime ideals of I in FpD [x, y]
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16: return LST

Algorithm 1 (3) Checking the singularity type
Input: m = (x− a, y − b): an element in LST with a and b in FpD

Output: local behaviour of f at the point m

1: G(x, y) = F (x+ a, y + b)
2: take H to be the non-zero homogeneous part of G in lowest degree
3: if degree(H) > 2 then
4: result=Higher singularity
5: else
6: result=the factorization of H over Fp2D

7: end if
8: return result

From the output, we check the factorization of H manually for its singularity type.

Remark 4.2.3. We can also check if a plane curve is a nodal curve by Magma (http :
//magma.maths.usyd.edu.au/magma/handbook/text/1411#15882).

4.2.2 Semistability of C

With the algorithm in Subsection 4.2.1, we can get the following result of C.

Proposition 4.2.4. CZ29 has exactly one singular point at (X + 3Z, Y − 2Z, 29) which
is a nodal point. And CZ163 has exactly one singular point at (X − 49Z, Y − 36Z, 163)
which is a nodal point. All other fibers are smooth.

Remark 4.2.5. The degree 2 parts of C at these two points (H in the last algorithm)
are −6x2 + 3xy − 11y2 (for 29) and 80x2 − 56xy + 15y2 (for 163) respectively.

Corollary 4.2.6. CFp
is stable and geometrically irreducible for every prime p. The

geometric genus of CFp
at p = 29, 163 is 2. Thus C is a stable curve over Z.

Proof. When p ̸= 29 or 163, the curve CFp
is a smooth plane quartic curve and thus

stable and geometrically irreducible.
For p = 29 or 163, if CFp

has multiple irreducible components, then each component
corresponds to a polynomial Fi such that F =

∏
Fi. The polynomials Fi are different

otherwise CFp
can not have only nodal singularities. If all Fi are of degree 1, then the

curve CFp
is the union of 4 straight lines in P2

Fp
, which can not be nodal and have exactly

1 singular point at the same time. When deg(Fi0) > 1 for some Fi0 , Bézout’s theorem
shows that there are more than 1 singular points which contradicts the fact that CFp

has
only 1 nodal point at p = 29 and 163. This shows that CF29

and CF163
are geometrically
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irreducible. Furthermore, their normalizations are curves of genus 2 which means that
CF29

and CF163
are stable curves.

4.3 Thickness of C at nodal points
In this section, we show that the thickness of C at the two singular points is 1. This implies
that C is a regular stable model for CQ. We introduce the Fitting ideal in Subsection
4.3.1 and compute the thickness of C in Subsection 4.3.2. The content of Subsection 4.3.3
is not used in our computation for C but might be helpful for other curves.

4.3.1 Fitting ideal

In this section, we introduce the Fitting ideal and state its relation to thickness. Details
can be found in Tag 0C3C and Subsections 2.2-2.4 of [5].

Definition 4.3.1. If R is a commutative ring with 1 and M is a finitely generated
R-module, then we have a free resolution of M

⊕
l∈L

R
ϕ−→ ⊕

j∈J
R −→ M → 0 (4.1)

where J is a finite index set and L can be infinite. The map ϕ corresponds to a #J× #L

matrix N (might be an infinite matrix) and we define the k-th Fitting ideal FitRk (M) ⊂ R

to be the ideal generated by all the (#J − k) × (#J − k) minors of N .

Remark 4.3.2. The Fitting ideals are independent of the choice of the resolution (see
Tag 07Z8).

There is also a scheme version for the Fitting ideal. Lemma 4.3.3 shows that the
Fitting ideal behaves well under localization and gluing.

Lemma 4.3.3. Let X be a scheme. If F is a quasi-coherent OX-module of finite type,
then for each non-negative integer i, there exists a unique quasi-coherent sheaf of ideals
FitXi (F) such that on each affine U = Spec(A) étale over X, we have

FitXi (F)(U) = FitAi (F(U)) ⊂ A.

Proof. Tag 0CZ3.

Lemma 4.3.4. If X → S is a scheme morphism of finite type and S′ → S is an affine
morphism, then for any non-negative integer i, we have

FitXi (ΩX/S) ⊗S S
′ ≃ Fit

XS′
i (ΩXS′/S′)

as OS′-modules.
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Proof. According to Lemma 4.3.3, we only need to consider the affine case. Let’s assume
that B is a finitely generated A-algebra, then we have a resolution as in Definition 4.3.1

⊕i∈LB
ϕ−→ ⊕j∈JB −→ ΩB/A → 0.

For a ring homomorphism A → A′, since ⊗AA
′ is a right exact functor and the cotangent

bundle is stable under base change, we have

⊕i∈LBA′
ϕ′

−→ ⊕j∈JBA′ −→ ΩB⊗AA′/A′ → 0.

Since the matrix defining FitBi (ΩB/A) is not changed after applying the functor ⊗AA
′,

we have
FitBi (ΩB/A) ⊗A A

′ ≃ FitB⊗AA
′

i (Ω(B⊗AA′)/A′)

as A′-modules.

For a semistable curve X over S, the first Fitting ideal of the cotangent bundle ΩX/S
cuts out a closed subscheme of X which we denote by Sing(X/S). The complement of
Sing(X/S) is exactly the smooth locus of X → S. Remark 2.14 in [5] shows the following
relation between the thicknesses of singular points on X and Sing(X/S).

Lemma 4.3.5. Let S be the spectrum of a strict Henselian discrete valuation ring A

with a uniformizer t. If X → S is a semistable curve with smooth generic fiber, then

Sing(X/S) ≃ Spec
(∏
e∈N

A/(tα(e))
)

where N is the set of nodal points on X ⊗S Spec(A/(t)) and α(e) is the thickness at e.

Example 4.3.6. Let Zunp be the unramified closure of Zp. For the semistable elliptic
curve

C : Y 2Z −X3 − aX2Z − cZ3 = 0

over Zunp , where p > 3, a ∈ (Zunp )∗ and c ∈ pZunp \{0}, we have

Sing(C/S) ≃ Spec(Zunp /pordp(c)Zunp ).

Thus we conclude that C has a nodal singularity of thickness ordp(c) at (x, y, p) on the
affine patch Z = 1.

Proof. It is easy to show that there is only one nodal point (x, y, p) on the affine patch
Z = 1. We denote Zun

p [x,y]
y2−x3−ax2−c by R and denote y2 − x3 − ax2 − c by f . By Definition

4.3.1 and Lemma 4.3.3, we make the following resolution of ΩC on Z = 1:

R
ϕ−→ R⊕R

ψ−→ ΩR/Zun −→ 0
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where ϕ sends 1 to fx ⊕ fy and ψ sends u⊕ v to udx+ vdy. This resolution just comes
from the construction of the cotangent bundle, and thus is exact. By Lemma 4.3.3, the
first Fitting ideal of this curve on Z = 1 is given by the ideal I = (fx, fy) in R. Then we
have

R/I ≃
Zunp [x, y]

(y2 − x3 − ax2 − c, 2y,−3x2 − 2ax) ≃
Zunp [x, y]
(x, y, c) ≃ Zunp /(c).

By Lemma 4.3.5, we have

Sing(C/Zunp ) ≃ Spec(Zunp /pordp(c)Zunp ),

and this shows the result.

4.3.2 Thickness of C

Recall that in Section 4.2, we showed the following result for C:

• CZ29 has exactly one nodal point at (X+3, Y −2, 29) on the affine patch Z = 1
with residue field F29.

• CZ163 has exactly one nodal point at (X − 49, Y − 36, 163) on the affine patch
Z = 1 with residue field F163.

• CZ has no other singular points.

We start our computation on C by the observation that all nodal points are on UC. By
Lemma 4.3.3, we can compute the Fitting ideal FitC1 (ΩC/Z)(UC) on UC by the following
resolution:

R
ϕ−→ R⊕R

ψ−→ ΩC/Z(UC) −→ 0 (4.2)

where R = Z[x,y]
(f) , the map ϕ sends 1 to fx ⊕ fy and ψ sends u⊕ v to udx+ vdy.

This computation of the ideal I = (f, fx, fy) can be carried out in SageMath by the
following code:

1 R.<x , y>=PolynomialRing (ZZ)
f=−x^3∗y+x^2∗y^2−x∗y^2+y^3+x^2+x

3 fx=d e r i v a t i v e ( f , x )
fy=d e r i v a t i v e ( f , y )

5 I=R. i d e a l ( [ f , fx , fy ] )
B=I . groebner_bas i s ( )

7 B
[ x + 3048 , y + 2898 , 4727 ]
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9 f a c t o r (4727)
29 ∗ 163

Thickness

Thus we have
R

FitR1 (ΩR/Z)
≃ Z[x, y]

(f, fx, fy)
≃ Z[x, y]

(x+ 3048, y + 2898, 29 × 163) . (4.3)

By Lemma 4.3.4, we can tensor Equation (4.3) with ⊗ZZunp for p = 29 or 163 and get

Sing(CZun
29

) ≃ Zun29 /(29 · Zun29 ),
Sing(CZun

163
) ≃ Zun163/(163 · Zun163).

Since Zunp is a strict Henselian discrete valuation ring, we conclude that the thickness of
C at these two points are both 1 by Lemma 4.3.5. We can summarize our computation
into the following proposition.

Proposition 4.3.7. CZ29 has thickness 1 at the only nodal point, and CZ163 has thickness
1 at the only nodal point.

Corollary 4.3.8. C is the regular stable model of CQ over Z.

Proof. By Corollary 4.2.6, the curve C is stable. By Proposition 4.3.7, all singular points
on C have thickness 1, which means that C is regular.

Corollary 4.3.9. The dual graphs of C at 29 or 163 are of type 1I in Table 3.1 with the
edge weighted by 1.

Proof. An application of Corollary 4.2.6 and Proposition 4.3.7.

4.3.3 Further discussion of thickness

For a polynomial f , we write fdeg≤i (resp. fdeg>i) for the polynomial containing monomi-
als of f in degree not bigger (resp. bigger) than i. For example, if f = x4+x3y2+5x2+xy+y3,
then fdeg≤3 = 5x2 + xy + y3.

Proposition 4.3.10. For an odd prime p, we choose U ≃ Spec(A) to be an affine open
subscheme of a semistable curve C over Zunp where A = Zunp [x, y]/(f). If U has only 1
nodal point OA = (x, y, p) and

fdeg≤2 = ax2 + bxy + cy2 + d

for a, b, c in Zunp and d in pZunp \{0}, then the thickness of C at OA is equal to the
thickness of V = Spec(B) at OB = (x, y, p) where B = Zp[x,y]

(fdeg≤2(x,y)) .
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Proof. By the criterion of singularity type for plane curves (Page 66 in [27]), point OA
is a nodal point on U if and only if OB is a nodal point on V . The geometric fiber VFp

is the union of two straight lines l1 and l2 on the affine plane. The two straight lines are
not parallel otherwise the origin can not be a nodal point. This means that OB is the
only singular point on V .

We denote the partial derivative of fdeg>2 with respect to x and y by (fdeg>2)x and
(fdeg>2)y. By Lemma 4.3.5, we have

Zunp
(pα(OA)) ≃ A

(FitA1 (ΩA/Zun
p

))
≃

Zunp [x, y]
IA

=: RU (4.4)

Zunp
(pα(OB)) ≃ B

(FitB1 (ΩB/Zun
p

))
≃

Zunp [x, y]
IB

=: RV (4.5)

where

IA = (f, 2ax+ by + (fdeg>2)x, bx+ 2cy + (fdeg>2)y),
IB = (fdeg≤2, 2ax+ by, bx+ 2cy).

These isomorphisms shows that RU and RV are local rings.
By the definition of nodal singularity, the image of b2 − 4ac in Zun

p

pZun
p

≃ Fp does not
vanish, which means that b2 − 4ac ∈ (Zunp )∗. We can simplify IA and IB to be

IA = (f, x+ l(x, y), y +m(x, y)),
IB = (fdeg≤2, x, y) = (x, y, d),

where

l(x, y) = b(fdeg>2)y − 2c(fdeg>2)x
b2 − 4ac ,

m(x, y) = b(fdeg>2)x − 2a(fdeg>2)y
b2 − 4ac ,

are polynomials in Zunp [x, y].
According to isomorphisms in Equation (4.4) and (4.5), in order to show α(OA) = α(OB),

we just need to show RU ≃ RV . Since the completion of Zun
p

(pt) with respect to the maximal
ideal is still itself, we just need to show R̂U ≃ R̂V . By Equation (4.4) and (4.5), we get

R̂U = lim
n

Zunp [[x, y]]
IA + (x, y, p)n ,

R̂V = lim
n

Zunp [[x, y]]
IB + (x, y, p)n .
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Claim 4.3.11. We have the following equality

IA + (x, y, p)n = IB + (x, y, p)n (4.6)

for every positive integer n.

Proof of claim: When n = 1, we can see IA ⊂ (x, y, p) and IB ⊂ (x, y, p) and thus
the claim is trivial.

For n > 1, we first note that

IB + (x, y, p)n = (x, y, d, pn) = (x, y, pmin(n,ordpd)),

and Equation (4.6) is equivalent to (x, y) ⊂ IA + (x, y, p)n.
Now we show that (x, y)n ⊂ IA + (x, y, p)n implies (x, y)n−1 ⊂ IA + (x, y, p)n. We

will show that xiyn−i−1 ∈ IA + (x, y, p)n for every integer i in [0, n− 1]. Since either x’s
or y’s exponent is positive, without loss of generality, we can assume i ≥ 1. Then

xiyn−i−1 = (x+ l(x, y))xi−1yn−i−1 − l(x, y) · xi−1yn−i−1,

where the degree of l is either equal to 0 or strictly bigger than 1. Since x+ l(x, y) ∈ IA

and l(x, y) · xi−1yn−i−1 ∈ (x, y)n ⊂ (x, y, p)n, we have

xiy(n−i−1) ∈ IA + (x, y, p)n

thus
(x, y)n−1 ⊂ IA + (x, y, p)n.

This procedure does not use the powers of p in the ideal. Repeating this procedure, we
can finally show that (x, y) is contained in both sides in Equation (4.6), which implies

IA + (x, y, p)n = (x, y, pmin(n,ordpd)) = IB + (x, y, p)n.

CLAIM PROVEN
By the claim, we have R̂U ≃ R̂V which implies α(OA) = α(OB).

Corollary 4.3.12. If pe∥d in Zunp , the thickness of the curve C in Proposition 4.3.10 at
the point OA = (x, y, p) is e.

Proof. By Proposition 4.3.10, we only need to compute the thickness of fdeg≤2 at the
point OB = (x, y, p). By Lemma 4.3.5, we have the following on V

Zunp
(pα(OA)) ≃

Zunp [x, y]
(fdeg≤2, (fdeg≤2)x, (fdeg≤2)y)

(4.7)

≃
Zunp [x, y]

(ax2 + bxy + cy2 + d, 2ax+ by, bx+ 2cy) . (4.8)
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By semistability of C, we have b2 − 4ac ∈ (Zunp )∗, thus (2ax + by, bx + 2cy) = (x, y).
Substituting (2ax+ by, bx+ 2cy) = (x, y) to Equation (4.8), we get

Zunp [x, y]
(ax2 + bxy + cy2 + d, 2ax+ by, bx+ 2cy) ≃

Zunp
(d) ,

which gives α(OA) = e.

Example 4.3.13. In Proposition 4.3.10, f has no linear terms, and now we show that
this requirement is essential. We assume that U ≃ Spec

(
Zun

p [x,y]
(f)

)
is an open subscheme

of C where
f = xd + xy + pmx− pny + pl (4.9)

for integers m > 0, l > 0, n > 0 and d > 2. Then

fdeg≤2 = xy + pmx− pny + pl. (4.10)

We will compute the thickness of f and fdeg≤2 at the origin (x, y, p).

(1) by substituting

x → x′ + pn

y → y′ − dpn(d−1) − pm,

into Equation (4.9), we get

f1(x′, y′) = f(x′ + pn, y′ − dpn(d−1) − pm)

= fdeg>2
1 + d(d− 1)pn(d−2)

2 x′2 + x′y′ + pnd + pm+n + pl.

(2) by substituting

x → x′′ + pn

y → y′′ − pm,

into Equation (4.10), we get

f2(x′′, y′′) = fdeg≤2(x′′ + pn, y′′ − pm)
= x′′y′′ + pm+n + pl.

Now we can apply Corollary 4.3.12 for computing the thickness at the origin. Taking
n = 2, d = 3 and m = l = 10, we get the thickness is 6 in (1) and is 10 in (2).
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4.4 ⟨∆, ∆⟩ for CQ

Recall that in Theorem 3.3.2, we already decomposed ⟨∆,∆⟩ into a sum of contributions
from Archimedean places and non-Archimedean places. In this section, we will show that
all terms but the infinite λ invariants in Theorem 3.3.2 are computable now.

1 For a finite place v, by Proposition 4.2.4, Corollary 4.2.6 and Proposition 4.3.7,
the dual graph of C at v is known. We can get its admissible invariants (including
λ(Cv)) from Table 3.1 and Table 3.2. There are only finitely many primes with bad
reduction, and invariants at primes with good reduction contribute 0 to the height.

2 For a finite place v, by Proposition 3.3.3 and Proposition 3.3.5, the number ordv(χ′
18)

can be computed if we know the dual graph and the location of Cv in the moduli
space M3.

3 For the infinite place v : Q → C, in Equation (2.3) we have an explicit expression
for χ′

18 for v, and the Hodge metric is determined by the period matrix of CC

(Equation (2.7)).

4 For the infinite place v : Q → C, the invariant λ(Cv) is the most difficult one, we
will show how to compute it in later sections. In fact, all the remaining sections
are necessary for the computation of λ(Cv).

4.4.1 λ at finite places

By Proposition 4.1.2 and Corollary 4.3.9, the only non-trivial dual graphs of C come from
29 and 163, which are the type 1I graph in Table 3.1. We can get the admissible invariants
of Γv for v = 29 and 163 from Table 3.1 and Table 3.2, which can be summarized as
follows.

Proposition 4.4.1. For v = 29 or 163, we have δ0(Cv) = 1, δ1(Cv) = 0, τ(Cv) = 1
12 ,

θ(Cv) = 0, φ(Cv) = 1
9 , λ(Cv) = 3

28 and ϵ(Cv) = 2
9 .

Corollary 4.4.2. The λ invariants from non-Archimedean places contribute

−21
∑

v∈M(Q)0

λ(Cv)N(v) = − 21 × 3
28 (log29 + log163)

≈ − 19.0373535692

to the height ⟨∆,∆⟩ of CQ.

Proof. Substitute Proposition 4.4.1 into Theorem 3.3.2.
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4.4.2 χ′
18 at finite places

The closure of the hyperelliptic locus H (denoted by H) in M3 is a divisor. Proposition
3.3.3 and Proposition 3.3.5 relate H and ordv(χ′

18). Thus we need to study the integer
multv(H) for our curve C. Note that CFp

is geometrically irreducible and of geometric
genus 2 (Corollary 4.2.6) at p = 29 and 163.

Let D be a smooth curve of genus 2 over an algebraically closed field. It is well-
known that D is hyperelliptic and has a unique hyperelliptic involution, i.e. a non-trivial
element σ ∈ Aut(D) such that σ2 = IdD and D/ < σ >≃ P1. We say points p ̸= q on D
are conjugate if σ(p) = q.

Proposition 4.4.3. Let H0 be a smooth curve of genus 2 over an algebraically closed
field K. Let p and q be conjugate points on H0. The curve C given by identifying p and
q (glue them into a nodal singularity) on H0 is not a plane quartic curve.

Proof. We assume that C is a plane quartic defined by f(x, y) = 0 on certain affine
patch Uxy. Without losing generality, we can assume the nodal point is (0, 0), then the
equation becomes

f(x, y) = fdeg≥3(x, y) + fdeg=2(x, y), (4.11)

where fdeg=2(x, y) is a non-degenerate quadratic form.
Now we blow up the curve C at (0, 0) by substituting y = xt, then we get an affine

open set Uxt of H0 given by

fdeg≥3(x, xt)/x2 + fdeg=2(x, xt)/x2 = 0. (4.12)

By the non-degeneracy of fdeg=2(x, y), we know that fdeg=2(x, xt)/x2 is a polynomial in
t with distinct roots t1 and t2. After the blow up, we get the original smooth curve H0

and the nodal point (0, 0) on C is resolved into two distinct points (0, t1) and (0, t2) on
Uxt. These two points are exactly p and q.

In Equation (4.12), we have fdeg≥3(x, xt)/x2 = xf1(t) + x2f2(t). At least, we know
that f2 is non-zero (we assumed that C is a plane quartic), and fdeg=2(x, xt)/x2 is
a polynomial in t. In other words, t gives a 2-1 map from H0 to P1

K . Since H0 is
hyperelliptic, it has a natural 2-1 map Quo to P1

K . By the uniqueness of the hyperelliptic
2-1 map for a hyperelliptic curve, we have a unique automorphism η of P1

K that makes
the following diagram commute:

H0 P1

P1

t

Quo

η
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where conjugate points are mapped to the same point by Quo.
The images of p and q are 2 different points along t since they correspond to (0, t1)

and (0, t2). This is impossible since they are conjugate and are mapped to the same
point by Quo. Thus the curve C can not be a plane quartic.

Corollary 4.4.4. When p = 29 or 163, we have multp(H) = 0 for CZp
.

Proof. According to Proposition 4.2.6, the reduction of C at 29 (and 163) is an irreducible
plane quartic with exactly 1 singular point. By Proposition 4.4.3, the reduction of C at
p = 29 and 163 are not obtained by gluing conjugate points on a genus 2 curve.

The singular curve CFp
lies on the closure of the hyperelliptic locus if and only if

CFp
has an involution ι and the quotient map CFp

/⟨ι⟩ is a tree of P1 connected by nodal
points (Page 101 in [3]). The normalization of CFp

is a genus 2 curve (denoted by C̃Fp
)

thus is hyperelliptic. Suppose CFp
is hyperelliptic, then CFp

/⟨ι⟩ ≃ P1 since we already
know that CFp

is irreducible (Proposition 4.2.6).
We write qι for the quotient map induced by ι and write n for the normalization map

of CFp
, that is

C̃Fp

n→ CFp

qι→ P1.

According to the first paragraph, we know that n identifies two non-conjugate points.
The composition of qι ◦ n is a 2-1 map from C̃Fp

to P1. This is impossible since we
already know that n identifies non-conjugate points. Thus CFp

is non-hyperelliptic. The
multiplicity of CZp

at the hyperelliptic locus in M3 is 0.

Proposition 4.4.5. For v = 29 or 163, we have ordv(χ′
18)(CZv

) = 2. And

ordv(χ′
18)(CZv

) = 0

for all other finite places v.

Proof. Combining Proposition 3.3.3 and Proposition 3.3.5 we have

ordv(χ′
18) = 2multv(H) + 6δ1(Γv) + 2δ0(Γv).

Then we get the result by combining Proposition 4.2.4, Proposition 4.4.1 and Corollary
4.4.4.

Remark 4.4.6. ordv(χ′
18) vanishes at finite places of good reduction.

Corollary 4.4.7. For finite places, χ′
18 contributes

21
18(2log29 + 2log163) ≈ 19.7424407385

to ⟨∆,∆⟩.

Proof. Substituting Proposition 4.4.5 into Theorem 3.3.2.
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4.4.3 χ′
18 at the infinite place

Recall notations introduced in Equation (2.2), Equation (2.3) and Remark 2.1.10. Us-
ing the metric given by Equation (2.7), we get that the contribution of log∥χ′

18∥Hdg in
Theorem 3.3.2 is:

− 21
18 log∥χ′

18∥Hdg(τ)

= − 21
18 log(∥2−28(2πi)54χ̃18(τ)(dz1 ∧ dz2 ∧ dz3)⊗18(τ)∥Hdg)

= − 21
18 log|2−28(2π)54

∏
ϵ∈S3

θϵ(0, τ)(det Imτ)9|.

All components except the list of even characteristics are implemented in Magma, while
the list of even theta characteristics for dimension 3 is easy to compute by hand. Magma
code for this computation can be found in Appendix VI. With our calculation, we get
the following proposition.

Proposition 4.4.8. At the infinite place, the χ′
18 modular form contributes

−21
18 log∥χ′

18∥Hdg ≈ −81.0426321447

to ⟨∆,∆⟩.

4.5 Evaluation of ∥θ∥g−1

In this section, we will define and show how to evaluate ∥θ∥g−1 at points in Picg−1(CC).
At the end of Subsection 4.5.1, we summarize our strategy. Subsection 4.5.2 is about
the computation of a canonical divisor of CC. We can evaluate ∥θ∥g−1 with Proposition
4.5.11 in Subsection 4.5.3.

To avoid confusion, in this section, we still use g in some notations even though we
know g = 3 for CC, for example we use ∥θ∥g−1 rather than ∥θ∥2.

4.5.1 Strategy

Fixing a base point Pbs, a basis of holomorphic forms {ωi}1≤i≤g and a symplectic homol-
ogy basis {ηi} of the genus g Riemann surface C, we have a period matrix Ω = (Ω1,Ω2)
associated to these datum. Then we have an element τ = Ω−1

1 Ω2 in the Siegel upper
half-space Hg. Taking {ηi}1≤i≤g = {ωi}1≤i≤g · tΩ−1

1 , we have the following map

Divg−1(C) → Cg/Zg + τZg,
∑
n

nkPk →
∑
n

nk

∫ Pk

Pbs

(η1, . . . , ηg),
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which induces a bijective map:

u : Picg−1(C) → Cg/Zg + τZg. (4.13)

Remark 4.5.1. The ‘Abel-Jacobi’ map above is well-defined for a chosen base point Pbs.
We will write AJ for the Abel-Jacobi map from Div0(C) to Cg/Zg + τZg, which we can
define without a base point.

The zero locus of Riemann’s theta function

θ(z; τ) :=
∑
n∈Zg

exp(πitnτn+ 2πitnz) (4.14)

defines a divisor Θ0 on Cg/Zg + τZg. Recall that the theta divisor Θ in Picg−1(C)
corresponds to classes of line bundles admitting a global section. The following theorem
of Riemann (Theorem 1.4.2 in [12]) links Θ0 and Θ.

Theorem 4.5.2. We denote tκ to be the translation map of the tori with respect to
κ ∈ Cg/Zg + τZg, that is, an endomorphism of Cg/Zg + τZg sending x ∈ Cg/Zg + τZg

to x + κ ∈ Cg/Zg + τZg. There is a unique element κ = κ(Pbs) in Cg/Zg + τZg

such that (tκ ◦ u)∗Θ = Θ0 which also induces a canonical isomorphism of line bundles
(tκ◦u)∗O(Θ0) ∼−→ O(Θ) on Picg−1(C). Furthermore, we have (tκ◦u)(KC−D) = −(tκ◦u)(D)
for any divisor D of degree g − 1.

By a semi-canonical divisor on C, we mean a divisor s on C of degree g−1 such that
2s ∼ ΩC . For a compact Riemann surface C of genus g > 0, there are 22g semi-canonical
elements in Picg−1(C). These semi-canonical divisors are equal up to a 2-torsion point
of Jac(C).

Corollary 4.5.3. The map tκ ◦ u identifies the set of classes of semi-canonical divisor
on C with the set of 2-torsion points on Cg/Zg + τZg.

By Riemann’s theorem, we can translate a metric on O(Θ0) to O(Θ) along the map
tκ ◦ u. The following paragraph shows how we choose the metric on O(Θ0).

We write s for the canonical section of O(Θ0) and fix a (1, 1)-form on Cg/Zg + τZg

by
ν := i

2
∑

1≤k,l≤g

(Imτ)−1
k,ldzk ∧ dzl. (4.15)

The 2g-form 1
g!ν

g gives the Haar measure on Cg/Zg + τZg. We choose ∥ · ∥Θ0 to be the
metric on O(Θ0) uniquely determined by:

(i) the curvature form of ∥ · ∥Θ0 is equal to ν,
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(ii) 1
g!
∫
Cg/Zg+τZg ∥s∥2

Θ0
νg = 2−g/2.

For simplicity, we write ∥θ∥ for ∥(tκ · u)∗s∥Θ or ∥s∥Θ0 . Then we have the following
expression of ∥θ∥.

Proposition 4.5.4. Let z ∈ Cg and τ ∈ Hg. Then the formula

∥θ∥(z; τ) = (det Imτ)1/4exp(−πty · (Imτ)−1 · y) · |θ(z; τ)|

holds, where y = Imz and θ is defined in Equation (4.14).

Proof. See Page 413 in [23].

Notation 4.5.5. We write ∥θ∥ for the metric of the canonical section of O(Θ0) on
Cg/Zg + τZg, and write ∥θ∥g−1 for the metric of the canonical section of O(Θ) on
Picg−1(C) induced by ∥θ∥.

By Theorem 4.5.2, there exist a unique ∆′ ∈ Picg−1(C) such that for allD ∈ Picg−1(C),
we have:

2∆′ = KC , (4.16)
∥θ∥g−1(D) = ∥θ∥(AJ(D − ∆′)), (4.17)

where AJ is the Abel-Jacobi map from Pic0(C) to Cg/Zg + τZg.
Now we explain our strategy for evaluating ∥θ∥g−1(D) where D ∈ Picg−1(C). Recall

that we fixed an isomorphism Picg−1(C) ∼→ Cg/Zg +Zgτ in Equation (4.13). By Propo-
sition 4.5.4 and Equation (4.17), we reduce the problem to computing AJ(D − ∆′). By
the equality

AJ(D − ∆′) = AJ(D − (g − 1)Pbs) −AJ(∆′ − (g − 1)Pbs), (4.18)

we only need to compute AJ(∆′ − (g − 1)Pbs). Since Picg−1 is a 3-dimensional abelian
variety, there are 64 elements in Picg−1(C) satisfying the Equation (4.16). These ele-
ments give 64 possibilities for AJ(∆′ − (g − 1)Pbs). In Subsection 4.5.2, we compute
the canonical divisor KC . In Subsection 4.5.3, we explain our algorithm for finding the
correct AJ(∆′ − (g − 1)Pbs) among the 64 possibilities.

Remark 4.5.6. θ and AJ are implemented in Magma. Using Proposition 4.5.4, we can
evaluate ∥θ∥.
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4.5.2 Canonical divisor of CC

In this subsection, we compute a canonical divisor of CC. Recall that a canonical divisor
of a Riemann surface is the divisor of a non-zero meromorphic differential form.

We write the equation of CC on the affine patch U = CC|X=1 as

f0 = −yX + y2
X − y2

XzX + y3
XzX + z2

X + z3
X ,

then the differential form on U

ω0 = zXdzX
(f0)yX

= zXdzX
3y2
XzX − 2zXyX + 2yX − 1 (4.19)

can be extended to a global holomorphic form ω (Theorem 4.6.10). Thus we just need
to compute div (ω). Since ω is a holomorphic form, we only need to consider zeroes of ω.

The locally defined function zX is a local parameter for all but finite points on U .
We write U1 for the open subset of U where zX is a local parameter. The numerator zX
of ω0 on U vanishes to order 1 at the points

P1 = (1 : 0 : 0),
P2 = (1 : 1 : 0),

while the denominator does not. Thus zX is a local parameter near P1 and P2, and ω0

has simple zeroes at P1 and P2. So we obtain

div(ω)|U1 = [P1] + [P2].

It can be shown that points in U\U1 are not in the support of div(ω)|U . Thus we have

div(ω)U = [P1] + [P2].

There are two points of CC not lying on U :

P3 = (0 : 1 : 0),
P4 = (0 : 0 : 1).

P3 = (0 : 1 : 0) lies on the affine patch V = CC|Y=1. Substituting

zX → zY
xY

yX → 1
xY

into Equation (4.19) and the defining polynomial of CC, we get

ω|V = zY xY dzY − z2
Y dxY

3zY − 2zY xY + 2x2
Y − x3

Y

, (4.20)

94



4. EXPLICIT COMPUTATIONS

and
zY + x2

Y = x3
Y + zY xY − z3

Y xY − z2
Y x

2
Y . (4.21)

The coordinate of P3 in this affine patch is (0, 0)V , and either xY or zY is the local
parameter for P3. From Equation (4.21), we can see xY is a local parameter at P3

(ordP3(xY ) = 1) and thus ordP3(zY ) = 2. Then the right hand side of Equation (4.21)
has order strictly bigger than 2 (that is, ordP3(zY + x2

Y ) > 2). Substituting

zY = −x2
Y + higher degree terms

into Equation (4.20), we get ordP3(ω) = 2.
It remains to compute the order of ω at P4. Substituting the order of ω at P1, P2

and P3 into the equations below

4 = deg(KCC) = ordP1(ω) + ordP2(ω) + ordP3(ω) + ordP4(ω),

we get ordP4(ω) = 0. In conclusion, we get the following proposition.

Proposition 4.5.7.

KCC = div(ω) = [P1] + [P2] + 2[P3]
= [(1 : 0 : 0)] + [(1 : 1 : 0)] + 2[(0 : 1 : 0)].

Remark 4.5.8. We can also compute the canonical divisor in Magma.

4.5.3 2-translation

Given the canonical divisor KC of C, we get 64 possibilities for AJ(∆′ − (g − 1)Pbs). In
this subsection, we explain how to find the correct one among the 64.

We use the base point Pbs fixed in Subsection 4.5.1, and write TC for the torus
Jac(C) = Cg/Zg +Zgτ . We use the isomorphism u : Picg−1(C) ∼→ TC given in Equation
(4.13). According to the last paragraph in Subsection 4.5.1, there is a subset V of TC ,
containing 64 elements, such that each element v∆ in V satisfies

2v∆ = AJ(KC − 2(g − 1)Pbs).

We want to find the one that makes Equation (4.17) hold.
The difference of any two elements in V is a 2-torsion point of TC . If we fix a v∆′ in

V , then we just need to figure out the correct translation by a 2-torsion point η in TC

that makes the equation

∥θ∥g−1(D) = ∥θ∥(AJ(D − (g − 1)Pbs) − (v∆′ + η)) (4.22)

hold.
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Lemma 4.5.9. ∥θ∥g−1 vanishes at points in Picg−1(C) that have effective representative
divisors.

Proof. This follows from Theorem 4.5.2 and the definition of Θ (the paragraph before
Theorem 4.5.2).

We use the lemma above to compute the 2-torsion point η. For example, ∥θ∥g−1

vanishes at (g − 1)Pbs. We sketch the algorithm as follows. Magma code and the period
matrix τ chosen by Magma can be found in Appendix V.

Algorithm 2 Computation of the correct v∆′ + η

Input: C: a plane quartic over C
Pbs: a default base point of C
Output: v∆′ + η in Cg/Zg + τZg

1: Compute the small period matrix τ of C.
2: Generate a set S consisting all vectors of the form

∑
ci · vi where vi are column

vectors of (1|τ) and ci ∈ {0, 1
2 }

3: Compute vKC
= AJ(KC − 2[Pbs])

4: v∆′ = vKC
/2

5: for η in S do
6: if ∥θ∥(AJ(2[Pbs]) − v∆′ − η) ≤ 0.00000001 then
7: return v∆′ + η

8: end if
9: end for

Remark 4.5.10. (1) Since we only check the vanishing of ∥θ∥g−1 at one specific ef-
fective divisor 2Pbs, it can happen that more than one 2-torsion point of TC makes
this specific theta value vanish. For our curve CC, the computation result of our
code shows that this does not happen (only one the 64 choices makes the function
vanish).

(2) The correctness of the 2-translation can be checked by using a different effective
divisor of degree g − 1, since they should give the same answer.

Proposition 4.5.11. Using the default base point Pbs and the (co)homology basis chosen
by Magma, the point AJ(∆′ −(g−1)Pbs) in TCC that makes Equation (4.17) hold is given
by:

z1 = 0.47925054265168018676 − 0.00334176833187451614 ∗ I

z2 = 0.69868487750843232229 + 0.19949572388256356310 ∗ I

z3 = 0.00722266620787249385 − 0.04301020693432081496 ∗ I.
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With this proposition, we can evaluate ∥θ∥g−1 by Equation (4.22). Note that the
Abel-Jacobi map AJ , the modified theta function ∥θ∥ and the addition of divisors on CC

can be implemented in Magma.

Remark 4.5.12. The point Pbs chosen by Magma is

(−2.000000000 : −4.214319743 : 1).

4.6 Computation of the Green’s function

In this section, we compute the Green’s function on CC. The invariant log(S(CC)) in
the Green’s function will be used in the computation of λ(CC). In Subsection 4.6.1, we
compute the Weierstrass points of CC. In Subsection 4.6.2, we compute the volume form
of CC. In Subsection 4.6.3, we explain our algorithm for computing log(S(CC)). We refer
to Subsection 1.2.1 and [12] for definitions and theorems.

Instead of constructing G(x, y) from Definition 1.2.2, we give an explicit formula of
the Green’s function discovered by R. de Jong in [12].

Following Proposition 2.2.6 in [12], we write W for the set of Weierstrass points
counted with weights and define the invariant S(X) of a compact Riemann surface X of
genus g as

log(S(X)) = − g2 ·
∫
X

log∥θ∥g−1(gP −Q) · µ(Q)

+ 1
g

·
∑
W∈W

log∥θ∥g−1(gP −W ). (4.23)

Theorem 4.6.1. If P and Q are distinct points on a compact Riemann surface X of
genus g > 1 and P is not a Weierstrass point, then we have

G(P,Q)g = S(X)1/g2
· ∥θ∥g−1(gP −Q)∏

W∈W ∥θ∥g−1(gP −W )1/g3

Proof. See the proof of Theorem 2.1.2 and Proposition 2.2.6 in [12].

By the computation in the last subsection, we are now able to evaluate

∥θ∥g−1 : Picg−1(CC) → R

with ∥θ∥ (Proposition 4.5.4). With this explicit formula for the Green’s function, our
goal is reduced to the computation of the Weierstrass points and the invariant S(CC).
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4.6.1 Weierstrass points of plane quartic curves

We will first recall definitions related to Weierstrass points and some fundamental prop-
erties, further results can be found in [2], Page 41.

Definition 4.6.2. Let X be a compact Riemann surface of genus g > 1 with canonical
divisor K. An effective divisor D on X is called special if h0(O(K − D)) > 0. A point
P is called a Weierstrass point if gP is a special divisor.

Definition 4.6.3. If we write Gap(P ) for

Gap(P ) := {n ∈ Z>0 : h0(O(nP )) = h0(O((n− 1)P ))},

the weight of a point P is defined as w(P ) :=
∑

n∈Gap(P )
n− g(g − 1)/2.

Example 4.6.4. For a hyperelliptic curve of genus g, the Weierstrass points are exactly
the 2g + 2 ramification points of a hyperelliptic 2-1 map with equal weight g(g−1)

2 .

We know that w(P ) = 0 for all but finitely many points, thus the divisor

WX :=
∑
P∈X

w(P )P

is well-defined. It is well-known (Proposition 1.12 in [64]) that this effective divisor is of
degree g(g − 1)(g + 1). Thus for a plane quartic curve C, we have deg(WC) =24.

Let C be a smooth plane curve. For x ∈ C, we write Tx for the tangent line of C
at x. A point p ∈ C is called a flex point if p is a smooth point and I(p, Tp ∩ C) ≥ 3,
where I(p, Tp ∩C) is the intersection multiplicity of C and Tp at p. A flex point is called
an ordinary flex point if I(p, Tp ∩ C) = 3, otherwise it is called a hyperflex.

Definition 4.6.5. The Hessian of a polynomial F (X,Y, Z) ∈ K[X,Y, Z] is the following
matrix

Hess(F ) :=

FXX FXY FXZ

FY X FY Y FY Z

FZX FZY FZZ

 .

Proposition 4.6.6. Let K be an algebraically closed field with charK = 0. Let C be a
smooth plane curve in P2

K defined by F (X,Y, Z) = 0. We write CH for the plane curve
defined by det Hess(F ) = 0. Then

1. P ∈ C ∩ CH if and only if P is a flex point.

2. I(P,C ∩ CH) = 1 if and only if P is an ordinary flex.
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Proof. See Page 116 in [27].

Weierstrass points on a smooth plane quartic curve are of weight 1 or 2, and they
correspond to ordinary flex points and hyperflex points respectively. Thus we have an
equality (see [64] Page 13, Theorem 2.2):

#{ordinary flex points on C} + 2 × #{hyperflex points on C} = 24.

With the discussion above, we can calculate Weierstrass points of CC in SageMath.
The result is attached to the Appendix II.

x , y , z=var ( ’ x , y , z ’ )
2 C=−x^3∗y+x^2∗y^2−x∗y^2∗ z+y^3∗ z+x^2∗ z^2+x∗z ^3

M=C. h e s s i a n ( )
4 det= M. determinant ( )

s o l v e ( [C == 0 , z==1,det ==0] ,x , y , z )

Weierstrass points

The code above returns the intersection points of CC and CC,H in the affine patch
Z = 1. Since it contains 24 points, we can conclude that these are all the Weierstrass
points, and all of them are of weight 1.

Proposition 4.6.7. If we choose P = (−2.000000000 : −4.214319743 : 1), then we have

1
3
∑
W∈W

log∥θ∥g−1(gP −W ) ≈ −6.817611049

for the curve CC.

The reason we choose this point P is that this is the default base point for CC chosen
by Magma. In the following sections, we will use this point several times.

Remark 4.6.8. For a general smooth plane quartic curve C, the weights of Weierstrass
points are computable. We give a sketch of the procedure, and details can be found in
[64] Pages 7-8. Let {ωk}1≤k≤3 be a basis for H0(C,ΩC). Then locally we can write
ωk as fkdz where z is a local parameter near point P . Now we have the Wronskian

determinant around P :

Wz(ω1, ω2, ω3) := det

 f1 f2 f3

f ′
1 f ′

2 f ′
3

f ′′
1 /2 f ′′

2 /2 f ′′
3 /2

 , (4.24)
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where the superscript indicates the order of differentiation with respect to z. This locally
gives a non-zero rational section in Ω⊗6

C near P by W (ω1, ω2, ω3)dz⊗6, which can be
extended to a global section. For this global section of Ω⊗6

C , we have

divW (ω1, ω2, ω3) =
∑
x∈C

w(x)x,

where w(x) is the weight of x.

Remark 4.6.9. If we have a sequence of positive integers {ai}1≤i≤t such that
t∑
i=1

ai = g(g − 1)(g + 1),

can we always find a compact Riemann surface of genus g whose Weierstrass points have
weights {ai}1≤i≤t? The answer is no. In [64] Theorem 7.1, A.M. Vermeulen showed
that there exist genus 3 curves with 0, 1, 2 hyperflex points, but there is no genus 3 curve
with 10, 11 hyperflex points.

4.6.2 Computation of the volume form

Let C be a smooth plane curve of genus g ≥ 1 defined by a homogeneous polynomial
F (X,Y, Z) ∈ C[X,Y, Z] of degree d ≥ 3. For simplicity, we write f(x, y) = F (x, y, 1)
and U = C|Z=1. Then we can construct an explicit basis of H0(C,Ω1

C) by the following
theorem.

Theorem 4.6.10. Let U0 be the open subset of U where ∂f
∂y (x, y) ̸= 0. Then the restric-

tion of a global holomorphic differential of C on U0 can be written in the form ϕ(x,y)dx
∂f
∂y (x,y)

,
where ϕ(x, y) is a polynomial of degree at most d− 3.

Proof. See Chapter 9, Theorem 1 in [6].

For our curve CC, we have

∂f(x, y)
∂y

= −x3 + 2x2y − 2xy + 3y2.

By Theorem 4.6.10, we get a basis of H0(X,Ω1
CC

) as follows:{
dx

−x3 + 2x2y − 2xy + 3y2 ,

ydx

−x3 + 2x2y − 2xy + 3y2 , (4.25)

xdx

−x3 + 2x2y − 2xy + 3y2

}
.
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We abbreviate these to ω1, ωy and ωx respectively.
Now we can apply the Gram-Schmidt process to obtain an orthonormal basis with

respect to the inner product
⟨ω, η⟩ = i

2

∫
X

ω ∧ η.

The following theorem of Riemann gives us the inner product of every pair of basis
elements, which will simplify our computation.

Theorem 4.6.11. Let X be a compact Riemann surface of genus g ≥ 1. Fix a symplectic
basis for the homology H1(X,Z) and a basis ω1, . . . , ωg of the holomorphic differentials
H0(X,Ω1

X). We have a period matrix Ω = (Ω1|Ω2) given by these data. Then the
following matrix identity(

i

2

∫
X

ωk ∧ ωl

)
1≤k,l≤g

= i

2(Ω2
tΩ1 − Ω1

tΩ2) = Ω1(Imτ) tΩ1

holds.

Proof. See Pages 231-232 in [29].

Remark 4.6.12. The choice of the homology basis does not affect the matrix in Theorem
4.6.11.

The calculation of the period matrix implemented in SageMath uses the ordered basis
[ω1, ωy, ωx], which is exactly what we constructed in Equations (4.25). Thus we can carry
out the Gram-Schmidt process in SageMath. The code can be found in Appendix III,
and we summarize our computation as the following proposition.

Proposition 4.6.13. We have the following orthonormal basis of differential forms:

ωon1 =0.350487116953118 ∗ ω1

ωon2 =0.358981759779085 ∗ ωy + 0.119553875346235 ∗ ω1

ωon3 =0.429067210690657 ∗ ωx − 0.216555180015011 ∗ ωy
+ 0.203008239643111 ∗ ω1.

We write

µAr = i

2 · 3

3∑
j=1

ωonj ∧ ωonj (4.26)

for the volume form of CC.

Remark 4.6.14. We can get a different period matrix with Magma which also leads to
a (1-1) form µ′

Ar. It can be checked by evaluation that the two (1-1) forms µ′
Ar and µAr

are identical.
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4.6.3 Computation of log(S(CC))
Recall that in Proposition 4.6.7, we already computed the discrete sum part of log(S(CC))
(see Equation (4.23)) for a chosen point P . In this subsection, we approximate the
integral part of log(S(CC)) in Equation (4.23) by using the Riemann sums.

First, we show that the integrated function has few singular points, otherwise the
Riemann sums can have big error terms. In the expression of log(S(X)) in Equation
(4.23), the only possible singularities of the integration come from the zero locus of
∥θ∥g−1. Recall that ∥θ∥g−1(D) vanishes if and only if D is rationally equivalent to an
effective divisor of degree g − 1. The following proposition implies that there is only 1
singular point in the integration.

Proposition 4.6.15. Let X be a non-hyperelliptic compact Riemann surface of genus
3, i.e. a plane quartic curve. We choose two points P and Q on X. If P is a non-
Weierstrass point, then ∥θ∥g−1(gP −Q) = 0 if and only if Q = P .

Proof. We just need to show that 3P − Q is equivalent to an effective divisor exactly
when P = Q. By Riemann-Roch, we get

h0(O(3P )) − h0(O(KX − 3P )) = χ(OX) + deg(3P ) = 1. (4.27)

Since P is not a Weierstrass point, by Definition 4.6.2, we have h0(KX − 3P ) = 0. Thus
h0(O(3P )) = 1, which means that Γ(O(3P ), X) = C. Thus the equality 3P ∼ Q+U +V

implies that P = Q = U = V , otherwise we should have h0(O(3P )) ≥ 2.

The defining polynomial f of CC on the affine patch UC is given by

y3 + (x2 − x)y2 − x3y + x2 + x = 0.

For a generic x ∈ C, there are three solutions of y such that f(x, y) = 0. The following
remark explains how we label the three solutions.

Remark 4.6.16. (Important) We will label these yi’s by the cubic roots formula in
Appendix I. This labelling is well-defined except at finitely many ramification points of
the map (x, y) → x. This finite set does not influence our numerical approximation. We
will use this label frequently in the computation.

Second, we show that the volume form decreases quickly, thus we can reasonably
carry out the Riemann sums in a finite region. This can be summarized as the following
proposition.

Proposition 4.6.17. As |x| → ∞, we have the following asymptotic approximation

µAr
∣∣
(x,y) = O

(
1
x4

)
.
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Sketch of proof : We first write f = 0 in the form

y3 + (x2 − x)y2 − x3y + x2 + x = 0.

Using the cubic equation formula in Appendix I, we can get asymptotic approximations
for roots. Taking i = 1 in Appendix I as an example, we can subsequently get

u = −x6

27 + lower degree terms,

m = −x2

3 + lower degree terms,

n = −x2

3 + lower degree terms,

y1 = −x2 + lower degree terms.

Substituting this into the basis of differential forms (4.25), we can get µAr|(x,y1) = O( 1
x4 ).

For i = 2 or 3, the quadratic term of yi gets cancelled, and we can show

yi = cix+ lower degree terms,

where ci are constants that can be explicitly computed. Substituting this to Equations
(4.25), we get µAr|(x,yi) = O( 1

x4 ). QED

Finally, we can numerically compute log(S(CC)) with the above two propositions.
Recall the expression of log(S(X)) in Equation (4.23). Since CC\UC is a 0-measure set,
we only need to compute ∫

UC

log∥θ∥g−1(3P −Q) · µAr(Q).

With Remark 4.6.16, we denote the i-th y-coordinate over x by yi(x). We denote
by U0

C the set where the index i is well-defined (UC\U0
C is a 0-measure set), then our

computation is reduced to
3∑
i=1

∫
(x,yi(x))∈U0

C

log∥θ∥g−1(3P −Qi) · µAr(Qi), (4.28)

where Qi = (x, yi(x)).
If we consider the complex number x as a point (Re(x), Im(x)) in R2, then Equation

(4.28) is actually an integration of a real-valued function (with possible singularities),
denoted by F , over R2. We use Riemann sums to approximate the integral of F on R2.

By Proposition 4.6.15, the integrated function has only 1 singular point P . According
to Proposition 4.6.17, the volume form µAr decreases quickly as |x| becomes large. Thus

103



4. EXPLICIT COMPUTATIONS

to obtain a reasonable approximation, we only need to take the Riemann sums of F on
a finite region in R2, which contains P . We display our algorithm as follows, and the
Magma code can be found in Appendix VII.

Algorithm 3 Integration part of log(S(CC)) in Equation (4.23)
Input: f: the defining polynomial of CC on UC

X: the Riemann surface given by f = 0
µAr: the volume form (considered as a function on CC)
∥θ∥g−1: the theta function on Picg−1(CC)
Pbs: the fixed point
Output: −32 ∗ LogSint: the integration part of log(S(CC))
1: yi = the i-th root function in x for i = 1, 2, 3 (Appendix I)
2: define a function Pt which sends the tuple (a, b, i) to the point

(a+ b ∗ I, yi(a+ b ∗ I)) on CC

3: scale= 0.1
4: radius= 50
5: LogSint = 0
6: for j in [1..ceiling(2 ∗ radius/scale)] do
7: for k in [1..ceiling(2 ∗ radius/scale)] do
8: Rex0 = −radius+ j ∗ scale
9: Imx0 = −radius+ k ∗ scale

10: Qi = Pt(Rex0, Imx0, i) for i = 1, 2, 3

11: LogSint = LogSint +
3∑
i=1

Log(∥θ∥g−1(3P −Qi)) · µAr(Qi) ∗ scale2

12: end for
13: end for
14: return −32 ∗ LogSint

Remark 4.6.18. In the algorithm, we take the Riemann sums on the region |Rex| ≤ 50,
|Imx| ≤ 50, and choose the size of the grids (corresponds to scale in the code above) to
be 1

10 . In practice, we use finer grids for the region |Rex| ≤ 10, |Imx| ≤ 10 (we choose
the size to be 1

100 ). This can improve the accuracy of our numerical approximation.

Our computation can be summarized as follows.

Computation 4.6.19. log(S(CC)) ≈ 1.10

Remark 4.6.20. Actually, we carried out the computation for two different choices of
the fixed point P . One is the default base point Pbs chosen by Magma (Proposition
4.6.7), and the other one can be represented as (Rex = 1, Imx = 2, i = 3). They gave
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1.07 and 1.13 respectively, and we choose their arithmetic mean 1.10 as an approximation
of log(S(CC)). In Section 4.9, we will show that this is at least enough for showing the
positivity of ⟨∆,∆⟩, although this approximation for log(S(CC)) is not that precise.

Remark 4.6.21. This is only a numerical approximation. It is difficult to give a theoretic
bound for the error term of our numerical integration, since we do not know how the term
log(∥θ∥g−1(3P −Q)) varies.

With the calculation we carried out so far, the computation of the Green’s function
G(x, y) on UC is an easy evaluation by Theorem 4.6.1.

4.7 Computation of T (CC) and H(CC)
In this section, we compute two invariants T (CC) (in Subsection 4.7.1) and H(CC) (in
Subsection 4.7.2), whose relation with δ(CC) and φ(CC) can be found in Theorem 4.7.3
and Theorem 4.7.7. The main references for this section are [12] and [65].

4.7.1 Computation of T (CC)
Let X be a compact Riemann surface of genus g > 1 and let z be a local coordinate near
P ∈ X. we define

∥Fz∥(P ) := lim
Q→P

∥θ∥g−1(gP −Q)
|z(P ) − z(Q)|g .

Remark 4.7.1. See Page 31 in [25] for a discussion of the convergence of this limit.

Let Wz(ω)(P ) be the Wronskian determinant (Equation (4.24)) at P with respect to
an orthonormal basis of holomorphic forms ω on X. We define

T (X)z,P := ∥Fz∥(P )−(g+1) ·
∏
W∈W

∥θ∥g−1(gP −W )(g−1)/g3
|Wz(ω)(P )|2, (4.29)

where the product goes through the Weierstrass points on X, counted with weights.

Lemma 4.7.2. The number T (X)z,P is an invariant of X, that is, it does not depend
on the choice of z and P .

Proof. See Theorem 2.1.3 and Proposition 2.2.7 in [12].

For simplicity, we write T (X) for this invariant. The reason for computing T (X) is
the following theorem.

Theorem 4.7.3. The Faltings δ invariant, and the constants T (X) and S(X) satisfy

exp(δ(X)/4) = S(X)−(g−1)/g2
· T (X).

105



4. EXPLICIT COMPUTATIONS

Proof. Theorem 2.1.3 in [12].

Now we show how to compute T (X). We are already able to compute the theta
function appearing in T (X), and thus only Wz(ω)(P ) and ∥Fz(P )∥ remain to be done.

For all but finitely many points on UC, the x-coordinate is a local coordinate. Fix a
point P , by Appendix I we can write P = (xP , yi(xP )) for a certain index i. If we choose
a real vector (a, b), then the point

Qabn = (xP + (a+ bI) · 10−n, yi(xP + (a+ bI) · 10−n))

approaches P from the direction (a, b) as n goes to infinity. Taking x as the local
coordinate, we can approximate ∥Fx∥(P ) by

∥Fx∥(P ) ≈ ∥θ∥g−1(gP −Qabn)
|x(P ) − x(Qabn)|g = ∥θ∥g−1(gP −Qabn)

|10−n · (a+ bI)|g

for a properly chosen n.

Remark 4.7.4. (1) In our computation, we can choose the vector (a, b) to be a point
on the unit circle.

(2) In our computation of T (CC), we choose 10−50 as the precision. For this precision,
we can choose n in {4, 5, 6, 7}. The reason is that the Abel-Jacobi map implemented
in Magma is not as precise as the chosen precision.

(3) The Wronskian determinant part decreases quickly as the coordinates of P goes
away from the origin of the chosen affine patch (the denominator has a higher
degree than the numerator). If we choose a point where the coordinates of P are
big, the Wronskian determinant part can be smaller than the precision we set. This
numerical issue in Magma can lead to unstable output.

(4) When the three requirements above are satisfied, we can find that the output does
not depend significantly on the choice of the point P . Thus we have a reliable
approximation of ∥Fx∥(P ).

The computation of Wz(ω), defined in Equation (4.24), is just some lengthy but easy
calculation. The main tool here is taking implicit differentiation. Recall that in Subsec-
tion 4.6.2, we have an ordered basis of holomorphic forms (they are not orthonormal) on
CC, which can be written in the following form{

dx

fy
,
ydx

fy
,
xdx

fy

}
.
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For a general point P = (x0, y0) on CC, x is a local coordinate. We take

g1 = 1
fy
, g2 = y

fy
, g3 = x

fy
.

For points close to P , y is a function in x and it makes sense to take derivatives of
gi’s with respect to x. These derivatives with respect x can be expressed as rational
functions of x, y, y′ and y′′.

Taking y′ as an example, we take the implicit derivative at both sides of f = 0 with
respect to x:

−3x2y − x3y′ + 2xy2 + 2x2yy′ − y2 − 2xyy′ + 3y2y′ + 2x+ 1 = 0.

This gives

y′(P ) = 3x2
0y0 − 2x0y

2
0 + y2

0 − 2x0 − 1
−x3

0 + 2x2
0y0 − 2x0y0 + 3y2

0
.

We can get the values of gi’s and their derivatives in similar way.
Finally, we use the coefficients in Proposition 4.6.13 to compute the Wronskian de-

terminant with respect to the orthonormal forms {ωonj}1≤j≤3.
Magma code for this subsection can be found in Appendix VIII. Our computation

yields the following end result.

Computation 4.7.5. T (CC) ≈ 0.002544.

Remark 4.7.6. In Section 4.9, we will see that our computation for T (CC) is stable
among different choices of P .

4.7.2 Computation of H(CC)
For a principally polarized abelian variety (A,Θ) of dimension g with period matrix (1|τ),
we define a 1-1 form

v(A,Θ) := i

2

g∑
j,k=1

(Imτ)−1
jk dzj ∧ dzk. (4.30)

We define H(A,Θ) as
H(A,Θ) := 1

g!

∫
A

log∥θ∥vg, (4.31)

where ∥θ∥ has an explicit expression in Proposition 4.5.4. For a compact Riemann surface
X, we denote H(Jac(X),Θcan) by H(X). The following theorem explains the reason we
compute H(X).

Theorem 4.7.7. For any compact Riemann surface X of genus g ≥ 1, we have

δ(X) = −24H(X) + 2φ(X) − 8glog 2π.
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Proof. See Theorem 5.4 in [65].

The following two points explain why we think it is reasonable to believe that we can
approximate H(CC) to good precision by taking Riemann sums.

(1) Although Jac(CC) is 6-dimensional as a real manifold, it is a relatively small torus
(with respect to the default choice of the base point and the (co)homology basis
implemented in Magma).

(2) The singular points of the integrated function in H(CC) are equal to the theta divi-
sor, a compact submanifold of real codimension 2 in Jac(CC). Thus it is reasonable
to believe that the integration of this singular function behaves well (in an analytic
sense) on Jac(CC).

Now we give a description of the computation.
First, we simplify the form 1

g!v
g in Formula (4.31). This is done by

1
g!v

g =
(
i

2

)g
(det (Imτ)−1) ·

g∧
j=1

(dzj ∧ dz̄j)

= (det (Imτ)−1) ·
g∧
j=1

(dxj ∧ dyj),

where zj = xj + iyj .

Second, we calculate the volume of the complex torus TCC := Jac(CC) = C3/Z3 +τZ3.
The volume of TCC is

Vol(TC) =
∣∣∣∣∣det

(
I 0

Reτ Imτ

)∣∣∣∣∣ = det Imτ.

Finally, we can take the Riemann sums. By splitting each edge of TCC into c parts,
we get c6 small polyhedrons. We approximate H(CC) by

c6∑
i=1

log∥θ∥(vi)(det Imτ)−1Vol(TC)/c6

=
c6∑
i=1

log∥θ∥(vi)/c6. (4.32)

where vi is a chosen point in each small polyhedron.
Code for this subsection can be found in Appendix IX, and the result of our compu-

tation can be summarized as follows.
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Computation 4.7.8. H(CC) ≈ −0.70356.

Similar to the approximation of log(S(CC)), we lack the bound of error terms. In
Section 4.9, we will verify that our numerical approximation of

∫
Jac(CC) ∥θ∥2νg is very

good.

4.8 What can we get from the computation?
Our primary goal is to compute the height of a canonical Gross-Schoen cycle of a certain
non-hyperelliptic genus 3 curve CQ. Summing up all the computations in this chapter,
we have the following result.

Computation 4.8.1. For the plane curve C defined by

−X3Y +X2Y 2 −XY 2Z + Y 3Z +X2Z2 +XZ3 = 0,

we have the following results:

(1) δ(CC) ≈ −24.87,

(2) φ(CC) ≈ 1.17,

(3) deg detf∗ωC ≈ −2.9190567336,

(4) (ω, ω)Ar ≈ 3.43,

(5) (ω̂, ω̂)ad ≈ 1.55,

(6) ⟨∆,∆⟩ ≈ 0.60.

Proof. (1) By Theorem 4.6.19, Proposition 4.7.3 and Proposition 4.7.5 we obtain

δ(CC) = 4
(

log(T (CC)) − 2
9 log(S(CC))

)
≈ 4 · (log(0.002544) − 2

9 · 1.1)

≈ −24.87.

(2) Then by Theorem 4.7.7 and Proposition 4.7.8, we obtain

φ(CC) = δ(CC) + 24H(CC) + 24log 2π
2

≈ −24.87 − 24 · 0.70356 + 24 · log 2π
2

≈ 1.17.
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(3) By Equation (2.8), Proposition 4.4.5 and Proposition 4.4.8, we obtain

deg detf∗ωX/B =
∑

p prime

ordp(χ′
18)log p

18 − log∥χ′
18∥Hdg(CC)

18

≈ 2
18 log(29 · 163) − 3.8591729592

≈ −2.9190567336.

(4) By Corollary 1.3.11 and Proposition 4.4.1, we obtain

(ω, ω)Ar = 12 deg detf∗ωC −
∑

p prime
δ(Cp)log p− δ(CC) + 4glog 2π

≈ −2.9190567336 · 12 − log(29 · 163) + 24.87 + 12 · log(2π)
≈ 3.43.

(5) By Theorem 1.5.3 and Proposition 4.4.1, we obtain

(ω̂, ω̂)ad = (ω, ω)Ar −
∑

p prime
ϵ(CZp)log p

≈ 3.43 − 2 · log(29 ∗ 163)
9

≈ 1.55.

(6) By Theorem 1.5.6 and Proposition 4.4.1, we obtain

⟨∆,∆⟩ = 7
4(ω̂, ω̂)ad −

∑
v∈M(Q)

φ(Cv)log(N(v))

≈ 7
4 · 1.55 − log(29 · 163)/9 − 1.17

≈ 0.60.

Remark 4.8.2. (Important) The reason we use different precisions is that some in-
variants (like ordv(χ′

18)) can be computed to fairly high precision, while others (like
log(S(CC))) cannot. For the former ones, we use 10 as the precision. For the latter
ones, we choose the precisions that are stable among our computations. For example, the
first six digits after the decimal point of T (CC) are stable among different choices of P
(Equation (4.29)).

Remark 4.8.3. log(S(CC)) is used in the computation of φ(CC) and δ(CC), thus we use
the precision of log(S(CC)) for φ(CC) and δ(CC). In deg detf∗ωX/B, all components can
be computed to arbitrary precision, thus we use high precision.
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4.9 Why do we think these approximations are reli-
able?

In this subsection, we show that these approximations are stable among choices and
compatible with known facts. Recall that we defined log(S(X)), T (X) and H(X) in
Equation (4.23), Equation (4.29) and Equation (4.31).

In Theorem 3.3.2, we can find that all invariants except λ(CC) can easily be computed
to arbitrary precision. For λ(CC), we decomposed it into a linear sum of other invari-
ants: H(CC), log(S(CC)) and T (CC). However, we can only compute these invariants by
approximation (numerical integration and taking a limit in the computation of T (CC)).

For T (CC) and log(S(CC)), we need to fix a point P . For H(CC), we need to split each
edge of the torus TCC into c segments (see Equation (4.32)). The first thing we check is
to show that our computations are stable along these choices.

Using the code for T (CC) (Appendix VIII), we can find that the output does not
change significantly among different choices of the fixed point P , even though T (CC) is a
product of factors which depend wildly on the choice of P . For example, the Wronskian
part can be smaller than 10−24 and bigger than 10−2 for different choices of the fixed
point P .

For H(CC), we compute it for c = 19 and 23. The outputs are quite stable, giving
around −0.70356438 and −0.70355787 respectively.

As we explained in Remark 4.6.20, we choose two distinct points as the point P
in Equation (4.23). Since S(CC) is an invariant of CC, it should not depend on the
choice of P . It turns out that our approximation for log(S(CC)) is less precise. The
two points are the default base point Pbs chosen by Magma and the point represented
by (Rex = 1, Imx = 2, index = 3) (see Remark 4.6.16 for an explanation of the nota-
tion), where the index is explained in Appendix I. We get 1.07 and 1.13 for log(S(CC))
respectively, and we take their arithmetic mean 1.10 as the approximation of log(S(CC)).

By Equation (1.18), Theorem 3.3.2, Theorem 4.7.3 and Theorem 4.7.7, we can de-
compose ⟨∆,∆⟩ as follows

⟨∆,∆⟩ = −12H(CC) + 2log(S(CC)) − 9log(T (CC)) − 63.7966513771.

Although we cannot approximate log(S(CC)) precisely, we can find that it contributes
less to ⟨∆,∆⟩ than other terms. The invariants H(CC) and log(T (CC)) contribute much
more, but our approximations for them are also much more stable.

Remark 4.9.1. (Risk) Note that the functions in the integration of log(S(CC)) and
H(CC) are singular. Thus it is still possible that our numerical approximation is far
away from the correct answer.

111



4. EXPLICIT COMPUTATIONS

Summary 4.9.2. The first part of our checking can be summarized as follows:

(1) Our code gives relatively stable approximations for H(CC), log(T (CC)) and log(S(CC)).

(2) Among the three invariants, our approximation for log(S(CC)) is less satisfying,
but log(S(CC)) contributes less to ⟨∆,∆⟩.

The second part of our check is comparing our results with known facts.
In Theorem 1.5.6 (1), we can find φ(CC) > 0. This is compatible with φ(CC) ≈ 1.17.
In Theorem 2.2.6, we have an equality about the discriminant of a plane quartic curve

and the modular form χ̃18. Using Magma, we can get Disc(F) = 29 · 163, which shows
that 29 and 163 are the only bad primes in particular. This is compatible with our
computation since

Disc(F)2

(2π)54 χ̃18(τ)
det(Ω1)18

≈ 0.9999991

The code for this can be found in Appendix X.

Proposition 4.9.3. Let f : C → Spec(Ok) be a semistable arithmetic surface of genus
g ≥ 1, where k is a number field. Then we have the following inequality

deg detf∗ω ≥ −log(π
√

2)g · [k : Q]

Proof. See Equation (1.8) in [16].

This is compatible with our computation since

−2.9190567336 ≥ −4.4739104284 ≈ −3 · log(π
√

2).

Proposition 4.9.4. Let X be a compact Riemann surface of genus g ≥ 1. Then we have
H(X) ≤ − g

4 log2.

Proof. See Proposition 2.1 in [65].

This is compatible with our computation since

−0.70356 ≤ −0.51986 ≈ −3
4 log2.

Remark 4.9.5. Recall the definition of ∥θ∥ and ν (paragraphs around Equation (4.15)).
We have the following identity

1
3!

∫
Jac(CC)

∥θ∥2ν3 = 2−3/2.

This can be used to check the correctness of our code for H(CC), since we only need to
replace the integrated function log∥θ∥ by ∥θ∥2. The code is almost the same as that of
H(CC), thus we omit it. Taking c = 19, we can find that the difference between our
approximations of 1

3!
∫

Jac(CC) ∥θ∥2vg and 2−3/2 is even smaller than 10−10.
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4. EXPLICIT COMPUTATIONS

According to Corollary 5.7 in [70], the pairing (ω̂, ω̂)ad is non-negative. This is com-
patible with the fact (ω̂, ω̂)ad ≈ 1.55 computed in Theorem 4.8.1.

Thus we believe that our approximations are reliable!
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Chapter 5

Appendix

I Solving cubic equations

Given a cubic equation
ay3 + by2 + cy + d = 0,

we solve it in following way.

Algorithm 4 Solutions of a cubic equation
Input: a,b,c,d: coefficients of the polynomial
i: the index of expected solution, taking value in {1, 2, 3}
Output: the i-th solution of the polynomial
1: r3 = − 1

2 +
√

3
2 i

2: u = 9abc−27a2d−2b3

54a3

3: v = (12ac3−3b2c2−54abcd+81a2d2+12b3d)1/2

18a2

4: if |u+ v| ≥ |u− v| then
5: m = (u+ v)(1/3)

6: else
7: m = (u− v)(1/3)

8: end if
9: if m = 0 then

10: n = 0
11: else
12: n = b2−3ac

9am
13: end if
14: return ri−1

3 m+ r2i−2
3 n− b

3a
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When we say the 1st root of a cubic function, we mean the output of the algorithm
above when i = 1, similarly for other indices i. The Magma code for our curve CC is
given as follows:

1 a :=1;
b:=x^2−x ;

3 c:=−x ^3 ;
d:=x^2+x ;

5 cubic_unit :=−1/2+3^(1/2) /2∗ I ;
root := f u n c t i o n (u , v , i ) ;

7 numa:=a ;
numb:= Evaluate (b , [ u+v∗ I , 0 ] ) ;

9 numc:= Evaluate ( c , [ u+v∗ I , 0 ] ) ;
preuu :=(9∗ a∗b∗c−27∗a^2∗d−2∗b^3) /(54∗ a ^3) ;

11 uu:= Evaluate ( preuu , [ u+v∗ I , 0 ] ) ;
prevv := Evaluate ( (3∗ (4∗ a∗c^3−b^2∗ c^2−18∗a∗b∗c∗d+27∗a^2∗d^2+4∗b^3∗d) ) , [ u+

v∗ I , 0 ] ) ;
13 vv :=( prevv ^(1/2) ) /(18∗ a ^3) ;

m:=(uu−vv ) ^(1/3) ;
15 i f Abs ( uu+vv ) ge Abs(uu−vv ) then

m:=(uu+vv ) ^(1/3) ;
17 end i f ;

n :=0;
19 i f m ne 0 then

n:=(numb^2−3∗numa∗numc) /(9∗numa∗m) ;
21 end i f ;

r e s u l t :=( cubic_unit ^( i −1) ) ∗m+n∗ cubic_unit ^(2∗ i −2)−(numb) /(3∗numa) ;
23 r e turn r e s u l t ;

end f u n c t i o n ;

In Chapter 4, we need to integrate some functions defined on a plane quartic curve. It
turns out that, for these integrations, we need to label the different y’s for any fixed x

in the way above.
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II List of Weierstrass points
The set of Weierstrass points of CC is:

W = {

(0.0000000000, 0.0000000000),
(−2.104587156,−0.3159811808),
(−1.241974125,−1.824965133),
(0.3539677313,−0.7304015296),
(−1.959274470,−1.410535295),
(−1.000000000, 0.0000000000),
(−1.455757161 − 1.277524807 ∗ I,−0.5258271579 − 3.390009274 ∗ I),
(−1.455757161 + 1.277524807 ∗ I,−0.5258271579 + 3.390009274 ∗ I),
(1.266455202 − 1.314861880 ∗ I, 0.1352071928 + 2.966892635 ∗ I),
(1.266455202 + 1.314861880 ∗ I, 0.1352071928 − 2.966892635 ∗ I),
(0.2089717154 − 1.597843531 ∗ I, 0.1450907026 − 2.034168656 ∗ I),
(0.2089717154 + 1.597843531 ∗ I, 0.1450907026 + 2.034168656 ∗ I),
(−1.319681529 − 0.4985373090 ∗ I,−0.4698939284 − 0.6348619710 ∗ I),
(−1.319681529 + 0.4985373090 ∗ I,−0.4698939284 + 0.6348619710 ∗ I),
(1.691125343 − 0.6842628628 ∗ I, 0.6312556990 + 0.6046227212 ∗ I),
(1.691125343 + 0.6842628628 ∗ I, 0.6312556990 − 0.6046227212 ∗ I),
(−1.125631934 − 0.2207052168 ∗ I,−0.6596966755 + 0.07228789093 ∗ I),
(−1.125631934 + 0.2207052168 ∗ I,−0.6596966755 − 0.07228789093 ∗ I),
(−0.5282412488 − 1.005235134 ∗ I,−0.4177679369 + 0.3210649478 ∗ I),
(−0.5282412488 + 1.005235134 ∗ I,−0.4177679369 − 0.3210649478 ∗ I),
(−0.3349732907 − 0.4139797966 ∗ I,−0.4206274002 − 0.9204898342 ∗ I),
(−0.3349732907 + 0.4139797966 ∗ I,−0.4206274002 + 0.9204898342 ∗ I),
(0.07366689191 − 0.3721976724 ∗ I, 0.7232010036 + 0.2545999915 ∗ I),
(0.07366689191 + 0.3721976724 ∗ I, 0.7232010036 − 0.2545999915 ∗ I)}
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III Code for canonical form

1 from sage . schemes . r iemann_surfaces . r iemann_surface import
RiemannSurface

R.<x , y> = QQ[ ]
3 f = −x^3∗y+x^2∗y^2−x∗y^2+y^3+x^2+x

5 S = RiemannSurface ( f )
M = S . period_matrix ( )

7 Omega1 = M[ [ 0 , 1 , 2 ] , [ 0 , 1 , 2 ] ]
Omega2 = M[ [ 0 , 1 , 2 ] , [ 3 , 4 , 5 ] ]

9 A = Omega1 . apply_map ( r e a l )
B = Omega1 . apply_map ( imag )

11 tau = S . riemann_matrix ( )
Omega1bar= A−B∗ I

13 Imtau = tau . apply_map ( imag )
RieSecBi l = Omega1bar∗ Imtau∗Omega1 . t ranspose ( )

15 RieSecBi l
[ 8 .14058999836226 − 4.44089209850063 e−16∗ I −2.71111012021317 −

9.21762666195036 e−14∗ I −5.21995559097122 − 5.85642645489770 e−14∗ I
]

17 [ −2.71111012021315 + 6.52811138479592 e−14∗ I 8 .66278158093292 +
8.32667268468867 e−14∗ I 5 .65493670273040 + 1.56541446472147 e−13∗ I
]

[ −5.21995559097118 + 1.45994327738208 e−14∗ I 5 .65493670273037 −
1.75831571525009 e−14∗ I 10.7557438794561 + 1.18932641512970 e−14∗ I
]

19

w11 = RieSecBi l [ 0 ] [ 0 ]
21 w1y = RieSecBi l [ 0 ] [ 1 ]

w1x = RieSecBi l [ 0 ] [ 2 ]
23 wyy = RieSecBi l [ 1 ] [ 1 ]

wyx = RieSecBi l [ 1 ] [ 2 ]
25 wxx = RieSecBi l [ 2 ] [ 2 ]

k = (wyx−w1x∗w1y/w11) /(wyy−w1y∗w1y/w11)
27 norm1 = RieSecBi l [ 0 ] [ 0 ] ∗ ∗ ( 1 / 2 )

norm2 = (wyy−(2∗w1y∗w1y/w11)+w1y∗w1y/w11) ∗∗(1/2)
29 norm3 = (wxx+w1x∗w1x/w11+k∗k∗wyy+k∗k∗w1y∗w1y/w11−2∗w1x∗w1x/w11−2∗k∗

wyx+2∗k∗w1y∗w1x/w11+2∗k∗w1x∗w1y/w11−2∗k∗w1x∗w1y/w11−2∗k∗k∗w1y∗w1y
/w11) ∗∗(1/2)

Gram-Schmidt process

In the code, the symbol wmn denotes the integration of 1-1 forms, for example, w1y
represents i

2
∫
X
ω1 ∧ ωy. The Gram-Schmidt process is actually done by hand, and we

just use SageMath for evaluation.
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IV Code for semistability

1 from c o l l e c t i o n s import d e f a u l t d i c t
PP.<x , y , z> = Pro j ec t iveSpace (QQ, 2 )

3 Poly .<U,V> = PolynomialRing (ZZ , 2)
RR.<X, Y, Z> = PolynomialRing (ZZ , 3)

5 C = Curve(−x^3∗y+x^2∗y^2−x∗y^2∗ z+y^3∗ z+x^2∗ z^2+x∗z ^3 , PP)
i n j 1 = Poly . hom ( [X, Y] , RR)

7

9 de f IsDegree1 ( I ) : #check ing the i d e a l I has degree 1 g e n e r a t o r s
out = True

11 f o r f in I . gens ( ) :
i f not f . degree ( ) == 1 :

13 out = False
re turn out

15

17 de f MyBadPrimes (C) : #f i n d i n g out primes with bad reduct i on
f = C. de f in ing_polynomia l ( )

19 RZ.<xZ , yZ , zZ> = PolynomialRing (ZZ , 3)
c o e f f s = f . c o e f f i c i e n t s ( )

21 dens = [ c . denominator ( ) f o r c in c o e f f s ]
den = lcm ( dens )

23 F = RZ( f ∗den )
Fx = F . d e r i v a t i v e (xZ)

25 Fy = F . d e r i v a t i v e (yZ)
Fz = F . d e r i v a t i v e ( zZ )

27 NaiveDisc = 1
f o r P in [ [ xZ , yZ , 1 ] , [ xZ , 1 , zZ ] , [ 1 , yZ , zZ ] ] :

29 I = i d e a l ( [ g (P) f o r g in [ F , Fx , Fy , Fz ] ] )
G = I . groebner_bas i s ( )

31 n = G[ l en (G) −1]
NaiveDisc = lcm (n , NaiveDisc )

33 r e turn [ a [ 0 ] f o r a in f a c t o r ( NaiveDisc ) ]

35

de f MyBadPoints (C, default_prime ) : #CORE FUNCTION: f i n d i n g out
a l l s i n g u l a r po i n t s over c e r t a i n prime number and the tangent
l i n e s

37 f = C. de f in ing_polynomia l ( )
RZ.<xZ , yZ , zZ> = PolynomialRing (ZZ , 3)

39 c o e f f s = f . c o e f f i c i e n t s ( )
dens = [ c . denominator ( ) f o r c in c o e f f s ]

41 den = lcm ( dens )
F = RZ( f ∗den )
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43 Fx = F . d e r i v a t i v e (xZ)
Fy = F . d e r i v a t i v e (yZ)

45 Fz = F . d e r i v a t i v e ( zZ )
Out = [ ’ Dimention o f s i n g u l a r l o c u s i s p o s i t i v e . ’ ]

47 GG = [ ] #l i s t o f a s s o c i a t e primes ( a f t e r f i e l d
ex tens i on )

s ing_set = [ ] #l i s t o f degree 2 par t s o f s i n g u l a r p o i n t s
a f t e r t r a n s i t i o n

49 f a c t o r _ s i n g = [ ] #l i s t o f f a c t o r i z a t i o n s o f degree 2 par t s
degree = 1

51 SingDim = 0
found = False

53 whi le found == False :
Rp = RZ. change_ring (GF( default_prime ^ degree ) )

55 win = True
S.<u , v> = PolynomialRing (GF( default_prime ^ degree ) , 2)

57 f o r P in [ [ u , v , 1 ] , [ u , 1 , v ] , [ 1 , u , v ] ] :
affine_patch_map = RZ. hom(P, S)

59 I_2 = I d e a l (S , [ affine_patch_map ( g ) f o r g in [ F , Fx , Fy , Fz ] ] )
G_2 = I_2 . assoc iated_pr imes ( )

61 f o r I in G_2:
VV = I . gens ( )

63 i f Set (VV) . c a r d i n a l i t y ( ) ==1:
SingDim = 1

65 i f SingDim == 1 :
break

67 f o r I in G_2:
i f I sDegree1 ( I ) == False :

69 win = False #This means that the s i n g u l a r p o i n t s don ’ t have
c o o r d i n a t e s in t h i s base f i e l d and we s t i l l need to extend i t

i f SingDim == 1 :
71 break

Out = [ ]
73 i f win == True :

f o r P in [ [ u , v , 1 ] , [ u , 1 , v ] , [ 1 , u , v ] ] :
75 affine_patch_map = RZ. hom(P, S)

I_2 = I d e a l (S , [ affine_patch_map ( g ) f o r g in [ F , Fx , Fy , Fz ] ] )
77 G_2 = I_2 . assoc iated_pr imes ( )

GG += G_2
79 f o r AP in G_2: #in t h i s f o r loop , we f i n d out the coord inate

o f s i n g u l a r po i n t s
T.<x , y> = S . quot i ent ( i d e a l (S , [w f o r w in AP. gens ( ) ] ) )

81 Quot = T. cover ( )
i f Quot (1 ) == 0 :

83 cont inue
f o r m in GF( default_prime ^ degree ) :

85 i f Quot (u−m)==0:
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SingX = m
87 break

f o r n in GF( default_prime ^ degree ) :
89 i f Quot (v−n)==0:

SingY = n
91 break

Trans = S . hom ( [ u+SingX , v+SingY ] )
93 change_to_S = RZ. hom(P, S)

TranP = Trans ( change_to_S (F) ) #our curve a f t e r t r a n s i t i o n
95 homog_part = d e f a u l t d i c t (TranP . parent ( ) ) #the f o l l o w i n g 4 l i n e s

he lp us to get the degree 2 part
f o r c o e f f ,monom in TranP :

97 homog_part [monom. degree ( ) ] += c o e f f ∗ monom
sing_set . append ( homog_part [ 2 ] )

99 found = True
Out += GG

101 f o r w in s ing_set : #f i n d out the s i n g u l a r i t y type
SS = S . change_ring (GF( default_prime ^(2∗ degree ) ) )

103 i f w!=0:
f a c t o r _ s i n g . append ( f a c t o r ( SS (w) ) )

105 e l s e :
f a c t o r _ s i n g . append ( ’HIGHER_SINGULARITY’ )

107 e l s e : degree += 1
return Out , f a c t o r _ s i n g
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V Code for semi-canonical divisor
In Magma, a base point Pbs is already chosen andAbelJacobi(D) meansAJ(D−deg(D)[Pbs]).

PeriodMatrix := Matrix ( [
2 [ −0.0756487726827658975 + 0.82850793518670070913∗ I ,

0 .48656585589140586329 − 0.07531944436044814614∗ I ,
4 0.53238504944901350223 + 0.23143384347205016268∗ I ] ,

[0 .48656585589140586329 − 0.07531944436044814614∗ I ,
6 0.500584921111822623585 + 0.48874080037323974253∗ I ,

0 .137880100924435244693 − 0.05703730011758514006∗ I ] ,
8 [0 .53238504944901350223 + 0.23143384347205016268∗ I ,

0 .137880100924435244693 − 0.05703730011758514006∗ I ,
10 0.689717878372433609278 + 0.69264774350470313589∗ I ] ] )

C<I> := ComplexField (30) ;
2 Qxy<x , y> := PolynomialRing ( Rat iona l s ( ) , 2) ;

f := −x^3∗y+x^2∗y^2−x∗y^2+y^3+x^2+x ; // d e f i n i n g polynomial
4 X := RiemannSurface ( f ) ; // c r e a t e the riemann s u r f a c e

tau := SmallPeriodMatrix (X) ;
6

Pt := X ! [ 0 , 0 ] ; // a po int on X
8 Div:= D i v i s o r ( [ Pt ] , [ 2 ] ) ; // e f f e c t i v e d i v i s o r o f degree 2

Div2:= D i v i s o r ( [ BasePoint (X) ] , [ 2 ] ) ;
10 Div3:= D i v i s o r ( [ BasePoint (X) , Pt ] , [ 1 , 1 ] ) ;

12 asd := I n f i n i t e P o i n t s (X) ;
U:=[ asd [ 1 ] , asd [ 2 ] , asd [ 3 ] ] ;

14 V: = [ 2 , 1 , 1 ] ;
CanDiv:= D i v i s o r (U,V) ; // c a n o n i c a l d i v i s o r

16

MatrixIm := f u n c t i o n (M) // f u n c t i o n to take the imaginary part o f a
matrix .

18 N := ZeroMatrix (C, Nrows (M) , Ncols (M) ) ;
f o r i in [ 1 . . Nrows (M) ] do

20 f o r j in [ 1 . . Ncols (M) ] do
N[ i , j ] := Imaginary (M[ i , j ] ) ;

22 end f o r ;
end f o r ;

24 r e turn N;
end f u n c t i o n ;

26

Columns := f u n c t i o n (M) // f u n c t i o n to e x t r a c t columns as a l i s t o f
matr i ce s
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28 out := [ ] ;
f o r i in [ 1 . . Ncols (M) ] do

30 out := out cat [ ColumnSubmatrix (M, i , 1) ] ;
end f o r ;

32 r e turn out ;
end f u n c t i o n ;

34

char := Matrix ( [ [ 0 ] , [ 0 ] , [ 0 ] , [ 0 ] , [ 0 ] , [ 0 ] ] ) ;
36 Imtau:=MatrixIm ( tau ) ;

detimtau := Determinant ( Imtau ) ;
38 Le f tPer iod :=RemoveColumn(RemoveColumn(RemoveColumn( BigPeriodMatrix (X)

,4 ) , 4 ) ,4 ) ;
ID3 := DiagonalMatrix (C, [ 1 , 1 , 1 ] ) ;

40 c o l u m n l i s t := Columns ( ID3 ) cat Columns ( tau ) ;
AJCD := Matrix ( AbelJacobi ( CanDiv ) ) ; // the image o f c a n o n i c a l

d i v i s o r under AJ map
42

AJ_2_torsion := [ ] ;
44 f o r v in CartesianPower ( [ 0 , 1 ] , 6) do

new := ZeroMatrix (C, 3 , 1) ;
46 f o r i in [ 1 . . 6 ] do

new := new + v [ i ] ∗ c o l u m n l i s t [ i ] ;
48 end f o r ;

AJ_2_torsion := AJ_2_torsion cat [ ( 1 / 2 ) ∗ new ] ;
50 end f o r ;

52 t rans la te s_to_try := [ ] ; // t h i s w i l l be a l i s t o f a l l 64 square
r o o t s o f CanDiv

f o r V in AJ_2_torsion do
54 t rans la te s_to_try := trans la te s_to_try cat [ ( 1 / 2 ) ∗ AJCD + V ] ;

end f o r ;
56

torus_theta_funct ion := f u n c t i o n (D) // D i s a d i v i s o r o f degree g−1
58 myinput := Matrix ( AbelJacobi (D) ) ;

myabstheta :=Abs( Theta ( char , myinput , tau ) ) ;
60 myiminput:= MatrixIm ( myinput ) ;

myexponent := −3.141592653589∗ Transpose ( myiminput ) ∗( Imtau^(−1) ) ∗
myiminput ;

62 r e turn Exp( myexponent [ 1 , 1 ] ) ∗ myabstheta ∗ detimtau ^(1/4) ;
end f u n c t i o n ;

64

f i nd_cor rec t_theta_trans la t e := f u n c t i o n (D) // f i n d out the c o r r e c t
t r a n s l a t i o n

66 P := AbelJacobi (D) ;
out := [ ] ;

68 f o r V in t rans la te s_to_try do
myinput := Matrix (P) − V;
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70 myabstheta :=Abs( Theta ( char , myinput , tau ) ) ;
myiminput:= MatrixIm ( myinput ) ;

72 myexponent := −3.141592653589∗ Transpose ( myiminput ) ∗( Imtau^(−1) ) ∗
myiminput ;

i f Abs (Exp( myexponent [ 1 , 1 ] ) ∗ myabstheta ∗ detimtau ^(1/4) ) l e 0 .00000001
then

74 r e turn V;
end i f ;

76 end f o r ;
end f u n c t i o n ;

78

//we check the r e s u l t by choos ing 3 d i f f e r e n t e f f e c t i v e d i v i s o r s
80 ThetaTranslate1 := f ind_cor rec t_theta_trans la t e ( Div ) ;

ThetaTranslate1 ;
82 ThetaTranslate2 := f ind_cor rec t_theta_trans la t e ( Div2 ) ;

ThetaTranslate2 ;
84 ThetaTranslate3 := f ind_cor rec t_theta_trans la t e ( Div3 ) ;

ThetaTranslate3 ;
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VI Code for ∥χ′
18∥Hdg

1 C<I> := ComplexField (50) ;
Qxy<x , y> := PolynomialRing ( Rat iona l s ( ) , 2) ;

3 f := −x^3∗y+x^2∗y^2−x∗y^2+y^3+x^2+x ; // d e f i n i n g polynomial
X := RiemannSurface ( f ) ; // c r e a t e the riemann s u r f a c e

5

tau1 := SmallPeriodMatrix (X) ; // per iod matrix implemented in Magma
7 tau2 := Matrix (C, 3 , [ 0 .855638485763810 + 1.03033263075936∗ I ,

0 .380495294693576 + 0.00436338826915927∗ I , 0 .506949568788359 −
0.178115589372895∗ I ,

0 .380495294693584 + 0.00436338826915617∗ I , 0 .401072147476828 +
0.694848752465586∗ I , −0.580339267402228 − 0.147446853346675∗ I ,

9 0.506949568788374 − 0.178115589372884∗ I , −0.580339267402254 −
0.147446853346687∗ I , 0 .219761917471621 + 0.625482641303850∗ I

] ) ; // per iod matrix implemented in SageMath
11

// the f o l l o w i n g s e t S conta in s a l l the even c h a r a c t e r i s t i c s
13 S :=[ Matrix ( R a t i o n a l F i e l d ( ) , 1 , [ 0 , 0 , 0 , 0 , 0 , 0 ] ) , Matrix ( R a t i o n a l F i e l d ( )

, 1 , [ 0 , 0 , 0 , 0 , 0 , 1 ] ) , Matrix ( R a t i o n a l F i e l d ( ) , 1 , [ 0 , 0 , 0 , 0 , 1 , 0 ] ) , Matrix (
R a t i on a l F i e l d ( ) , 1 , [ 0 , 0 , 0 , 0 , 1 , 1 ] ) , Matrix ( R a t i on a l F i e l d ( )
, 1 , [ 0 , 0 , 0 , 1 , 0 , 0 ] ) , Matrix ( R a t i o n a l F i e l d ( ) , 1 , [ 0 , 0 , 0 , 1 , 0 , 1 ] ) , Matrix (
R a t i on a l F i e l d ( ) , 1 , [ 0 , 0 , 0 , 1 , 1 , 0 ] ) , Matrix ( R a t i on a l F i e l d ( )
, 1 , [ 0 , 0 , 0 , 1 , 1 , 1 ] ) , Matrix ( R a t i o n a l F i e l d ( ) , 1 , [ 0 , 0 , 1 , 0 , 0 , 0 ] ) , Matrix (
R a t i on a l F i e l d ( ) , 1 , [ 0 , 0 , 1 , 0 , 1 , 0 ] ) , Matrix ( R a t i on a l F i e l d ( )
, 1 , [ 0 , 0 , 1 , 1 , 0 , 0 ] ) , Matrix ( R a t i o n a l F i e l d ( ) , 1 , [ 0 , 0 , 1 , 1 , 1 , 0 ] ) , Matrix (
R a t i on a l F i e l d ( ) , 1 , [ 0 , 1 , 0 , 0 , 0 , 0 ] ) , Matrix ( R a t i on a l F i e l d ( )
, 1 , [ 0 , 1 , 0 , 0 , 0 , 1 ] ) , Matrix ( R a t i o n a l F i e l d ( ) , 1 , [ 0 , 1 , 0 , 1 , 0 , 0 ] ) , Matrix (
R a t i on a l F i e l d ( ) , 1 , [ 0 , 1 , 0 , 1 , 0 , 1 ] ) , Matrix ( R a t i on a l F i e l d ( )
, 1 , [ 0 , 1 , 1 , 0 , 0 , 0 ] ) , Matrix ( R a t i o n a l F i e l d ( ) , 1 , [ 0 , 1 , 1 , 1 , 0 , 0 ] ) , Matrix (
R a t i on a l F i e l d ( ) , 1 , [ 0 , 1 , 1 , 1 , 1 , 1 ] ) , Matrix ( R a t i on a l F i e l d ( )
, 1 , [ 0 , 1 , 1 , 0 , 1 , 1 ] ) , Matrix ( R a t i o n a l F i e l d ( ) , 1 , [ 1 , 0 , 0 , 0 , 0 , 0 ] ) , Matrix (
R a t i on a l F i e l d ( ) , 1 , [ 1 , 0 , 0 , 0 , 0 , 1 ] ) , Matrix ( R a t i on a l F i e l d ( )
, 1 , [ 1 , 0 , 0 , 0 , 1 , 0 ] ) , Matrix ( R a t i o n a l F i e l d ( ) , 1 , [ 1 , 0 , 0 , 0 , 1 , 1 ] ) , Matrix (
R a t i on a l F i e l d ( ) , 1 , [ 1 , 0 , 1 , 0 , 0 , 0 ] ) , Matrix ( R a t i on a l F i e l d ( )
, 1 , [ 1 , 0 , 1 , 0 , 1 , 0 ] ) , Matrix ( R a t i o n a l F i e l d ( ) , 1 , [ 1 , 0 , 1 , 1 , 0 , 1 ] ) , Matrix (
R a t i on a l F i e l d ( ) , 1 , [ 1 , 0 , 1 , 1 , 1 , 1 ] ) , Matrix ( R a t i on a l F i e l d ( )
, 1 , [ 1 , 1 , 0 , 0 , 0 , 0 ] ) , Matrix ( R a t i o n a l F i e l d ( ) , 1 , [ 1 , 1 , 0 , 0 , 0 , 1 ] ) , Matrix (
R a t i on a l F i e l d ( ) , 1 , [ 1 , 1 , 0 , 1 , 1 , 0 ] ) , Matrix ( R a t i on a l F i e l d ( )
, 1 , [ 1 , 1 , 0 , 1 , 1 , 1 ] ) , Matrix ( R a t i o n a l F i e l d ( ) , 1 , [ 1 , 1 , 1 , 0 , 0 , 0 ] ) , Matrix (
R a t i on a l F i e l d ( ) , 1 , [ 1 , 1 , 1 , 0 , 1 , 1 ] ) , Matrix ( R a t i on a l F i e l d ( )
, 1 , [ 1 , 1 , 1 , 1 , 1 , 0 ] ) , Matrix ( R a t i o n a l F i e l d ( ) , 1 , [ 1 , 1 , 1 , 1 , 0 , 1 ] ) ] ;

15 MatrixIm := f u n c t i o n (M) // imaginary part o f a matrix
N := ZeroMatrix (C, Nrows (M) , Ncols (M) ) ;

17 f o r i in [ 1 . . Nrows (M) ] do
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f o r j in [ 1 . . Ncols (M) ] do
19 N[ i , j ] := Imaginary (M[ i , j ] ) ;

end f o r ;
21 end f o r ;

r e turn N;
23 end f u n c t i o n ;

25 compute:= f u n c t i o n ( per iod ) //compute | | theta | |
c h i t i l d e :=1;

27 z e r o v e c t o r := Matrix (C, 1 , [ 0 , 0 , 0 ] ) ;
f o r e l e in S do

29 c h i t i l d e := c h i t i l d e ∗Theta ( ( 1 / 2 ) ∗ e l e , z e rovec tor , per iod ) ;
end f o r ;

31 a b s c h i t i l d e :=Abs( c h i t i l d e ) ;
Imtau:=MatrixIm ( per iod ) ;

33 det := Determinant ( Imtau ) ;
p r e p r e r e s u l t :=Log ( ( det ^9) ∗ a b s c h i t i l d e ) ;

35 p r e r e s u l t :=26∗Log (2 ) +54∗Log ( Pi (C) )+p r e p r e r e s u l t ;
r e s u l t := −(21/18)∗ p r e r e s u l t ; // c o n t r i b u t i o n o f \chi_18 at the

i n f i n i t e p lace
37 r e turn r e s u l t ;

end f u n c t i o n ;
39

//we compute the r e s u l t us ing two per iod matr i ce s implemented in
Magma and SageMath

41 compute ( tau1 ) ;
compute ( tau2 ) ;
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VII Code for the integration part in log(S(CC))

C<I> := ComplexField (30) ;
2 Cxy<x , y> := PolynomialRing ( R a t i o na l F i e l d ( ) , 2) ;

f := −x^3∗y+x^2∗y^2−x∗y^2+y^3+x^2+x ; // d e f i n i n g polynomial
4 X := RiemannSurface ( f : P r e c i s i o n :=30) ; // c r e a t e riemann s u r f a c e

tau := SmallPeriodMatrix (X) ;
6 BP:= BasePoint (X) ;

8 MatrixIm := f u n c t i o n (M) // take the imaginary part o f a matrix
N := ZeroMatrix (C, Nrows (M) , Ncols (M) ) ;

10 f o r i in [ 1 . . Nrows (M) ] do
f o r j in [ 1 . . Ncols (M) ] do

12 N[ i , j ] := Imaginary (M[ i , j ] ) ;
end f o r ;

14 end f o r ;
r e turn N;

16 end f u n c t i o n ;

18 Imtau:=MatrixIm ( tau ) ;
detimtau := Determinant ( Imtau ) ;

20 ThetaTranslate := Matrix ( [ [0 .479250542651680186758281300774 −
0.00334176833187451614116524746349∗ I ] ,

[0 .698684877508432322290935180841 + 0.199495723882563563098727841525∗
I ] ,

22 [0 .00722266620787249384535143960054 −
0.0430102069343208149623250436805∗ I ] ] ) ;

24 normal i zedtheta := f u n c t i o n (D) ; //compute | | theta | | _{g−1} at D
P := AbelJacobi (D) ;

26 myinput := Matrix (P) − ThetaTranslate ;
char := Matrix ( [ [ 0 ] , [ 0 ] , [ 0 ] , [ 0 ] , [ 0 ] , [ 0 ] ] ) ;

28 myabstheta :=Abs( Theta ( char , myinput , tau ) ) ;
myiminput:= MatrixIm ( myinput ) ;

30 myexponent := −3.141592653589∗ Transpose ( myiminput ) ∗( Imtau^−1)∗myiminput
;

r e turn Abs(Exp( myexponent [ 1 , 1 ] ) ∗ myabstheta ∗ detimtau ^(1/4) ) ;
32 end f u n c t i o n ;

34 a :=1;
b:=x^2−x ;

36 c:=−x ^3 ;
d:=x^2+x ;

38 cubic_unit :=−1/2+3^(1/2) /2∗ I ;

127



APPENDIX

40 root := f u n c t i o n (u , v , i ) ; // s o l v e the cubic equat ion with
c o e f f i c i e n t s a , b , c and d .

numa:=a ;
42 numb:= Evaluate (b , [ u+v∗ I , 0 ] ) ;

numc:= Evaluate ( c , [ u+v∗ I , 0 ] ) ;
44 preuu :=(9∗ a∗b∗c−27∗a^2∗d−2∗b^3) /(54∗ a ^3) ;

uu:= Evaluate ( preuu , [ u+v∗ I , 0 ] ) ;
46 prevv := Evaluate ( (3∗ (4∗ a∗c^3−b^2∗ c^2−18∗a∗b∗c∗d+27∗a^2∗d^2+4∗b^3∗d) ) , [

u+v∗ I , 0 ] ) ;
vv :=( prevv ^(1/2) ) /(18∗ a ^2) ;

48 m:=(uu−vv ) ^(1/3) ;
i f Abs ( uu+vv ) ge Abs(uu−vv ) then

50 m:=(uu+vv ) ^(1/3) ;
end i f ;

52 n :=0;
i f (Abs (m) ge 0 .00001) then

54 n:=(numb^2−3∗numa∗numc) /(9∗numa∗m) ;
e l s e n :=0;

56 end i f ;
r e s u l t :=( cubic_unit ^( i −1) ) ∗m+n∗ cubic_unit ^(2∗ i −2)−(numb) /(3∗numa) ;

58 r e turn r e s u l t ;
end f u n c t i o n ;

60

embedding := f u n c t i o n (u , v , i ) ; // f i n d out the embedding index in
Magma

62 zz , pt1 := I sPo int (X, <[u , v ] ,1 >) ;
zz , pt2 := I sPo int (X, <[u , v ] ,2 >) ;

64 zz , pt3 := I sPo int (X, <[u , v ] ,3 >) ;
i f (Abs ( Coordinates ( pt1 ) [2] − root (u , v , i ) ) l e 0 . 0001) then r e s u l t :=1;

66 e l i f (Abs ( Coordinates ( pt2 ) [2] − root (u , v , i ) ) l e 0 . 0001) then r e s u l t :=2;
e l i f (Abs ( Coordinates ( pt3 ) [2] − root (u , v , i ) ) l e 0 . 0001) then r e s u l t :=3;

68 end i f ;
r e turn r e s u l t ;

70 end f u n c t i o n ;

72 theta_wrt_yi := f u n c t i o n (u , v , i ) ; // f o r a f i x e d po int BP, eva luate
theta_{g−1}(gP−Q) at the po int Q=(Rex=u , Imx=v , index=i )

zz , pt_in_cover_i := I sPo in t (X, <[u , v ] , embedding (u , v , i )>) ;
74 t a r g e t d i v i s o r := D i v i s o r ( [ BP, pt_in_cover_i ] , [ 3 , − 1 ] ) ;

r e turn normal i zedtheta ( t a r g e t d i v i s o r ) ;
76 end f u n c t i o n ;

78 omega1 := f u n c t i o n (u , v , i ) // f i r s t d i f f e r e n t i a l form , i denotes
index o f y

u:=u+0.000001;
80 v:=v +0.000001;

x:=u+v∗ I ;
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82 y:= root (u , v , i ) ;
r e turn 1/(−x^3+2∗x^2∗y−2∗x∗y+3∗y ^2) ;

84 end f u n c t i o n ;

86 omegax := f u n c t i o n (u , v , i ) // second d i f f e r e n t i a l form , i denotes
index o f y

u:=u+0.000001;
88 v:=v +0.000001;

x:=u+v∗ I ;
90 y:= root (u , v , i ) ;

r e turn x/(−x^3+2∗x^2∗y−2∗x∗y+3∗y ^2) ;
92 end f u n c t i o n ;

94 omegay := f u n c t i o n (u , v , i ) // t h i r d d i f f e r e n t i a l form , i denotes
index o f y

u:=u+0.000001;
96 v:=v +0.000001;

x:=u+v∗ I ;
98 y:= root (u , v , i ) ;

r e turn y/(−x^3+2∗x^2∗y−2∗x∗y+3∗y ^2) ;
100 end f u n c t i o n ;

102 canon ica l fo rm := f u n c t i o n (u , v , i ) // the volume form , i denotes index
o f y

ort_nor_w1 :=0.350487116953118∗ omega1 (u , v , i ) ;
104 ort_nor_wy :=(0.358981759779085∗ omegay (u , v , i ) +0.119553875346235∗ omega1

(u , v , i ) ) ;
ort_nor_wx :=(0.203008239643111∗ omega1 (u , v , i ) −0.216555180015011∗omegay

(u , v , i ) +0.429067210690657∗ omegax (u , v , i ) ) ;
106 r e s u l t :=( ort_nor_w1∗ Conjugate ( ort_nor_w1 )+ort_nor_wy∗ Conjugate (

ort_nor_wy )+ort_nor_wx∗ Conjugate ( ort_nor_wx ) ) /3 ;
r e turn r e s u l t ;

108 end f u n c t i o n ;

110 f f := f u n c t i o n (u , v ) //compute three i in one time
r e s u l t := Log ( theta_wrt_yi (u , v , 1 ) ) ∗( canon ica l fo rm (u , v , 1 ) )+Log (

theta_wrt_yi (u , v , 2 ) ) ∗( canon ica l fo rm (u , v , 2 ) )+Log ( theta_wrt_yi (u , v
, 3 ) ) ∗( canon ica l fo rm (u , v , 3 ) ) ;

112 r e turn r e s u l t ;
end f u n c t i o n ;

114

SX:=0; // take Riemann sum
116 s c a l e : = 0 . 0 1 ;

rex_start :=−10;
118 imx_start :=−10;

f o r p in [ 1 . . 2 0 0 ] do
120 f o r q in [ 1 . . 2 0 0 0 ] do
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SX:=SX+f f (p∗ s c a l e+rex_start +0.005 ,q∗ s c a l e+imx_start +0.005) ∗ s c a l e ∗
s c a l e ∗(−9) ;

122 end f o r ;
end f o r ;

124 SXn10:=SX;
SXn10 ;

We can change the rex_start and imx_start in the code to get Riemann sums for
a selected area. The edge length of small squares is scale. We choose scale = 0.01
when −10 ≤ x ≤ 10 and −10 ≤ y ≤ 10, and choose scale = 0.1 for other region in
−50 ≤ x ≤ 50 and −50 ≤ y ≤ 50.

In this code, we only compute the Riemann sums for points with coordinates in
−10 ≤ x ≤ −8 and −10 ≤ y ≤ 10 (we choose scale = 0.01). We need to change
rex_start and imx_start manually to get the Riemann sums of other region.

The reason of doing this is that we can split the computation into small pieces, so
that we can parallelly compute them in Magma. This can reduce the computing time
significantly. The codes above takes around 40 hours. If we carry out all the computation
(−50 ≤ x ≤ 50 and −50 ≤ y ≤ 50) in one time, it will take more than 600 hours. We
also use this trick in the computation of H(CC).
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VIII Code for T (X)

1 C<I> := ComplexField (50) ; //we need high p r e c i s i o n here , s i n c e
components o f T(X) can be very smal l

Cxy<x , y> := PolynomialRing ( R a t i o na l F i e l d ( ) , 2) ;
3 f := −x^3∗y+x^2∗y^2−x∗y^2+y^3+x^2+x ; // d e f i n i n g polynomial

X := RiemannSurface ( f : P r e c i s i o n :=15) ; // c r e a t e riemann s u r f a c e
5 tau := SmallPeriodMatrix (X) ;

7 MatrixIm := f u n c t i o n (M) // f u n c t i o n to take the imaginary part o f a
matrix with e n t r i e s in the f i e l d C d e f i n e d j u s t above .

N := ZeroMatrix (C, Nrows (M) , Ncols (M) ) ;
9 f o r i in [ 1 . . Nrows (M) ] do

f o r j in [ 1 . . Ncols (M) ] do
11 N[ i , j ] := Imaginary (M[ i , j ] ) ;

end f o r ;
13 end f o r ;

r e turn N;
15 end f u n c t i o n ;

17 Imtau:=MatrixIm ( tau ) ;
detimtau := Determinant ( Imtau ) ;

19 ThetaTranslate := Matrix ( [ [0 .479250542651680186758281300774 −
0.00334176833187451614116524746349∗ I ] ,

[0 .698684877508432322290935180841 + 0.199495723882563563098727841525∗
I ] ,

21 [0 .00722266620787249384535143960054 −
0.0430102069343208149623250436805∗ I ] ] ) ;

23 normal i zedtheta := f u n c t i o n (D) ; // | | theta | | _{g−1}
P := AbelJacobi (D) ;

25 myinput := Matrix (P) − ThetaTranslate ;
char := Matrix ( [ [ 0 ] , [ 0 ] , [ 0 ] , [ 0 ] , [ 0 ] , [ 0 ] ] ) ;

27 myabstheta :=Abs( Theta ( char , myinput , tau ) ) ;
myiminput:= MatrixIm ( myinput ) ;

29 myexponent := −3.141592653589∗ Transpose ( myiminput ) ∗( Imtau^−1)∗myiminput
;

r e turn Abs(Exp( myexponent [ 1 , 1 ] ) ∗ myabstheta ∗ detimtau ^(1/4) ) ;
31 end f u n c t i o n ;

33 a :=1; // the f o l l o w i n g l i n e s are the c o e f f i c i e n t o f the d e f i n i n g
polynomial in y

b:=x^2−x ;
35 c:=−x ^3 ;

d:=x^2+x ;
37 cubic_unit :=−1/2+3^(1/2) /2∗ I ;

131



APPENDIX

39 root := f u n c t i o n (u , v , i ) ; // s o l v e equat ion with c o e f f i c i e n t s a , b , c , d
numa:=a ;

41 numb:= Evaluate (b , [ u+v∗ I , 0 ] ) ;
numc:= Evaluate ( c , [ u+v∗ I , 0 ] ) ;

43 preuu :=(9∗ a∗b∗c−27∗a^2∗d−2∗b^3) /(54∗ a ^3) ;
uu:= Evaluate ( preuu , [ u+v∗ I , 0 ] ) ;

45 prevv := Evaluate ( (3∗ (4∗ a∗c^3−b^2∗ c^2−18∗a∗b∗c∗d+27∗a^2∗d^2+4∗b^3∗d) ) , [
u+v∗ I , 0 ] ) ;

vv :=( prevv ^(1/2) ) /(18∗ a ^2) ;
47 m:=(uu−vv ) ^(1/3) ;

i f Abs ( uu+vv ) ge Abs(uu−vv ) then
49 m:=(uu+vv ) ^(1/3) ;

end i f ;
51 n :=0;

i f m ne 0 then
53 n:=(numb^2−3∗numa∗numc) /(9∗numa∗m) ;

end i f ;
55 r e s u l t :=( cubic_unit ^( i −1) ) ∗m+n∗ cubic_unit ^(2∗ i −2)−(numb) /(3∗numa) ;

r e turn r e s u l t ;
57 end f u n c t i o n ;

59 wronskisquare := f u n c t i o n (x , y )
fy :=−x^3+2∗x^2∗y−2∗x∗y+3∗y ^2 ; // p a r t i a l d e r i v a t i v e o f d e f i n i n g

polynomial wrt y
61 dy :=(3∗x^2∗y−2∗x∗y^2+y^2−2∗x−1)/(−x^3+2∗x^2∗y−2∗x∗y+3∗y ^2) ; //

i m p l i c i t d e r i v a t i v e o f y wrt x
ddy :=(6∗x∗y+3∗x^2∗dy+3∗x^2∗dy−2∗y^2−4∗x∗y∗dy−4∗x∗y∗dy−2∗x^2∗dy^2+2∗y∗

dy+2∗y∗dy+2∗x∗dy^2−6∗y∗dy^2−2)/(−x^3+2∗x^2∗y−2∗x∗y+3∗y ^2) ; //
second d e r i v a t i v e

63 dfy :=−3∗x^2+4∗x∗y+2∗x^2∗dy−2∗y−2∗x∗dy+6∗y∗dy ; // i m p l i c i t
d e r i v a t i v e o f fy wrt x

ddfy :=−6∗x+4∗y+4∗x∗dy+4∗x∗dy+2∗x^2∗ddy−2∗dy−2∗dy−2∗x∗ddy+6∗dy^2+6∗y∗
ddy ; // second d e r i v a t i v e

65 w1:=1/ fy ; // d i f f e r e n t i a l forms
wy:=y/ fy ;

67 wx:=x/ fy ;
dw1:=−dfy / fy ^2 ; // i m p l i c i t d e r i v a t i v e o f w1 wrt x

69 dwy:=(dy∗ fy−dfy ∗y ) /( fy ^2) ;
dwx:=( fy−x∗ dfy ) /( fy ^2) ;

71 ddw1:=−(ddfy ∗ fy ^2−2∗ fy ∗ dfy ^2) /( fy ^4) ; // second d e r i v a t i v e
ddwy:=(( ddy∗ fy+dy∗ dfy−ddfy ∗y−dfy ∗dy ) ∗ fy ^2−2∗ fy ∗ dfy ∗( dy∗ fy−dfy ∗y ) ) /( fy

^4) ;
73 ddwx:=(( dfy−dfy−x∗ ddfy ) ∗ fy ^2−2∗ fy ∗ dfy ∗( fy−x∗ dfy ) ) /( fy ^4) ;

c11 :=0.350487116953118; // o r t h o g o n a l i z i n g matrix
75 c21 :=0.119553875346235;

c22 :=0.358981759779085;
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77 c31 :=0.203008239643111;
c32 := −0.216555180015011;

79 c33 :=0.429067210690657;
W11:= c11 ∗w1 ; // f o l l o w i n g l i n e s g i v e s the wronskian matrix wrt a

orthonormal b a s i s o f d i f f e r e n t i a l form .
81 W12:= c21 ∗w1+c22 ∗wy ;

W13:= c31 ∗w1+c32 ∗wy+c33 ∗wx ;
83 W21:= c11 ∗dw1 ;

W22:= c21 ∗dw1+c22 ∗dwy ;
85 W23:= c31 ∗dw1+c32 ∗dwy+c33 ∗dwx ;

W31:= c11 ∗ddw1 ;
87 W32:= c21 ∗ddw1+c22 ∗ddwy ;

W33:= c31 ∗ddw1+c32 ∗ddwy+c33 ∗ddwx ;
89 Wronski := Matrix ( [ [ W11,W12,W13 ] , [ W21,W22,W23 ] , [ W31/2 ,W32/2 ,W33/ 2 ] ] ) ;

detwro :=Abs( Determinant ( Wronski ) ) ;
91 r e turn detwro ^2 ;

end f u n c t i o n ;
93

embedding := f u n c t i o n (u , v , i ) ; // t h i s g i v e s the embedding index o f
po int (u+v∗ I , y_i ) on \cC implemented in Magma

95 zz , pt1 := I sPo int (X, <[u , v ] ,1 >) ;
zz , pt2 := I sPo int (X, <[u , v ] ,2 >) ;

97 zz , pt3 := I sPo int (X, <[u , v ] ,3 >) ;
i f (Abs ( Coordinates ( pt1 ) [2] − root (u , v , i ) ) l e 0 . 0 1 ) then r e s u l t :=1;

99 e l i f (Abs ( Coordinates ( pt2 ) [2] − root (u , v , i ) ) l e 0 . 0 1 ) then r e s u l t :=2;
e l i f (Abs ( Coordinates ( pt3 ) [2] − root (u , v , i ) ) l e 0 . 0 1 ) then r e s u l t :=3;

101 end i f ;
r e turn r e s u l t ;

103 end f u n c t i o n ;

105 WeierPts_coor : = [ [ 0 , 0 ] , [ −2.104587155963303 , −0.3159811807558051] ,
[ ( −1.455757161115023 − 1.277524806650578∗ I ) ,
( −0.5258271579143416 − 3.390009274518869∗ I ) ] , [
( −1.455757161115023 + 1.277524806650578∗ I ) , ( −0.5258271579143403
+ 3.390009274518867∗ I ) ] , [ −1.95927446954141 ,
−1.410535295372148] , [ (1 .266455202041324 − 1.31486188027894∗ I ) ,
(0 .1352071928093522 + 2.966892634578606∗ I ) ] , [ (1 .266455202041324
+ 1.31486188027894∗ I ) , (0 .1352071928093521 − 2.966892634578606∗ I

) ] , [ (0 .2089717154013823 − 1.59784353074737∗ I ) ,
(0 .1450907026008794 − 2.034168656250672∗ I ) ] , [
(0 .2089717154013823 + 1.59784353074737∗ I ) , (0 .1450907026008798 +
2.034168656250671∗ I ) ] , [ ( −1.31968152920268 − 0.4985373089678906∗
I ) , ( −0.4698939283630282 − 0.634861971042462∗ I ) ] , [
( −1.31968152920268 + 0.4985373089678906∗ I ) , ( −0.4698939283630282
+ 0.6348619710424618∗ I ) ] , [ (1 .691125343336006 −
0.6842628628388769∗ I ) , (0 .6312556990319607 + 0.6046227212351708∗ I
) ] , [ (1 .691125343336006 + 0.6842628628388769∗ I ) ,
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(0 .6312556990319608 − 0.6046227212351708∗ I ) ] , [
( −1.125631933711411 − 0.2207052167744392∗ I ) , ( −0.6596966755302974
+ 0.07228789092962729∗ I ) ] , [ ( −1.125631933711411 +

0.2207052167744392∗ I ) , ( −0.6596966755302974 −
0.07228789092962723∗ I ) ] , [ ( −0.5282412487764151 −
1.005235133687909∗ I ) , ( −0.4177679368816311 + 0.3210649477940537∗ I
) ] , [ ( −0.5282412487764151 + 1.005235133687909∗ I ) ,
( −0.4177679368816311 − 0.3210649477940537∗ I ) ] , [
−1.241974125539051 , −1.824965132496513] , [ 0 .3539677313137965 ,
−0.7304015296367112] , [ ( −0.3349732907033383 −
0.4139797966480703∗ I ) , ( −0.4206274001987688 − 0.9204898341402288∗
I ) ] , [ ( −0.3349732907033383 + 0.4139797966480703∗ I ) ,
( −0.4206274001987688 + 0.9204898341402289∗ I ) ] , [
(0 .0736668919074069 − 0.3721976723848182∗ I ) , (0 .7232010036495048
+ 0.2545999914748455∗ I ) ] , [ (0 .0736668919074069 +
0.3721976723848182∗ I ) , (0 .7232010036495049 − 0.2545999914748455∗ I
) ] , [ −1, 0 ] ] ;

WeierPts : = [ ] ;
107

f o r i in WeierPts_coor do //make a l s t o f Wpoints from c o o r d i n a t e s
109 zz , pt1 := I sPo int (X, <[Re( i [ 1 ] ) , Im( i [ 1 ] ) ] ,1 >) ;

zz , pt2 := I sPo int (X, <[Re( i [ 1 ] ) , Im( i [ 1 ] ) ] ,2 >) ;
111 zz , pt3 := I sPo int (X, <[Re( i [ 1 ] ) , Im( i [ 1 ] ) ] ,3 >) ;

i f (Abs ( Coordinates ( pt1 ) [2] − i [ 2 ] ) l e 0 . 0001) then embed :=1;
113 e l i f (Abs ( Coordinates ( pt2 ) [2] − i [ 2 ] ) l e 0 . 0001) then embed :=2;

e l i f (Abs ( Coordinates ( pt3 ) [2] − i [ 2 ] ) l e 0 . 0001) then embed :=3;
115 end i f ;

zz , wpt:= I sPo in t (X, <[Re( i [ 1 ] ) , Im( i [ 1 ] ) ] , embed>) ;
117 WeierPts :=Append( WeierPts , wpt ) ; // the l i s t o f W−p o in t s

end f o r ;
119

Fz:= f u n c t i o n (P, n , d i r e ) //Fz with n the ’ d i s tance ’ s c a l e and d i r e
the r e l a t i v e d i r e c t i o n

121

f o r i in [ 1 , 2 , 3 ] do
123 rootQ:= root (Re( Coordinates (P) [ 1 ] ) , Im( Coordinates (P) [ 1 ] ) , i ) ;

i f (Abs ( rootQ−Coordinates (P) [ 2 ] ) l e 0 . 0 1 ) then // s i n c e Q i s c l o s e
to P, t h e i r y−coord are c l o s e .

125 r inde := i ; // the index o f the y−coord inate f o r Q
end i f ;

127 end f o r ;

129 P_x_r:= Real ( Coordinates (P) [ 1 ] ) ;
P_x_i:= Imaginary ( Coordinates (P) [ 1 ] ) ;

131 Q_x_r:=P_x_r+d i r e [1]∗10^( −n) ; // r e a l part o f the x coord inate o f Q
Q_x_i:=P_x_i+d i r e [2]∗10^( −n) ;
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e inde :=embedding (Q_x_r, Q_x_i , r inde ) ;
135 zz ,Q:= IsPo in t (X, <[Q_x_r, Q_x_i ] , e inde >) ;

gPQ:= D i v i s o r ( [ P,Q] , [ 3 , − 1 ] ) ;
137 distPQ:=Abs(10^(−n) ∗( d i r e [1 ]+ d i r e [ 2 ] ∗ I ) ) ;

139 r e s u l t := normal i zedtheta (gPQ) /( distPQ ^3) ;
r e turn r e s u l t ;

141 end f u n c t i o n ;

143 TX:= f u n c t i o n (P, n , d i r e ) //T(X)
br i ck1 :=1;

145 f o r e l e in WeierPts do // theta part
WDIV:= D i v i s o r ( [ P, e l e ] , [ 3 , − 1 ] ) ;

147 br i ck1 := br i ck1 ∗Abs( normal i zedtheta (WDIV) ^(2/27) ) ;
end f o r ;

149 br i ck2 :=Fz (P, n , d i r e ) ^(−4) ;
b r i ck3 := wronskisquare ( Coordinates (P) [ 1 ] , Coordinates (P) [ 2 ] ) ;

151 r e s u l t := br i ck1 ∗ br i ck2 ∗ br i ck3 ;
r e turn r e s u l t ;

153 end f u n c t i o n ;

155 avWe : = [ 0 . 1 , 0 . 1 ] ; // avoid Weie r s t ra s s po int
d i r e :=[ −1 ,0 ] ; // i n i t i a l i z i n g d i r e c t i o n

157 de l tapq :=6; // i n i t i a l i z i n g the ’ d i s tance ’ s c a l e between P and Q
zz , PointP:= IsPo in t (X,<[1+avWe[1 ] ,0+avWe[ 2 ] ] , 1 > ) ; // i n i t i a l i z i n g

the po int P
159 TX( PointP , deltapq , d i r e )
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IX Code for H(X)

1 C<I> := ComplexField (30) ;
Cxy<x , y> := PolynomialRing ( R a t i on a l F i e l d ( ) , 2) ;

3 f := −x^3∗y+x^2∗y^2−x∗y^2+y^3+x^2+x ; // d e f i n i n g polynomial
X := RiemannSurface ( f : P r e c i s i o n :=30) ; // riemann s u r f a c e

5 tau := SmallPeriodMatrix (X) ;
Imtau:=MatrixIm ( tau ) ;

7 detimtau := Determinant ( Imtau ) ;

9 // the f o l l o w i n g rows are rows o f the big per iod matrix
tau1 :=[ −0.0756487726827658975623807266149

,0 .828507935186700709139824389302 ,
11 0.486565855891405863290312449179 ,−

0.0753194443604481461426310259273 ,
0.532385049449013502234878708914 , 0 .231433843472050162680353039649 ] ;

13 tau2 :=[0.486565855891405863290312449179 , −
0.0753194443604481461426310259273 ,

0.500584921111822623585859133424 , + 0.488740800373239742539460301357 ,
15 0.137880100924435244693062999773 , −

0.0570373001175851400662331352196] ;
tau3 :=[0.532385049449013502234878708914 , +

0.231433843472050162680353039649 ,
17 0.137880100924435244693062999773 , −

0.0570373001175851400662331352196 ,
0.689717878372433609278715552080 , +

0.692647743504703135897856925333] ;
19

MatrixIm := f u n c t i o n (M) // take the imaginary part o f a matrix
21 N := ZeroMatrix (C, Nrows (M) , Ncols (M) ) ;

f o r i in [ 1 . . Nrows (M) ] do
23 f o r j in [ 1 . . Ncols (M) ] do

N[ i , j ] := Imaginary (M[ i , j ] ) ;
25 end f o r ;

end f o r ;
27 r e turn N;

end f u n c t i o n ;
29

r ec tan := Matrix ( [ [ 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ] ,
[ 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ] ,

31 [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 ] ,
tau1 , tau2 , tau3 ] ) ;

33 volume:=Abs( Determinant ( rec tan ) ) ;

35 TorusTheta := f u n c t i o n (V) ; // the f u n c t i o n | | theta | | on a torus
char := Matrix ( [ [ 0 ] , [ 0 ] , [ 0 ] , [ 0 ] , [ 0 ] , [ 0 ] ] ) ;
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37 myabstheta :=Abs( Theta ( char , V, tau ) ) ;
myexponent := −3.141592653589∗ Transpose ( MatrixIm (V) ) ∗( Imtau^−1)∗

MatrixIm (V) ;
39 r e turn Abs(Exp( myexponent [ 1 , 1 ] ) ∗ myabstheta ∗ detimtau ^(1/4) ) ;

end f u n c t i o n ;
41

A:= Matrix (C, 3 , 1 , [ 0 , 0 , 1 ] ) ;
43 B:= Matrix (C, 3 , 1 , [ 0 , 1 , 0 ] ) ;

C:= Matrix (C, 3 , 1 , [ 1 , 0 , 0 ] ) ;
45 D:= Transpose ( Matrix ( tau [ 1 ] ) ) ;

E:= Transpose ( Matrix ( tau [ 2 ] ) ) ;
47 F:= Transpose ( Matrix ( tau [ 3 ] ) ) ;

49 c :=19; \\ the Riemann sum
r e s u l t :=0;

51 f o r i i in [ 1 . . 2 ] do
f o r j j in [ 1 . . c ] do

53 f o r kk in [ 1 . . c ] do
f o r l l in [ 1 . . c ] do

55 f o r mm in [ 1 . . c ] do
f o r nn in [ 1 . . c ] do

57 vec to r :=( i i /c ) ∗A+( j j /c ) ∗B+(kk/c ) ∗C+( l l /c ) ∗D+(mm/c ) ∗E+(nn/c ) ∗F ;
r e s u l t := r e s u l t+Log ( TorusTheta ( vec to r ) ) /( c ^6) ;

59 end f o r ;
end f o r ;

61 end f o r ;
end f o r ;

63 end f o r ;
end f o r ;

65 r e s u l t ;

The code above computes the Riemann sum for 2 × c5 small polyhedrons. See the end
of Appendix VII for further explanation.
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X Code for Klein’s formula

1 C<I> := ComplexField (50) ;

3 P<U,V,W>:= PolynomialRing ( Rat iona l s ( ) , 3) ;
F:= −U^3∗V+U^2∗V^2−U∗V^2∗W+V^3∗W+U^2∗Ŵ 2+U∗W^3;

5 Qxy<x , y>:= PolynomialRing ( Rat iona l s ( ) , 2) ;
f := −x^3∗y+x^2∗y^2−x∗y^2+y^3+x^2+x ; // d e f i n i n g polynomial

7 X := RiemannSurface ( f ) ; // c r e a t e the riemann s u r f a c e
tau1 := SmallPeriodMatrix (X) ;// the per iod matrix

9

Omega1:= Matrix ( [ [3 .27458588878738559863054319936E−40 +
1.40623766693192062162024765467∗ I ,

11 −1.79952501232403458891122141246 + 1.38907786473238785380622191148∗ I ,
−2.53736487575268201398849418408 + 0.422954571624542218773280089228∗ I

] , [ −3.32482770801607988312171989709E−40 +
2.21299876803863343807211504318∗ I ,

13 0.520294432989390175634113180014 + 0.311971662365700775264258133464∗ I
,

2 .49655614620140646500159641736 − 1.72853703668803372011916427569∗ I
] , [ −6.11781900650324543346854241722E−40 −
0.519248888908945152419998545118∗ I ,

15 −0.778001857456629823002912917512 + 1.46695721833231037837976066119∗ I
,

3 .20106058440048591056866925446 − 1.29453940681916549786848960725∗ I
] ] ) ;

17

// the f o l l o w i n g s e t S conta in s a l l the even c h a r a c t e r i s t i c s
19 S :=[ Matrix ( R a t i o n a l F i e l d ( ) , 1 , [ 0 , 0 , 0 , 0 , 0 , 0 ] ) , Matrix ( Ra t i o n a l F i e l d ( )

, 1 , [ 0 , 0 , 0 , 0 , 0 , 1 ] ) , Matrix ( R a t i o n a l F i e l d ( ) , 1 , [ 0 , 0 , 0 , 0 , 1 , 0 ] ) , Matrix (
R a t i on a l F i e l d ( ) , 1 , [ 0 , 0 , 0 , 0 , 1 , 1 ] ) , Matrix ( R a t i o na l F i e l d ( )
, 1 , [ 0 , 0 , 0 , 1 , 0 , 0 ] ) , Matrix ( R a t i o n a l F i e l d ( ) , 1 , [ 0 , 0 , 0 , 1 , 0 , 1 ] ) , Matrix (
R a t i on a l F i e l d ( ) , 1 , [ 0 , 0 , 0 , 1 , 1 , 0 ] ) , Matrix ( R a t i o na l F i e l d ( )
, 1 , [ 0 , 0 , 0 , 1 , 1 , 1 ] ) , Matrix ( R a t i o n a l F i e l d ( ) , 1 , [ 0 , 0 , 1 , 0 , 0 , 0 ] ) , Matrix (
R a t i on a l F i e l d ( ) , 1 , [ 0 , 0 , 1 , 0 , 1 , 0 ] ) , Matrix ( R a t i o na l F i e l d ( )
, 1 , [ 0 , 0 , 1 , 1 , 0 , 0 ] ) , Matrix ( R a t i o n a l F i e l d ( ) , 1 , [ 0 , 0 , 1 , 1 , 1 , 0 ] ) , Matrix (
R a t i on a l F i e l d ( ) , 1 , [ 0 , 1 , 0 , 0 , 0 , 0 ] ) , Matrix ( R a t i o na l F i e l d ( )
, 1 , [ 0 , 1 , 0 , 0 , 0 , 1 ] ) , Matrix ( R a t i o n a l F i e l d ( ) , 1 , [ 0 , 1 , 0 , 1 , 0 , 0 ] ) , Matrix (
R a t i on a l F i e l d ( ) , 1 , [ 0 , 1 , 0 , 1 , 0 , 1 ] ) , Matrix ( R a t i o na l F i e l d ( )
, 1 , [ 0 , 1 , 1 , 0 , 0 , 0 ] ) , Matrix ( R a t i o n a l F i e l d ( ) , 1 , [ 0 , 1 , 1 , 1 , 0 , 0 ] ) , Matrix (
R a t i on a l F i e l d ( ) , 1 , [ 0 , 1 , 1 , 1 , 1 , 1 ] ) , Matrix ( R a t i o na l F i e l d ( )
, 1 , [ 0 , 1 , 1 , 0 , 1 , 1 ] ) , Matrix ( R a t i o n a l F i e l d ( ) , 1 , [ 1 , 0 , 0 , 0 , 0 , 0 ] ) , Matrix (
R a t i on a l F i e l d ( ) , 1 , [ 1 , 0 , 0 , 0 , 0 , 1 ] ) , Matrix ( R a t i o na l F i e l d ( )
, 1 , [ 1 , 0 , 0 , 0 , 1 , 0 ] ) , Matrix ( R a t i o n a l F i e l d ( ) , 1 , [ 1 , 0 , 0 , 0 , 1 , 1 ] ) , Matrix (
R a t i on a l F i e l d ( ) , 1 , [ 1 , 0 , 1 , 0 , 0 , 0 ] ) , Matrix ( R a t i o na l F i e l d ( )
, 1 , [ 1 , 0 , 1 , 0 , 1 , 0 ] ) , Matrix ( R a t i o n a l F i e l d ( ) , 1 , [ 1 , 0 , 1 , 1 , 0 , 1 ] ) , Matrix (
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R a t i on a l F i e l d ( ) , 1 , [ 1 , 0 , 1 , 1 , 1 , 1 ] ) , Matrix ( R a t i on a l F i e l d ( )
, 1 , [ 1 , 1 , 0 , 0 , 0 , 0 ] ) , Matrix ( R a t i o n a l F i e l d ( ) , 1 , [ 1 , 1 , 0 , 0 , 0 , 1 ] ) , Matrix (
R a t i on a l F i e l d ( ) , 1 , [ 1 , 1 , 0 , 1 , 1 , 0 ] ) , Matrix ( R a t i on a l F i e l d ( )
, 1 , [ 1 , 1 , 0 , 1 , 1 , 1 ] ) , Matrix ( R a t i o n a l F i e l d ( ) , 1 , [ 1 , 1 , 1 , 0 , 0 , 0 ] ) , Matrix (
R a t i on a l F i e l d ( ) , 1 , [ 1 , 1 , 1 , 0 , 1 , 1 ] ) , Matrix ( R a t i on a l F i e l d ( )
, 1 , [ 1 , 1 , 1 , 1 , 1 , 0 ] ) , Matrix ( R a t i o n a l F i e l d ( ) , 1 , [ 1 , 1 , 1 , 1 , 0 , 1 ] ) ] ;

21 MatrixIm := f u n c t i o n (M) // Imaginary part o f a matrix
N := ZeroMatrix (C, Nrows (M) , Ncols (M) ) ;

23 f o r i in [ 1 . . Nrows (M) ] do
f o r j in [ 1 . . Ncols (M) ] do

25 N[ i , j ] := Imaginary (M[ i , j ] ) ;
end f o r ;

27 end f o r ;
r e turn N;

29 end f u n c t i o n ;

31 Kle in_rat io := f u n c t i o n ( per iod ) //compute the r a t i o o f Kle in formula
c h i t i l d e :=1;

33 z e r o v e c t o r := Matrix (C, 1 , [ 0 , 0 , 0 ] ) ;
f o r e l e in S do

35 c h i t i l d e := c h i t i l d e ∗Theta ( ( 1 / 2 ) ∗ e l e , z e rovec tor , per iod ) ;
end f o r ;

37 l e f t := Discr iminantOfTernaryQuart ic (F) ^2 ;
r i g h t := c h i t i l d e ∗ (2∗3 .1415926) ^(54) /(2^(28) ∗ Determinant (Omega1) ^(18) ) ;

39 r e turn r i g h t / l e f t ;
end f u n c t i o n ;

41

Kle in_rat io ( tau1 ) ;
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Summary

Explicit Computation of the Height of a Gross-
Schoen Cycle

In this thesis, we study the Beilinson-Bloch height of the Gross-Schoen cycle on a
curve over a field.

Let X be a genus g smooth curve over a field k (a number field or a function field).
To an element e ∈ Div1(X)Q, we can associate a Gross-Schoen cycle ∆e in CH2(X3).
The cycle is an alternating sum of small diagonals on X3. When k is a global field, the
height (studied by A. Beilinson, S. Bloch, B. Gross and C. Schoen) of ∆e can be used to
measure the non-triviality of ∆e.

In Chapter 1, we review Arakelov theory and Zhang’s work on the heights of Gross-
Schoen cycles. The main result of this chapter is Theorem 1.5.16, in which we show that
the height for genus g ≥ 3 curves over Q is unbounded. The proof relies on the Northcott
property for Gross-Schoen cycles proved by S. Zhang.

In Chapter 2, we recall some moduli properties of genus 3 curves and Klein’s formula
for smooth plane quartic curves.

In Chapter 3, we focus on Arakelov geometry of genus 3 curves. We explain how to
explicitly compute the admissible invariants of genus 3 pm-graphs. The main result of
this chapter is a sufficient condition for the heights of a family of genus 3 curves to go to
infinity.

In Chapter 4, we numerically compute the height of a canonical Gross-Schoen cycle
of a particular plane quartic curve over Q.
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Samenvatting

Explicit Computation of the Height of a Gross-
Schoen Cycle

In dit proefschrift bestuderen we de Beilinson-Bloch-hoogte van de Gross-Schoen-
cykels op een kromme over een lichaam.

Laat X een geslacht g gladde kromme zijn over een lichaam k (een getallenlichaam of
een functielichaam). Aan een element e ∈ Div1(X)Q kunnen we een Gross-Schoen-cykel
∆e associëren in CH2(X3). Deze cykel is een alternerende som van kleine diagonalen op
X3. Wanneer k een globaal lichaam is, kan de hoogte (bestudeerd door A. Beilinson, S.
Bloch, B. Gross en C. Schoen) van ∆e worden gebruikt om de niet-trivialiteit van ∆e te
meten.

In Hoofdstuk 1 bespreken we de theorie van Arakelov en het werk van Zhang over
de hoogte van de Gross-Schoen-cykels. Het belangrijkste resultaat van dit hoofdstuk is
Stelling 1.5.16, waarin we laten zien dat de hoogte voor krommen over Q met geslacht
g ≥ 3 onbegrensd is. Dit is gebaseerd op de Northcott-eigenschap van de Gross-Schoen-
cykels, bewezen door S. Zhang.

In Hoofdstuk 2 bespreken we enkele moduli-eigenschappen van geslacht 3 krommen
en de Klein-formule voor gladde vlakke vierdegraadskrommen.

In Hoofdstuk 3 leggen we onze focus op de Arakelov-meetkunde van geslacht 3-
krommen. We leggen uit hoe je expliciet de toelaatbare invarianten van geslacht 3 pm-
grafen kan berekenen. Het belangrijkste resultaat van dit hoofdstuk is een voldoende
voorwaarde voor de hoogten van een familie van geslacht 3 om naar oneindig te gaan.

In Hoofdstuk 4 berekenen we numeriek de hoogte van een canonieke Gross-Schoen-
cykel van een bepaalde vlakke vierdegraadskromme over Q.
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