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1. Osteoarthritis

Osteoarthritis (OA) is a prevalent chronic age-related joint disease. Proper disease management 
is amongst others hampered by lack of insight into heterogeneity of disease pathophysiology 
[1]. As a result, OA is significantly decreasing quality of life while increasing healthcare costs 
and absenteeism from work [3]. It is estimated that 6.8% of Disability Adjusted Life Years 
(DALYs) worldwide can be accounted for by the burden of musculoskeletal disorders [4] and 
OA is ranked as the fifth disease contributing to DALYs in the Netherlands [5]. In 2019, the 
Netherlands counted almost 1.5 million OA cases (8.6% of population), responsible for 1.2 
billion euro (1.4%) of total healthcare costs [2]. Prevalence of OA increases with age and affects 
more than 21% of men and 34% of women above 70 years (Figure 1A) and it is expected 
that cases of OA will keep rising in the coming years, due to the increasing ageing population 
(Figure 1B) [6]. 

 
 
The OA disease process itself is characterized by gradual degradation of articular cartilage, 
thickening of the synovium, formation of bony spurs termed osteophytes and remodeling 
of the underlying subchondral bone (Figure 2A). Clinical symptoms of these processes 
include chronic pain, stiffness, joint instability, swelling and joint space narrowing [7]. In 
recent years it has become more apparent that OA is a disease of the whole joint, including 
the subchondral bone and synovium [8,9]. Pathologic changes in subchondral bone have 
even been found in some early-OA cases prior to cartilage degradation [9,10]. Currently, no 
treatment is available that stops disease progression and therefore patients are prescribed 
pain relief and physiotherapy to reduce symptoms until they are eligible to undergo a joint 
replacement surgery. While joint replacement are beneficial for patients, with revision rates 
of only 2-10% after 10 years [11,12], there is a considerable increase in revision rate in the 
60 years and younger population [13]. Even more, results after revision surgery are worse 
than primary implant surgery in this younger population. Therefore a better understanding 
of OA pathophysiology is necessary to develop therapeutics that preferably target early 
disease triggers and/or processes and prevent this end-stage of OA necessitating arthroplasty 
surgery.	  

Figure 1 | Prevalence and absolute cases of osteoarthritis reported by GPD in the Netherlands strati-
fied by sex. [A] Prevalence of OA per age groups in 2019. [B] Incidence of OA per year. Data from volkgezonheiden-
zorg.info [2].



9

General introduction

1

2. Healthy joint tissues

Although OA is now commonly considered a whole-joint-disease, for long it primarily referred 
to the degeneration of articular cartilage. Articular cartilage is a highly specialized connective 
tissue that covers the contact surface of bones in joints and facilitates smooth movement. 
Cartilage is mainly composed of type 2 collagen, proteoglycans, chondrocytes and water, 
each with a specific function. The collagen fibres enable resistance to tensile stresses and 
transmission of mechanical loads, while proteoglycans and water enable osmotic pressure 
and elasticity to prevent friction. The sole cell type of cartilage, chondrocyte, makes up only 
2-5% of cartilage volume and is retained in an extracellular matrix (ECM) environment 
lacking blood vessels, nerves and lymphatics [14]. Each chondrocyte creates and maintains 
its own pericellular matrix, preventing migration and limiting direct signal transduction via 
cell-to-cell interaction while enabling chondrocytes to respond to a variety of stimuli such 
as mechanical loads, hydrostatic pressures, inflammatory factors and growth factors. Low 
metabolic activity and limited potential to replicate and migrate contribute to limited intrinsic 
repair of articular cartilage in response to injury [15,16].

Directly underneath the articular cartilage is the subchondral bone, consisting of a thin 
cortical layer and a thicker trabecular bone layer. The subchondral bone exerts important 
shock-absorbing and nutritional functions for cartilage. As the subchondral bone is 
metabolically very active, structures are dynamically adapted to mechanical forces across the 
joint by bone remodelling [17,18]. Subchondral bone is formed via endochondral ossification 
at the secondary ossification centres of bone epiphyses during joint formation (Figure 3A). 
Articular cartilage is replaced by bone during endochondral ossification and starts with 
chondrocyte proliferation and multicellular cluster formation. Subsequently, these cells 
become hypertrophic, dramatically increasing their volume while simultaneously secreting 
ECM, which is eventually mineralized. Finally, hypertrophic chondrocytes undergo apoptosis 
and their ECM is partially broken down leaving space for entry of blood vessels, osteoclasts 
and osteoblasts to initiate ossification [19]. Some of the growth plate chondrocytes escape 
this process and populate the joint contact surface of bones to become and maintain articular 

Figure 2 | Schematic overview of OA symptoms and risk factors. [A] Schematic drawing of a healthy knee 
(left) and a knee undergoing OA (right) created with BioRender.com. [B-I] Histological Safranin O staining for proteo-
glycans in articular cartilage taken from osteochondral explants from different areas of one knee joint shows the gener-
al cartilage degradation from mild OA (A) to severe OA (E) at 4x (B-E) and 10x (F-I) magnification. Black scale bar are 
200µm (B-E) or 100 µm (F-I).
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cartilage in a tightly controlled maturational arrested state. Important systemic factors 
regulating endochondral ossification are growth hormone (GH), Insulin-like growth factor 
(IGF) and thyroid hormone. GH and IGFs are potent stimulators of bone growth and both 
stimulate proliferation and initiate chondrocyte hypertrophy [20]. Locally produced IGF-I, 
induced by GH, is likely to play a more important role in chondrocytes than systemic IGF-I 
[21,22]. Active thyroid hormone, triiodothyronine (T3), induces expression of hypertrophic 
markers, such as alkaline phosphatase (ALPL), collagen X (COL10), as well as hypertrophic 
morphology and cartilage maturation [23-25].

3. OA pathophysiology

3.1. Histopathology

During OA, cartilage undergoes drastic changes that can be observed by light microscopy. 
Figure 2 B-I gives a broad overview of these histological changes occurring from early OA 
to late OA. In early OA, some chondrocytes cluster and superficial surface fibrillations form 
(Figure 2C and G). This damage progresses to fissures and cracks that reach the middle 
zone, loss of proteoglycans and increased chondrocyte clustering (Figure 2D and H). In late 
OA, the fissures and cracks reach the deep zone, there is severe loss of cartilage, apoptosis of 
chondrocytes, duplication of the calcified layer of cartilage adjacent to the subchondral bone, 
termed the tidemark, and remodeling of subchondral bone (Figure 2E and I). This stage 
is followed by complete loss of cartilage and severe changes to the underlying bone. During 
OA histopathology chondrocytes start to proliferate, become enlarged and eventually go 
into apoptosis, resembling growth plate chondrocytes undergoing endochondral ossification 
(Figure 3)[26-28]. To better classify these histological changes several grading systems 
for OA were developed. For example, Mankin et al [29] developed a histological grading 
system that scores from 0-14, based on architectural cartilage surface, cellular, proteoglycan 
content and tidemark changes and is often referred to as Histological-Histochemical Grading 
System (HHGS). Over the years several other grading systems for in vitro or in vivo OA were 
generated, however a modified version of the Mankin score is still one of the most well-known 
and validated grading systems [30].

 
3.2 Molecular pathology 

Deregulated signalling pathways in OA have been characterized by comparing genome-wide 
differential expression differences between preserved versus end-stage lesioned OA cartilage 
[31] and subchondral bone [32]. These studies revealed that OA pathology is marked by 
recuperation of growth plate signalling, cell adhesion, extracellular matrix organisation and 
skeletal system development, characterized by deregulated expression of, among others, genes 
involved in endochondral ossification: BMP3, MGP and FRZB. Similar as during endochondral 
ossification, OA chondrocytes start proliferating and differentiate into hypertrophic 
chondrocytes, accompanied by expression of ossification related genes such as alkaline 
phosphatase (ALPL), collagen X (COL10A1), runt-related transcription factor 2 (RUNX2) and 
matrix metallopeptidase 13 (MMP13), resulting in calcium crystal deposition and apoptotic 
chondrocyte death in cartilage (Figure 3B) [27,28,33-35]. In addition, two genome-wide 
differential expression studies have highlighted inherent differences in preserved OA cartilage 
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gene expression patterns between individuals using unsupervised clustering, designating clear 
subtypes of OA [36,37]. Both studies identifi ed two distinct groups of OA patients, independent 
of joint site, with a considerable overlap (45%) of signifi cant diff erentially expressed genes 
between the two clusters [36]. Strikingly, one group was marked by increased expression of 
non-chondrogenic genes involved in mechanoreceptors, such as calcium signaling (KCNN3), 
ion channels (TRPV4) and cytoskeletal organizers (ACTA2). The study by Coutinho et al [36] 
combined their transcriptomic data with radiographic OA data and determined that the non-
chondrogenic group had higher joint space narrowing (JSN) scores and lower osteophyte (OP) 
scores. These results suggest that with respect to treatment modalities these subgroups of OA 
patients should be taken into account in the study setup. For example, IL-11 is much more 
upregulated during OA pathophysiology in one subgroup (FC=60) than in the other OA group 
(FC=19) and might therefore be a more attractive therapeutical target for the latter group. 
Likewise, some targets such as CCL2 may be more appropriate for the fi rst OA subgroup.

Figure 3 | The overlap between processes occurring in endochondral ossifi cation and osteoarthritis. 
[A] During endochondral ossifi cation stem cells diff erentiate into proliferating chondrocytes. This is followed by hy-
pertrophy, terminal maturation, mineralization and eventually chondrocyte apoptosis to make space for bone. [B] A 
similar process is reiterated in osteoarthritis, where chondrocytes escape their resting state and start proliferating, 
become hypertrophic and eventually go into apoptosis. Created with BioRender.com.

As crosstalk between articular cartilage and subchondral bone is likely involved in OA 
pathophysiology, overlap of diff erentially expressed genes between cartilage and bone [32] 
was investigated and was enriched for processes related to the extracellular matrix, 
characterized by the expression of, among others, FRZB, CCN4 (WISP1) and GDF6.
Nonetheless, the preserved versus lesioned study design by defi nition captures end-stage 
pathophysiological OA disease processes and lacks information on early processes triggering 
cartilage to its diseased state. In contrast, disease-modifying OA drugs should preferably 
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target early OA disease triggers when irreversible damage of cartilage is not yet occurring. 
Therefore additional knowledge on the (early) eff ects of OA relevant stresses should be 
gathered from an appropriate model in response to OA-relevant triggers, such as mechanical 
stress, hypertrophy or infl ammation. 

4. Risk factors for OA

Epidemiology studies have identifi ed that OA has a multifactorial aetiology and results from 
an interplay between systemic and local risk factors. As shown in Figure 4, factors such as 
obesity, age, gender, repeated mechanical stress and joint injury play a role in OA onset [38]. 
Importance of these risk factors may vary per joint and stage of diseases. For example, obesity 
has been associated with both knee and hand OA, indicating that in addition to increased 
mechanical forces also aberrant metabolism in obesity play a role in OA risk [39,40].

4.1 Age

The strongest risk factor for OA in all joints is age, likely due to a combination of cumulative 
exposure to risk factors and the natural changes of cartilage and chondrocytes that occur 
with ageing [41,42]. With ageing, the articular cartilage matrix changes in amount and 
composition, resulting in a stiff er environment correlating with biomechanical dysfunctions 
[43], prone to tensile fatigue [44]. One of the changes is the increased glycation of proteins 

Figure 4 | Risk factor for osteoarthritis. The most common and well-studied risk factors for osteoarthritis. Figure 
created with BioRender.com.
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(AGEs) [45], likely due to slow turnover of ECM components, increasing cross-linking of 
collagen molecules resulting in a stiffer matrix susceptible to injury at lower impact loads [46]. 
Next to collagens, size of proteoglycan aggregates decreases likely due to proteolytic damage, 
greatly affects the permeability of cartilage [47]. Another highly prevalent change in aged 
cartilage is the deposition of calcium crystals, such as calcium pyrophosphate (CPP) and basic 
calcium phosphate (BCP) [48]. Consequently, these calcium crystals stimulate production 
of inflammatory proteins and matrix degrading enzymes, further contributing to onset and 
progression of cartilage degradation [49].

In addition to cartilage matrix changes, chondrocytes also undergo ageing-associated changes 
conferring OA risk. These include cell depletion [50,51] and impaired responses to extracellular 
stimuli [52,53], resulting in a changed gene expression, increased cell differentiation and 
cellular senescence [54]. This reduced responsiveness to stimuli such as growth factors 
contributes to an imbalance in cartilage homeostasis. For example, IGF-1, important for 
chondrocyte survival and matrix synthesis, induces a lower anabolic response [52,53]. This 
reduced response is likely partially due to increased production of insulin-like growth factor 
binding proteins (IGFBPs) [52]. Another explanation for the changed response to IGF-1 is the 
altered signaling observed in aged chondrocytes [55-57]. The increased cellular senescence 
found in aged cartilage might also contribute to its reduced anabolic response. Reactive 
oxygen species (ROS) production initiated by mechanical stress could be a large contributor 
of stress-induced chondrocyte senescence [58,59]. Since senescent cells typically produce 
pro-inflammatory cytokines and matrix degrading enzymes, they could greatly contribute to 
cartilage degradation [60]. Taken together, these age related changes in the cartilage matrix 
lead to a tissue with reduced ability to bear mechanical stress and make it more susceptible 
for degeneration. 

4.2 Mechanical stress

Physiological mechanical loading is necessary to maintain a healthy state and function of 
articular cartilage and subchondral bone [61,62]. Both the proteoglycan content and collagen 
patterns are conditioned to local stresses to maintain functionality [63,64]. For example, 
the patellar surface of femoral condyles, an area regularly subject to high shear stress levels, 
has a thicker superficial zone and higher collagen content than the tibial plateaus, an area 
subjected to weightbearing loads and rich in proteoglycans [65,66]. Normal ranges of stresses 
in joints have been measured to be between 3 and 10 MPa, but maximum forces of up to 18 
MPa are reached in the hip joint [67]. The frequency of these stresses during walking is in the 
magnitude of 1 Hz in humans [68] and cartilage height is displaced between 7% and 23% [69]. 
Higher peak forces are measured during sport activities, such as running, increasing strains up 
to 35% [70]. Physiologic levels of cyclical dynamic loading can stimulate anabolic and/or anti-
inflammatory functions of chondrocytes [71-73], while hyper-physiologic levels of dynamic 
loading and injurious loading can induce damage via induction of catabolism in chondrocytes 
[74-76], and cellular damage, such as apoptosis and necrosis [77,78]. Local biomechanical 
factors (e.g. amount of joint loading, joint injury/trauma or joint deformity) influence risk 
of degenerative changes of articular cartilage due to wear and tear, especially when they are 
repetitive. Approximately 12% of the overall OA burden in hips, knees and ankles arises as 
a result of previous joint trauma [79]. Depending on the type of injury, OA development 
was estimated to be between 23% [80] and 44% [81] in people after an injury. In addition, 
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adequate response of chondrocytes to a load depends on parameters such as frequency, 
duration, history and age of cartilage. Interesting is also to mention the discrepancy between 
the degree of radiographic osteoarthritis and clinical symptoms experienced by patients, as 
was previously observed in a cohort of nearly 7000 Dutch patients [82] and later observed in 
several other populations [83].

Considering the previously discussed changes occurring during ageing, aged articular cartilage 
can likely withstand lesser and shorter mechanical compressions when compared to the more 
flexible younger tissues. However, inactivity of middle-aged joints has also been shown to be 
unbeneficial for joint health, suggesting that balanced active life style should be initiated from 
a certain age on [84]. Nonetheless, little knowledge exists on the inherent dysregulation of 
signaling pathways in human aged articular cartilage upon mechanical stress and there is a 
knowledge gap on which strains, speed and duration of mechanical stress on aged cartilage is 
considered beneficial or actually detrimental that needs to be addressed.

4.3 Genetic risk factors

The genetic component of OA is estimated to be around 40%-60% [85,86], dependent on joint 
site. To gain more knowledge on inherent underlying processes in general OA pathophysiology, 
research groups have performed candidate and genome wide searches for genetic variants 
conferring risk of OA. OA has a complex genetic component in which many genetic variants 
with small effects sizes are expected to play a role in OA onset and progression [87-89]. 
Therefore, functional follow up is very important to confirm causality and has been performed 
for several genetic OA risk variants [90-92]. Table 1 summarizes some of the most robust OA 
genetic risk variants to date, such as DIO2, MGP and IL11, for which successful and extensive 
functional follow up has been performed. These risk genes can be associated to one specific 
joint (MGP), or to multiple joints or patients with generalized OA (DIO2).
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Table 1 | Summary of some of the most interesting OA genetic risk variants for which functional follow 

up has been performed 
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5. Functional follow up 

The investigation of an OA risk single nucleotide polymorphism (SNP) does not stop at its 
identification, but (functional) follow up is necessary to demonstrate causality. Freedman et 
al [120] have suggested a systematic strategy for the post-genome wide association studies 
(GWAS) functional follow-up to identify causality and the additional hurdles. For complex 
diseases such as OA, many SNPs from non-protein coding regions have been associated with 
disease risk. These trait-associated alleles likely exert their effects by changing transcription 
through different mechanisms. Often, multiple independently associated risk SNPs in a locus 
may be functionally linked to the disease and therefore it is important to first identify the 
causal allele. After the causal allele has been identified, knowledge on the regulatory landscape 
of the risk region can elude how risk alleles affect transcription. For example, if it is in a 
regulatory area such as a promotor, enhancer or silencer, altered transcription factor binding 
could change efficiency of transcriptional induction. As regulatory sequences are often very 
tissue-specific [121], this could explain why common susceptibility alleles often associate with 
a specific trait or disease. To identify which transcription factor binds to which DNA region, 
chromatin immunoprecipitation followed by sequencing (CHIP-Seq) can be performed. In 
addition, reporter gene assays, such as luciferase assays, can be used to provide evidence 
whether a SNP is localized in such a regulatory region. To connect SNPs to their target gene, 
the association between genotype and local and distant gene expression can be determined. 
After causality of an allele has been determined, a next step is to investigate if the SNP and/
or gene affect tissues in appropriate in vitro or in vivo OA models. Examples of some well-
studied OA risk SNPs for which functional follow up was performed are summarized in Table 
1. Another approach for which these OA risks SNPs can be used for is to identify common 
pathways or mechanisms underlying OA pathophysiology. This knowledge can further 
increase our understanding of the onset and progression of OA.

5.1 Common underlying mechanisms in OA based on genomics

Large-scale GWASes have identified reproducible and highly significant OA risk SNPs in 
genes involved in OA aetiology. Functional follow-up studies have demonstrated that risk 
SNPs frequently modulate pathology by altering transcription of genes in cis in both bone 
and cartilage [91,94,97,122]. A striking overlap between many of these OA risk genes is their 
involvement in different processes vital in endochondral ossification (Figure 5). For example, 
DOT1L, FRZB and TNC are involved in the differentiation of stem cells to chondrocytes; GDF5 
and BMP3 initiate hypertrophy in proliferating chondrocytes; DIO2 and MGP are involved in 
terminal maturation and mineralization. 

 
5.2 Follow up studies on SNPs function

With the increase of OA tissues being sequenced, generating large mRNA, miRNA and 
methylation datasets in combination with freely online expression databases, such as the 
Genotype-Tissue Expression (GTEx) Project [123], in silico functional follow up has become 
more readily available and allows for investigation of functional effects of intergenic and 
intronic variants. In addition, studies have already used such datasets to investigate the 
genome wide allelic expression imbalance of SNPs [124] and the epigenetic landscape [125] in 
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articular cartilage. Using these tools generates more insight into how OA risk SNPs could 
induce a life-long altered expression of a gene. To acquire knowledge on infl uences of the SNP 
on expression or stability of a transcript, researchers have measure expression and methylation 
fraction of genes in the vicinity of the SNP per genotype to determine expression quantitative 
trait loci (eQTL; Figure 6A), methylation quantitative trait loci (mQTL; Figure 6B) and 
allelic expression imbalance (AEI; Figure 6C). These SNPs can aff ect gene expression by, for 
example, infl uencing binding of transcription factors or infl uencing methylation fraction of a 
region.  

Figure 5 | The overlap between processes occurring in osteoarthritis and endochondral ossifi cation.
Many of the OA risk genes are involved in the diff erent endochondral ossifi cation steps. Some examples and the pro-
cesses these genes are involved in are given. Figure created with BioRender.com.

A notable OA risk gene with strong evidence for allelic imbalance is Matrix Gla protein 
(MGP). A SNP in this gene was identifi ed  as a strong OA risk SNP for hand OA in a genome 
wide association study (GWAS) via rs4764133 [111] with proxy SNPs rs1800801 and  rs4236 
(Table 1) [126]. Identifi cation was followed up by measuring AEI of rs1800801, showing its 
mechanism to be decreased expression of the OA conferring rs1800801-T allele relative to the 
rs1800801-C non-risk allele in a range of joint tissues [92,111]. The MGP protein regulates 
extracellular calcium levels via high affi  nity to its γ-carboxyglutamic acid (Gla) residues and 
inhibits calcifi cation. Prior to identifi cation of MGP as OA risk gene, mgp defi cient mice 
were shown to have severe and lethal vascular calcifi cations in combination with abnormal 
calcifi cation of growth place cartilage increasing premature bone mineralization resulting in 
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reduced bone mass [112,127]. As the OA risk allele leads to a reduced MGP gene expression 
[128] and increased vascular calcification [129], this would suggest simultaneous increased 
cartilage calcification and a reduced bone mineral density in carriers of the OA risk allele 
[112,128,130].

 

 
Figure 6 | Functional follow up of the SNP Methods to investigate how risk SNP affects transcription. 
[A] Comparing gene expression for the genotypes of a risk SNP. [B] Comparing methylation fraction of a cg site for 
the genotypes of a risk SNP. [C] T-allele ratio of cDNA for the risk SNP in comparison to the reference allele in het-
erozygous individuals. [D] Schematic representation of a cis allelic expression imbalance. Legend: eQTL=expression 
quantitative trait loci; mQTL=methylation quantitative trait loci, AEI=allelic expression imbalance; UTR=untranslated 
region.

 

5.3 Functional follow up in OA models

A major problem in the field of OA is the lack of appropriate in vitro and in vivo models for 
functional follow up of genetic risk variants and drug screening. In the current models used 
to investigate OA, the choice of cell type, species and culture method can greatly influence the 
results. Nevertheless, these models are crucial to advance research into the different aspects 
of OA pathophysiology and subsequent design and testing for safe drug development. Table 2 
summarizes the main advantages and disadvantages of the most commonly used OA models 
(Figure 7).
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Figure 7 | Most commonly used OA models. Several models can be applied to investigate OA, ranging from more 
easy and cheap models such as 2D cell culture to more complex and expensive models such as animal models. Table 1 
summarizes the advantages, disadvantages and applications of these models. Figure created with BioRender.com.

5.3.1 In vitro models

Established cell lines, easy and cheap to obtain and culture, have extensively been used to 
perform short term experiments. However, these cell lines are likely to have accumulated 
mutations and other stable modifi cations, increasing the possibility that they might not 
refl ect a ‘normal’ chondrocyte environment. Therefore, the preferred cell source are primary 
chondrocytes that can be isolated from cartilage while maintaining their methylation profi le 
[131] and can be used to investigate genetic alterations, such as overexpression or point 
mutations. To understand the consequences of an OA risk gene, overexpression or silencing 
of a gene can help determine if changes in its expression are vital for cartilage formation or 
maintenance. For example, AEI determined decreased MGP expression associated with the 
OA risk SNP rs1800801. To understand consequences of decreased MGP expression, small 
interfering RNA (siRNA) targeting MGP were transfected in monolayer primary human 
articular chondrocytes [92]. After 48 hours, MGP depletion resulted in altered expression of 
several cartilage markers, including the cartilage degrading enzymes MMP13 and ADAMTS4
and the ossifi cation markers COL1A1, ALPL, COL10A1 and VEGFA. However, a major 
downside of experiments with primary chondrocytes in monolayer is that they have limited 
proliferation capacity and are prone to change their phenotype into a fi broblastic-like cell type 
[132]. Therefore, such short-term experiments in an environment that does not completely 
encompass the cartilage environment and thus (expression) changes should be interpreted 
carefully.

Another component to consider in OA models is their highly specialized ECM. This ECM 
is likely very important in maintaining primary chondrocytes, as studies have observed a 
hypertrophic phenotype when cultured in monolayer that is resolved by 3D culture [132,133]. 
For 3D culture, cells can be pelleted by centrifugation or cultured in a biomimetic environment, 
such as a scaff old. Subsequently, stimulating chondrogenesis will enable cells to produce 
their own ECM. Some major advantages of these models are the cell-ECM interaction and 
the provided structural support. However, as the ECM needs to be produced, this model can 
be time consuming and only allows culture of one cell type. For example, the OA associated 
risk SNP rs225014 located near DIO2, for which increased expression was the likely culprit 
resulting from AEI and gene and protein levels investigation[97], was investigated in a 
3D in vitro chondrogenesis model with human bone marrow derived mesenchymal stem 
cell (hBMSC). Lentiviral overexpression of D2 in this model confi rmed increased DIO2 to 
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be unbeneficial for cartilage homeostasis, as observed by greatly reduced expression of 
articular cartilage genes (COL2A1, ACAN and COL10A1) and upregulation of hypertrophic 
and breakdown markers (MMP13, ADAMTS5, RUNX2 and EPAS1) [90]. In addition, such 
(mature) 3D pellet cultures can be used to investigate the effects of stimulation or inhibition 
of a target. For example, 14 day old 3D pellets were treated with active thyroid hormone 
(T3) or iopanoic acid (IOP), to respectively simulate increased and decreased D2 enzyme 
functionality [90]. Another OA risk gene for which functional follow up was performed in 3D 
cultures is increased WISP1 expression associated with decreased methylation via rs6982341 
[134,135]. Addition of recombinant human WISP1 to 3D in vitro pellet cultures from primary 
aged human chondrocytes resulted in reduced proteoglycan content, pellet size and matrix 
component production, suggesting that indeed increased WISP1 levels are detrimental for 
cartilage [134].

5.3.2 In vivo models

The most accurate reflection of the whole-joint are in vivo animal models. Animals, especially 
small animals such as mice and rats, have been extensively used for genetic manipulation 
and subsequently to investigate the effects of knockout or knock-in to model gene expression 
changes from conception to birth and during ageing. There are also techniques creating 
tissue-specific overexpression in animals, which can be very useful to investigate diseases. 
For example, in a forced running OA model, Dio2-/- mice did not show a different phenotype 
but these mice were protected from cartilage degradation when compared to their wild-type 
littermates [98]. In line with this, Nagase et al [99] observed that transgenic rats with cartilage-
specific overexpression of human DIO2 (hD2Tg) had no articular cartilage defects, however, 
upon increasing the biomechanical burden by applying an injury-induced OA model, hD2Tg 
rats had increased cartilage damage when compared to their wild-type littermates.

It should be taken into account, however, that animal models can be difficult to manipulate 
and the shift towards the 3Rs on refining, reducing and replacing makes them less desirable. 
On another note, small animals such as mice are used because they are cheaper and easier 
to house, but due to their smaller size contain less material for biochemical assays. Another 
factor to consider is that animal joints are not fully translatable to the human situation 
given the different structure and biomechanical loading [136], and spontaneous OA is often 
absent. Currently, most experiments are performed in relative young animals subjected to 
a hyper-physiological trigger such as collagenase or DMM to initiate OA pathophysiology, 
likely not completely representing the slow progressive OA occurring in aged human tissues. 
Larger animals, such as bovine are likely more suited to study OA due to their larger joints 
and longer life-span, however they are also a lot more expensive and come with more ethical 
considerations. Therefore, careful conclusions should be taken from results obtained in OA 
animal studies and species, animal strains and OA triggers used should be critically reviewed 
prior to initiating investigation in human clinical studies. 
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5.3.3 Ex vivo models

As increasing evidence show crosstalk between multiple tissues to be involved in OA, systems 
such as co-cultures or osteochondral explants might be more suitable to study treatment 
modalities. The advantage that explants have over co-culture systems is that it retains 
chondrocytes in their natural ‘aged’ ECM, likely representing age-related joint tissues prone 
to enter the OA process upon disease-initiating cues. However, genetic manipulation studies 
cannot be performed in this model, limiting its purpose to investigation of OA relevant 
triggers and treatment modalities. The osteochondral explant model typically encompasses 
both the cartilage and bone compartments and therefore allows a readily investigation 
of the interplay between articular cartilage and the underlying subchondral bone. The 
finding that IL-1β treatment induced TNF-α production only in cartilage explants and not 
in osteochondral explants is an example highlighting that this interplay between tissues is 
important to take into account when investigating OA pathophysiology [137]. Most commonly 
used explant-based models thus far were often derived of bovine origin and applied a hyper-
physiological perturbing factor of either a fierce inflammatory cytokines treatment [138-140] 
or mechanical loading [74,75,141] to induce detrimental signaling. Next to inflammation and 
mechanical loading, recapitulation of endochondral ossification and thereby hypertrophy is 
also thought to be one of the major mechanisms driving the processes in OA [142]. In cartilage 
explants, active thyroid hormone triiodothyronine (T3) induced expression of hypertrophic 
markers (ALPL, COL10), hypertrophic morphological changes and cartilage degradation 
and formation [143]. Even though the closest human OA-like model would be the use of 
human osteochondral explants obtained from macroscopically preserved areas of OA joints 
or cadavers, some limitations are that their number is limited, with high dependency on 
surgeries, ethical issues, heterogeneity between patients and difficulty to maintain tissues 
in long-term culture. Nevertheless, once the experimental set-up is achieved, these models 
can greatly benefit knowledge of OA pathophysiology and treatment modalities in the OA 
field. In addition, since ageing is the largest risk factor partially due to ECM and chondrocyte 
changes, using older tissues for research could be an important extra step to predict if a drug 
can be used to treat OA, thereby reducing the number of failing clinical studies. For example, 
treatment of IGF-1 greatly increased cartilage synthesis in calf explants [144]. Contrarily, in 
an aged human explant model, IGF-1 only slightly increased COL2A1 and cell viability, and 
failed to abolish trauma-induced MMP13 secretion and type II collagen breakdown, likely due 
to desensitization to IGF-1 in aged tissue [145].

5.3.4 DIO2

An example of an OA susceptibility gene following many of these functional follow up steps is 
the previously mentioned deiodinase iodothyronine type II (D2) gene (DIO2). Genetic linkage 
studies identified an association of rs225014 (Table 1) located in the DIO2 gene (DIO2), 
with generalized OA [96]. D2 activates thyroid hormone intracellularly by converting the 
prohormone thyroxine (T4) into active triiodothyronine (T3). To determine the direction of 
effect, AEI was measured and a 30% increased expression of the OA risk associated rs225014-C 
allele, likely due to loss of epigenetic silencing, was identified as the underlying risk mechanism 
[90]. This was followed up by investigating the role of DIO2 and D2 in OA tissues. In human 
lesioned OA articular cartilage, a marked higher amount of DIO2 expression and D2 staining 
was observed relative to healthy cartilage [90,146]. However, it should be noted that the 
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still macroscopically healthy looking preserved OA cartilage also has these increased DIO2 
levels. Therefore it was hypothesised that high D2 was not enough for cartilage breakdown, 
but that an additional trigger, such as mechanical stress, is necessary to initiate OA [142]. In 
vitro functional follow up in a 3D in vitro chondrogenesis model of hBMCs confirmed that 
increased expression of DIO2 was an OA risk by determining detrimental effects of lentiviral 
overexpression of D2 [90]. Furthermore, in the same 3D model after ECM was established, 
pellets were treated with T3 or IOP, to simulate increased and decreased D2 activity, 
respectively. The results found herein confirmed the hypothesis that increased D2 activity 
was detrimental for cartilage homeostasis, while reducing its activity was beneficial [90]. In 
vivo animal functional follow up experiments were performed in a forced running OA mouse 
model and an injury-induced OA rat model. Dio2-/- mice did not show a different phenotype 
but were protected from running induced cartilage damage when compared to their wild-
type littermates [98]. In rats with cartilage-specific overexpression of human DIO2 also no 
phenotypical differences were observed. However, upon increasing the biomechanical burden 
by applying an injury-induced OA model, hD2Tg rats had increased cartilage damage when 
compared to their wild-type littermates [99]. Before clinical studies should be initiated there 
is still a missing step in this line of work. Since species and age are such important factor in 
the mechanisms of cartilage response, a logical follow up step is to investigate if inhibition of 
D2 activity can prevent mechanical stress induced detrimental signaling in an aged human 
osteochondral explant model.   
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Table 2 | Advantages and disadvantages of the most commonly used models of osteoarthritis.
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6. Current clinical trials 

Another problem in the OA field is incorrect usage of OA models for drug testing prior to 
clinical trials. Next to the arising evidence of subtypes between OA patients that is often not 
taken into account when starting a clinical trial, drugs are often tested in non-human non-
aged models subjected to a hyper-physiological trigger. Examples of trials that likely failed 
partially due to being based on unrepresentative models are given in Table 3. The most 
recent example is the failed phase II clinical trial of the ADAMTS5-inhibitor GLPG1972. Their 
evidence of functionality was mainly based on mouse cartilage explants subjected to high 
levels of IL-1 treatment [155], while IL-1 OA synovial fluid levels are variable between patients 
but much lower in comparison to the experimental condition [156,157]. As mentioned earlier, 
it is already known that aged chondrocytes respond differently to certain stimuli [52,53], 
showing the importance of including older tissues in the pre-clinical development. In addition, 
changing the focus of drug targets in OA towards those based on functional data of OA risk 
genes and their pathways could increase chances of developing effective disease modifying 
OA drugs, given that genetically supported drug targets have been shown to double clinical 
success rate [158,159]. Therefore we advocate that for clinical trials to have a higher chance 
of success, OA models that represent the human aged-chondrocyte environment should also 
be included and may even be prioritized in the pre-clinical screening and clinical trials should 
target drugs based on genetically supported data. 	

 

 

Table 3 | Examples of clinical trials for OA therapies with discouraging findings that had promising 

results in pre-clinical in vitro and/or in vivo studies.

Drug Name Druggable target Evidence underlying drug Outcome clinical trial

GLPG1972/S201086 ADAMTS5-Inhibitor Reduction of glycosaminoglycan release 
after interleukin-1 stimulation in mouse 
cartilage explants [155]. Reduced carti-
lage structural damage and bone sclerosis 
in mice and rat OA models [160]

Phase II clinical trial: No differ-
ence of cartilage thickness with 
placebo [NCT03595618]

PG-116800 MMP inhibitor Reduced joint damage induced by iodoac-
etate injection into rat knees [161]

Terminated in phase II trial due 
to musculoskeletal toxicity [162]

Risedronate Bisphosphonates Reduced cartilage degeneration and no 
osteophyte formation in a rat anterior 
cruciate ligament transection (ACLT) 
model [163]; Inhibited bone resorption 
and some chondroprotective effects in a 
papain rabbit model [164]

phase III trial: No reduction of 
radiographic progression com-
pared to placebo [164] 

Anakinra IL-1 receptor antagonist Protected from surgery induced OA in 
rabbits [165] and dogs [166]

No clinical effect [167]

Adalimumab Tumor necrosis fac-
tor-alpha

Inhibits progression in a number of 
arthritic diseases, including rheumatoid 
arthritis and psoriatic arthritis [168] 

No effect in erosive hand OA 
patients on pain, synovitis or 
bone marrow lesions [169] 

Tocilizumab IL-6 receptor Slowed the progression of experimental 
OA in mice [170,171]

No effect on pain relief in 
patients with hand OA and more 
adverse events than placebo 
[172]

 
Legend: ADAMTS5=A disintegrin and metalloproteinase with thrombospondin motifs 5; MMP=Matrix 
metalloproteinase; IL-1=Interleukin 1; IL-6=Interleukin 6; OA=osteoarthritis.
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7. Outline of this thesis

This thesis aims to increase the understanding of human OA pathophysiology by developing 
reliable biomimetic ex vivo human osteochondral explant models and focussing on the role 
of injurious mechanical stress and interacting genetic factors for developing increasingly 
necessary treatment targets in these models. Human aged joint tissues used for the studies 
performed in this thesis were collected as part of the Research in Articular Osteoarthritis 
Cartilage (RAAK) biobank [173], containing patients that undergo a joint replacement surgery 
for symptomatic end-stage OA. 

To add to existing knowledge of OA pathophysiological processes, in chapter 2 aged human 
ex vivo osteochondral explants were subject to three OA relevant triggers, being inflammation, 
hypertrophy and injurious mechanical stress. Subsequently, a range of output measures were 
investigated to determine specific mechanisms of the different OA triggers. 

In chapter 3, knowledge on early initiating processes occurring in mechano-pathology was 
generated by applied RNA-sequencing to cartilage of aged human osteochondral explants 
subjected to injurious mechanical stress. 

To show that the human osteochondral explant model could also be used for genetic interaction 
studies, we investigated expression of the OA risk gene MGP in relation to rs1800801 genotypes 
in chapter 4. By combining information from RNA-sequencing datasets of cartilage and 
bone with OA-relevant triggers in cartilage and bone explants we investigated the role of MGP 
and vitamin K in OA. 

Lastly, the ex vivo osteochondral explant model was exploited in chapter 5 to determine 
the efficiency and effectivity of inhibition of the OA risk gene DIO2 produced protein D2 by 
iopanoic acid (IOP) treatment either by burst or prolonged release by PLGA-PEG nanoparticles 
in preventing injurious mechanical induced stress.
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