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AAbbssttrraacctt  

Type 1 diabetes (T1D) is an autoimmune disease in which insulin-producing beta cells are 

destroyed in the islets of Langerhans. One of its main pathological manifestations is the 

hyper-expression of MHC class I by beta cells, which was first described over 3 decades 

ago, yet its cause still remains unknown. It might not only be a sign of beta-cell dysfunction 

but could also render them susceptible to autoimmune destruction for example by islet-

infiltrating CD8 T cells. In this report we studied the pancreas of a 22 year old non-diabetic 

male at high risk of developing T1D in which auto-antibodies against GAD and IA-2 were 

detected. Pancreas sections were analyzed for signs of inflammation. Multiple insulin 

containing islets were identified, which hyper-expressed MHC-I. However, islet density 

and MHC I expression exhibited a highly lobular and heterogeneous pattern even within 

the same section. In addition, many islets with high expression of MHC-I presented higher 

levels of CD8 T cell infiltration than normal islets. These results demonstrate the 

heterogeneity of abnormalities occurring early during the pre-diabetic, autoantibody 

positive phase and should contribute to the understanding of human T1D pathology. 

 

AAbbbbrreevviiaattiioonnss  

Ab+, Autoantibody positive; MHC-I, Major Histocompatibility Complex I; BMI, Body Mass 

Index; ICIs, Insulin Containing Islets; IDIs, Insulin Deficient Islets; T1D, type 1 diabetes; T2D, 

type 2 diabetes; nPOD, Network for Pancreatic Organ donors with Diabetes; NOD, Non-

Obese Diabetic Mouse. 
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IInnttrroodduuccttiioonn  

Pathological changes take place before the complete destruction of insulin-producing 

beta cells in the pancreatic islets of pre-diabetic individuals, and might offer us insight into 

the earlier events underlying diabetes development. These coincide with the appearance 

of autoantibodies, which constitute nowadays the most common tool to predict future 

diabetes development  (82). Usually, antibodies against insulin (IA) appear first, followed 

by glutamate decarboxylase (GAD), insulinoma-associated protein 2 (IA-2) and zinc 

transporter 8 (ZnT8) (83). Around the time of diagnosis, beta cell function is relatively 

rapidly lost, but in most cases a significant residual number of functional beta cells can still 

be present over many years (26, 84-86). It is known that during the early pre-diabetic 

state, beta cells can show an abnormal phenotype with one pathognomonic sign being 

the increase in MHC-I expression in both insulin-deficient and insulin-containing islets (26, 

87, 88). This phenomenon was described 30 years ago by Bottazo et al. and by Foulis and 

colleagues (88, 89). The trigger or cause for this elevated expression is still not understood.  

 

As the disease progresses, a lymphocytic infiltration can be observed in some islets. This 

phenomenon, described more than 100 years ago by Schmidt (90), was named insulitis by 

von Meyenburg in 1940 (91) and studied by LeCompte and Gepts in 1958 (92) and in 1965 

(93). It is somewhat better characterized today and we know that the most frequent cell 

types are CD8 lymphocytes followed by macrophages, B cells and CD4 T cells (94). 

However, only a few studies have been carried out in non-diabetic, autoantibody positive 

donors with the majority of them showing no leukocytic infiltration or beta cell damage 

(95-97). The Network for Pancreatic Organ Donors with Diabetes (nPOD) has now opened 

up the unique possibility of investigating and characterizing the histopathological 

presentation during all the stages of the disease, from the pre-diabetic to the chronic 

state. In the present study we investigated the pancreas of a double autoantibody positive 

donor at high risk of developing T1D. We show that high MHC-I expression and CD8 T cell 

infiltration are remarkably heterogeneously distributed and differentially affect islets 

situated in different regions of the pancreas creating a multifocal pattern. The cause(s) for 
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this lobularity remain unclear, among them the potential for viral infections, the 

inflammatory milieu in the pancreas as well as a potentially yet unknown intrinsic etiology.  

 

MMaatteerriiaall  aanndd  mmeetthhooddss  

Subject 

Human pancreata were collected from a cadaveric organ donor through the Network for 

Pancreatic Organ donors with Diabetes (nPOD). Six μm sections from frozen pancreas 

samples from 3 different blocks from the head (02, 04 and 06), body (02, 06 and 08) and 

tail (02, 04 and 06) region were obtained. All experimental procedures were approved by 

the La Jolla Institute for Allergy and Immunology Institutional Review Board-approved 

protocol number DI3-054-1112. 

  

Immunofluorescence for insulin, HLA-ABC and CD8 

Sections were subject to a standard immunofluorescence staining protocol. Briefly, 

sections were fixed with 0.4% paraformaldehyde and blocked with goat serum. Staining 

for insulin and HLA-ABC (MHC-I) was performed at room temperature for 1h using the 

following antibodies: Polyclonal guinea pig anti-Insulin (1/140; Dako, Carpinteria, CA) and 

mouse monoclonal (clone W6/32) IgG2a against a monomorphic epitope on the 45 kD 

polypeptide products of the HLA-A, B and C loci (1/100; Dako, Carpinteria, CA). Detection 

was done at room temperature for 45 minutes using polyclonal goat anti-guinea pig IgG, 

highly cross-adsorbed, Alexa Fluor 488 (1/1000 Invitrogen, Grand Island, NY) and 

polyclonal goat anti-mouse IgG2a, isotype-specific Alexa Fluor 594 (1/1000 Invitrogen, 

Grand Island, NY). Finally, sections were incubated for 1h at room temperature with 

mouse monoclonal (clone RFT8) IgG1 conjugated to Alexa Fluor 647 (1:50, Birmingham, 

AL). After washing, sections were mounted with ProLong Gold antifade reagent 

(Molecular Probes, Grand Island, NY). Control pancreatic tissue sections with only 

secondary antibodies were used to determine background staining.  

 

 



2

Pancreatic pathology in pre-diabetic patients

33

 

Image acquisition and analysis 

Images were acquired using a Zeiss Axio Scan Z.1 slide scanner (10x objective) and Zen 

software, Blue edition (Zeiss, Oberkochen, Germany). Whole tissue section images were 

divided into multiple smaller areas using a grid in order to facilitate analysis. Islets were 

then counted manually based on insulin staining and islet density calculated per section 

based on the number of islets and the total area of the tissue determined by using a 

custom macro developed for ImageJ (National Institutes of Health). MHC-I expression was 

qualitatively evaluated and every islet classified based on the intensity of MHC-I staining. 

Infiltrating CD8 T cells were manually counted in each islet and matched to the MHC-I 

pattern. The percentage of elevated and hyper-expressing islets combined (abnormal 

islets) was calculated and represented as a heat map by using Excel conditional format 

tool (Microsoft, Redmond, WA, USA). The lowest values were assigned green color tones 

and the highest values red color tones. The same process was applied to CD8 T cell values 

per abnormal islet section.  

 

Statistical analysis 

Group differences were analyzed by using Kruskal-Wallis non-parametric test followed by 

Dunn test for multiple comparisons. Correlation analysis was done by using Spearman 

correlation with two-tailed significance test. All analyses were performed using GraphPad 

Prism version 6 (GraphPad Software, San Diego California USA). Data in bar graphs are 

presented as mean ± SD. Findings were assumed statistically significant at p ≤ 0.05. 
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RReessuullttss  

DDeemmooggrraapphhiicc  cchhaarraacctteerriissttiiccss  ooff  ccaassee  66119977  

The donor described in this manuscript was male, 22 years old, with BMI of 28.2, African 

American, positive for IA-2 and GAD autoantibodies. High HLA resolution analysis showed 

the following genotype: A*02:02, 24:02; DRB1*03:02, 07:01; DQA1*02:01, 04:01; 

DQB1*02:02, 04:02. The nPOD pathology core indicated the presence of multiple insulin 

and glucagon positive islets at first screening. Some insulitis was also reported (rare) as 

well as islet hyperemia. Finally, a mild, multifocal chronic pancreatitis was found. The 

donor was found to be positive for cytomegalovirus (CMV) and Epstein-Barr virus (EBV) 

IgG in serum.  

 

SSyysstteemmaattiicc  hhiissttoollooggiiccaall  aannaallyyssiiss  ooff  ppaannccrreeaattiicc  sseeccttiioonnss  

Frozen pancreatic sections from 3 different blocks from the head, body and tail of the 

pancreas were analyzed (head blocks #02, 04 and 06; body blocks #02, 06 and 08 and tail 

blocks #02, 04 and 06). Each section was divided into several quadrants by using a grid. In 

each of these areas, islets were manually counted (Fig. 1). The number of total islets was 

very variable depending on the section and region. A minimum of 183 islets were counted 

in the head block #04 while 656 islets were detected in the tail block #04 (Fig. 2A). Islet 

density was then calculated based on the total tissue area and ranged from 2.04 

islets/mm2 up to 4.80 islets/mm2 and was found to be higher in the pancreatic head and 

tail (3.61 vs 3.33 islets/mm2) while it was lower in the body (2.41 islets/mm2) (Fig. 2A). 

Islets were then classified based on the level of MHC-I expression as normal (no detectable 

expression in endocrine cells), elevated (high expression of MHC-I by endocrine cells not 

affecting the whole islet area) and hyper-expressing islets (high expression of MHC-I by 

endocrine cells affecting all the islet area) (Fig. 2B). 
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FFiigguurree  11.. Whole frozen pancreatic sections were stained for insulin (green), MHC-I (red), CD8 (white) and DAPI 
(blue) following a standard immunofluorescence protocol. Sections were scanned and divided into smaller areas 
by using a grid in order to facilitate analysis. A letter was assigned to each quadrant (A-P). Whole tissue images 
are shown for each of the sections. Only insulin and DAPI staining are depicted for clarity purposes. White dots 
indicate islets. Scale bar, 1000 µm in all images.  
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FFiigguurree  22.. A) The absolute number of islets for each section and block is shown as bar graphs. The specific number 
of islets is indicated on top of each bar (left panel). Islet density (Islets/mm2) was calculated based on the number 
of islets and total tissue area and it is shown as bar graphs (right panel). B) Islets were classified based on the 
level of MHC-I expression as normal (left panel, no detectable expression in endocrine cells), elevated (center 
panel, high expression of MHC-I by endocrine cells not affecting the whole islet area) and hyper-expressing islets 
(right panel, high expression of MHC-I by endocrine cells affecting all the islet area). Arrows indicate the presence 
of CD8 T cells. Scale bar, 100 µm in all images. 
 

MMHHCC--II  hhyyppeerr--eexxpprreessssiioonn  iiss  hheetteerrooggeenneeoouussllyy  ddiissttrriibbuutteedd  aaccrroossss  mmuullttiippllee  iisslleettss  aanndd  rreeggiioonnss  

iinn  tthhee  ppaannccrreeaass  

In order to study islet MHC-I expression and localization in the pancreas, staining for 

insulin and MHC-I was performed across multiple sections from the head, body and tail. 

The number of islets and the expression of MHC-I was analyzed manually for each section 

and represented as bar graphs and heat maps (Figs. 3 and 5) (see Materials and Methods 

for details). In head block #02, 444 islets were counted. Of these, 5.63 (0-32%, A to M) 

and 10.81 % (0-50%, A to M) of the islets showed elevated Class I expression and hyper-

expression respectively (Fig. 3A). In head block #04 and #06, 183 and 221 islets were 

counted. While elevated islets constituted 13.11 (0-33.3%, A to L) and 5.43 % (0-21.7%, A 
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to K) respectively, hyper-expression was detected in 8.74 (0-36.3%, A to L) and 3.62 % (0-

47.6%, A to K) in these two blocks (Fig. 3B and C). Overall, elevated and hyper-expressing 

islets (abnormal phenotype) constituted 13.43 % of the islets in the head region.  

 

Next, we performed the same analysis for body and tail regions. A total of 420, 546 and 

278 islets were counted in body blocks #02, 06 and 08 respectively. Of this, 9.52 (0-20.6%, 

A to P), 7.88 (0-17%, A to P), and 12.59 % (0-34.8%, A to M) of the islets presented elevated 

MHC-I expression while a lower number of islets was found to hyper-express it (5.24 (0-

11.3%, A to P), 3.11 (0-40%, A to P), and 6.83 % (0-33.3%, A to M) respectively) (Fig. 3D, E 

and F). In the tail, 290, 656 and 480 islets were counted in tail block #02, 04 and 06, with 

4.14 (0-12.5%, A to M), 9.15 (0-33.3%, A to N) and 7.29 % (0-37.5%, A to P) of them 

presenting increased MHC-I expression. Hyper-expressing islets were found to be lower 

in this region with 0.69 (0-9.5%, A to M), 8.38 (0-32.1%, A to N) and 3.75 % (0-34.8%, A to 

P) of the islets for blocks #02, 04 and 06 respectively (Fig. 3G, H and I). No significant 

differences were found between different blocks except for tail block #02 which 

presented a lower percentage of abnormal islets than other blocks (Fig. 4A, B and C). 

Summarized information can be found in Table 1. Finally, values from all the regions were 

put together in a heat map in which the areas with higher percentage of abnormal islets 

are shown in red color tones and were present in head blocks #02 and 04, body block #08 

and tail block #04. Conversely, those areas containing mainly normal islets are depicted 

as green (Fig. 7A) and were scattered across all the blocks.  

 

Affected islets (elevated and hyper-expressing MHC-I) constituted 13.4 % of the islets in 

the body, which was almost the same percentage as found in the head (14.4 %) while the 

tail presented a slight reduction (11.9 %) mainly due to the smaller amount of hyper-

expressing islets found in Tail block #02 (data not shown). When values were grouped 

according to the main anatomical regions (head, body or tail), islet hyper-expression was 

found to be higher in the head while elevated MHC-I was predominant in the body (Fig. 

4D, E and F). However, no significant differences were detected between head, body and 
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tail regions regarding the percentage of elevated, hyper-expressing or normal islets (Fig. 

4D, E and F).  

 

TTaabbllee  11..  SSuummmmaarriizzeedd  iinnffoorrmmaattiioonn  ffoorr  tthhee  %%  ooff  eelleevvaatteedd,,  hhyyppeerr--eexxpprreessssiinngg  aanndd  aabbnnoorrmmaall  iisslleettss  ffoorr  eeaacchh  bblloocckk  aanndd  
rreeggiioonn  iiss  sshhoowwnn..  

  MMHHCC--II  ((%%  iisslleettss))  

EElleevvaatteedd  HHEEAADD  BBOODDYY  TTAAIILL  

BBlloocckk  AA  5.63 9.52 4.14 

BBlloocckk  BB  13.11 7.88 9.15 

BBlloocckk  CC  5.43 12.59 7.29 

     

HHyyppeerr--eexxpprreessssiioonn  HHEEAADD  BBOODDYY  TTAAIILL  

BBlloocckk  AA  10.81 5.24 0.69 

BBlloocckk  BB  8.74 3.11 8.38 

BBlloocckk  CC  3.62 6.83 3.75 

     

AAbbnnoorrmmaall  13.40 14.40 11.90 
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FFiigguurree  33.. The percentage of elevated (left panel) and hyper-expressing (center panel) islets from each quadrant 
of the pancreatic sections depicted in figure 1 was calculated and it is shown as bar graphs. Heat maps showing 
the areas with higher (red) or lower (green) percentage of abnormal islets within the section are shown on the 
right. A) Head Block # 02; B) Head Block #04; C) Head Block #06; D) Body Block # 02; E) Block #06; F) Body Block 
#08; G) Tail Block # 02; H) Tail Block #04; I) Tail #06. Scale bar, 1000 µm in all images. 
 
 

 
 
FFiigguurree  44.. The mean percentage of elevated (left panel), hyper-expressing (center panel) and normal (right panel) 
islets is shown as bar graphs for each block in A) Head; B) Body and C) Tail. In D, E and F, overall head, body and 
tail values are shown for elevated, hyper-expressing and normal islets. *significant difference between groups 
(P ≤ 0.05). **significant difference between groups (P ≤ 0.01). 
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CCDD88  TT  cceellllss  pprreeffeerreennttiiaallllyy  iinnffiillttrraattee  iisslleettss  wwiitthh  eelleevvaatteedd  lleevveellss  ooff  MMHHCC--II  eexxpprreessssiioonn  

To evaluate the possible link between high MHC-I expression and infiltration, CD8 T cells 

were quantified on a per islet basis and correlated with their MHC-I pattern. High 

infiltration was only noticed in some islets. Similar values of CD8 T cells per elevated or 

hyper-expressing islet were found in head block #02 (3.40 and 3.71 CD8 T cells per islet 

respectively). In head block #04 a mean of 1.79 and 3.25 cells were found to infiltrate 

elevated and hyper-expressing islets. Furthermore, almost identical numbers of CD8 T 

cells were found in head block #06 for abnormal islets (2.75 and 2.63 CD8 T cells per 

elevated and hyper-expressing islet respectively) (Fig. 5A, B and C). Accordingly, similar 

values were found for elevated islets in body block #02 and 06 (2.33 vs 2.16) while block 

#04 had lower level of infiltration (1.20 CD8 T cells/elevated islet section). In contrast 

hyper-expressing islets were infiltrated by a mean of 4.73, 2.76 and 0.79 CD8 T cells/islet 

section in blocks #02, 04 and 06, being this region the most variable (Fig. 5D, E and F). 

Finally, no major differences were found in the tail between regions. Infiltration ranged 

from 1.67 to 2.67 CD8 T cells/elevated islet and from 2.28 to 3.33 CD8 T cells/hyper-

expressing islet in the tail blocks analyzed (Fig. 5G, H and I). Summarized information for 

all the blocks can be found in Table 2. 
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FFiigguurree  55.. The mean number of CD8 T cells per elevated (left panel) and hyper-expressing (center panel) islet from 
each quadrant of the sections depicted in figure 1 was determined and it is shown as bar graphs. Heat maps 
showing the areas with higher (red) or lower (green) number of CD8 T cells per abnormal islet (elevated and 
hyper-expressing) within the section are shown on the right. A) Head Block # 02; B) Head Block #04; C) Head 
Block #06; D) Body Block # 02; E) Block #06; F) Body Block #08; G) Tail Block # 02; H) Tail Block #04; I) Tail #06. 
Scale bar, 1000 µm in all images. 
 

TTaabbllee  22..  SSuummmmaarriizzeedd  iinnffoorrmmaattiioonn  ffoorr  tthhee  nnuummbbeerr  ooff  CCDD88  TT  cceellllss  ppeerr  eelleevvaatteedd,,  hhyyppeerr--eexxpprreessssiinngg  aanndd  aabbnnoorrmmaall  
iisslleett  ffoorr  eeaacchh  bblloocckk  aanndd  rreeggiioonn  iiss  sshhoowwnn..  

  CCDD88  TT  cceellllss  ((##  ppeerr  iisslleett  sseeccttiioonn))  

EElleevvaatteedd  HHEEAADD  BBOODDYY  TTAAIILL  

BBlloocckk  AA  3.40 2.33 1.67 

BBlloocckk  BB  1.79 1.20 2.67 

BBlloocckk  CC  2.75 2.16 2.20 

     

HHyyppeerr--eexxpprreessssiioonn  HHEEAADD  BBOODDYY  TTAAIILL  

BBlloocckk  AA  3.71 4.73 2.50 

BBlloocckk  BB  3.25 2.76 3.33 

BBlloocckk  CC  2.63 0.79 2.28 

     

AAbbnnoorrmmaall  2.89 2.19 2.33 

 

Across the 3 blocks examined in each of the 3 regions, normal islets presented similar 

numbers of infiltrating CD8 T cells ranging from 0.33 to 0.66 CD8 T cells/islet section for 

all the blocks except for tail block #04 which presented a slightly higher value (1.24 CD8 T 

cells/islet section) (data not shown).  

 

Overall, elevated and hyper-expressing islets presented a significantly higher number of 

infiltrating CD8 T cells than normal islets in all the blocks. In addition, these differences 

were significant in head, body and tail regions. No differences were found between 

elevated and hyper-expressing islets in any analyzed area (Fig. 6). Lastly, values from all 

the regions were placed together in a heat map in which the areas with higher number of 
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infiltrating CD8 T cells per islet section are shown in red color tones and were present in 

head block #02 and tail block #04 and 06. The quadrants containing less CD8 T cells are 

depicted in green (Fig. 7B) and were scattered across all the blocks being less predominant 

in tail block #06.  

 

Correlation analysis between the percentage of abnormal islets and the number of CD8 T 

cells per islet section in each quadrant showed strong correlation (r=0.6) with a moderate 

linear fit (R2=0.44) (Fig. 7C). 

 

 

FFiigguurree  66.. The mean number of CD8 T cells per elevated, hyper-expressing and normal islet is shown as bar graphs 
for the 3 blocks examined (named A, B and C here) from A) head; B) Body and C) Tail. The overall mean number 
of CD8 T cells per elevated, hyper-expressing and normal islet is shown for all the blocks combined in D (Head), 
E (Body) and F (Tail). *significant difference between groups (P ≤ 0.05). **significant difference between groups 
(P ≤ 0.01). ***significant difference between groups (P ≤ 0.001). ****significant difference between groups (P 
≤ 0.0001). 
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FFiigguurree  77.. A) The overall percentage of islets with abnormal MHC-I expression (elevated and hyper-expressing 
islets) is represented as a heat map. Areas with higher (red) or lower (green) presence of affected islets are 
shown for all the sections together. B) The overall mean number of CD8 T cells per islet section (elevated, hyper-
expressing and normal) is represented as a heat map. Areas that contained islets with higher (red) or lower 
(green) presence of CD8 T cells are shown for all the sections together. C) Correlation analysis of the percentage 
of islets with abnormal MHC-I and the number of CD8 T cells per islet section (r=0.61; R2=0.44). Scale bar, 1000 
µm in all images. ****significant difference (P ≤ 0.0001). 
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DDiissccuussssiioonn  

In the present study, we have performed a systematic analysis of two pathognomonic 

signs of early diabetes, MHC-I expression and CD8 T cell infiltration into islets. Pancreatic 

samples from a double Ab+ individual with no clinical signs of diabetes showed high MHC-

I expression affecting approximately 14 % of the islets in head and body and 12 % in the 

tail. Areas of islets with normal MHC-I expression were frequently continuous to areas 

with hyper-expressing islets. In some of these areas almost 50 % of the islets hyper-

expressed Class I. In addition, we observed an intermediate level of expression that was 

apparent in some islets. In these so-called “elevated islets”, not all the endocrine cells 

within the islet expressed MHC-I. Their distribution was also scattered across the 

pancreatic sections. Hence, islets with an abnormal phenotype (elevated and hyper-

expressing MHC-I) presented a patchy and sometimes lobular distribution. CD8 T cell 

infiltration, although mild, was also detected in the affected islets and was on average 

higher in islets with clear MHC-I hyper-expression compared to islets with just elevated 

and normal MHC class I. In 1985, a case report by Botazzo and colleagues described the 

pathological findings in the pancreas of a 12 year old girl with newly-diagnosed T1D, who 

died within 24 hours of diagnosis (89). In this important study, “a marked increase” in 

Class I (HLA-A, B and C) expression was also observed in some islets. In addition, analysis 

of islet infiltration showed the presence of a predominant cytotoxic T cell population (89).  

In 1987 Foulis et al. confirmed the presence of an abnormally high expression of MHC-I 

molecules on endocrine cells from type 1 diabetic donors (88). Even at that time, the 

possible underestimation of pathological alterations based on the sole analysis of one 

tissue section from one particular block was a concern (88). In the present study we have 

performed a comprehensive and systematic analysis in multiple blocks from the 

pancreatic head, body and tail to overcome this possible limitation. As shown here, the 

lobularity and heterogeneity of the human disease increases the complexity of possible 

pathological interpretations and therefore conclusions obtained from the study of one 

tissue section should, in general, be interpreted with caution.  
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Insulitis is present in both mice and humans, but major differences have been reported. 

In mouse models, infiltration starts in the peri-islet area and it is comparatively massive 

while in humans, as described here, it is usually mild. Additionally, we and others have 

shown that only a small percentage of islets is inflamed during the pre-diabetic phase (26, 

95). Conversely, in the NOD mice model, at 18 weeks-old, almost all of the islets are heavily 

infiltrated (98, 99). Furthermore, in both Non-Obese Diabetic (NOD) mice and humans, 

islet beta cells up-regulate MHC-I during the inflammatory response and this process is 

important for the disease progression. As reported by Hamilton-Williams et al, MHC-I 

influences beta cell destruction by infiltrating cytotoxic T cells (100). NOD mice lacking 

MHC-I expression on beta cells presented the same level of insulitis as those with normal 

expression, but hyperglycaemia was delayed or abolished. Our results additionally show 

that there is a strong correlation between islet MHC-I expression and infiltrating CD8 T 

cells in humans. Areas containing mostly normal islets presented a lower but still evident 

number of CD8 T cells per islet section than those with higher percentage of abnormal 

islets. This could indicate that CD8 T cells infiltrate the islets even before the up-regulation 

of MHC-I occurs. The differences between mice and human pathology are therefore 

intriguing. They could reside on the aetiology or the primary cause of the disease, but 

could also be just reflective of an overall slower disease course in humans (years versus 

months in mice). 

 

The link between MHC-I hyper-expression and virus infections has often been debated 

over the past 30 years. Our results here cannot confirm the presence of a viral infection 

but the lobular pattern is indicative of the usual patchy appearance of viral antigen found 

during infection in a solid organ (101-103). Infection of some islets might trigger an 

antiviral response and therefore an increase in MHC-I (104). For example, growing 

evidence suggests that enteroviruses (EV) or neutralizing antibodies against them can be 

detected in pancreata and in the serum from T1D donors (103, 105-109). EV can 

effectively infect beta cells, which express the coxsackievirus and andenovirus receptor 

(CAR) (110, 111). Infection of beta cells could trigger the release of interferons and islet 

antigens (112) that might be recognized by auto-reactive T cells therefore initiating the 
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autoimmune destruction. However, no viral proteins or genome were detected in the 

pancreas of this particular autoantibody positive donor by immunohistochemistry and 

PCR in the blocks analyzed (Richardson S. and Oikarinen M., personal communication). We 

cannot completely rule out the presence of a viral infection since not all the regions of the 

pancreas were analyzed. In addition, it has been shown that EVs can persist due to 

deletions in their genome that make the virus an extremely slow replicator and that 

displace the wild type forms during a chronic infection (113). Additional and new 

techniques will be needed to detect these terminally deleted viruses in pancreata from 

pre- or diabetic individuals and their possible role in the pathogenesis of T1D. Slow-

replicating, endogenous and/or latent viruses like herpesviruses could also be good 

candidates and may have a role in the induction of autoimmune diabetes (114-116). The 

MHC-I pattern shown here could match a possible lobular spreading of these viruses. 

 

In conclusion, in this systematic study, MHC-I expression and CD8 T cell infiltration have 

been analyzed on a per islet basis in whole tissue sections from multiple regions of the 

pancreas. Our data demonstrate that during the pre-diabetic state, islets undergo 

important pathophysiological changes that occur in a patchy, almost ‘vitiligo-like’ fashion 

(117) and highlights the importance of understanding the precise cause for these changes. 

More insight into autoantibody positive cases could reveal early pathological events of 

T1D and thus could also inform future preventive strategies.  
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