

Exploring chemical space in covalent and competitive glycosidase inhibitor design

Chen, Y.

Citation

Chen, Y. (2022, October 13). Exploring chemical space in covalent and competitive glycosidase inhibitor design. Retrieved from https://hdl.handle.net/1887/3480333

Version: Publisher's Version

License: License agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3480333

Note: To cite this publication please use the final published version (if applicable).

5

Novel Uronic Acid-Type 1-N-Iminosugars Derived from Siastatin B as Competitive Heparanase Inhibitors

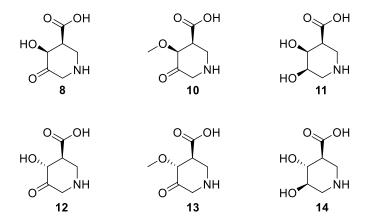
5.1 Introduction

Heparan sulfate (HS) is a long linear polysaccharide consisting of repeating disaccharide units formed by a uronic acid (either D-glucuronic acid, GlcA or L-iduronic acid, IdoA) and a D-glucosamine (either *N*-acetylated, GlcNAc or *N*-sulfated, GlcNS) that is modified at various positions by sulfation, yielding domains with high sulfation along the HS chain separated by low/minimal sulfation segments.¹ The structure of heparan sulfate proteoglycans (HSPGs) consists of a core protein to which variable HS chains are covalently attached.^{2, 3} HSPGs are mainly localized in the extracellular matrix (ECM), on the cell surface and also in the basement membrane (BM), and contribute significantly to the structural integrity, self-assembly and insolubility of the ECM and BM.^{4, 5} Moreover, HSPGs provide a reservoir for the binding of numerous bioactive molecules such as growth factors, cytokines, chemokines and enzymes, with specific binding events mediated by local features (e.g. sulfation patterns or anionic charges)^{6, 7} of HS chains.

Heparanase (HPSE) is the only known mammalian *endo*-β-D-glucuronidase capable of cleaving within HS chains. It catalyses the hydrolysis of internal β-1,4-linked glycosidic bonds between GlcA and GlcNS (Figure 5.1) at a limited number of sites. HPSE processes its substrates through a Koshland double displacement mechanism, generating smaller HS fragments with net retention of the anomeric configuration.^{8, 9} Under normal physiological conditions, HPSE is expressed at high levels in placenta and a few cell types such as platelets, neutrophils and mast cells, and is poorly expressed in other human tissues. However, upregulated expression and increased enzymatic activity of HPSE have been reported in multiple pathological conditions, ¹⁰⁻¹² particularly in cancer progression and inflammation disorders where HPSE-mediated degradation of HS and the consequent release of HS-sequestered molecules enables remodelling of the ECM network and facilitates cell migration, invasion and proliferation.

Figure 5.1. Heparanase cleavage site within the structure of heparan sulfate.

The pivotal role of HPSE in the establishment and development of numerous diseases has made it an attractive pharmacological target and several different classes of inhibitors have been developed over the past two decades, ranging from polysulfated oligo- and polysaccharides,


nucleic acids and monoclonal antibodies to small-molecule inhibitors. ¹³⁻¹⁶ Amongst these, heparin/HS mimetics are the most intensively studied ones and four compounds (PI-88, SST0001, M402, and PG545)¹⁷⁻²⁰ of this class have been tested in clinical trials for various types of cancer. However, these compounds share some limitations related to their high-molecular weight nature, heterogeneous structure and parenteral administration, which may limit their potential therapeutic application. The discovery of small molecules endowed with anti-HPSE activity would provide another alternative to the development of novel therapeutic drugs because of their more conducive pharmacokinetic properties and ease of optimization for oral administration. ^{15, 21}

Iminosugars are monosaccharide analogues which contain a nitrogen atom instead of an oxygen in the ring.²² Many compounds of this type, such as 1-deoxynojirimycin, are potent and selective inhibitors of enzymes associated with carbohydrate metabolism, ^{23, 24} and have been investigated as potential therapeutics for tumor metastasis, diabetes, lysosomal storage disorders and other diseases. 25-27 Siastatin B, a natural product originally isolated from a Streptomyces culture by Umezewa et al.,28 is a gem-diamine 1-N-iminosugar in which the anomeric carbon is replaced by nitrogen²⁹ (Figure 5.2A). It effectively inhibits neuraminidases as well as β -D-glucuronidases and N-acetyl- β -D-glucosaminidases, presumably because it structurally resembles N-acetylneuraminic acid, β-D-glucuronic acid and N-acetyl-β-Dglucosamine. Upon achievement of the total synthesis³⁰ of siastatin B, Nishimura and coworkers further reported the synthesis of a series of siastatin B derivatives characterized by a trifluoroacetamido substituent at the 2 position of the piperidine scaffold (the ring numbering is depicted in siastatin B). 31, 32 These 2-trifluoroacetamido derivatives 2-4 (Figure 5.2A) were all shown to be very potent inhibitors of bovine liver β-D-glucuronidase and also showed moderate inhibition of recombinant human HPSE. NMR analyses of compound 2 in the media of enzyme assays have suggested that it can undergo pH-dependent Amadori rearrangement in solution, yielding a hemiaminal/hydrated ketone that may act as the true inhibitor (Figure 5.2B).³³ This rearrangement starts by elimination of the 2-trifluoroacetamido group that can be followed by hydration of the resulting iminium to form hemiaminal 5. Enolization of 6 can give enol 7, which can further tautomerize to ketone 8, followed by addition of a H₂O molecule to give hydrate 9. This solvent-mediated rearrangement has not been demonstrated for siastatin B, which appears to be relatively stable in aqueous solutions.

Figure 5.2. A) Chemical structures of siastatin B (1) and its 2-trifluoroacetamido derivatives **2-4**; B) Transformation of D-galacturonic acid-type gem-diamine 1-*N*-iminosugar **2** into hydrate **9** in aqueous acetate buffer (pH 5.0) as proposed by Nishimura and co-workers.

The crystal structural of human HPSE has recently been resolved by Wu et al., 34 enabling structure-based design of HPSE inhibitors. Surprisingly, preliminary X-ray structures of human HPSE treated with siastatin B, as conducted by Liang Wu (University of York), has indicated that it is hydrate 9, and not siastatin B, that occupies the enzyme active site. To establish the mode of action by which siastatin B inhibits heparanases and β-glucuronidases, X-ray crystallographic analysis of co-complexes between siastatin B and different enzymes are presented in this chapter. Furthermore, in order to understand the action of the breakdown products and their HPSE inhibitory properties, a panel of uronic acid-type 1-N-iminosugars 8-14 was synthesized (Figure 5.3). Besides the *galacto*-configured ketone 8 that may be formed by degradation of siastatin B, the *gluco*-configured analogue 12 was considered as well since it more closely mimics the glucose configuration of the natural HPSE substrates: glucuronic acid. Previous work on endo-glycosidase inhibitors as described in this thesis (Chapters 2 and 3) and elsewhere³⁵⁻³⁷ have demonstrated that endo-glycosidases have larger active sites to accommodate elongation at the non-reducing end sugars where the polysaccharide chain continues – here the O4 position. In line with this observation, O4-methylated compounds 10 and 13 were included in the panel as well, with the aim to achieve selectivity for HPSE over exo-β-D-glucuronidases. Additionally, uronic acid-type isofagomine 14 has previously been

reported as a potent inhibitor of β -D-glucuronidase, ³⁸⁻⁴⁰ and comprises the reduced (keto/hydrate to alcohol) derivative of compound **2**. Since its inhibitory activity towards HPSE has yet to be explored, compound **14** as well as its *galacto*-configured isomer **11** were included in the panel.

Figure 5.3. Structures of D-*galacto*- and D-*gluco*-uronic acid-type 1-*N*-iminosugars which are subject of the studies described in this chapter.

5.2 Results and discussion

5.2.1 Synthesis of D-glucuronic acid-type 1-N-imingugars

The synthesis of glucuronic acid-type 1-N-imingugars commenced with the preparation of key intermediate 21 (Scheme 5.1). Transformation of 15 into 19 was achieved using adaptations of the procedures described by Jiang et al. for the construction of 1-deoxy-L-fuconojirimycin.⁴¹ Starting from enantiomerically pure cyanohydrin 15, prepared employing (S)-hydroxynitrile lyase from the *Hevea brasiliensis* rubber tree, ⁴² the secondary alcohol was silylated to give **16** in excellent yield. Conversion of 16 via a one-pot DIBAL-H reduction-transimination-sodium borohydride reduction cascade sequence, using commercially available allylamine, followed by subsequent N-Boc protection, afforded compound 18 in 81% yield over two steps. Ring-closing metathesis of 18 using Grubbs' catalyst provided heterocyclic alkene 19. The yield (45%) is however relatively low compared to those (88%–97%) of previously reported analogues,⁴¹ possibly due to the higher reaction concentration (0.2 M instead of 0.1 M) applied here, which led to the formation of undesired intermolecular metathesis side products. The last two steps in the synthesis route followed strategies as reported by Takahata et al. 43 Epoxidation of 19 was performed using methyl(trifluoromethyl) dioxirane (generated in situ from 1,1,1-trifluroacetone and oxone⁴⁴), and epoxide **20** was formed preferably due to a favored attack of the dioxirane on the less hindered anti-side of the large TBDPS group. Nucleophilic opening of epoxide 20 was carried out with *in situ* generated cuprate⁴⁵ (CH₂=CH)₂CuCNLi₂ in the presence of Lewis acid at low temperature for 2 h, affording product **21** in 64% yield.

Scheme 5.1. Synthesis of key intermediate **21**. Reagents and conditions: a) TBDPSCl, imidazole, DMF, 0 °C to rt, 98%; b) *i*) DIBAL-H, Et₂O, -78 °C to 10 °C; *ii*) MeOH, -90 °C; *iii*) allylamine, NaOMe, rt; *iv*) NaBH₄, 0 °C to rt; c) Boc₂O, Et₃N, DCM, rt, 81% over two steps; d) Grubbs 1st generation, DCM, reflux, 45%; e) oxone, CH₃COCF₃, NaHCO₃, EDTA, MeCN, H₂O, 0 °C, 60%; f) *n*-butyllithium, tetravinyltin, BF₃·Et₂O, Et₂O, -78 °C, 2 h, 64%.

Glucuronic acid-type isofagomine 14 was synthesized by Ichikawa et al. starting from commercially available D-arabinose in 13 steps. 38 Here, an alternative synthesis route starting from the vinyl intermediate 21 is described (Scheme 5.2). It was envisioned that protecting the secondary alcohol in 21 with an acid-labile group would facilitate its removal together with the Boc and TBDPS groups in the final stage of the synthesis, therefore a 4-methoxybenzyl (PMB) group was first chosen for this purpose. However, treatment of 21 with PMBCl in the presence of sodium hydride (NaH) at 0 °C for 1 h only led to the formation of a desilylated side product. Other attempts by reacting 21 with freshly prepared PMB-imidate 23 using catalytic amounts of acid⁴⁶⁻⁴⁸ proved unproductive as well. As an alternative, protection of the hydroxyl group as the methoxymethyl (MOM) ether was investigated. While treatment of 21 with an excess of MOMCl (7.0 eq.) in the presence of DIPEA (8.0 eq.) proved unproductive when conducted at room temperature, heating the reaction mixture to reflux (40 °C) overnight afforded product 24 in good yield. It was found that performing the reaction in a sealed microwave tube, which could prevent the evaporation of solvent (CH₂Cl₂) and the low-boiling MOMCl during the refluxing process, allowed to achieve full conversion of the starting material. Oxidative cleavage of the terminal alkene to the corresponding carboxylic acid was best achieved in onepot by using ruthenium tetraoxide (generated in situ from ruthenium chloride and sodium periodate) in a solvent system of CCl₄/CH₃CN/H₂O as developed by Sharpless and coworkers, 49 resulting in the isolation of 25 in 64% yield. Attempts to replace (toxic) CCl₄ by EtOAc or CH₂Cl₂ led to incomplete conversion even after prolonged reaction times (15 h), and the corresponding vicinal diol and aldehyde intermediates (from **24**) were observed as the main products by TLC analysis. Ultimately, all of the protecting groups in **25** were removed by treatment with 3 M HCl under reflux for 4 h, yielding product **14** in excellent yield, and all spectroscopic data obtained for **14** proved to be in agreement with those reported in the literature.³⁸⁻⁴⁰

Scheme 5.2. Synthesis of glucuronic acid-type isofagomine **14**. Reagents and conditions: a) MOMCl, DIPEA, DCM, reflux, 87%; b) RuCl₃· 3H₂O (10 mol%), NaIO₄ (5.0 eq.), CCl₄/CH₃CN/H₂O, rt, 3 h, 64%; c) 3 M HCl in H₂O, dioxane, 100 °C, 4 h, 95%; d) CCl₃CN, NaH, Et₂O, 0 °C to rt, 2 h, 98%.

Next, the synthesis of 12 from intermediate 24 was investigated (Scheme 5.3). The TBDPS group in 24 could be readily removed by tetrabutylammonium fluoride (TBAF) in THF, resulting in the formation of alcohol 26, which was then oxidized to ketone 27 with Dess-Martin periodinane (DMP). Oxidative cleavage of the terminal alkene proceeded smoothly using the same conditions as described for the preparation of 25. Complete conversion of the starting material was achieved after 2 h and carboxylic acid 28 was observed as the single product by TLC and LC-MS analyses. However, extraction of the product from the reaction mixture proved to be troublesome after quenching the reaction with saturated aqueous sodium thiosulfate (Na₂S₂O₃). It was found that the reaction mixture had an original pH of around 2 to 3, which after treatment with Na₂S₂O₃ solution increased to ~8, pH at which the product became watersoluble. This problem was circumvented by quenching the reaction with isopropanol³² and the product could be easily extracted into the organic phase. After purification by standard silica gel column chromatography, carboxylic acid 28 was isolated in good yield. Removal of the protecting groups could be accomplished by treatment with 4 M HCl in dioxane/H₂O for 5 h, providing compound 12 as the single product after precipitation from MeOH/Et₂O. Of note, deprotection of 28 under acidic conditions for prolonged reaction times (18 h) resulted in the formation of a complex mixture of several compounds.

Scheme 5.3. Synthesis of compound **12**. Reagents and conditions: a) TBAF, THF, rt, 94%; b) Dess-Martin periodinane, DCM, 0 °C to rt, 93%; c) RuCl₃· 3H₂O (10 mol%), NaIO₄ (5 eq.), CCl₄/CH₃CN/H₂O, rt, 2 h, 83%; d) 4 M HCl in dioxane/H₂O, rt, 70%.

As the next objective, the versatility of alkene 21 as starting material for the synthesis of 13 was investigated (Scheme 5.4). The secondary alcohol in 21 was methylated by reaction with an excess (8.0 eq.) of trimethyloxonium tetrafluoroborate, affording compound 29 in good yield. Desilylation of 29 followed by oxidation resulted in the formation of ketone 30. Oxidative cleavage of the terminal double bond in 30 had to be performed carefully. Treatment of 30 with 10 mol% of RuCl₃ and 5.0 equivalent of NaIO₄ at room temperature for 2 h (the same condition as used for the preparation of 28) resulted in the isolation of carboxylic acid 31 in a low yield (28%). NMR analysis of the crude product revealed the presence of several impurities which were presumably intermediates resulting from incomplete oxidation. However, after prolonging the reaction time to 17 h, compound 31 could not be detected in the crude while the impurities were observed by NMR, which indicates that these impurities might be a result of overoxidation since RuO₄ is known as a strong oxidant. To confirm this speculation, the reaction was performed with decreased amounts of RuCl₃ (5 mol%) and NaIO₄ (3.5 eq.) at 0 °C, and the oxidation process was monitored every 15 minutes by TLC analysis and terminated as soon as no intermediates (diol and aldehyde) remained. In this way carboxylic acid 31 was obtained in 75% yield and no over-oxidation side products were detected. The Boc group in 31 was then removed under acidic conditions to give the 4-methylated iminosugar 13 in around 80% purity.

Scheme 5.4. Synthesis of compound **13**. Reagents and conditions: a) trimethyloxonium tetrafluoroborate, proton sponge, 3 Å MS powder, DCM, 0 °C to rt, 75%; b) TBAF, THF, rt, 90%; c) Dess-Martin periodinane, DCM, 0 °C to rt, 83%; d) RuCl₃·3H₂O (5 mol%), NaIO₄ (3.6 eq.), CCl₄/CH₃CN/H₂O, 0 °C for 1 h then rt for 30 min, 75%; e) 0.2 M HCl/HFIP, H₂O, rt, 80% in purity.

5.2.2 Synthesis of D-galacturonic acid-type 1-N-iminosugars

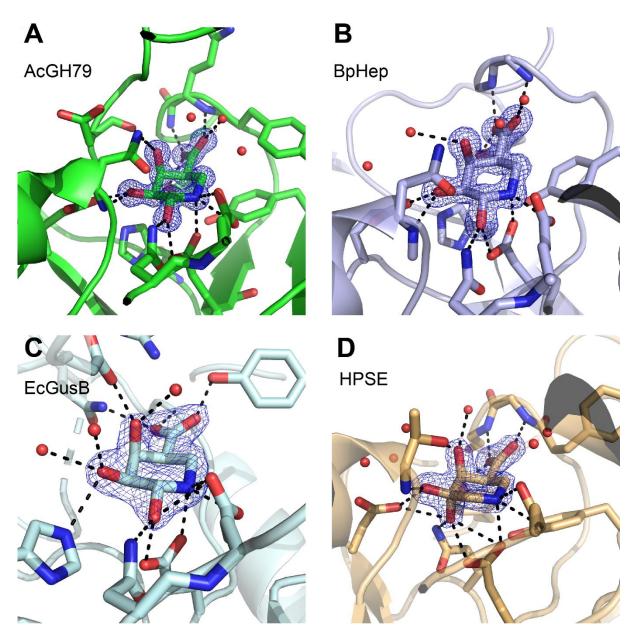
The synthesis towards galacturonic acid-type 1-N-iminosugars commenced with commercially available D-lyxose that was smoothly converted into key intermediate 32 (Scheme 5.5) in ten steps following procedures described by Ichikawa et al. for the preparation of the N-Boc protected version of compound 32.⁵⁰ Oxidation of the primary alcohol in 32 with Dess-Martin periodinane gave an aldehyde intermediate that was further oxidized by means of Pinnick oxidation,⁵¹ providing carboxylic acid 33 in 65% yield over two steps. Deprotection of the isopropylidene acetal and the carboxybenzyl (Cbz) group was achieved by palladium catalyzed hydrogenolysis in the presence of acid, affording galacturonic acid-type isofagomine 11 in quantitative yield. Next, the preparation of 8 from common intermediate 32 was investigated. The 3,4-isopropylidene acetal in 32 was removed smoothly under acidic conditions followed by a thermodynamically controlled installation of the benzylidene acetal and subsequent silylation of the remaining 3-hydroxyl group, affording fully protected 34 in 68% yield over three steps. Regioselective cleavage of the benzylidene acetal using BH₃·THF/TMSOTf⁵² resulted in the isolation of compound **35** in excellent yield. Jones oxidation of the primary alcohol followed by benzyl protection of the resulting carboxylic acid gave benzyl ester 36 in moderate yield. Removal of the silyl group with TBAF needed to be performed carefully. Treatment of 36 with TBAF at room temperature for prolonged reaction times resulted in the isolation of unsaturated ester 37 which was formed by tetrabutylammonium hydroxide catalyzed β-elimination. This problem could be circumvented by lowering the temperature and shortening the reaction time, providing compound 38 in 94% yield. Oxidation of the secondary alcohol to the ketone followed by global deprotection using palladium catalyst under hydrogen atmosphere finally afforded target 1-N-iminosugar 8.

Scheme 5.5. Synthesis of compounds 8 and 11. Reagents and conditions: a) *i*) Dess-Martin periodinane, DCM, rt; *ii*) NaClO₂, NaH₂PO₄, 30% H₂O₂, CH₃CN, H₂O, 0 °C to rt, 65% over two steps; b) H₂, 10% Pd/C, H₃O⁺, THF, rt, quant; c) *i*) 8 M HCl, MeOH, rt; *ii*) PhCH(OMe)₂, CSA, DMF, 60 °C; d) TBSCl, imidazole, DCM, rt, 68% over three steps; e) THF·BH₃, TMSOTf, DCM, 0 °C to rt, 97%; f) *i*) Jones reagent, acetone, rt; *ii*) benzyl alcohol, DIC, DMAP, DCM, rt, 46% over two steps; g) TBAF (75 wt% in H₂O), THF, 38: 0 °C, 5 h, 94%, 37: rt, overnight, 98%; h) Dess-Martin periodinane, DCM, rt, 71%; i) H₂, 10% Pd/C, THF, H₃O⁺, rt, quant.

It was anticipated that installation of a *tert*-butyl ester instead of the benzyl ester in **36** would provide more possibilities for the preparation of the targeted keto-iminosugars. For this purpose, the primary alcohol in **35** was oxidized to a carboxylic acid via a two-step oxidation sequence (Scheme 5.6). Direct esterification of the carboxylic acid with *tert*-butanol under the activation of *N*,*N'*-diisopropylcarbodiimide (DIC) only afforded *tert*-butyl ester **40** in poor yield (30%). LC-MS analysis indicated the presence of a product with a mass corresponding to the acylurea rearrangement product as the major product. Alternatively, esterification of the carboxylic acid with the commercially available *tert*-butyl *N*,*N'*-diisopropylcarbamimidate was investigated and this transformation proceeded smoothly in toluene at 60 °C, affording ester **40** in 71% yield over three steps. Desilylation and subsequent oxidation gave protected ketone **41** in good yield. Unexpectedly, reductive deprotection of **41** by palladium catalyzed hydrogenation under acidic conditions resulted in a complex mixture of compounds.

Inspired by the preparation of the *gluco*-configured keto-iminosugars, a precursor that is fully protected with acid-labile groups was investigated (Scheme 5.6). Treatment of compound

40 with catalytic palladium under hydrogen atmosphere in methanol for a short reaction time (2 h) resulted in selective removal of the Cbz group to afford a free amine, which was subsequently protected with a Boc group. After work-up, the resulting Boc-protected intermediate was directly subjected to a second palladium catalyzed hydrogenolysis for prolonged reaction times (48 h) to remove the benzyl group at O4, affording alcohol 42 in 69% yield over three steps. Protection of the secondary alcohol in 42 with MOMCl was performed in a sealed microwave tube at 100 °C, providing compound 43 in good yield. Subsequent desilylation and oxidation provided ketone 44 which was deprotected under acidic conditions to afford compound 8, of which the spectroscopic data are in accordance with those prepared by hydrogenolysis of 39 (Scheme 5.5). On the other hand, methylation of 42 with trimethyloxonium tetrafluoroborate as used for the preparation of 29 proved to be troublesome, and compound 45 could only be obtained in very low yield (13%). As an alternative, compound 42 was reacted with iodomethane in the presence of silver oxide and dimethyl sulfide, 53 giving 45 in satisfying yield (69%), which after desilylation, oxidation and final deprotection provided iminosuguar 10.


Scheme 5.6. Alternative synthetic routes toward the preparation of compound **8** and synthesis of compound **10**. Reagents and conditions: a) *i*) Dess-Martin periodinane, DCM, rt; *ii*) NaClO₂, NaH₂PO₄, 30% H₂O₂, CH₃CN, H₂O, 0 °C to rt; *iii*) *tert*-butyl *N*,*N*-diisopropylcarbamimidate, toluene, 60 °C, 5 h, 71% over three steps; b) *i*) TBAF (75 wt% in H₂O), THF, 0 °C, 5 h; *ii*) Dess-Martin periodinane, DCM, rt, **41** 85%, **44** 76%, **46** 73% over two steps; c) H₂, 10% Pd/C, H₃O⁺, rt; d) *i*) H₂, 10% Pd/C, MeOH, rt, 2 h; *ii*) Boc₂O, DIPEA, DCM, rt; *iii*) H₂, 10% Pd/C, MeOH, 48 h, 69% over three steps; e) MOMCl,

DIPEA, DCM, 100 °C in microwave tube, 88%; f) concentrated HCl (36%-38%), HFIP, H₂O, rt, **8** quant, **10** quant; g) CH₃I, Ag₂O, (CH₃)₂S, THF, rt, 69%.

5.2.3 Structural analysis of siastatin B-enzyme complexes

To determine how siastatin B inhibits both heparanases and β-glucuronidases, the structure of co-complexes between siastatin B and each of human heparanase (HPSE), *A. capsulatum* β-glucuronidase (AcGH79), *Burkholderia pseudomallei* heparanase (BpHep) and *E. coli* β-glucuronidase (EcGusB) were determined (see Table S5.1 for data collection and refinement statistics). Each of the structures contains a ligand present in the active site with full occupancy (Figure 5.4). Three of the four enzymes contain the same compound bound to the enzyme active site: AcGH79, BpHep and EcGusB all have the hemiaminal breakdown product 5 bound in the active site, as opposed to siastatin B (Figure 5.4A-C). Although all three enzymes normally accommodate glucuronic acid at the position where the inhibitor is located, compound 5 appears to bind productively to the active site. The 4-hydroxyl – with an epimeric configuration with respect to glucuronic acid – forms hydrogen bond interactions with the enzyme active site, for both AcGH79 and EcGusB. The 4-hydroxyl of 5 complexed to BpHep does not form a hydrogen bond, however it is exposed to the bulk solvent, and forms a hydrogen bond with an active site water molecule.

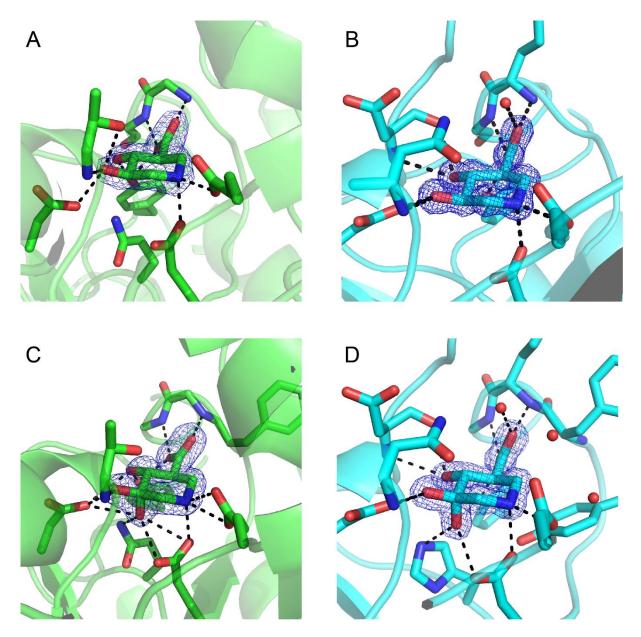

The co-complex structure of HPSE and siastatin B, unlike the three other co-complex structures, contains the 3-geminial diol derivative $\bf 9$ bound to the enzyme active site which is a further breakdown product of $\bf 5$ (Figure 5.4D). Despite the additional hydroxyl present at the 3-position of $\bf 9$ this compound appears to be well accommodated in the active site of HPSE. Both hydroxyls present at the 3-position form hydrogen bond interactions with the active site: the hydroxyl on the β -face forms a hydrogen bond with Asp27 and the backbone nitrogen of Thr62 while the hydroxyl on the α -face is positioned to form hydrogen bonds with the catalytic nucleophile Glu343, Gln383 and Asp27. The hydroxyl at the 4-position of inhibitor $\bf 9$ lacks the hydrogen bond with Trp391 which is observed for *gluco*-configured inhibitors, 54 but it does form hydrogen bonds with water molecules present in the crystal structure.

Figure 5.4. Structures of heparanases and β-glucuronidases in complex with siastatin B breakdown products. Siastatin B breakdown product **5** is shown bound to AcGH79 (A), BpHep (B), EcGusB (C) and further breakdown product **9** is shown in HPSE (D). Electron density $(2F_o - F_c)$ is shown for the ligand as a blue mesh contoured at 2 σ (AcGH79 = 0.92 e⁻/Å³, BpHep = 0.77 e⁻/Å³, EcGusB = 0.41 e⁻/Å³, HPSE = 0.61 e⁻/Å³). The polypeptide is shown in cartoon form with active site residues shown as sticks. Apparent hydrogen bonding interactions are shown as dotted black lines.

5.2.4 Structural basis for enzyme inhibition by synthetic iminosugars

To examine the structural basis for inhibition by the panel of synthetic *gluco*- and *galacto*-configured iminosugars, the co-crystal structures between two of these inhibitors and both HPSE and AcGH79 were determined (Figure 5.5). The uronic acid-type isofagomine **14** was well accommodated in the active sites of both AcGH79 and HPSE. For the co-complex between

Figure 5.5. Structures of synthetic iminosugars **12** and **14** bound to HPSE and AcGH79. A) Complex between **14** and HPSE; B) Complex between **14** and AcGH79; C) Complex between **12** and HPSE; D) Complex between **12** and AcGH79. Electron density $(2F_o - F_c)$ is shown for the ligand as a blue mesh contoured at 2σ (A = 0.53 e⁻/Å³, B = 0.85 e⁻/Å³, C = 0.60 e⁻/Å³, D = 0.69 e⁻/Å³). The polypeptide is shown in cartoon form with active site residues shown as sticks. Apparent hydrogen bonding interactions are shown as dotted black lines.

AcGH79 and **14** interactions between the endocyclic nitrogen, 3-hydroxyl and the carboxylic acid moiety are the same as for the structure with compound **5** (Figure 5.5B and 5.4A). However, as the 4-hydroxyl is in the 'gluco' configuration it is now able to form hydrogen bonds with both the backbone carbonyl and the nitrogen of Asp105, instead of Asn80. The co-complex of **14** with HPSE also shows the anticipated switch in hydrogen bonding interactions for a *gluco*-

configured compound, with the 4-hydroxyl now hydrogen bonding to Tyr391 instead of an active site water (Figure 5.5A).

Ketone **12** was also soaked into pre-formed crystals of HPSE and AcGH79. In both structures the inhibitor is present as the geminal diol (Figure 5.5C and D). This mirrors compound **9** in the active site of HPSE when it was soaked with siastatin B. The positioning of the **12**-derived geminal diol is nearly identical to the structure with **9**, with the only exception being the hydrogen bonding of the 4-hydroxyl to Tyr391 (Figure 5.5C). The **12**-derived geminal diol in the active site of AcGH79 has the same hydrogen bonding network as the structure containing **14** and additional hydrogen bonds between the hydroxyl on the 'α-face' of 3-position with the nucleophile (Glu287) and His327 (Figure 5.5D).

5.3 Conclusion

This chapter describes the in-depth structural analysis of co-complexes between siastatin B and four kinds of β-D-glucuronidases including HPSE, AcGH79, BpHep and EcGusB, showing that siastatin B, in contrast to previous reports describing this to be a stable inhibitor, can provide hemiaminal **5** and geminal diol **9**, that are responsible for enzyme inhibition. In particular, binding of geminal diol **9** in the active site of HPSE suggests that this new 1-*N*-iminosugar may serve as a potent inhibitor of HPSE. In line with this consideration, the synthesis of a panel of *galacto*- and *gluco*-configured 1-*N*-iminosugar derivatives of compound **9** is presented in this chapter. The synthesis of the *gluco*-configured iminosugars comprises the preparation of a common intermediate that is protected with acid-labile groups, followed by oxidation and global deprotection under acidic conditions. The key acid-labile protecting group strategy can also be applied to the synthesis of the *galacto*-configured iminosugars **8** and **10**. In addition, an alternative benzyl-protection route is also described for the preparation of compound **8**, demonstrating that these ketone iminosugars are compatible with hydrogenolysis conditions as well.

Structural analysis for enzyme inhibition by the synthetic *gluco*-configured iminosugars showed that both compounds **12** and **14** are well accommodated in the active sites of HPSE and AcGH79. Compound **12** bound in the active sites of both enzymes in a hydrated form similar to compound **9** that was derived from siastatin B when it was soaked with HPSE. In the future, the inhibition potency of this panel of synthetic iminosugars toward HPSE can be evaluated, which will provide useful information for the development of potent HPSE inhibitors as potential therapeutics.

5.4 Acknowledgements

Zachary Armstrong, Liang Wu and Gideon Davies from University of York, UK are kindly acknowledged for crystallographic studies and valuable discussion. Rian van den Nieuwendijk is acknowledged for the synthesis of D-galacturonic acid-type 1-*N*-iminosugars and valuable discussion.

5.5 Experimental methods

5.5.1 Biochemical experiments

Recombinant protein production and purification

HPSE – Human HPSE was expressed and purified according to previously reported procedures.³⁴

AcGH79 - AcGH79 was expressed and purified according to previously reported procedures.⁵⁴

BpHep – The coding sequence of BpHep was cloned into the pET28a vector (Novagen), behind an N-terminal 6xHis tag and thrombin cleavage site and used to transform *E. coli* strain BL21 Gold (DE3) (Agilent). Transformants were grown in TB media supplemented with 50 mg/mL kanamycin at 37 °C until cultures reached an OD600 of 0.8-1.0, whereupon expression was induced by the addition of 0.5 mM isopropyl β-D-1-thiogalactopyranoside (IPTG; Sigma). Induced cultures were grown at 16 °C overnight, then harvested by 4,000 g centrifugation at 4 °C for 15 min.

Harvested cells were resuspended in ~50 mL Histrap buffer (20 mM Tris pH 8.0, 500 mM NaCl, 20 mM imidazole, 1 mM DTT), supplemented with DNAse I (Sigma; bovine pancrease), and cOmpleteTM EDTA protease inhibitors (Roche). Cells were lysed using a cell disruptor (Constant systems) at 40 kPSI operating pressure, and lysate clarified by centrifugation at 40,000 *g* at 4 °C for 30 min. Clarified supernatant was loaded onto a 5 mL HisTrap FF crude column (Cytiva) pre-equilibrated with HisTrap buffer A, washed with 10 column volumes (CV) of HisTrap buffer A, before eluting with HisTrap buffer B (20 mM Tris pH 8.0, 500 mM NaCl, 1000 mM imidazole, 1 mM DTT) over a 20 CV linear gradient. BpHep containing fractions were pooled, and buffer exchanged into 20 mM HEPES pH 7.4, 100 mM NaCl by at least 3 rounds of sequential concentration/dilution using a 30 kDa molecular weight cut-off (MWCO) Vivaspin centrifugal concentrator (Cytiva). Buffer exchanged BpHep was digested overnight at ambient temperature with thrombin (Sigma; bovine plasma) at 1:100 mass ratio thrombin:BpHep.

Digested BpHep was rerun over a 5 mL HisTrap FF crude column pre-equilibrated with HisTrap buffer A, which was further washed with 3 CV of Histrap buffer A. Combined flowthrough and wash fractions were concentrated to ~2 mL volume using a 30 kDa MWCO Vivaspin centrifugal concentrator, then loaded onto a Superdex S75 16/600 pg size exclusion chromatography (SEC) column (Cytiva) pre-equilibrated in SEC buffer (20 mM HEPES pH 7.4, 200 mM NaCl, 1 mM DTT). BpHep containing fractions were pooled and concentrated using a 30 kDa MWCO Vivaspin centrifugal concentrator to a

final concentration of \sim 20 mg/ml. Purified protein was flash frozen in liquid nitrogen and stored at -80 °C for use in further experiments.

EcGUSB – The coding sequence of EcGUSB was cloned into the pET28a vector, behind an N-terminal 6xHis tag, and used to transform *E. coli* strain BL21 Gold (DE3). Transformants were grown in TB media supplemented with 50 μg/mL kanamycin at 37 °C until cultures reached an OD600 of 0.8-1.0, whereupon gene expression was induced by the addition of 0.5 mM IPTG. Induced cultures were grown at 16 °C overnight, then harvested by 4,000 g centrifugation at 4 °C for 15 min.

Harvested cells were resuspended in ~50 mL Histrap buffer (20 mM Tris pH 8.0, 500 mM NaCl, 20 mM imidazole, 1 mM DTT), supplemented with DNAse I, and cOmpleteTM EDTA protease inhibitors. Cells were lysed using a cell disruptor at 40 kPSI operating pressure, then lysate clarified by centrifugation at 40,000 *g* at 4 °C for 30 min. Clarified supernatant was loaded onto a 5 mL HisTrap FF crude column pre-equilibrated with HisTrap buffer A, washed with 10 CV of HisTrap buffer A, before eluting with HisTrap buffer B (20 mM Tris pH 8.0, 500 mM NaCl, 1000 mM imidazole, 1 mM DTT) over a 20 CV linear gradient. BpHep containing fractions were pooled, and concentrated using a 30 kDa MWCO Vivaspin centrifugal concentrator to a volume of ~ 2 mL. Concentrated protein was loaded onto a Superdex S200 16/600 pg SEC column pre-equilibrated in SEC buffer (20 mM HEPES pH 7.4, 200 mM NaCl, 1 mM DTT). EcGUSB containing fractions were pooled and concentrated using a 30 kDa MWCO Vivaspin centrifugal concentrator to a final concentration of ~24.5 mg/ml. Purified protein was flash frozen in liquid nitrogen and stored at -80 °C for use in further experiments.

Crystallization

AcGH79 — Well diffracting crystals of AcGH79 were obtained by the sitting-drop vapor-diffusion method at 20 °C using a well solution containing 0.5 M ammonium sulfate, 1 M lithium sulfate, 0.1 M trisodium citrate, and a protein to well solution ratio of 500 nl: 500 nl. Crystals typically appeared after 1 week.

Inhibitor ligand complexes were obtained by transferring AcGH79 crystals to drops containing 2 M lithium sulfate and 1 mM inhibitor. Crystals were incubated with ligand for $\sim 0.5-1$ h, then directly harvested and flash-cooled in liquid nitrogen for data collection.

BpHep – Well diffracting crystals of BpHep were obtained by the sitting-drop vapor-diffusion method at 20 °C using a well solution containing 0.1 M sodium citrate pH 5.0, 14% (w/v) PEG 6000, and a protein to well solution ratio of 300 nl: 500nl. Crystals typically appeared after 3 days.

Inhibitor ligand complexes were obtained by transferring BpHep crystals to drops of well solution supplemented with 25 % (v/v) ethylene glycol and 1–5 mM inhibitor. Crystals were incubated with ligand for ~24 h, then directly harvested and flash-cooled in liquid nitrogen for data collection.

EcGusB – Initial crystals of EcGUSB were obtained by the sitting-drop vapor-diffusion method at 20 °C using a well solution containing 0.1 M Bis-Tris propane pH 7.5, 20% (w/v) PEG 3350, 0.2 M NaNO₃. These initial crystals were used to prepare a microseed stock using Seed Beads (Hampton), then used to seed well diffracting crystals of EcGUSB in the same well conditions, at a protein to seed to well solution ratio of 500 nL: 200 nL: 1000 nL.

Inhibitor ligand complexes were obtained by transferring EcGUSB crystals to drops of well solution supplemented with 25 % (v/v) ethylene glycol and 1–5 mM inhibitor. Crystals were incubated with ligand for \sim 2 – 4 h, then directly harvested and flash-cooled in liquid nitrogen for data collection.

HPSE – Well diffracting crystals of HPSE were obtained by the sitting-drop vapor-diffusion method at 20 °C using a well solution containing 0.1 M MES pH 5.5, 0.1 M MgCl₂, 17 % (w/v) PEG 3350, and a protein to well solution ratio of 200 nL : 500 nL. Crystals typically appeared after 1 week.

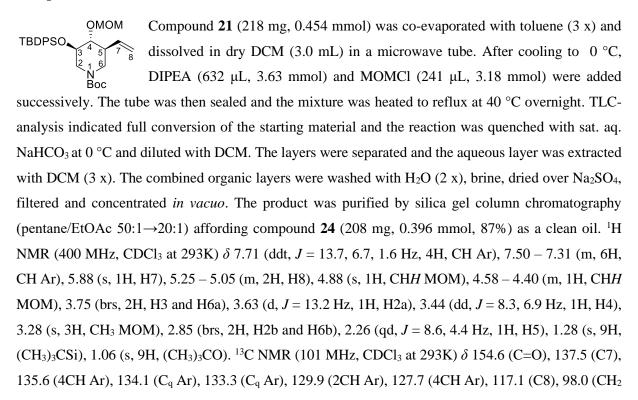
Inhibitor ligand complexes were obtained by transferring HPSE crystals to drops of well solution supplemented with 25 % (v/v) ethylene glycol and 1 mM inhibitor. Crystals were incubated with ligand for ~0.5-1h, then directly harvested and flash-cooled in liquid nitrogen for data collection.

X-ray data collection and structure solution

X-ray diffraction data were collected at 100 K at beamlines i03, i04 and i04-1 of the Diamond Light Source UK. Reflections were autoprocessed using the XIA2 pipeline.⁵⁵ Complexes were solved by directly refining against their unliganded structures where solved using molecular replacement with PHASER4 (search model PDB accessions 5E98 (HPSE), 3VNY (AcGH79), 3K46 (EcGUSB)). Solved structures were iteratively improved by rounds of manual model building and maximum-likelihood refinement using COOT⁵⁶ and REFMAC5⁵⁷ respectively. Ligand coordinates were built using jLigand.⁵⁸ Diagrams were generated using PyMOL.

5.5.2 Chemical synthesis

General experimental details

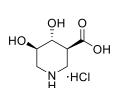

All reagents were of experimental grade and were used without further purification unless stated otherwise. Dichloromethane (DCM) and tetrahydrofuran (THF) were stored over 3 Å molecular sieves and N,N-dimethylformamide (DMF) was stored over 4 Å molecular sieves, which were dried *in vacuo* before use. All reactions were performed under an Argon or N_2 atmosphere unless stated otherwise. Reactions were monitored by analytical thin layer chromatography (TLC) using Merck aluminum sheets pre-coated with silica gel 60 with detection by UV-absorption (254 nm) and by spraying with a solution of $(NH_4)_6Mo_7O_{24}\cdot H_2O$ (25 g/L) and $(NH_4)_4Ce(SO_4)_4\cdot H_2O$ (10 g/mL) in 10% sulfuric acid followed by charring at \sim 150 °C or by spraying with an aqueous solution of $KMnO_4$ (7%) and K_2CO_3 (2%) followed by charring at \sim 150 °C. Column chromatography was performed manually using Screening Device b.v. silica gel 60 (0.04-0.063 mm) in the indicated solvents. LC-MS analysis was performed on a LCQ

Advantage Max (Thermo Finnigan) ion-trap spectrometer (ESI+) coupled to a Surveyor HPLC system (Thermo Finnigan) equipped with a C18 column (Gemini, 4.6 mm x 50 mm, 5 µM particle size, Phenomenex). The applied buffers were H₂O, acetonitrile (MeCN) and 1% aqueous trifluoroacetic acid (TFA). ¹H-NMR and ¹³C-NMR spectra were recorded on Bruker AV-400 (400/101 MHz), Bruker AV-500 (500/126 MHz), and Bruker AV-850 (850/214 MHz) spectrometers in the given solvent. Chemical shifts (δ) are given in ppm relative to tetramethylsilane (TMS) as internal standard (¹H NMR in CDCl₃) or the residual signal of the deuterated solvent. Coupling constants (J) are given in Hz. All given ¹³C-NMR spectra are proton decoupled. The following abbreviations are used to describe peak patterns when appropriate: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), Ar (aromatic), C_q (quarternary carbon). 2D NMR experiments (COSY, HSQC) were carried out to assign protons and carbons of the new structures and assignation follows the general numbering shown in compounds 24. High-resolution mass spectrometry (HRMS) analysis was performed with a LTQ Orbitrap mass spectrometer (Thermo Finnigan), equipped with an electronspray ion source in positive mode (source voltage 3.5 kV, sheath gas flow 10 mL/min, capillary temperature 250 °C) with resolution R = 60000 at m/z 400 (mass range m/z = 150 - 2000) and dioctyl phthalate (m/z = 391.28428) as a "lock mass". The high-resolution mass spectrometer was calibrated prior to measurements with a calibration mixture (Thermo Finnigan).

Experimental Procedures and Characterization Data of Products

The spectroscopic data of known compounds **15-16**⁴¹, **19-21**⁴³ and **S3**⁵⁰ are in agreement with those previously reported.

Compound 24


MOM), 82.5 (C4), 79.8 (C_q Boc), 73.0 (C3), 56.0 (CH₃ MOM), 48.4 (C2), 46.1 (C6), 45.2 (C5), 28.4 ((CH_3)₃CSi), 27.1 ((CH_3)₃CO), 19.3 ((CH_3)₃CSi) ppm. HRMS (ESI) m/z: [M+Na]⁺ calc for $C_{30}H_{43}NO_5SiNa$ 548.2803, found 548.2800.

Compound 25

To a solution of compound **24** (26 mg, 50 μ mol) in a mixture of CCl₄ (0.3 mL) and MeCN (0.3mL) was added a solution of NaIO₄ (53 mg, 0.25 mmol) and RuCl₃·3H₂O (0.1 M in H₂O, 50 μ L, 5.0 μ mol) in water (0.45 mL) at 0 °C. The reaction mixture was then stirred vigorously at rt for 3 h. After which, sat. aq.

Na₂S₂O₃ was added to quench the reaction and the resulting mixture was stirred for another 15 min at rt. The layers were separated and the aqueous layer was extracted with EtOAc (3 x). The combined organic layers were washed with H₂O, brine, dried over Na₂SO₄, filtered and concentrated *in vacuo*. The product was purified by silica gel column chromatography (pentane/EtOAc 15:1 \rightarrow 5:1, with 0.1% HOAc) affording compound **25** (17.5 mg, 32.0 μ mol, 64%) as a clean oil. ¹H NMR (500 MHz, CDCl₃ at 293K) δ 7.74 – 7.66 (m, 4H, CH Ar), 7.48 – 7.34 (m, 6H, CH Ar), 4.67 (s, 1H, CH*H* MOM), 4.49 (s, 1H, CH*H* MOM), 3.99 (t, *J* = 6.3 Hz, 1H, H4), 3.84 – 3.64 (brs, 1H, H6a), 3.73 (q, *J* = 5.7 Hz, 1H, H3), 3.60 – 3.29 (brs, 2H, H6b and H2a), 3.22 (s, 3H, CH₃ MOM), 2.59 (brs, 1H, H2b), 1.33 (s, 9H, (CH₃)₃CSi), 1.05 (s, 9H, (CH₃)₃CO). ¹³C NMR (126 MHz, CDCl₃ at 293K) δ 136.0 (4CH Ar), 130.0 (2CH Ar), 127.8 (4CH Ar), 97.4 (CH₂ MOM, assigned by HSQC), 78.8 (C4, assigned by HSQC), 70.9 (C3, assigned by HSQC), 56.0 (CH₃ MOM), 47.4 (C2, assigned by HSQC), 46.0 (C5, assigned by HSQC), 41.9 (C6), 28.4 ((*C*H₃)₃CSi), 27.1 ((*C*H₃)₃CO), 19.3 ((CH₃)₃CSi) ppm. HRMS (ESI) m/z: [M+Na]⁺ calc for C₂₉H₄₁NO₇SiNa 566.2545, found 566.2544.

Compound 14

A solution of compound **25** (16 mg, 29 μ mol) in dioxane (0.25 mL) in a microwave tube was added aqueous 3 M HCl (1.5 mL). The tube was then sealed and the mixture was stirred at 100 °C for 4 h until LC-MS indicated full deprotection. After cooling to rt, Et₂O (5 mL) was added and the mixture was stirred vigorously at rt

for 5 min. The phases were then separated and the organic layer was taken out carefully. The remaining H_2O layer was washed two more times with Et_2O (2 x 5 mL) and concentrated. The residue was purified by silica gel column chromatography (isopropanol/ H_2O /28-30% NH₄OH 12:1:1 \rightarrow 10:2:1) to give chromatographically pure **14**. Milli-Q water (1 mL) and aq. 1 M HCl (2 mL) were added to the residue, and the solution was evaporated to form a hydrochloride salt of **14**, which was further purified by a column of Sephadex G-25 with Milli-Q as eluent, affording the title compound **14** (5.5 mg, 28 μ mol, 95%) as a white solid after lyophilization. ¹H NMR (500 MHz, D₂O at 293K) δ 4.04 – 3.96 (m, 1H, H4), 3.90 – 3.82 (m, 1H, H3), 3.49 (dp, J = 12.9, 3.6, 2.7 Hz, 2H, H6a and H2a), 3.30 (tt, J = 10.8, 2.6 Hz, 1H, H6b), 3.08 – 2.99 (m, 1H, H2b), 2.81 (td, J = 7.9, 3.6 Hz, 1H, H5). ¹³C NMR (126 MHz, D₂O at

293K) δ 174.3 (C=O), 70.2 (C4), 66.9 (C3), 45.7 (C2), 45.0 (C5), 42.5 (C6). HRMS (ESI) m/z: [M+H]⁺ calc for C₆H₁₂NO₄ 162.0761, found 162.0763.

Compound 26

Compound **24** (187 mg, 0.35 mmol) was dissolved in dry THF (3.5 mL). TBAF (1 M in THF, 2.1 mL, 2.1 mmol) was added and the mixture was stirred at rt for 1.5 h. The reaction was quenched with sat. aq. NH₄Cl and concentrated *in vacuo* to remove THF. The resulting residue was diluted with DCM, washed with H₂O (2 x), brine, dried over

Na₂SO₄, filtered and concentrated *in vacuo*. The product was purified by silica gel column chromatography (pentane/EtOAc 9:1 \rightarrow 3:1) affording compound **26** (96 mg, 0.33 mmol, 94%) as a clean oil. ¹H NMR (500 MHz, CDCl₃ at 293K) δ 5.74-5.63 (m, 1H, H7), 5.19 (dd, J = 12.1, 1.3 Hz, 1H, H8a), 5.19-5.14 (m, 1H, H8b), 4.77 (dd, J = 6.9, 0.9 Hz, 1H, CHH MOM), 4.65 (dd, J = 7.0, 1.1 Hz, 1H, CHH MOM), 4.53-4.17 (m, 2H, H6a and H2a), 3.50-3.40 (H3), 3.46 (s, 3H, CH₃ MOM), 3.08 (dd, J = 10.2, 8.3 Hz, 1H, H4), 2.64-2.47 (m, 2H, H6b and H2b), 2.35-2.23 (m, 1H, H5), 1.46 (d, J = 1.3 Hz, 9H, (CH₃)₃C). ¹³C NMR (126 MHz, CDCl₃ at 293K) δ 154.6 (C=O), 135.9 (C7), 117.9 (C8), 98.5 (CH₂ MOM), 89.2 (C4), 80.2 ((CH₃)₃C), 70.0 (C3), 56.0 (CH₃ MOM), 48.5 (C2, assigned by HSQC), 46.3 (C6, assigned by HSQC), 44.9 (C5, assigned by HSQC), 28.5 ((CH₃)₃C). HRMS (ESI) m/z: [M+Na]⁺ calc for C₁₄H₂₅NO₅Na 310.1625, found 310.1623.

Compound 27

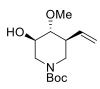
To a solution of compound **26** (96 mg, 0.33 mmol) in dry DCM (5 mL) at 0 $^{\circ}$ C was added Dess-Martin periodinane (283 mg, 0.66 mmol). The mixture was stirred at rt for 1 h until TLC-analysis indicated total consumption of the starting material. A mixture of sat. aq. Na₂S₂O₃ (3 mL) and sat. aq. NaHCO₃ (3 mL) was added to quench the

reaction and the mixture was stirred at rt for another 15 min until the white emulsion became clear solution. The layers were separated and the aqueous layer was extracted with DCM (2 x). The combined organic layers were washed with H₂O, brine, dried over Na₂SO₄, filtered and concentrated *in vacuo*. The product was purified by silica gel column chromatography (pentane/EtOAc 9:1 \rightarrow 3:1) affording compound **27** (88 mg, 0.31 mmol, 93%) as a clean oil. ¹H NMR (500 MHz, CDCl₃ at 293K) δ 5.77 (ddd, J = 17.6, 10.4, 7.6 Hz, 1H, H7), 5.30 – 5.20 (m, 2H, H8), 4.79 (dd, J = 7.1, 1.0 Hz, 1H, CHH MOM), 4.67 (dd, J = 7.0, 1.0 Hz, 1H, CHH MOM), 4.28 (dd, J = 16.7, 1.5 Hz, 1H, H2a), 4.10 (d, J = 10.2 Hz, 1H, H4), 4.07 – 3.99 (brs, 1H, H6a), 3.84 (brs, 1H, H2b), 3.39 (d, J = 1.0 Hz, 3H, CH₃ MOM), 3.37 – 3.17 (m, 1H, H6b), 2.71 (qd, J = 9.7, 5.0 Hz, 1H, H5), 1.46 (d, J = 1.0 Hz, 9H, (CH₃)₃C). ¹³C NMR (126 MHz, CDCl₃ at 293K) δ 202.5 (C3), 154.3 (C=O Boc), 135.3 (C7), 118.5 (C8), 96.5 (CH₂ MOM), 81.1 ((CH₃)₃C), 80.0 (C4), 56.3 (CH₃ MOM), 54.2 (C2, assigned by HSQC), 46.6 (C5), 46.0 (C6, assigned by HSQC), 28.4 ((CH₃)₃C) ppm. HRMS (ESI) m/z: [CH-Na]⁺ calc for C₁₄H₂₃NO₅Na 308.1468, found 308.1465.

To a solution of compound **27** (35 mg, 0.12 mmol) in a mixture of CCl₄ (1.4 mL) and MeCN (1.4 mL) was added a solution of NaIO₄ (130 mg, 0.60 mmol, 5.0 eq.) and RuCl₃·3H₂O (2.5 mg, 0.012 mmol, 0.1 eq.) in water (2.1 mL) at 0 °C. The reaction mixture was then stirred vigorously at rt for 2 h until TLC and LC-MS

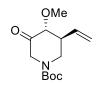
analysis indicated complete conversion. The phases were separated and the aqueous phase was extracted with EtOAc (3 x 15 mL). To the combined organic extracts was added isopropanol (0.2 mL) and the mixture was stirred at rt for an additional 1 hour. The mixture was then washed with H₂O (15 mL), brine (15 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo*. The product was purified by silica gel column chromatography (DCM/MeOH 100:0 \rightarrow 100:4) affording compound **28** (31 mg, 0.10 mmol, 83%) as a clean oil. ¹H NMR (500 MHz, CDCl₃ at 333K) δ 4.79 (d, J = 6.7 Hz, 1H, CHH MOM), 4.71 (d, J = 6.7 Hz, 1H, CHH MOM), 4.49 (d, J = 8.5 Hz, 1H, H4), 4.09 (d, J = 16.8 Hz, 1H, H2a), 3.99 (d, J = 16.7 Hz, 2H, H2b and H6a), 3.79 (dd, J = 13.7, 7.4 Hz, 1H, H6b), 3.39 (s, 3H, CH₃ MOM), 3.05 – 2.97 (m, 1H, H5), 1.46 (s, 9H, (CH₃)₃C). ¹³C NMR (126 MHz, CDCl₃ at 333K) δ 174.0 (COOH), 154.4 (C=O Boc), 96.9 (CH₂ MOM), 81.8 ((CH₃)₃C), 77.2 (C4), 56.4 (CH₃ MOM), 53.4 (C2, assigned by HSQC), 48.1 (C5), 43.4 (C6), 28.4 ((CH₃)₃C) ppm. HRMS (ESI) m/z: [M+Na]⁺ calc for C₁₃H₂₁NO₇Na 326.1210, found 326.1210; [M+H₂O+Na]⁺ calc for C₁₃H₂₃NO₈Na 344.1316, found 344.1316.

Compound 12


Compound **28** (24 mg, 79 μ mol) was dissolved in 4 M dioxane/H₂O (1.5 mL) and stirred at rt for 5 h. After which, water (1.0 mL) and Et₂O (~8.0 mL) were added. The mixture was stirred vigorously for a while and stood for stratification.

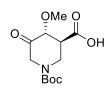
The Et₂O layer was taken out carefully and the remaining water layer was washed two more times with Et₂O (2 x 8.0 mL) and concentrated *in vacuo*. The resulting dry residue was re-dissolved in MeOH (1.0 mL) and Et₂O (\sim 8.0 mL) was added slowly under vigorous stirring. Upon addition of Et₂O, a lot of light yellow solid appeared. After stirring vigorously for a while, the mixture was stood for solid precipitation and the Et₂O supernatant was taken out carefully. The solid was washed repeatedly with Et₂O (3 x 6.0 mL), re-dissolved in Milli-Q water (\sim 1.5 mL) and filtered over a Whatman filter paper. After lyophilization, the target product (10.8 mg, 55 µmol, 70%) was obtained as a light yellow solid (HCl salt). HNMR after lyophilization (500 MHz, D₂O at 293K) [hydrate form] δ 4.07 (d, J = 7.5 Hz, 1H, H4), 3.48 (ddd, J = 13.2, 4.5, 1.1 Hz, 1H, H6a equatorial), 3.38 (dd, J = 13.2, 8.0 Hz, 1H, H6b axial), 3.35 (dd, J = 12.9, 1.0 Hz, 1H, H2a), 3.14 (d, J = 12.9 Hz, 1H, H2b), 3.04 (td, J = 8.0, 7.5, 4.5 Hz, 1H, H5). H5). The latest lyophilization (126 MHz, D₂O at 293K) [hydrate form] δ 173.6 (COOH), 90.7 (C3 hydrate), 71.1 (C4), 49.0 (C2), 44.4 (C5), 41.9 (C6) ppm. HRMS (ESI) m/z: [M_{ketone}+H]⁺ calc for C₆H₁₀NO₄ 160.06043, found 160.06059; [M_{hydrate}+H]⁺ calc for C₆H₁₂NO₅ 178.07100, found 178.07119.

Compound **21** (0.15 g, 0.31 mmol) was co-evaporated with toluene (3 x) and dissolved in dry DCM (3 mL) under nitrogen in a microwave tube and stirred over fresh flame-dried 3 Å molecular sieve powder. After cooling to 0 °C, proton sponge (669 mg, 3.1 mmol) and trimethyloxonium tetrafluoroborate


(0.37 mg, 2.5 mmol) were added successively. The tube was then sealed and protected from light. After stirring at rt for 22 h, the reaction slurry was diluted with EtOAc and filtered over a small pad of celite. The filter pad was washed with EtOAc (2 x) and the combined filtrates were washed with sat. aq. NH₄Cl (2 x), sat. aq. NaHCO₃, H₂O and brine, dried over Na₂SO₄, filtered and concentrated *in vacuo*. The product was purified by silica gel column chromatography (pentane/EtOAc 100:1 \rightarrow 30:1) affording compound **29** (116 mg, 0.23 mmol, 75%) as a clean oil. ¹H NMR (500 MHz, CDCl₃ at 333K) δ 7.78 – 7.65 (m, 4H, CH Ar), 7.45 – 7.28(m, 6H, CH Ar), 5.92 – 5.81 (m, 1H, H7), 5.20 – 5.05 (m, 2H, H8), 3.85 – 3.61 (m, 3H, H3, H6a and H2a), 3.30 (s, 3H, CH₃O), 3.01 (ddt, J = 8.2, 6.6, 1.8 Hz, 1H, H4), 2.96 – 2.65 (m, 2H, H6b and H2b), 2.31 – 2.10 (m, 1H, H5), 1.32 (s, 9H, (CH₃)₃CSi), 1.09 (q, J = 2.5, 1.4 Hz, 9H, (CH₃)₃CO). ¹³C NMR (126 MHz, CDCl₃ at 333K) δ 154.7 (C=O), 137.4 (C7), 136.2 (2CH Ar), 136.1 (2CH Ar), 134.5 (C_q Ar), 134.0 (C_q Ar), 129.9 (CH Ar), 129.8 (CH Ar), 127.8 (2CH Ar), 127.7 (2CH Ar), 116.6 (C8), 86.6 (C4), 79.8 ((CH₃)₃CO), 71.8 (C3), 59.5 (CH₃O), 48.6 (C2, assign by HSQC), 46.2 (C6), 45.2 (C5), 28.5 ((CH₃)₃CSi), 27.3 ((CH₃)₃CO), 19.5 ((CH₃)₃CSi) ppm. HRMS (ESI) m/z: [M+Na]⁺ calc for C₂9H₄1NO₄SiNa 518.2697, found 518.2693.

Compound S1

Compound **29** (153 mg, 0.31 mmol) was dissolved in dry THF (3.1 mL). TBAF (1 M in THF, 1.85 mL, 1.85 mmol) was added and the mixture was stirred at rt for 2 h. The reaction was quenched with sat. aq. NH₄Cl and concentrated *in vacuo* to remove THF. The resulting residue was diluted with DCM, washed with H₂O, brine, dried


over Na₂SO₄, filtered and concentrated *in vacuo*. The product was purified by silica gel column chromatography (pentane/EtOAc 11:1 \rightarrow 3:1) affording compound **S1** (72 mg, 0.28 mmol, 90%) as a clean oil. ¹H NMR (500 MHz, CDCl₃ at 293K) δ 5.76 (ddd, J = 17.8, 10.4, 7.9 Hz, 1H, H7), 5.28 – 5.12 (m, 2H, H8), 4.20 (brs, 1H, H2a), 4.11 – 3.77 (m, 1H, H6a), 3.54 (brs, 1H, H3), 3.51 (s, 3H, CH₃O), 2.95 (dd, J = 9.9, 8.4 Hz, 1H, H4), 2.81 (brs, 1H, OH), 2.74 – 2.50 (m, 2H, H2b and H6b), 2.28 (brs, 1H, H5), 1.45 (s, 9H, (CH₃)₃C). ¹³C NMR (126 MHz, CDCl₃ at 293K) δ 154.7 (C=O), 136.3 (C7), 117.7 (C8), 87.3 (C4), 80.3 (C_q Boc), 70.3 (C3), 59.8 (CH₃O), 48.1 (C2, assign by HSQC), 47.1 (C6, assign by HSQC), 45.5 (C5), 28.5 ((CH₃)₃C) ppm. HRMS (ESI) m/z: [M+Na]⁺ calc for C₁₃H₂₃NO₄Na 280.1519, found 280.1517.

To a solution of compound S1 (79 mg, 0.30 mmol) in dry DCM (4.5 mL) at 0 °C was added Dess-Martin periodinane (260 mg, 0.60 mmol). The mixture was stirred at rt for 3.5 h until TLC-analysis indicated total consumption of the starting material. A mixture of sat. aq. Na₂S₂O₃ (3 mL) and sat. aq. NaHCO₃ (3 mL) was added to quench

the reaction and the mixture was stirred at rt for another 15 min until the white emulsion became clear solution. The layers were separated and the aqueous layer was extracted with DCM (2 x). The combined organic layers were washed with H₂O, brine, dried over Na₂SO₄, filtered and concentrated *in vacuo*. The product was purified by silica gel column chromatography (pentane/EtOAc 9:1 \rightarrow 4:1) affording compound **30** (65 mg, 0.25 mmol, 83%) as a colourless oil. ¹H NMR (500 MHz, CDCl₃ at 333K) δ 5.77 (ddd, J = 17.4, 10.7, 6.8 Hz, 1H, H7), 5.24 – 5.16 (m, 2H, H8), 4.13 (dd, J = 16.8, 1.2 Hz, 1H, H2a), 3.90 (dd, J = 17.6, 13.2 Hz, 2H, H6a and H2b), 3.57 (d, J = 8.6 Hz, 1H, H4), 3.45 (s, 3H, CH₃O), 3.44 – 3.37 (m, 1H, H6b), 2.72 (dddt, J = 12.8, 8.0, 4.7, 1.3 Hz, 1H, H5), 1.46 (s, 9H, (CH₃)₃C). ¹³C NMR (126 MHz, CDCl₃ at 333K) δ 202.8 (C3), 154.4 (C=O Boc), 135.3 (C7), 117.8 (C8), 85.1 (C4), 80.9 (C_q Boc), 58.9 (CH₃O), 53.6 (C2), 45.6 (C5), 45.4 (C6), 28.4 ((CH₃)₃C). HRMS (ESI) m/z: [M+Na]⁺ calc for C₁₃H₂₁NO₄Na 278.1363, found 278.1361.

Compound 31

To a stirred solution of compound **30** (20 mg, 0.078 mmol) in CCl₄ (0.45 mL) and MeCN (0.45 mL) was added a solution of NaIO₄ (60 mg, 0.28 mmol, 3.6 eq.) and RuCl₃·3H₂O (0.1 M in H₂O, 40 μ L, 4.0 μ mol, 0.05 eq.) in water (0.67 mL) at 0 °C. The reaction mixture was stirred vigorously at 0 °C for 1 h. TLC-analysis indicated

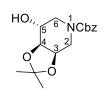
the presence of the aldehyde intermediate, so the mixture was warmed to rt and stirred for another 30 min. The phases were separated and the aqueous phase was extracted with EtOAc (3 x 10 mL). To the combined organic extracts was added isopropanol (0.2 mL) and the mixture was stirred at rt for an additional 1 h. The mixture was then washed with brine (10 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo*. The product was purified by silica gel column chromatography (DCM/MeOH 80:1 \rightarrow 20:1) affording compound **31** (16 mg, 59 µmol, 75%) as a pale yellow oil. ¹H NMR (500 MHz, CDCl₃ at 333K) δ 4.08 – 3.97 (m, 3H, H4 and H2ab), 3.97 – 3.85 (m, 1H, H6a), 3.84 – 3.76 (m, 1H, H6b), 3.49 (s, 3H, CH₃O), 3.03 – 2.93 (m, 1H, H5), 1.45 (s, 9H, (CH₃)₃C). ¹³C NMR (126 MHz, CDCl₃ at 333K) δ 154.5 (C=O Boc), 81.7 (C_q Boc), 81.5 (C4), 59.3 (CH₃O), 53.1 (C2, assigned by HSQC), 47.8 (C5), 43.0 (C6), 28.4 ((CH₃)₃C) ppm. HRMS (ESI) m/z: [M+Na]⁺ calc for C₁₂H₁₉NO₆Na 296.1105, found 296.1102.

Major product 13 and minor product S2

To a stirred white suspension of compound **31** (17 mg, 62 $\mu mol)$ in the mixture of HFIP (600 $\mu L)$ and H_2O (300 $\mu L)$ was added 0.2 M HCl/HFIP (340 μL , 68 μmol , 1.1 eq.) and the resulting clear solution was stirred at rt for 1 h. TLC-

analysis indicated the presence of the starting material, so more 0.2 M HCl/HFIP (340 μ L, 68 μ mol) was added and the mixture was stirred for another 1 h. After which, 37% HCl (12 M, 5.7 μ L, 68 μ mol) was added and the mixture was stirred for additional 1.5 h until TLC-analysis indicated full deprotection. The solvent was concentrated under reduced pressure and the resulting residue was re-dissolved in Milli-Q water (~1.5 mL), washed with Et₂O (3 x 8.0 mL) and filtered over a Whatman filter paper. After lyophilization, the product was obtained as a mixture of two compounds (10.9 mg, 52 μ mol, 84%, ratio \approx 4:1) as a hygroscopic light yellow solid. Major product 13: ¹H NMR (500 MHz, D₂O at 328K) [hydrate form] δ 4.13 (d, J = 6.0 Hz, 1H, H4), 3.88 (s, 3H, CH₃O), 3.81 (dd, J = 13.3, 6.1 Hz, 1H, H6a), 3.70 (dd, J = 13.3, 4.3 Hz, 1H, H6b), 3.62 (d, J = 12.9 Hz, 1H, H2a), 3.58 – 3.52 (m, 1H, H5), 3.49 (d, J = 12.9 Hz, 1H, H2b). ¹³C NMR (126 MHz, D₂O at 328K) [hydrate form] δ 173.9 (COOH), 91.2 (C3 hydrate), 80.6 (C4), 59.6 (CH₃O), 49.1 (C2), 41.8 (C5), 41.4 (C6) ppm. HRMS (ESI) m/z: [M_{ketone}+H]⁺ calc for C₇H₁₂NO₄ 174.07608, found 174.07607; [M_{hydrate}+H]⁺ calc for C₇H₁₄NO₅ 192.08665, found 192.08655.

Proposed structure of minor product S2 which may be formed by dehydration of I3. The protons of S2 could not be assigned confidently due to the peaks partially overlap with those of major product I3. The carbon peaks were observed at δ 91.9 (C3), 79.9 (C4), 61.4 (CH₃O), 47.2 (C2), 42.0 (C5), 39.4 (C6) ppm. Of note the


carbonyl carbon was not found on the NMR spectrum.

Synthesis of key intermediate 32

HO, OH OH OH OH OH OH OH Steps S3 S4 S5 S5 S2
$$\frac{\text{HO}_{\text{NCbz}}}{\text{NCbz}}$$

Scheme 5.6. Synthesis of key intermediate **32** following reported procedures for the preparation of its *N*-Boc protected analogue. Reagents and conditions: a) H₂, 10% Pd/C, MeOH, rt; b) CbzCl, sat. aq. NaHCO₃, THF, 0 °C to rt, 74% over two steps; c) Dess-Martin periodinane, DCM, 0 °C to rt; d) Ph₃PCH₃Br, 'BuOK, THF, -20 °C to rt, 84% over two steps; (e) *i*) 9-BBN, THF, 0 °C to rt; *ii*) 30% H₂O₂, 1 M NaOH in H₂O, rt, 73%.

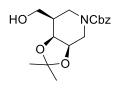
Compound S4

Azide **S3** (10.7 g, 49.8 mmol) was dissolved in MeOH (1000 mL) and nitrogen was bubbled through the solution before 20% Pd(OH)₂/C (2.0 g) was added. While stirring vigorously, the mixture was flushed with two H₂ balloons. After stirring for 20 h under H₂ atmosphere, NMR analysis of a small amount of the reaction mixture revealed

almost no conversion. Therefor 10% Pd/C (2.06 g) was added and the reaction was stirred for another 20 h until NMR analysis indicated full conversion of the starting material. The reaction mixture was filtered and concentrated to give the iminosugar intermediate (8.2 g, 47 mmol) as a white solid. The crude amine was directly dissolved in a mixture of THF (350 mL) and sat. aq. NaHCO₃ (250 mL). After cooling to 0 °C, CbzCl (95%, 10.5 mL, 69.8 mmol) was added dropwise and the reaction was stirred at rt for 40 h until LC-MS analysis indicated full conversion. The layers were separated and the water layer was extracted with EtOAc (2 x 200 mL). The combined organic layers were washed with brine (100 mL), dried over MgSO₄, filtered and concentrated *in vacuo*. The product was purified by silica gel column chromatography (pentane/EtOAc 9:1 \rightarrow 1:1) affording compound **S4** (11.4 g, 37.1 mmol, 74% over two steps) as a colorless oil. ¹H NMR (500 MHz, CDCl₃ at 333K) δ 7.43 – 7.14 (m, 5H, CH Ar), 5.12 (s, 2H, CH₂ Cbz), 4.33 – 4.27 (m, 1H, H5), 4.07 (dd, J = 6.5, 4.1 Hz, 1H, H4), 3.97 – 3.83 (m, 2H, H3, H6b), 3.63 (dd, J = 13.5, 3.2 Hz, 1H, H2b), 3.51 (dd, J = 14.2, 3.3 Hz, 1H, H6a), 3.36 (dd, J = 13.5, 5.2 Hz, 1H, H2a), 3.11 (brs, 1H, OH), 1.41 (s, 3H, CH₃), 1.31 (s, 3H, CH₃). ¹³C NMR (126 MHz, CDCl₃ at 333K) δ 156.5 (C=O), 136.9 (C_q Ar), 128.5, 128.0, 127.8 (CH Ar), 109.2 (OCO), 75.6 (C4), 72.0 (C5), 67.5 (C3), 67.3 (CH₂ Cbz), 44.9 (C2), 42.8 (C6), 27.3 (CH₃), 25.0 (CH₃) ppm.

 1 H NMR (400 MHz, CDCl₃ at 293K) [mixture of rotamers 2:1] δ 7.37 – 7.23 (m, 5H, CH Ar), 5.15 – 5.06 (m, 2H, CH₂ Cbz), 4.38 – 4.27 (m, 1H, H5), 4.12 – 4.04 (m, 1H, H4), 4.03 – 3.85 (m, 2H, H3, H6b), 3.83 – 3.56 (m, 2H, OH and H2b), 3.55 – 3.43 (m, 1H, H6a), 3.43 – 3.31 (m, 1H, H2a), 1.43 (s, 2H, CH₃), 1.41 (s, 1H, CH₃), 1.32 (s, 3H, CH₃). 13 C NMR (101 MHz, CDCl₃ at 293K) [mixture of rotamers 2:1] δ 156.5 (C=O), 136.5 (C_q Ar), 128.5, 128.0, 127.807, 127.7 (Ar), 109.1 (OCO), 75.1 (C4), 71.9 & 71.8 (C5), 67.2 (CH₂ Cbz), 67.2 (C3), 44.6 & 44.4 (C2), 42.5 & 42.2 (C6), 27.2 & 27.1 (CH₃), 24.9 & 24.8 (CH₃) ppm. HRMS (ESI) m/z: [M+H]⁺ calc for C₁₆H₂₂NO₅ 308.14925, found 308.14907.

Compound S5


Alcohol **S4** (11.3 g, 36.8 mmol) was dissolved in dry DCM (400 mL) under argon. After cooling to 0 $^{\circ}$ C, Dess-Martin periodinane (27.3 g, 64.4 mmol) was added in several portions. After stirring for 30 minutes at 0 $^{\circ}$ C and for 2 h at room temperature, the reaction was diluted with EtOAc (600 mL) and washed successively with 2 M

Na₂S₂O₃ solution (2 x 250 mL), sat. aq. NaHCO₃ (2 x 200 mL) and brine (150 mL). The organic layer was dried over MgSO₄, filtrated and concentrated *in vacuo* to afford the crude ketone. In the meantime methyltriphenylphosphonium bromide (55.3 g, 155 mmol) was suspended in dry THF (250 mL) and

cooled to 0 °C, 'BuOK (15.4 g, 138 mmol) was added. The resulting yellow suspension was stirred for 1 h at 0 °C and for 2 h at rt. After which, the suspension was cooled to -20 °C and a solution of the crude ketone in THF (150 mL) was added dropwise over 20 minutes. The reaction was then stirred overnight at room temperature and quenched by addition of sat. aq. NH₄Cl (250 mL). The layers were separated and the water layer extracted with EtOAc (2 x 100 mL). The combined organic layers were washed with brine (100 mL), dried over MgSO₄, filtered and concentrated *in vacuo*. The crude was purified by silica gel column chromatography (pentane/EtOAc 95:5 \rightarrow 3:1) affording compound **S5** (9.4 g, 31 mmol, 84% over two steps) as a slightly orange oil. ¹H NMR (500 MHz, CDCl₃ at 333K) δ 7.53 – 7.08 (m, 5H, CH Ar), 5.28 – 5.14 (m, 4H, H7ab and CH₂ Cbz), 4.61 (d, J = 7.4 Hz, 1H, H4), 4.32 (m, 2H, H3 and H6b), 3.97 – 3.76 (m, 2H, H6a and H2b), 3.11 (dd, J = 14.3, 2.8 Hz, 1H, H2a), 1.38 (s, 3H, CH₃), 1.33 (s, 3H, CH₃). ¹³C NMR (126 MHz, CDCl₃ at 333K) δ 155.9 (C=O), 139.7 (C5), 137.0 (C_q Ar), 128.4, 127.9, 127.8 (CH Ar), 116.4 (C7), 109.7 (OCO), 76.3 (C4), 74.6 (C3), 67.1 (CH₂ Cbz), 46.6 (C6), 44.2 (C2), 26.6 (CH₃), 24.8 (CH₃) ppm.

¹H NMR (400 MHz, CDCl₃ at 293K) [mixture of rotamers 1:1] δ 7.40 – 7.24 (m, 5H, CH Ar), 5.29 – 5.07 (m, 4H, H7ab and CH₂ Cbz), 4.65 (dd, J = 7.4, 3.8 Hz, 1H, H4), 4.44 – 4.30 (m, 2H, H3 and H6b), 3.97 (dd, J = 14.4, 2.7 Hz, 1H, H2b), 3.87 (dd, J = 14.1, 8.5 Hz, 1H, H6a), 3.07 (ddd, J = 14.1, 7.7, 2.3 Hz, 1H, H2a), 1.40 (s, 1.5H, CH₃), 1.37 (s, 1.5H, CH₃), 1.35 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃ at 293K) [mixture of rotamers 1:1] δ 156.0 & 155.8 (C=O), 139.3 (C5), 136.8 (C_q Ar), 128.4, 128.4, 128.0, 127.9, 127.9, 127.8 (CH Ar), 117.1 & 116.8 (C7), 109.6 (OCO), 76.2 & 76.1 (C4), 74.5 (C3), 67.1 & 67.0 (CH₂ Cbz), 46.5 & 46.3 (C6), 44.1 & 43.8 (C2), 26.5 (CH₃), 24.6 (CH₃). HRMS (ESI) m/z: [M+H]⁺ calc for C₁₇H₂₂NO₄ 304.15433, found 304.15419.

Compound 32

Alkene **S5** (4.70 g, 15.5 mmol) was dissolved in dry THF (150 mL) under argon. After cooling to 0 °C, 9-BBN (0.5 M in THF, 140 mL, 70 mmol) was added dropwise over 30 minutes and the mixture was stirred for 20 h at rt until TLC-analysis indicated full conversion of the starting material. Then the mixture was

cooled to 0 °C again, and water (10 mL), 1 M NaOH in H₂O (10 mL) and 30% H₂O₂ (10 mL) were added successively. After stirring overnight at rt, the mixture was diluted with EtOAc (250 mL) and washed with brine (2 x 200 mL). The combined water layers were extracted with EtOAc (100 mL) and the combined organic layers were dried over MgSO₄, filtered and concentrated *in vacuo*. The crude was purified by silica gel column chromatography (pentane/EtOAc 1:1 \rightarrow 3:7) to afford compound **32** (3.66 g, 11.4 mmol, 73%) as a thick oil. ¹H NMR (500 MHz, CDCl₃ at 333K) δ 7.37 – 7.22 (m, 5H, Ar), 5.13 (s, 2H, CH₂ Cbz), 4.42 (dd, J = 7.1, 2.7 Hz, 1H, H4), 4.29 (s, 1H, H3), 3.80 (d, J = 10.9 Hz, 1H, H2b), 3.68 (m, 2H, H7ab), 3.56 (dd, J = 12.3, 5.0 Hz, 1H, H6b), 3.29 (d, J = 13.9 Hz, 1H, H2a), 3.22 (app t, J = 12.3 Hz, 1H, H6a), 2.50 (brs, 1H, OH), 1.99 (m, 1H, H5), 1.39 (s, 3H, CH₃), 1.31 (s, 3H, CH₃). ¹³C NMR (126 MHz, CDCl₃ at 333K) δ 156.1 (C=O), 137.0 (C_q Ar), 128.5, 127.9, 127.8 (CH Ar), 108.9

(OCO), 72.6 (C3), 72.4 (C4), 67.1 (CH₂ Cbz), 62.5 (C7), 43.2 (C2), 40.3 (C6), 38.3 (C5), 26.7 (CH₃), 24.7 (CH₃) ppm.

¹H NMR (400 MHz, CDCl₃ at 293K) [mixture of rotamers 1:1] δ 7.38 – 7.24 (m, 5H, Ar), 5.13 (s, 2H, CH₂ Cbz), 4.44 (dd, J = 7.3, 2.2 Hz, 1H, H4), 4.39 – 4.26 (m, 1H, H3), 3.93 – 3.75 (m, 1H, H2b), 3.69 (s, 2H, H7ab), 3.55 (m, 1H, H6b), 3.24 (m, 2H, H6a and H2a), 2.99 (s, 0.5H, OH), 2.89 (s, 0.5H, OH), 2.00 (s, 1H, H5), 1.40 (s, 3H, CH₃), 1.32 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃ at 293K) [mixture of rotamers 1:1] δ 156.3 & 155.9 (C=O), 136.7 (C_q Ar), 128.4, 127.9, 127.8, 127.7 (CH Ar), 108.7 (OCO), 72.4 (C4), 72.1 & 72.0 (C3), 67.0 (CH₂ Cbz), 62.3 & 62.2 (C7), 43.0 & 42.6 (C2), 40.2 & 39.9 (C6), 38.0 (C5), 26.6 (CH₃), 24.6 (CH₃) ppm. HRMS (ESI) m/z: [M+Na]⁺ calc for C₁₇H₂₃NO₅Na 344.1468, found 344.1477.

Compound 33

Alcohol **32** (347 mg, 1.08 mmol) was dissolved in dry DCM (14 mL) under argon and Dess-Martin periodinane (720 mg, 1.70 mmol) was added. After stirring at rt for 3 h, TLC-analysis confirmed complete conversion of the starting material. The mixture was diluted with EtOAc (60 mL) and washed successively with aqueous 2 M Na₂S₂O₃ (2 x 15 mL), sat. aq. NaHCO₃ (2 x 15 mL) and brine (20 mL), dried

over MgSO₄, filtrated and concentrated to afford the crude aldehyde as a colorless oil (350 mg). The aldehyde was directly dissolved in a mixture of MeCN (18 mL) and water (3.5 mL) and NaH₂PO₄·2H₂O (1.31 g, 8.40 mmol) was added. The mixture was cooled to 0 °C and 30% H₂O₂ $(142 \mu L, 1.39 \text{ mmol})$ and a solution of NaClO₂ (80% purity, 157 mg, 1.14 mmol) in water (8.5 mL) were added subsequently. The slightly yellow solution was stirred at 0 °C for 15 minutes and at rt for 1 h until TLC-analysis confirmed full conversion of the aldehyde. The reaction was quenched by addition of Na₂SO₃ (0.5 g) and stirred for another 15 minutes. After which, the mixture was diluted with EtOAc (60 mL) and the layers were separated. The aqueous layer was extracted with EtOAc (2 x 10 mL) and the combined organic layers were washed with brine (20 mL), dried over MgSO₄, filtered and concentrated in vacuo. Purification by silica gel column chromatography (pentane/EtOAc 1:1→0:1) afforded the target compound **33** (236 mg, 0.703 mmol, 65%) as a glassy solid. 1 H NMR (500 MHz, CDCl₃ at 333K) δ 8.14 (s, 1H, OH), 7.37 - 7.23 (m, 5H, CH Ar), 5.15 (s, 2H, CH₂ Cbz), 4.72 (dd, J = 6.9, 2.9 Hz, 1H, H4), 4.35 (s, 1H, H3), 3.94 - 3.72 (m, 2H, H6b and H2b), 3.50 (app t, J = 12.7 Hz, 1H, H6a), 3.34 (d, J = 12.7 Hz, H7a), 13.6 Hz, 1H, H2a), 2.80 (ddd, J = 12.6, 4.8, 3.2 Hz, 1H, H5), 1.41 (s, 3H, CH₃), 1.33 (s, 3H, CH₃). ¹³C NMR (126 MHz, CDCl₃ at 333K) δ 173.8 (C=O acid), 156.1 (C=O Cbz), 136.8 (C_q Ar), 128.6, 128.1, 128.0 (CH Ar), 109.5 (OCO), 72.3 (C3), 71.9 (C4), 67.5 (CH₂ Cbz), 43.3 (C2), 42.0 (C5), 38.6 (C6), 26.7 (CH₃), 24.8 (CH₃) ppm.

¹H NMR (400 MHz, CDCl₃ at 293K) [mixture of rotamers 1:1] δ 9.41 (brs, 1H, OH), 7.82 – 7.12 (m, 5H, CH Ar), 5.15 (s, 2H, CH₂ Cbz), 4.74 (dd, J = 7.0, 2.7 Hz, 1H, H4), 4.56 – 4.25 (m, 1H, H3), 4.09 –

3.67 (m, 2H, H6b and H2b), 3.49 (m, 1H, H6a), 3.32 (m, 1H, H2a), 2.87 – 2.75 (m, 1H, H5), 1.45 – 1.39 (m, 3H, CH₃), 1.33 (s, 3H, CH₃). 13 C NMR (101 MHz, CDCl₃ at 293K) [mixture of rotamers 1:1] δ 174.3 (C=O acid), 156.3 & 155.9 (C=O Cbz), 136.5 (C_q Ar), 128.5, 128.1, 128.0 (CH Ar), 109.2 (OCO), 72.1 (C3), 71.6 (C4), 67.4 (CH₂ Cbz), 43.1 & 42.7 (C2), 41.6 (C5), 38.3 & 38.1 (C6), 26.6 & 26.5 (CH₃), 24.7 & 24.6 (CH₃) ppm. HRMS (ESI) m/z: [M+Na]⁺ calc for C₁₇H₂₁NO₆Na 358.12611, found 358.12580.

Compound 11

Method A (deprotection of compound **33**): Carboxylic acid **33** (135 mg, 0.403 mmol) was dissolved in a mixture of dioxane (9 mL) and aq. 4 M HCl (1 mL), 10% Pd/C (100 mg) was added subsequently. The mixture was stirred vigorously under a balloon of hydrogen for 16 h, filtered over a Whatman filter and

concentrated to give a white residue (130 mg). NMR analysis revealed removal of the isopropylidene acetal while the Cbz-group was still present. Therefore the residue was re-dissolved in a mixture of THF (10 mL) and water (500 μ L), aq. 8 M HCl (100 μ L) and 10% Pd/C (139 mg) were added. After stirring vigorously overnight under hydrogen atmosphere, the mixture was filtered over a Whatman filter and concentrated to give a crude product, of which NMR analysis proved removal of the Cbz-group. The residue was then dissolved in absolute ethanol (1.2 mL) and added dropwise to a stirred solution of dry diethyl ether (20 mL) affording a white precipitate. The precipitate was collected on a filter, washed with dry diethyl ether (2 x 5 mL) and dried *in vacuo* to give the target compound **11** (85 mg, quant) as an off-white powder.

Method B (deprotection of compound **S8**): To a stirred solution of diol **S8** (40 mg, 0.126 mmol) in dry diethyl ether (1 mL) at 0 °C was added 4 M HCl/dioxane (4 mL). The mixture was stirred at 0 °C for 10 min and at rt for 4 h. At which LC-MS analysis revealed complete removal of the Boc group while the *tert*-butyl ester was still present in large amount. Water (200 μ L) was added and the mixture was left stirring overnight until LC-MS confirmed full conversion. The solvents were removed *in vacuo* and the residue was re-dissolved in anhydrous 2-propanol (1 mL). Upon addition of dry diethyl ether a white precipitate appeared. The supernatant was taken out carefully and the residue washed with dry diethyl ether (3 x 2 mL). Evaporation of the volatiles afforded the target compound (19 mg, 0.096 mmol, 76%) as a white foam. ¹H NMR (400 MHz, D₂O at 293K) δ 4.42 (s, 1H, H4), 3.99 (dt, J = 11.2, 3.6 Hz, 1H, H3), 3.40 (dd, J = 12.9, 4.4 Hz, 1H, H6b), 3.29 – 3.18 (m, 2H, H2b and H6a), 3.09 – 2.99 (m, 2H, H2a and H5). ¹³C NMR (101 MHz, D₂O at 293K) δ 173.3 (C=O), 66.8 (C4), 65.3 (C3), 42.7 (C5), 41.9 (C2), 38.5 (C6). HRMS (ESI) m/z: [M+H]+ calc for C₆H₁₂NO₄ 162.07608, found 162.07572.

Compound S6

To a stirred solution of alcohol **32** (3.65 g, 11.4 mmol) in MeOH (100 mL) was added 8 M HCl solution (2.24 mL) and the mixture stirred at room temperature overnight until TLC-analysis confirmed full conversion of the

starting material. The reaction was quenched by addition of Et₃N (5 mL). The solvent was evaporated and the residue treated with EtOAc (100 mL) and filtered. The filter cake was washed with EtOAc (3 x 10 mL) and the combined filtrates were concentrated to afford the crude triol that was directly dissolved in DMF (80 mL). After addition of benzaldehyde dimethyl acetal (3.40 mL, 22.6 mmol) and (+)camphorsulfonic acid (1.57 g, 6.76 mmol), the mixture was stirred at 60 °C for 20 h until LC-MS analysis showed full conversion. After cooling to rt, sat. aq. NaHCO₃ (300 mL) was added and the mixture was extracted with EtOAc (3 x 130 mL). The combined organic layers were washed with brine (2 x 50 mL), dried over MgSO₄, filtered and concentrated in vacuo. The crude was purified by silica gel column chromatography (pentane/EtOAc 4:1→1:1) affording compound S6 (3.03 g, 8.20 mmol, 72% over two steps) as a colorless oil. 1 H NMR (500 MHz, CDCl₃ at 333K) δ 7.49 – 7.39 (m, 2H, CH Ar), 7.40 – 7.26 (m, 8H, CH Ar), 5.53 (s, 1H, CHPh), 5.13 (dd, J = 12.0 Hz, 2H, CH₂ Cbz), 4.24 (s, 1H, H4), 4.17 (d, J= 9.1 Hz, 1H, H2b), 4.09 - 3.96 (m, 3H, H6b and H7ab), 3.63 (ddd, J = 10.9, 5.2, 3.3 Hz, 1H, H3), 3.41(t, J = 12.7 Hz, 1H, H6a), 2.89 (t, J = 11.9 Hz, 1H, H2a), 2.35 (s, 1H, OH), 1.68 (d, J = 9.3 Hz, 1H, H5).¹³C NMR (126 MHz, CDCl₃ at 333K) δ 155.6 (C=O), 138.2 (C_q Ar), 136.9 (C_q Ar), 129.3, 128.7, 128.5, 128.2, 128.1, 126.3 (CH Ar), 102.0 (OCHO), 76.1 (C4), 68.7 (C7), 67.8 (C3), 67.5 (CH₂ Cbz), 45.2 (C2), 41.5 (C6), 34.3 (C5) ppm.

¹H NMR (400 MHz, CDCl₃ at 293K) δ 7.45 (dd, J = 6.6, 3.1 Hz, 2H, CH Ar), 7.42 – 7.26 (m, 8H, CH Ar), 5.53 (s, 1H, CHPh), 5.12 (s, 2H, CH₂ Cbz), 4.29 – 3.89 (m, 5H, H4, H2b, H6b and H7ab), 3.62 (s, 1H, H3), 3.38 (m, 1H, H6a), 2.95 – 2.82 (m, 1H, H2a), 2.60 (d, J = 10.5 Hz, 1H, OH), 1.79 – 1.59 (m, 1H, H5). ¹³C NMR (101 MHz, CDCl₃ at 293K) δ 155.4 (C=O), 137.9 (C_q Ar), 137.2 (C_q Ar), 129.4, 128.6, 128.4, 128.2, 128.0, 126.3 (CH Ar), 101.8 (OCHO), 75.9 (C4), 68.6 (C7), 67.7 (C3), 67.4 (CH₂ Cbz), 44.9 (C2), 41.2 (C6), 33.8 (C5) ppm. HRMS (ESI) m/z: [M+H]⁺ calc for C₂₁H₂₄NO₅ 370.1649, found 344.1644.

Compound 34

Alcohol **S6** (2.35 g, 6.36 mmol) was dissolved in DCM (35 mL) and imidazole (1.96 g, 28.8 mmol) and TBSCl (2.3 g, 15 mmol) were added subsequently. The resulting suspension was stirred for 20 h at room temperature. The mixture was diluted with EtOAc (150 mL), washed with water and brine, dried

over MgSO₄, filtered and concentrated in *vacuo*. The crude was purified by silica gel column chromatography (pentane/EtOAc 95:5 \rightarrow 9:1) to afford the target compound **34** (2.88 g, 5.95 mmol, 94%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃ at 333K) δ 7.48 (d, J = 7.4 Hz, 2H, CH Ar), 7.38 – 7.23 (m, 8H, CH Ar), 5.51 (s, 1H, CHPh), 5.18 (d, J = 12.4 Hz, 1H, CHH Cbz), 5.10 (d, J = 12.4 Hz, 1H, CHH Cbz), 4.13 (s, 1H, H4), 4.08 – 3.89 (m, 4H, H7ab, H6b and H2b), 3.68 (d, J = 9.9 Hz, 1H, H3), 3.45 (t, J = 12.5 Hz, 1H, H6a), 3.08 (t, J = 11.5 Hz, 1H, H2a), 1.64 (d, J = 10.1 Hz, 1H, H5), 0.88 (s, 9H, (CH₃)₃C), 0.06 (s, 6H, 2CH₃). ¹³C NMR (126 MHz, CDCl₃ at 333K) δ 155.7 (C=O), 138.8, 137.1 (2C_q Ar), 128.9, 128.7, 128.3, 128.2, 128.1, 126.2 (CH Ar), 101.5 (CHPh), 77.2 (C4), 69.9 (C3), 69.0

(C7), 67.4 (CH₂ Cbz), 45.1 (C2), 41.8 (C6), 34.7 (C5), 25.9 ((*C*H₃)₃C), 18.3 ((CH₃)₃C), -4.4 (CH₃), -4.3 (CH₃) ppm.

¹H NMR (400 MHz, CDCl₃ at 293K) [mixture of rotamers 1:1] δ 7.49 (m, 2H, CH Ar), 7.37 – 7.26 (m, 8H, CH Ar), 5.51 (s, 1H, CHPh), 5.22 – 5.14 (m, 1H, CH*H* Cbz), 5.09 (d, *J* = 12.4 Hz, 1H, CH*H* Cbz), 4.11 (s, 1H, H4), 4.10 – 3.84 (m, 4H, H7ab, H6b and H2b), 3.68 (m, 1H, H3), 3.50 – 3.36 (m, 1H, H6a), 3.09 (m, 1H, H2a), 1.62 (s, 1H, H5), 0.89 (s, 9H, (CH₃)₃C), 0.09 (s, 3H, CH₃), 0.06 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃ at 293K) [mixture of rotamers 1:1] δ 155.4 (C=O), 138.4, 136.7 (2C_q Ar), 128.7, 128.5, 128.1, 128.0, 127.9, 126.0 (CH Ar), 101.2 (OCHO), 76.8 (C4), 69.6 & 69.2 (C3), 68.7 (C7), 67.2 (CH₂ Cbz), 44.7 & 44.5 (C2), 41.3 (C6), 34.4 & 34.1 (C5), 25.8 ((*C*H₃)₃C), 18.2 ((CH₃)₃C), -4.6 (2CH₃) ppm. HRMS (ESI) m/z: [M+Na]⁺ calc for C₂₇H₃₇NO₅SiNa 506.2333, found 506.2338.

Compound 35

Compound 34 (2.59 g, 5.36 mmol) was dissolved in dry DCM (60 mL) and cooled HO' NCbz on an ice-bath. BH₃·THF (1.0 M in THF, 22 mL, 22 mmol) was added dropwise in BnO' five minutes and followed by addition of TMSOTf (0.16 mL, 0.88 mmol). The ŌТВS resulting solution was stirred for 10 minutes on the ice-bath and for 3 h at room temperature. TLCanalysis confirmed full conversion and the reaction was quenched with TEA (2.5 mL) at 0 °C followed by careful addition of MeOH (25 mL). After stirring for another 1 h, the reaction was concentrated, coevaporated twice with MeOH to give the crude product. Purification by silica gel column chromatography (pentane/EtOAc 4:1→1:1) afforded the target compound **35** (2.53 g, 5.21 mmol, 97%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃ at 333K) δ 7.35 – 7.22 (m, 10H, CH Ar), 5.18 (d, J = 12.4 Hz, 1H, CHH Cbz), 5.05 (d, J = 12.4 Hz, 1H, CHH Cbz), 4.94 (d, J = 11.5 Hz, 1H, CHH Bn), 4.59 (d, J = 11.5 Hz, 1H, CHH Bn), 3.85 - 3.75 (m, 2H, H4 and H2b), 3.74 - 3.65 (m, 2H, H3 and H6b), 3.62(m, 2H, H7ab), 3.38 - 3.30 (m, 1H, H2a), 3.13 (dd, <math>J = 12.9, 10.7 Hz, 1H, H6a), 2.05 (s, 1H, OH), 1.84(s, 1H, H5), 0.91 (s, 9H, (CH₃)₃C), 0.10 (s, 6H, 2CH₃). 13 C NMR (126 MHz, CDCl₃ at 333K) δ 155.7 (C=O), 139.1, 137.0 (2C_q Ar), 128.5, 128.5, 128.0, 128.0, 127.9, 127.7 (CH Ar), 77.7 (C4), 74.1 (CH₂ Bn), 71.7 (C3), 67.3 (CH₂ Cbz), 61.9 (C7), 46.1 (C2), 42.4 (C5), 41.7 (C6), 25.9 ((CH₃)₃C), 18.1 $((CH_3)_3C)$, -4.7, -4.7 (2CH₃) ppm.

¹H NMR (400 MHz, CDCl₃ at 293K) [mixture of rotamers 1:1] δ 7.45 – 7.16 (m, 10H, CH Ar), 5.19 (d, J = 12.4 Hz, 1H, CHH Cbz), 5.08 – 4.89 (m, 2H, CHH Cbz and CHH Bn), 4.60 (d, J = 11.5 Hz, 1H, CHH Bn), 3.97 – 3.51 (m, 6H, H4, H2b, H3, H6b and H7ab), 3.46 – 3.22 (m, 1H, H2a), 3.20 – 3.06 (m, 1H, H6a), 2.36 (s, 0.5H, OH), 2.18 (s, 0.5H, OH), 1.94 – 1.76 (m, 1H, H5), 0.92 (s, 4.5H, (CH₃)₃C), 0.89 (s, 4.5H, (CH₃)₃C), 0.22 – 0.01 (m, 6H, 2CH₃). ¹³C NMR (101 MHz, CDCl₃ at 293K) [mixture of rotamers 1:1] δ 155.6 (C=O), 138.9, 136.7 (2C_q Ar), 128.5, 128.5, 128.1, 127.9, 127.9, 127.8 (CH Ar), 77.4 (C4), 74.1 & 73.9 (CH₂ Bn), 71.4 (C3), 67.3 (CH₂ Cbz), 62.1 & 61.6 (C7), 46.1 & 45.6 (C2), 42.1

& 41.9 (C5), 41.6 & 41.3 (C6), 25.8 ((CH_3)₃C), 18.1 ((CH_3)₃C), -4.8 (2 CH_3) ppm. HRMS (ESI) m/z: [M+H]⁺ calc for $C_{27}H_{40}NO_5Si$ 486.26703, found 486.26696.

Compound 36

To a stirred solution of alcohol **35** (930 mg, 1.92 mmol) in acetone (40 mL) was added 2.4 M Jones reagent dropwise until an orange/brown color persisted. The reaction was stirred for an additional 10 minutes and then quenched by the addition of 2-propanol (3.0 mL). Subsequently sat. aq. NaHCO₃ (50 mL) and

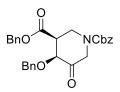
water (50 mL) were added and the acetone was carefully (foaming) evaporated from the mixture. Next acetic acid was added drop by drop until pH = 5. EtOAc (50 mL) was added and the mixture stirred vigorously for a few minutes after which the mixture was filtered over a pad of celite. The layers were separated and the water layer extracted with EtOAc (50 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated to give the crude carboxylic acid (0.95 g) as a colorless oil. The crude acid was dissolved in DCM (20 mL) and benzyl alcohol (540 µL, 5.1 mmol) and DMAP (33 mg, 0.27 mmol) were added. After cooling on an ice-bath DIC (320 µL, 2.05 mmol) was added dropwise and the mixture stirred for one more hour on the ice-bath and for 6 h at rt. At that time TLC indicated circa 50% conversion, so the reaction was left overnight. However, the situation did not change. Extra portions of benzyl alcohol (540 µL) and DIC (320 µL) were added and the reaction stirred for an extra 6 h upon which TLC did not show any further progress of the reaction. The mixture was concentrated and purified by column chromatography (pentane/EtOAc 95:5→4:1) to afford the benzyl ester 36 as a colorless oil (520 mg, 0.882 mmol) in 46% yield. 1 H NMR (500 MHz, CDCl₃ at 333K) δ 7.34 - 7.16 (m, 15H, CH Ar), 5.17 (d, J = 12.4 Hz, 1H, CHH Cbz), 5.11 (d, J = 12.3 Hz, 1H, CHH Bn_{ester}), 5.07 (d, J = 12.4 Hz, 1H, CHH Cbz), 4.99 (d, J = 12.3 Hz, 1H, CHH Bn_{ester}), 4.95 (d, J = 11.3 Hz, 1H, CHH Bn), 4.47 (d, J = 11.3 Hz, 1H, CH Bn), 4.26 (s, 1H, H6b), 4.23 (s, 1H, H4), 3.98 (s, 1H, H2b), 3.68 (d, J = 1.3 Hz, 1.3 Hz, 1.3 Hz, 1.4 Hz)7.6 Hz, 1H, H3), 3.29 (app t, J = 12.7 Hz, 1H, H6a), 3.13 (app t, J = 11.6 Hz, 1H, H2a), 2.61 (d, J = 9.7Hz, 1H, H5), 0.91 (s, 9H, (CH₃)₃C), 0.10 (s, 6H, 2CH₃) ppm. 13 C NMR (126 MHz, CDCl₃ at 333K) δ 170.3 (OC=O), 155.4 (NC=O), 139.3, 136.9, 135.9 (3C_q Ar), 128.6, 128.6, 128.4, 128.2, 128.1, 128.0, 127.4, 127.4 (CH Ar), 77.9 (C4), 75.2 (CH₂ Bn), 71.5 (C3), 67.4 (CH₂ Cbz), 66.6 (CH₂ Bn_{ester}), 46.3 (C5), 45.0 (C2), 39.9 (C6), 25.9 ((CH₃)₃C), 18.1 ((CH₃)₃C), -4.6, -4.7 (2CH₃) ppm.

¹H NMR (400 MHz, CDCl₃ at 293K) [mixture of rotamers 1:1] δ 7.41 – 7.14 (m, 15H, CH Ar), 5.18 (d, J = 12.3 Hz, 1H, CHH Cbz), 5.12 (d, J = 12.2 Hz, 1H, CHH Bn_{ester}), 5.06 (d, J = 12.3 Hz, 1H, CHH Cbz), 4.98 (m, 2H, CHH Bn_{ester} and CHH Bn), 4.46 (d, J = 11.3 Hz, 1H, CHH Bn), 4.37 – 4.14 (m, 3H, H6b and H4), 4.12 – 3.84 (m, 1H, H2b), 3.77 – 3.58 (m, 1H, H3), 3.39 – 3.21 (m, 1H, H6a), 3.21 – 3.00 (m, 1H, H2a), 2.63 (s, 1H, H5), 0.90 (s, 9H, (CH₃)₃C), 0.24 – 0.02 (m, 6H, 2CH₃). ¹³C NMR (101 MHz, CDCl₃ at 293K) [mixture of rotamers 1:1] δ 170.4 (OC=O), 155.3 (NC=O), 139.1, 136.6, 135.6 (3C_q Ar), 128.6, 128.4, 128.2, 128.1, 128.0, 127.4 (CH Ar), 77.6 (C4), 75.1 (CH₂ Bn), 71.4 & 71.0 (C3), 67.4 (CH₂ Cbz), 66.6 (CH₂ Bn_{ester}), 46.1 & 45.9 (C5), 44.8 (C2), 39.6 (C6), 25.8 ((*C*H₃)₃C), 18.1

 $((CH_3)_3C)$, -4.8 (2CH₃) ppm. HRMS (ESI) m/z: [M+H]⁺ calc for $C_{34}H_{44}NO_6Si$ 590.29324, found 590.29347.

Compound 37

To a stirred solution of TBS-ether 36 (0.52 g, 0.88 mmol) in THF (20 mL) was added TBAF (75 wt% in H₂O, 680 mg, 1.95 mmol) and the mixture was left stirring overnight. The mixture was concentrated under reduced pressure to remove most of the solvent, then diluted with EtOAc, washed with brine, dried over MgSO₄,


filtered and concentrated to give the crude product. Purification by silica gel column chromatography (pentane/EtOAc 9:1 \rightarrow 1:1) afforded a colorless oil which after NMR and LC-MS analyses turned out to be the title unsaturated ester **37** (0.32 mg, 0.87 mmol, 98%). ¹H NMR (500 MHz, CDCl₃ at 333K) δ 7.36 – 7.22 (m, 10H, CH Ar), 6.98 (d, J = 2.6 Hz, 1H, H4), 5.17 (s, 2H, CH₂ Bn_{ester}), 5.12 (s, 2H, CH₂ Cbz), 4.28 (s, 1H, H3), 4.23 (d, J = 18.6 Hz, 1H, H6b), 4.13 (d, J = 18.6 Hz, 1H, H6a), 3.84 (dd, J = 12.8, 3.8 Hz, 1H, H2b), 3.25 (dd, J = 12.8, 6.2 Hz, 1H, H2a), 2.84 (br. s, 1H, OH). ¹³C NMR (126 MHz, CDCl₃ at 333K) δ 164.8 (OC=O), 155.6 (NC=O), 139.4 (C4), 136.5 (C_q Ar), 135.8 (C_q Ar), 128.7, 128.6, 128.4, 128.2, 128.2, 128.0 (CH Ar), 67.6 (CH₂ Cbz), 66.7 (CH₂ Bn_{ester}), 63.4 (C3), 47.0 (C2), 42.8 (C6).

Compound 38

To an ice cold solution of TBS-ether $36~(325~mg,\,0.551~mmol)$ in THF (8 mL) was added TBAF (75 wt% in H₂O, 420 mg, 1.20 mmol) and the mixture was left stirring on the ice bath. After 5 h TLC-analysis showed complete conversion of the TBS-ether. The mixture was diluted with EtOAc (40 mL), washed with brine (2 x 15

mL), dried over MgSO₄, filtered and concentrated *in vacuo*. The crude was purified by column chromatography (pentane/EtOAc 95:5 \rightarrow 7:3) to afford the title alcohol **38** (247 mg, 0.519 mmol, 94%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃ at 333K) δ 7.36 – 7.12 (m, 15H, CH Ar), 5.07 (m, 4H, CH₂ Cbz and CH₂ Bn_{ester}), 4.60 (m, 1H, CH*H* Bn), 4.48 (d, J = 11.6 Hz, 1H, CH*H* Bn), 4.26 – 3.83 (m, 3H, H4, H6b and H2b), 3.61 (brs, 1H, H3), 3.35 (app. t, J = 12.3 Hz, 1H, H6a), 3.12 – 2.78 (m, 2H, H2a and OH), 2.61 (brs, 1H, H5). ¹³C NMR (101 MHz, CDCl₃ at 333K) δ 170.7 (OC=O), 155.2 (NC=O), 138.3, 136.4, 135.2 (3C_q Ar), 128.6, 128.5, 128.5, 128.5, 128.4, 128.1, 127.9, 127.7, 127.4 (CH Ar), 76.9 (C4), 74.3 (CH₂ Bn), 68.5 (C3), 67.4 (CH₂ Cbz), 66.8 (CH₂ Bn_{ester}), 45.6 & 45.3 (C5), 45.2 & 44.9 (C2), 39.7 (C6). HRMS (ESI) m/z: [M+Na]⁺ calc for C₂₈H₂₉NO₆Na 498.18871, found 498.18891.

Compound 39

To a stirred solution of compound 38 (225 mg, 0.474 mmol) in DCM (9 mL) was added Dess-Martin periodinane (60%, 682 mg, 0.965 mmol) and the mixture was left stirring at rt for 3 h. The reaction mixture was then diluted with EtOAc (50 mL), washed with aq. 2 M Na₂S₂O₃ (2 x 15 mL), sat. aq. NaHCO₃ (2 x 15 mL) and

brine (15 mL), dried over MgSO₄, filtered and concentration in vacuo. The crude was purified by silica

gel column chromatography (pentane/EtOAc 4:1 \rightarrow 7:3) to afford the ketone **39** (160 mg, 0.338 mmol, 71%) as a colorless oil. 1 H NMR (400 MHz, CDCl₃ at 293K) δ 7.37 - 7.14 (m, 15H, CH Ar), 5.19 - 4.94 (m, 4H, CH₂ Cbz and CH₂ Bn_{ester}), 4.69 (d, J = 12.0 Hz, 1H, CHH Bn), 4.52 - 4.41 (m, 1H, CHH Bn), 4.35 - 3.77 (m, 5H, H2ab, H6ab and H4), 3.16 (brs, 1H, H5). 13 C NMR (101 MHz, CDCl₃ at 293K) δ 200.3 (C=O), 169.5 (OC=O), 154.9 (NC=O), 136.8, 136.0, 135.2 (3C_q Ar), 128.5, 128.5, 128.4, 128.3, 128.3, 128.1, 127.8, 127.4 (CH Ar), 78.31 (C4), 72.4 (CH₂ Bn), 67.8 (CH₂ Cbz), 67.1 (CH₂ Bn_{ester}), 52.7 (C2), 46.4 (C5), 41.8 (C6) ppm. HRMS (ESI) m/z: [M+Na]⁺ calc for C₂₈H₂₉NO₆Na 496.17306, found 496.17304.

Compound 40

Alcohol **35** (1.25 g, 2.58 mmol) was dissolved in dry DCM (25 mL). Dess-Martin periodinane (60% purity, 2.65 g, 3.75 mmol) was added and the reaction was stirred at room temperature for 2 h. The reaction mixture was diluted with EtOAc (100 mL) and washed successively with sat. aq. $Na_2S_2O_3$ (2 x 50 mL), sat. aq.

NaHCO₃ (2 x 50 mL) and brine (50 mL). The organic layer was dried over MgSO₄, filtered and concentrated to afford the crude aldehyde (1.47 g). To the stirred solution of the crude aldehyde in MeCN (45 mL) and water (8.5 mL), NaH₂PO₄·2H₂O (3.12 g, 20.0 mmol) was added and the mixture was stirred at rt until it turned homogeneous. After which, the reaction was cooled to 0 °C and 30% H₂O₂ (340 μL, 4.35 mmol) and a solution of NaClO₂ (80% purity, 375 mg, 3.31 mmol) in water (8.5 mL) were added. The mixture was stirred at 0 °C for 15 minutes and 1 h at rt until TLC-analysis confirmed full conversion. The reaction was quenched by addition of Na₂SO₃ (0.95 g) and stirred for 10 more minutes. The mixture was diluted with EtOAc (60 mL) and the layers were separated. The water layer was extracted with EtOAc (2 x 30 mL) and the combined organic layers were washed with brine (30 mL), dried over MgSO₄, filtered and concentrated to afford the crude carboxylic acid (1.47 g). The crude acid was co-evaporated twice with dry toluene and then dissolved in dry toluene (10 mL). tert-Butyl N,N'-diisopropylcarbaimidate (1.94 g, 9.70 mmol) was added and the reaction stirred at 60 °C for 5 h. LC-MS analysis confirmed complete conversion of the acid and the mixture was concentrated and filtered over a plug of silica gel eluting with pentane/Et₂O (9:1) to afford the crude ester. Purification by silica gel column chromatography (pentane/Et₂O 98:2→9:1) afforded target compound **40** (1.01g, 1.82 mmol, 71% over three steps) as a colorless oil. ¹H NMR (500 MHz, CDCl₃ at 333K) δ 7.33 – 7.24 (m, 9H, CH Ar), 7.22 - 7.16 (m, 1H, CH Ar), 5.18 (d, J = 12.4 Hz, 1H, CHH Cbz), 5.10 - 5.01 (m, 2H, CHH Cbz and CHH Bn), 4.59 (d, J = 11.1 Hz, 1H, CHH Bn), 4.26 – 4.16 (m, 2H, H4 and H6b), 3.98 (s, 1H, H3), 3.67 (d, J = 7.3 Hz, 1H, H2b), 3.20 (t, J = 12.7 Hz, 1H, H6a), 3.13 (t, J = 11.6 Hz, 1H, H2a), 2.52 – 2.44 (m, 1H, H5), 1.40 (s, 9H, (CH₃)₃CO), 0.91 (s, 9H, (CH₃)₃CSi), 0.11 (s, 3H, CH₃Si), 0.10 (s, 3H, CH₃Si). ¹³C NMR (126 MHz, CDCl₃ at 333K) δ 169.5 (OC=O), 155.3 (NC=O), 139.3, 136.9 (2C_q Ar), 128.5, 128.1, 128.0, 127.9, 127.2 (CH Ar), 81.2 ((CH₃)₃CO), 78.1 (C4), 75.2 (CH₂Bn), 71.6 (C3), 67.2 (CH₂ Cbz), 46.9 (C5), 44.9 (C2), 40.0 (C6), 28.1 ((*C*H₃)₃CO), 25.8 ((*C*H₃)₃CSi), 18.0 ((CH₃)₃CSi), -4.7, -4.8 (2CH₃Si) ppm.

¹H NMR (400 MHz, CDCl₃ at 293K) [mixture of rotamers 1:1] δ 7.37 – 7.18 (m, 10H, CH Ar), 5.23 – 5.15 (d, J = 12.4 Hz, 1H, CHH Cbz), 5.06 (m, 2H, CHH Cbz and CHH Bn), 4.58 (d, J = 11.1 Hz, 1H, CHH Bn), 4.31 – 3.85 (m, 3H, H4, H6b and H2b), 3.78 – 3.57 (m, 1H, H3), 3.30 – 3.01 (m, 2H, H2a and H6a), 2.51 (s, 1H, H5), 1.41 (s, 9H, (CH₃)₃CO), 0.91 (s, 9H, (CH₃)₃CSi), 0.16 (s, 3H, CH₃Si), 0.09 & 0.06 (s, 3H, CH₃Si). ¹³C NMR (101 MHz, CDCl₃ at 293K) [mixture of rotamers 1:1] δ 169.6 (OC=O), 155.1 (NC=O), 139.1, 136.6 (2C_q Ar), 128.4, 128.0, 128.0, 127.8, 127.2 (CH Ar), 81.2 ((CH₃)₃CO), 77.9 (C4), 75.2 (CH₂ Bn), 71.4 & 71.1 (C3), 67.2 (CH₂ Cbz), 46.5 (C5), 44.7 (C2), 39.8 (C6), 28.0 ((CH₃)₃CO), 25.7 ((CH₃)₃CSi), 18.0 ((CH₃)₃CSi), -4.9 (2CH₃Si) ppm. HRMS (ESI) m/z: [M+Na]⁺ calc for C₃₁H₄₅NO₆SiNa 578.29084, found 578.29100.

Compound S7

To an ice cold solution of TBS-ether **40** (0.35 g, 0.63 mmol) in THF (8 mL) was added TBAF (75 wt% in H_2O , 430 mg, 1.24 mmol) and the mixture was left stirring on the ice bath. After 5 h TLC-analysis showed complete conversion of the TBS-ether. The mixture was diluted with EtOAc (40 mL), washed with brine

(2 x 10 mL), dried over MgSO₄, filtered and concentrated *in vacuo*. The crude was purified by silica gel column chromatography (pentane/EtOAc 9:1 \rightarrow 4:1) to afford the title alcohol **S7** (267 mg, 0.605 mmol, 96%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃ at 333K) δ 7.34 - 7.19 (m, 10H, CH Ar), 5.11 (s, 2H, CH₂ Cbz), 4.73 (dd, J = 11.4 Hz, 2H, CH₂ Bn), 4.20 (s, 1H, H4), 4.06 (dd, J = 13.5, 4.4 Hz, 1H, H6b), 3.92 (d, J = 8.9 Hz, 1H, H2b), 3.61 (s, 1H, H3), 3.32 (dd, J = 13.5, 11.0 Hz, 1H, H6a), 3.11 - 3.03 (m, 1H, H2a), 2.78 (d, J = 7.6 Hz, 1H, OH), 2.54 - 2.46 (m, 1H, H5), 1.43 (s, 9H, (CH₃)₃C). ¹³C NMR (126 MHz, CDCl₃ at 333K) δ 170.1 (OC=O), 155.4 (NC=O), 138.6, 136.8 (2C_q Ar), 128.5, 128.4, 128.0, 127.8, 127.7, 127.4 (CH Ar), 81.7 ((CH₃)₃C), 77.3 (C4), 74.4 (CH₂ Bn), 68.8 (C3), 67.3 (CH₂ Cbz), 46.5 (C5), 45.5 (C2), 40.2 (C6), 28.1 ((*C*H₃)₃C) ppm.

¹H NMR (500 MHz, CDCl₃ at 293K) [mixture of rotamers 1:1] δ 7.48 – 6.99 (m, 10H, CH Ar), 5.09 (s, 2H, CH₂ Cbz), 4.88 – 4.62 (m, 2H, CH₂ Bn), 4.20 (s, 1H, H4), 4.13 – 3.80 (m, 2H, H6b and H2b), 3.71 – 3.54 (m, 1H, H3), 3.35 – 3.27 (m, 1H, H6a), 3.22 – 2.98 (m, 2H, H2a and OH), 2.50 (s, 1H, H5), 1.43 (s, 9H, (CH₃)₃C). ¹³C NMR (126 MHz, CDCl₃) [mixture of rotamers 1:1] δ 170.1 (OC=O), 155.3 (NC=O), 138.3, 136.5 (2C_q Ar), 128.4, 128.3, 128.0, 127.8, 127.6, 127.3 (CH Ar), 81.7 ((CH₃)₃C), 77.0 (C4), 74.3 (CH₂ Bn), 68.6 & 68.5 (C3), 67.3 (CH₂ Cbz), 46.4 & 46.2 (C5), 45.3 & 45.0 (C2), 40.0 (C6), 27.9 ((*C*H₃)₃C) ppm. HRMS (ESI) m/z: [M+Na]⁺ calc for C₂₅H₃₁NO₆Na 464.20436, found 464.20419.

Compound **S7** (135 mg, 0.306 mmol) was dissolved in dry DCM (6 mL) and Dess-Martin periodinane (252 mg, 0.594 mmol) was added. The reaction was stirred at rt for 2 h until TLC-analysis indicated complete conversion of the alcohol. The mixture was diluted with EtOAc (25 mL) and washed subsequently

with aq. 2 M Na₂S₂O₃ (2 x 10 mL), sat. aq. NaHCO₃ (2 x 10 mL) and brine (10 mL), dried over MgSO₄, filtered and concentrated *in vacuo*. The crude was purified by silica gel column chromatography (pentane/EtOAc 4:1 \rightarrow 7:3) to afford the target ketone **41** (119 mg, 0.271 mmol, 89%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃ at 333K) δ 7.39 - 7.21 (m, 10H, CH Ar), 5.10 (s, 2H, CH₂ Cbz), 4.76 (d, J = 12.1 Hz, 1H, CHH Bn), 4.57 (d, J = 12.1 Hz, 1H, CHH Bn), 4.30 (d, J = 17.0 Hz, 1H, H2b), 4.08 (br. s, 1H, H6b), 4.00 (d, J = 4.5 Hz, 1H, H4), 3.96 (br. s, 1H, H2a), 3.79 (d, J = 11.4 Hz, 1H, H6a), 3.05 (s, 1H, H5), 1.38 (s, 9H, (CH₃)₃C). ¹³C NMR (101 MHz, CDCl₃ at 333K) δ 200.6 (C=O), 168.8 (OC=O), 154.8 (NC=O), 137.0, 136.0 (2C_q Ar), 128.6, 128.5, 128.3, 128.1, 128.0, 127.8 (CH Ar), 82.4 ((CH₃)₃C), 78.8 (C4), 72.4 (CH₂ Bn), 67.8 (CH₂ Cbz), 52.9 (C2), 47.4 (C5), 42.3 (C6), 27.8 ((CH₃)₃C) ppm. HRMS (ESI) m/z: [M+Na]⁺ calc for C₂₅H₃₁NO₆Na 462.18871, found 462.18832.

Compound 42 and S8

Compound **40** (700 mg, 1.26 mmol) was dissolved in methanol (25 mL) under argon and 10% Pd/C (140 mg) was added. While stirring vigorously, the mixture was flushed with a H_2 balloon. After stirring for 2 h under H_2 atmosphere TLC and LC-MS analyses confirmed complete removal of the Cbz-group. The

mixture was filtered over a Whatman filter and concentrated. The crude residue was directly taken up in DCM (10 mL) and DIPEA (250 μ L, 1.44 mmol) and Boc₂O (700 mg, 3.21 mmol) were added. The mixture was stirred at rt overnight until LC-MS analysis confirmed complete *N*-protection. The mixture was concentrated, and eluted over a small plug of silica gel (pentane / EtOAc = 7 / 3) and the eluate was concentrated again. The material was redissolved in methanol (20 mL) under argon and 10% Pd/C (140 mg) was added. After stirring for 16 h under H₂ atmosphere, LC-MS indicated only circa 20% conversion of the starting material, so more 10% Pd/C (280 mg) and 20% Pd(OH)₂/C (300 mg) were added and the mixture was stirred over the weekend until LC-MS analysis indicated full conversion. The mixture was filtered over a Whatman filter and concentrated *in vacuo*. The crude was purified by silica gel column chromatography (pentane/EtOAc 9:1 \rightarrow 4:1) to afford compound **42** (372 mg, 0.862 mmol, 69% over three steps) as a colorless oil. ¹H NMR (500 MHz, CDCl₃ at 333K) δ 4.20 (s, 1H, H4), 4.02 (d, J = 11.3 Hz, 1H, H6b), 3.85 (d, J = 7.4 Hz, 1H, H2b), 3.60 (ddd, J = 10.6, 5.2, 2.8 Hz, 1H, H3), 3.11 (t, J = 12.7 Hz, 1H, H6a), 2.88 (t, J = 10.9 Hz, 1H, H2a), 2.44 (m, 2H, H5 and OH), 1.47 (s, 9H, (CH₃)₃CO), 1.46 (s, 9H, (CH₃)₃CO), 0.91 (s, 9H, (CH₃)₃CSi), 0.13 (s, 6H, 2CH₃Si). ¹³C NMR (126 MHz, CDCl₃ at 333K) δ 169.9 (OC=O), 154.7 (NC=O), 81.2, 79.9 ((CH₃)₃CO), 69.5 (C4), 69.4 (C3), 46.1

(C5), 44.1 (C2), 39.1 (C6), 28.4, 28.1 ((*C*H₃)₃CO), 25.8 ((*C*H₃)₃CSi), 18.1 ((*C*H₃)₃*C*Si), -4.6 (*C*H₃Si), -4.8 (*C*H₃Si) ppm.

¹H NMR (400 MHz, CDCl₃ at 293K) δ 4.21 (s, 1H, H4), 4.16 – 3.71 (m, 2H, H6b and H2b), 3.60 (s, 1H, H3), 3.10 (s, 1H, H6a), 3.01 – 2.67 (m, 1H, H2a), 2.58 – 2.37 (m, 2H, H5 and OH), 1.48 (s, 9H, (CH₃)₃CO), 1.46 (s, 9H, (CH₃)₃CO), 0.91 (s, 9H, (CH₃)₃CSi), 0.13 (s, 3H, CH₃Si), 0.12 (s, 3H, CH₃Si). ¹³C NMR (101 MHz, CDCl₃ at 293K) δ 170.2 (OC=O), 154.7 (NC=O), 81.4, 80.1 ((CH₃)₃CO), 69.4 (C4), 69.2 (C3), 45.9 (C5), 44.5 (C2), 38.7 (C6), 28.5, 28.1 ((CH₃)₃CO), 25.8 ((CH₃)₃CSi), 18.1 ((CH₃)₃CSi), -4.6 (2CH₃Si) ppm. HRMS (ESI) m/z: [M+Na]⁺ calc for C₂₁H₄₁NO₆SiNa 454.25954, found 454.25934.

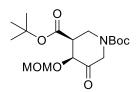
Further elution from the column with pentane/EtOAc = 1:1 afforded a byproduct (90 mg, 0.28 mmol, 22%) that was identified as diol **S8**. ¹H NMR (400 MHz, MeOD at 293K) δ 4.26 (app t, J = 2.3 Hz, 1H, H4), 4.03 – 3.91 (m, 1H, H6b), 3.90 – 3.78 (m, 1H, H2b), 3.50 (ddd, J = 10.9, 5.1, 2.7 Hz, 1H, H3), 3.19 – 3.00

(m, 1H, H6a), 2.99 - 2.75 (m, 1H, H2a), 2.49 (ddd, J = 11.8, 4.7, 2.5 Hz, 1H, H5), 1.48 (s, 9H, (CH₃)₃CO), 1.46 (s, 9H, (CH₃)₃CO). ¹³C NMR (101 MHz, MeOD at 293K) δ 172.0 (OC=O), 156.4 (NC=O), 82.2 ((CH₃)₃CO), 81.3 ((CH₃)₃CO), 69.9 (C4), 69.3 (C3), 47.4 (C5), 44.6 (C2, assign by HSQC), 39.8 (C6, assign by HSQC), 28.6 ((CH₃)₃CO), 28.1 ((CH₃)₃CO) ppm. HRMS (ESI) m/z: [M+Na]⁺ calc for $C_{15}H_{27}NO_6Na$ 340.17306, found 340.17280.

Compound 43

In a microwave tube compound **42** (0.18 g, 0.42 mmol) was dissolved in a mixture of dry DCM (4 mL), DIPEA (1.5 mL) and MOMCl (0.5 mL). The tube was sealed and heated for 1 h at 100 °C in a microwave (Biotage initiator+). After which the mixture was diluted with EtOAc (25 mL), washed with water (10 mL),

sat. aq. NaHCO₃ (10 mL) and brine (10 mL), dried over MgSO₄, filtered and concentrated. The crude was purified by silica gel column chromatography (pentane/EtOAc 98:2 \rightarrow 95:5) to give the target compound **43** (176 mg, 0.370 mmol, 88%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃ at 333K) δ 4.81 (d, J = 5.8 Hz, 1H, CHHO MOM), 4.77 (d, J = 5.8 Hz, 1H, CHHO MOM), 4.19 (s, 1H, H4), 4.10 (d, J = 9.3 Hz, 1H, H6b), 3.86 (d, J = 9.1 Hz, 1H, H2b), 3.56 (ddd, J = 10.8, 4.9, 2.2 Hz, 1H, H3), 3.35 (s, 3H, OCH₃), 3.09 (t, J = 12.8 Hz, 1H, H6a), 2.99 (t, J = 11.3 Hz, 1H, H2a), 2.43 (ddd, J = 12.0, 4.5, 2.0 Hz, 1H, H5), 1.47 (s, 9H, (CH₃)₃CO), 1.46 (s, 9H, (CH₃)₃CO), 0.92 (s, 9H, (CH₃)₃CSi), 0.12 (s, 6H, 2CH₃Si). ¹³C NMR (126 MHz, CDCl₃ at 333K) δ 169.6 (OC=O), 154.8 (NC=O), 98.2 (CH₂ MOM), 81.3 ((CH₃)₃CO), 79.9 ((CH₃)₃CO), 76.0 (C4), 71.3 (C3), 56.2 (CH₃ MOM), 46.9 (C5), 44.8 (C2), 39.5 (C6), 28.5 ((CH₃)₃CO), 28.2 ((CH₃)₃CO), 25.9 ((CH₃)₃CSi), 18.2 ((CH₃)₃CSi), -4.6 (CH₃Si), -4.8 (CH₃Si) ppm. HRMS (ESI) m/z: [M+H]⁺ calc for C₂₃H₄₆NO₇Si 476.30381, found 476.30378.


Compound S9

Compound 43 (175 mg, 0.368 mmol) was dissolved in THF (5 mL) and cooled on an ice-bath. TBAF (75 wt% in H_2O , 230 mg, 0.66 mmol) was added and the mixture was stirred on the ice bath for 5 h. The mixture was then diluted with EtOAc (30 mL), washed with brine (2 x 10 mL), dried over Na_2SO_4 , filtered and

concentrated. The crude was purified by silica gel column chromatography (pentane/EtOAc 95:5 \rightarrow 7:3) to afford compound **S9** (127 mg, 0.351 mmol, 95%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃ at 333K) δ 4.72 (d, J = 6.5 Hz, 1H, CHH MOM), 4.68 (d, J = 6.5 Hz, 1H, CHH MOM), 4.19 (t, J = 2.5 Hz, 1H, H4), 4.10 (d, J = 10.6 Hz, 1H, H6b), 4.00 - 3.86 (m, 2H, OH and H2b), 3.52 - 3.45 (m, 1H, H3), 3.44 (s, 3H, CH₃ MOM), 3.08 (dd, J = 13.5, 11.6 Hz, 1H, H6a), 2.83 (app t, J = 11.7 Hz, 1H, H2a), 2.54 (ddd, J = 11.4, 4.8, 2.5 Hz, 1H, H5), 1.46 (s, 18H, 2(CH₃)₃CO). ¹³C NMR (126 MHz, CDCl₃ at 333K) δ 169.6 (OC=O), 154.9 (NC=O), 98.9 (CH₂ MOM), 81.4 ((CH₃)₃CO), 80.8 (C4), 80.1 ((CH₃)₃CO), 67.8 (CH₃ MOM), 56.2 (C3), 46.7 (C5), 45.5 (C2), 39.7 (C6), 28.5, 28.2 ((CH₃)₃CO) ppm. ¹H NMR (500 MHz, CDCl₃ at 293K) δ 4.73 (d, J = 6.7 Hz, 1H, CHH MOM), 4.69 (d, J = 6.7 Hz, 1H, CHH MOM), 4.27 - 3.88 (m, 4H, H4, OH, H2b and H6b), 3.54 - 3.47 (m, 1H, H3), 3.45 (s, 3H, CH₃ MOM), 3.12 - 2.99 (m, 1H, H6a), 2.89 - 2.70 (m, 1H, H2a), 2.57 (d, J = 9.3 Hz, 1H, H5), 1.46 (s, 18H, 2(CH₃)₃CO). ¹³C NMR (126 MHz, CDCl₃ at 293K) δ 169.5 (OC=O), 154.8 (NC=O), 98.7 (CH₂ MOM), 81.4 ((CH₃)₃CO), 81.1 (C4), 80.1 ((CH₃)₃CO), 67.6 (CH₃ MOM), 56.2 (C3), 46.4 (C5), 28.4, 28.1

 $((CH_3)_3CO)$ ppm. HRMS (ESI) m/z: $[M+Na]^+$ calc for $C_{17}H_{31}NO_7Na$ 384.19927, found 384.19904.

Compound 44

To a stirred solution of alcohol **S9** (126 mg, 0.349 mmol) in dry DCM (5 mL) was added Dess-Martin periodinane (248 mg, 0.585 mmol) and the mixture was stirred at rt for 3 h until complete conversion was confirmed by TLC and LC-MS analyses. The mixture was diluted with EtOAc (30 mL) and washed

subsequently with aq. 2 M Na₂S₂O₃ (2 x 10 mL), sat. aq. NaHCO₃ (2 x 10 mL) and brine (10 mL), dried over MgSO₄, filtered and concentrated *in vacuo*. The crude was purified by silica gel column chromatography (pentane/acetone 98:2 \rightarrow 85:15) to afford ketone **44** (100 mg, 0.278 mmol, 80%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃ at 333K) δ 4.76 (d, J = 6.8 Hz, 1H, CHH MOM), 4.73 (d, J = 6.8 Hz, 1H, CHH MOM), 4.31 (dd, J = 17.4, 1.2 Hz, 1H, H2b), 4.22 – 4.13 (m, 2H, H4 and H6b), 3.87 (d, J = 17.4 Hz, 1H, H2a), 3.68 (dd, J = 14.1, 4.2 Hz, 1H, H6a), 3.38 (s, 3H, CH₃ MOM), 3.13 (dd, J = 9.6, 4.8 Hz, 1H, H5), 1.45 (s, 9H, (CH₃)₃CO), 1.43 (s, 9H, (CH₃)₃CO). ¹³C NMR (126 MHz, CDCl₃ at 333K) δ 200.3 (C=O), 169.2 (OC=O), 154.1 (NC=O), 96.6 (CH₂ MOM), 82.4, 81.0 ((CH₃)₃CO), 77.5 (C4), 56.1 (CH₃ MOM), 53.6 (C2), 47.7 (C5), 43.1 (C6), 28.4, 28.0 ((CH₃)₃CO) ppm.

¹H NMR (500 MHz, CDCl₃ at 293K) δ 4.80 (d, J = 6.9 Hz, 1H, CHH MOM), 4.75 (d, J = 6.9 Hz, 1H, CHH MOM), 4.43 – 4.11 (m, 3H, H2b, H4 and H6b), 3.96 – 3.75 (m, 1H, H2a), 3.75 – 3.52 (m, 1H,

H6a), 3.40 (s, 3H, CH₃ MOM), 3.19 (br. s, 1H, H5), 1.45 (s, 9H, (CH₃)₃CO), 1.44 (s, 9H, (CH₃)₃CO). 13 C NMR (126 MHz, CDCl₃ at 293K) δ 200.5 (C=O), 169.3 (OC=O), 154.0 (NC=O), 96.3 (CH₂ MOM), 82.4, 80.9 ((CH₃)₃CO), 77.3 (C4), 56.0 (CH₃ MOM), 54.0 (C2), 47.7 (C5), 43.0 (C6), 28.3, 27.9 ((CH₃)₃CO). HRMS (ESI) m/z: [M+Na]⁺ calc for C₁₇H₃₁NO₇Na 382.18362, found 382.18337.

Compound 8

Method A (deprotection of ketone **39**): Ketone **39** (68 mg, 0.14 mmol) was dissolved in a mixture of THF (10 mL) and aqueous 3 M HCl (300 μ L). Subsequently, 10% Pd/C (72 mg) was added and the mixture was stirred under hydrogen

atmosphere for 18 h. The mixture was filtered over a Whatman® filter and concentrated *in vacuo* to afford the target compound (31 mg) as a white foam in quantitative yield.

Method B (deprotection of ketone **44**): Ketone **44** (23 mg, 64 μmol) was dissolved in a mixture of hexafluoro-2-propanol (960 μL) and water (200 μL). Concentrated HCl (40 μL) was added and the mixture stirred at rt for 5 h after which the mixture was concentrated *in vacuo* and co-evaporated with water at 35 °C (3 x) to afford the target compound (14 mg) in quantitative yield. ¹H NMR (500 MHz, D₂O at 293K) [hydrate form] δ 4.20 – 4.15 (m, 1H, H4), 3.44 (dd, J = 12.1, 3.8 Hz, 1H, H6b), 3.32 (ddd, J = 12.7, 3.8, 2.5 Hz, 1H, H5), 3.26 (d, J = 12.4 Hz, 1H, H6a), 3.21 (d, J = 12.7 Hz, 1H, H2b), 3.16 (d, J = 12.7 Hz, 1H, H2a). ¹³C NMR (126 MHz, D₂O) δ 173.3 (C=O), 91.1 (C3), 69.4 (C4), 46.1 (C2), 41.9 (C5), 38.4 (C6). HRMS (ESI) m/z: [M_{hydrate}+H]⁺ calc for C₆H₁₂NO₅ 178.07100, found 178.07068.

Compound 45

To a solution of alcohol **42** (0.35 g, 0.81 mmol) in THF (8 mL) were added Ag₂O (2.44 g, 10.5 mmol), CH₃I (3.0 mL, 48.2 mmol) and (CH₃)₂S (100 μ L, 1.36 mmol). The flask was protected from light by packing in alumina foil and the mixture was stirred vigorously at rt overnight. The mixture was filtered over

a pad of celite and the filter cake washed with EtOAc (3 x). The filtrate was concentrated *in vacuo* to give a thick oil (377 mg) that was purified by silica gel column chromatography (pentane/EtOAc $98:2\rightarrow95:5$) to afford the target product (0.25 g, 0.56 mmol) in 69% yield. ¹H NMR (500 MHz, CDCl₃ at 333K) δ 4.01 (d, J = 10.3 Hz, 1H, H6b), 3.86-3.74 (m, 2H, H4, H2b), 3.56-3.47 (m, 4H, H3, OCH₃), 2.99-2.84 (m, 2H, H6a and H2a), 2.35 (ddd, J = 11.9, 4.6, 2.3 Hz, 1H, H5), 1.42 (s, 9H, (CH₃)₃CO), 1.40 (s, 9H, (CH₃)₃CO), 0.88 (s, 9H, (CH₃)₃CSi), 0.07 (s, 6H, 2CH₃Si). ¹³C NMR (126 MHz, CDCl₃ at 333K) δ 169.9 (OC=O), 154.8 (NC=O), 80.9 ((CH₃)₃CO), 79.8 (C4), 79.8 ((CH₃)₃CO), 71.6 (C3), 61.5 (OCH₃), 46.7 (C5), 44.8 (C2), 39.6 (C6), 28.5 ((CH₃)₃CO), 28.2 ((CH₃)₃CO), 25.9 ((CH₃)₃CSi), 18.1 ((CH₃)₃CSi), -4.6 (CH₃Si), -4.8 (CH₃Si). HRMS (ESI) m/z: [M+Na]⁺ calc for C₂₂H₄₃NO₆SiNa 468.27519, found 468.27500.

Compound S10

To an ice cold solution of TBS-ether **45** (0.25 g, 0.56 mmol) in THF (10 mL) was added TBAF (75 wt% in H_2O , 410 mg, 1.17 mmol). The mixture was allowed to warm up slowly to room temperature and stirred for 5 h until TLC analysis indicated complete conversion of the starting material. The mixture was

diluted with EtOAc (30 mL) and washed with brine (2 x 10 mL), dried over Na₂SO₄, filtered and concentrated. The crude was purified by silica gel column chromatography (pentane/EtOAc 95:5 \rightarrow 2:1) to give the target alcohol (178 mg, 0.537 mmol, 96%) as a colorless solid. ¹H NMR (500 MHz, CDCl₃ at 333K) δ 3.95 – 3.87 (m, 2H, H6b and H4), 3.82 (d, J = 9.9 Hz, 1H, H2b), 3.61 (s, 1H, H3), 3.53 (s, 3H, OCH₃), 3.19 (dd, J = 13.7, 10.7 Hz, 1H, H6a), 3.03 – 2.95 (m, 1H, H2a), 2.71 (s, 1H, OH), 2.52 – 2.45 (m, 1H, H5), 1.48 (s, 9H, (CH₃)₃CO), 1.45 (s, 9H, (CH₃)₃CO). ¹³C NMR (126 MHz, CDCl₃ at 333K) δ 170.5 (OC=O), 154.9 (NC=O), 81.6 ((CH₃)₃CO), 80.1 ((CH₃)₃CO), 79.2 (C4), 68.7 (C3), 60.6 (OCH₃), 46.5 (C5), 45.7 (C2), 40.1 (C6), 28.5 ((*C*H₃)₃CO), 28.2 ((*C*H₃)₃CO). HRMS (ESI) m/z: [M+Na]⁺ calc for C₁₆H₂₉NO₆Na 354.18871, found 354.18850.

Compound 46

To a stirred solution of alcohol **S10** (176 mg, 0.53 mmol) in dry DCM (10 mL) was added Dess-Martin periodinane (488 mg, 1.15 mmol) and the mixture was stirred at rt for 4 h until complete conversion was confirmed by TLC analysis. The mixture was diluted with EtOAc (30 mL) and washed subsequently with aq.

2 M Na₂S₂O₃ (2 x 10 mL), sat. aq. NaHCO₃ (2 x 10 mL) and brine (10 mL), dried over MgSO₄, filtered and concentrated *in vacuo*. The crude was purified by silica gel column chromatography (pentane/acetone 9:1 \rightarrow 7:3) to afford ketone **46** (135 mg, 0.41 mmol, 76%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃ at 333K) δ 4.10 (d, J = 17.1 Hz, 1H, H2b), 4.02 (d, J = 17.1 Hz, 1H, H2a), 3.87 (d, J = 5.9 Hz, 2H, H6), 3.80 (d, J = 4.6 Hz, 1H, H4), 3.45 (s, 3H, OCH₃), 3.04 (q, J = 5.9 Hz, 1H, H5), 1.45 (s, 9H, (CH₃)₃CO), 1.44 (s, 9H, (CH₃)₃CO). ¹³C NMR (126 MHz, CDCl₃ at 333K) δ 200.7 (C=O), 168.9 (OC=O), 154.3 (NC=O), 82.2 ((CH₃)₃CO), 81.8 (C4), 81.0 ((CH₃)₃CO), 58.7 (OCH₃), 52.9 (C2), 47.2 (C5), 41.9 (C6), 28.5 ((CH₃)₃CO), 28.1 ((CH₃)₃CO). HRMS (ESI) m/z: [M+Na]⁺ calc for C₁₆H₂₇NO₆Na 352.17306, found 352.17283.

Compound 10

$$\begin{array}{c} \text{OMe O} \\ \text{O} \\ \text{H} \\ \text{H} \\ \text{HCI} \end{array} \end{array} = \begin{array}{c} \text{OMe O} \\ \text{HO} \\ \text{H} \\ \text{HCI} \end{array}$$

Ketone **46** (47 mg, 0.14 mmol) was dissolved in a mixture of hexafluoro-2-propanol (1.5 mL) and water (0.4 mL). After cooling on an ice bath, concentrated hydrochloric acid (0.1 mL) was added. After five minutes the cooling bath was

removed and the mixture stirred at room temperature for 4 h. The solvents were removed *in vacuo* and the residue co-evaporated with water (2 x) to afford the target product (33 mg) as a foam in quantitative

yield. ¹H NMR (400 MHz, D₂O at 293K) [hydrate form] δ 3.82 (d, J = 2.4 Hz, 1H, H4), 3.48 (s, 3H, OCH₃), 3.38 (dd, J = 12.6, 4.3 Hz, 1H, H6b), 3.27 (ddd, J = 12.6, 4.3, 2.8 Hz, 1H, H5), 3.19 – 3.05 (m, 3H, H6a and H2ab). ¹³C NMR (101 MHz, D₂O at 293K) [hydrate form] δ 173.3 (COOH), 91.5 (C3), 79.3 (C4), 61.0 (OCH₃), 46.5 (C2), 41.4 (C5), 38.8 (C6). HRMS (ESI) m/z: [M_{ketone}+H]⁺ calc for C₇H₁₂NO₄ 174.07608, found 174.07624; [M_{hydrate}+H]⁺ calc for C₇H₁₄NO₅ 192.08665, found 192.08675; [M_{hydrate}+Na]⁺ calc for C₇H₁₃NO₅Na 214.06859, found 214.06866.

5.6 References

- [1] Li, J. P.; Kusche-Gullberg, M., Academic Press 2016, 325, 215-273.
- [2] Sarrazin, S.; Lamanna, W. C.; Esko, J. D., Cold Spring Harb Perspect Biol. 2011, 3, 1-33.
- [3] Iozzo, R. V.; Schaefer, L., Matrix Biol. 2015, 42, 11-55.
- [4] Iozzo, R. V., Nat. Rev. Mol. Cell Biol. 2005, 6, 646-656.
- [5] Masola, V.; Bellin, G.; Gambaro, G.; Onisto, M., Cells 2018, 7, 236-246.
- [6] Billings, P. C.; Pacifici, M., Connect Tissue Res. 2015, 56, 272-280.
- [7] Matsuo, I.; Kimura-Yoshida, C., Phil. Trans. R. Soc. B 2014, 369, 1-9.
- [8] Koshland, D.E., Biol. Rev. Camb. Philos. Soc. 1953, 28, 416–436.
- [9] Wilson, J. C.; Laloo, A. E.; Singh, S.; Ferro, V., Biochem. Biophys. Res. Commun. 2014, 443, 185-188.
- [10] Goldberg, R.; Meirovitz, A.; Hirshoren, N.; Bulvik, R.; Binder, A.; Rubinstein, A. M.; Elkin, M., *Matrix Biol.* **2013**, *32*, 234-240.
- [11] Sanderson, R. D.; Elkin, M.; Rapraeger, A. C.; Ilan, N.; Vlodavsky, I., FEBS J. 2017, 284, 42-55.
- [12] Vlodavsky, I.; Singh, P.; Boyango, I.; Gutter-Kapon, L.; Elkin, M.; Sanderson, R. D.; Ilan, N., *Drug Resist. Updat.* **2016**, *29*, 54-75.
- [13] Rivara, S.; Milazzo, F. M.; Giannini, G., Future Med. Chem. 2016, 8, 647-680,
- [14] Jia, L.; Ma, S., Eur. J. Med. Chem. 2016, 121, 209-220.
- [15] Mohan, C. D.; Hari, S.; Preetham, H. D.; Rangappa, S.; Barash, U.; Ilan, N.; Nayak, S. C.; Gupta, V. K.; Basappa; Vlodavsky, I.; Rangappa, K. S., iScience 2019, 15, 360-390.
- [16] Vlodavsky, I.; Sanderson, R. D.; Ilan, N., Springer Cham. 2020, 567-603.
- [17] Karoli, T.; Liu, L.; Fairweather, J. K.; Hammond, E.; Li, C. P.; Cochran, S.; Bergefall, K.; Trybala, E.; Addison, R. S.; Ferro, V., J. Med. Chem. 2005, 48, 8229-8236.
- [18] Ritchie, J. P.; Ramani, V. C.; Ren, Y.; Naggi, A.; Torri, G.; Casu, B.; Penco, S.; Pisano, C.; Carminati, P.; Tortoreto, M.; Zunino, F.; Vlodavsky, I.; Sanderson, R. D.; Yang, Y., Clin. Cancer Res. 2011, 17, 1382-1393.
- [19] O'Reilly, E. M.; Roach, J.; Miller, P.; Yu, K. H.; Tjan, C.; Rosano, M.; Krause, S.; Avery, W.; Wolf, J.; Flaherty, K.; Nix, D.; Ryan, D. P., Oncologist 2017, 22, 1429-e139.
- [20] Dredge, K.; Brennan, T. V.; Hammond, E.; Lickliter, J. D.; Lin, L.; Bampton, D.; Handley, P.; Lankesheer, F.; Morrish, G.; Yang, Y.; Brown, M. P.; Millward, M., *Br. J. Cancer* **2018**, *118*, 1035-1041.
- [21] Madia, V. N.; Messore, A.; Pescatori, L.; Saccoliti, F.; Tudino, V.; De Leo, A.; Bortolami, M.; Scipione, L.; Costi, R.; Rivara, S.; Scalvini, L.; Mor, M.; Ferrara, F. F.; Pavoni, E.; Roscilli, G.; Cassinelli, G.; Milazzo, F. M.; Battistuzzi, G.; Di Santo, R.; Giannini, G., J. Med. Chem. 2018, 61, 6918-6936.
- [22] Watson, A. A.; Fleet, G. W. J.; Asano, N.; Molyneux, R. J.; Nash, R. J., Phytochemistry 2001, 56, 265-295.
- [23] Gloster, T. M.; Davies, G. J., Org. Biomol. Chem. 2010, 8, 305-320.
- [24] Conforti, I.; Marra, A., Org. Biomol. Chem. 2021, 19, 5439-5475.
- [25] Platt, F. M.; Neises, G. R.; Dwek, R. A.; Butters, T. D., J. Bio. Chem. 1994, 269, 8362-8365.
- [26] Gross, P. E.; Baker, M. A.; Carver, J. P.; Dennis, J. W., Clin. Cancer Res. 1995, 1, 935-944.

- [27] Scott, L. J.; Spencer, C. M., Drugs 2000, 59, 521-549.
- [28] Umezawa, H.; Aoyagi, T.; Komiyama, H.; Morishima, H.; Hamada, M.; Takeuchi, T., J. Antibiot. 1974, 27, 963-969.
- [29] Nishimura, Y., J. Antibiot. 2009, 62, 407-423.
- [30] Nishimura, Y.; Wang, W.; Kondo, S.; Aoyagi, T.; Umezawa, H., J. Am. Chem. Soc. 1988, 110, 7249-7250.
- [31] Nishimura, Y.; Kudo, T.; Kondo, S.; Takeuchi, T., J. Antibiot. 1994, 47, 101-107.
- [32] Nishimura, Y.; Shitara, E.; Adachi, H.; Toyoshima, M.; Nakajima, M.; Okami, Y.; Takeuchi, T., *J. Org. Chem.* **2000**, 65, 2-11.
- [33] Kondo, K., Adachi, H., Shitara, E., Kojima, F.; Nishimura, Y., Bioorg. Med. Chem. 2001, 9, 1091–1095.
- [34] Wu, L.; Viola, C. M.; Brzozowski, A. M.; Davies, G. J., Nat. Struct. Mol. Biol. 2015, 22, 1016-1022.
- [35] Caner, S.; Zhang, X.; Jiang, J.; Chen, H. M.; Nguyen, N. T.; Overkleeft, H.; Brayer, G. D.; Withers, S. G., *FEBS Lett.* **2016**, *590*, 1143-1151.
- [36] Schroder, S. P.; de Boer, C.; McGregor, N. G. S.; Rowland, R. J.; Moroz, O.; Blagova, E.; Reijngoud, J.; Arentshorst, M.; Osborn, D.; Morant, M. D.; Abbate, E.; Stringer, M. A.; Krogh, K.; Raich, L.; Rovira, C.; Berrin, J. G.; van Wezel, G. P.; Ram, A. F. J.; Florea, B. I.; van der Marel, G. A.; Codee, J. D. C.; Wilson, K. S.; Wu, L.; Davies, G. J.; Overkleeft, H. S., ACS Cent. Sci. 2019, 5, 1067-1078.
- [37] de Boer, C.; McGregor, N. G. S.; Peterse, E.; Schroder, S. P.; Florea, B. I.; Jiang, J.; Reijngoud, J.; Ram, A. F. J.; van Wezel, G. P.; van der Marel, G. A.; Codee, J. D. C.; Overkleeft, H. S.; Davies, G. J., RSC Chem. Biol. 2020, 1, 148-155.
- [38] Igarashi, Y.; Ichikawa, M.; Ichikawa, Y., Tetrahedron Lett. 1996, 37, 2707-2708.
- [39] Ichikawa, Y.; Igarashi, Y.; Ichikawa, M.; Suhara, Y., J. Am. Chem. Soc. 1998, 120, 3007-3018.
- [40] Jip Kim, Y.; Ichikawa, M.; Ichikawa, Y., J. Org. Chem. 2000, 65, 2599-2602.
- [41] Jiang, J.; Kallemeijn, W. W.; Wright, D. W.; van den Nieuwendijk, A.; Rohde, V. C.; Folch, E. C.; van den Elst, H.; Florea, B. I.; Scheij, S.; Donker-Koopman, W. E.; Verhoek, M.; Li, N.; Schurmann, M.; Mink, D.; Boot, R. G.; Codée, J. D. C.; van der Marel, G. A.; Davies, G. J.; Aerts, J.; Overkleeft, H. S., *Chem. Sci.* 2015, 6, 2782-2789.
- [42] Griengl, H.; Klempier, N.; Pöchlauer, P.; Schmidt, M.; Shi, N.; A. Zabelinskaja-Mackova, A., *Tetrahedron* 1998, 54, 14477-14486.
- [43] Ouchi, H.; Mihara, Y.; Takahata, H., J. Org. Chem. 2005, 70, 5207-5214.
- [44] Yang, D.; Wong, M.-K.; Yip, Y.-C., J. Org. Chem. 1995, 60, 3887-3889.
- [45] Lipshutz, B. H.; Wilhelm, R. S.; Kozlowski, J. A., Tetrahedron 1984, 40, 5005-5038.
- [46] Joly, G. D.; Jacobsen, E. N., Org. Lett., 2002, 4, 1795-1798.
- [47] Custar, D. W.; Zabawa, T. P.; Hines, J.; Crews, C. M.; Scheidt, K. A., J. Am. Chem. Soc. 2009, 131, 12406-12414.
- [48] Kato, T.; Sato, T.; Kashiwagi, Y.; Hosokawa, S., Org. Lett. 2015, 17, 2274-2277.
- [49] Carlson, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B., J. Org. Chem. 1981, 46, 3936-3938.
- [50] Ichikawa, Y.; Igarashi, Y., Tetrahedron Lett. 1995, 36, 4585-4586.
- [51] Bal, B. S.; Childers, W. E.; Pinnick, H. W., Tetrahedron 1981, 37, 2091-2096.
- [52] Daragics, K.; Fügedi, P., Tetrahedron Lett. 2009, 50, 2914-2916.
- [53] Werz, D. B.; Seeberger, P. H., Angew. Chem. Int. Ed. Engl. 2005, 44 (39), 6315-6318.
- [54] Wu, L.; Jiang, J.; Jin, Y.; Kallemeijn, W. W.; Kuo, C.-L.; Artola, M.; Dai, W.; van Elk, C.; van Eijk, M.; van der Marel, G. A.; Codée, J. D. C.; Florea, B. I.; Aerts, J. M. F. G.; Overkleeft, H. S.; Davies, G. J., Nat. Chem. Biol. 2017, 13, 867-873.
- [55] Winter, G., J. Appl. Crystallogr. 2010, 43, 186-190.
- [56] Emsley, P.; Lohkamp, B.; Scott, W. G.; Cowtan, K., Acta. Crystallogr. D Biol. Crystallogr. 2010, 66, 486-501.
- [57] Murshudov, G. N.; Skubak, P.; Lebedev, A. A.; Pannu, N. S.; Steiner, R. A.; Nicholls, R. A.; Winn, M. D.; Long, F.; Vagin, A. A., Acta. Crystallogr. D Biol. Crystallogr. 2011, 67, 355-367.
- [58] Lebedev, A. A.; Young, P.; Isupov, M. N.; Moroz, O. V.; Vagin, A. A.; Murshudov, G. N., Acta. Crystallogr. D Biol. Crystallogr. 2012, 68, 431-440.

APPENDIX

Table 5.S1. Data collection and refinement statistics

	HPSE + SiasB	HPSE + 14	HPSE + 12	AcGH79 + SiasB
Data collection				
Space group	P2 ₁	P2 ₁	P2 ₁	$I2_1$
Cell dimensions				
<i>a</i> , <i>b</i> , <i>c</i> (Å)	46.11, 70.92,	44.51, 71.57,	44.45, 71.16,	82.75 44.67
	78.56	78.36	78.29	136.27
α, β, γ (°)	90.0, 95.5, 90.0	90.0 98.34 90.0	90.0, 98.48, 90.0	90.0, 97.46, 90.0
Resolution (Å)	45.90-1.70	52.64-1.90	44.01-1.80	67.56-1.05
	(1.73-1.70)	(1.94-1.90)	(1.84-1.80)	(1.07-1.05)
<i>I /</i> σ <i>I</i>	10.8 (1.6)	10.6 (1.2)	9.2 (1.3)	15.1 (1.4)
Completeness (%)	99.6 (99.9)	100 (100)	99.2 (98.3)	96.5 (88.8)
Redundancy	1.9 (1.9)	2.0 (2.0)	6.9 (6.5)	6.3 (4.5)
Refinement				
Resolution (Å)	1.70	1.90	1.80	1.05
No. reflections	104,973	75,449	306,166	1,385,607
$R_{ m work}$ / $R_{ m free}$	0.17/0.21	0.19/0.23	0.20/0.23	0.17/0.18
No. atoms				
Protein	3,674	3,654	3,643	3,613
Ligand/ion	104/3	51/1	34/1	17/0
Water	249	100	183	585
B-factors				
Protein	29.83	37.63	30.97	13.12
Ligand/ion	61.33/ 35.52	53.34/ 35.99	42.17/35.28	14.48
Water	35.04	36.17	35.92	24.68
R.m.s. deviations				
Bond lengths (Å)	0.01	0.01	0.01	0.02
Bond angles (°)	1.7	1.6	1.6	2.0

^{*}Number of xtals for each structure should be noted in footnote. *Values in parentheses are for highest-resolution shell.

Table S1, continued

	AcGH79 + 14	AcGH79 + 12	BpHep + SiasB	EcGusB + SiasB
Data collection				
Space group	$I2_1$	$I2_1$	P2 ₁ 2 ₁ 2 ₁	C2
Cell dimensions				
<i>a</i> , <i>b</i> , <i>c</i> (Å)	83.05, 44.67,	82.04, 42.61,	76.37, 104.61,	126.28, 76.71,
	137.17	140.14	113.71	141.02
α, β, γ (°)	90.0, 97.6, 90.0	90.0, 99.42, 90.0	90.0, 90.0, 90.0	90.0, 102.01, 90.0
Resolution (Å)	42.44-1.25	40.72-1.50	61.68-1.27	67.04-1.95
	(1.27-1.25)	(1.53-1.50)	(1.29-1.27)	(1.98-1.95)
$I / \sigma I$	10.2 (1.6)	11.0 (1.0)	12.6 (1.1)	8.1 (1.2)
Completeness (%)	99.0 (87.9)	100.0 (100.0)	99.9 (98.5)	98.4 (97.4)
Redundancy	6.2 (3.8)	6.4 (6.3)	8.2 (7.4)	4.1 (4.2)
Refinement				
Resolution (Å)	1.25	1.50	1.27	1.95
No. reflections	840,749	489,904	1,960,048	384,016
$R_{ m work}$ / $R_{ m free}$	0.16/0.18	0.20/0.22	0.16/0.18	0.22/0.28
No. atoms				
Protein	3,487	3,435	6,441	9,574
Ligand/ion	11/0	17/0	56/0	24/0
Water	357	185	1037	316
B-factors				
Protein	15.07	24.02	18.44	54.8
Ligand/ion	10.47	22.25	25.01	42.05
Water	22.38	26.77	33.14	43.74
R.m.s. deviations				
Bond lengths (Å)	0.01	0.01	0.02	0.01
Bond angles (°)	1.9	1.8	1.9	1.6

^{*}Number of xtals for each structure should be noted in footnote. *Values in parentheses are for highest-resolution shell.