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Abstract: The COVID-19 pandemic raised a need to characterise the biochemical response to SARS-
CoV-2 infection and find biological markers to identify therapeutic targets. In support of these
aims, we applied a range of LC-MS platforms to analyse over 100 plasma samples from patients
with varying COVID-19 severity and with detailed clinical information on inflammatory responses
(>30 immune markers). The first publication in a series reports the results of quantitative LC-
MS/MS profiling of 56 amino acids and derivatives. A comparison between samples taken from
ICU and ward patients revealed a notable increase in ten post-translationally modified amino acids
that correlated with markers indicative of an excessive immune response: TNF-alpha, neutrophils,
markers for macrophage, and leukocyte activation. Severe patients also had increased kynurenine,
positively correlated with CRP and cytokines that induce its production. ICU and ward patients
with high IL-6 showed decreased levels of 22 immune-supporting and anti-oxidative amino acids
and derivatives (e.g., glutathione, GABA). These negatively correlated with CRP and IL-6 and
positively correlated with markers indicative of adaptive immune activation. Including corresponding
alterations in convalescing ward patients, the overall metabolic picture of severe COVID-19 reflected
enhanced metabolic demands to maintain cell proliferation and redox balance, alongside increased
inflammation and oxidative stress.

Keywords: SARS-CoV-2; COVID-19; amino acid; amine; metabolomics; cytokine; inflammation;
oxidative stress

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a worldwide
pandemic following the first known cases in late 2019 in China. The mechanisms by which
SARS-CoV-2 infects the human body have been established [1], yet a major observation is
that the response to infection varies greatly [2,3]. A predisposition toward severe COVID-19
and mortality includes older age, male sex, and underlying metabolic conditions such as
diabetes, obesity, hypertension, chronic kidney disease, cardiovascular and respiratory
diseases [4–6]. The higher risk may stem from a compromised immune system, pre-existing
endothelial dysfunction, an environment of chronic inflammation and oxidative stress [7,8],
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enhanced expression and activity of angiotensin-converting enzyme (ACE) 2, dyslipidemia,
and lower cardiorespiratory fitness [9–14]. The disease progression is commonly described
based on lung function (mainly acute respiratory distress syndrome, ARDS) and specific
complications such as thrombosis or multi-organ dysfunction. Unfortunately, the turning
point from mild pneumonia to critical illness is poorly defined, warranting efforts to
characterise it and further improve the clinical response.

The immunopathology of COVID-19 allows for the monitoring of patient status, for
example, via increases in the hepatic C-reactive protein (CRP), ferritin, D-dimer, and cy-
tokines such as interleukin-6 (IL-6) [15], or via the depletion of lymphocytes and specifically
CD4+T cells [1,16,17]. Complementary information on disease progression can be obtained
from transcriptomics, proteomics, and metabolomics analyses (targeted or untargeted).
These technologies collectively revealed perturbations in the innate immune response,
energy metabolism, and metabolism of lipids, amino acids, aminosugars, purines, and
nucleotides [18–25]. The metabolic alterations were related to the negative effects of inflam-
mation and disruptions in energy production and hepatic function.

Here we investigated the relationship between amino acid metabolism and immune
response in COVID-19 patients. We applied targeted metabolomics analysis of 56 amines
in over 100 plasma samples taken in early 2020 from COVID-19 patients at varying disease
states (95% of whom were not treated with corticosteroids). The quantified metabolites
were further correlated with over 30 immune response markers (leukocytes, cytokines,
and others) that have been obtained for the same cohort, indicating increased innate
immune activation in severe COVID-19 [26]. The results of the current study underwent
comprehensive biochemical interpretation to support future research on COVID-19 and
promote early intervention or personalised treatment.

2. Results
2.1. Unsupervised Multivariate Analysis

The metabolic profile of amino acids and derivatives was obtained from the COVID-19
patient cohort, summarised in Table 1. Utilising all 56 amines that passed the quality
control process, we conducted a principal component analysis (PCA, Figure 1). The PCA
demonstrated a partial separation by PC2 between samples taken from patients in the
ward (suffering from pneumonia) and patients in the ICU (suffering from ARDS and other
complications). Moreover, it shows that most recovering ward patients (white markers)
were clustered further away from ICU patients, while most samples taken from ward
patients up to 4 days before dying (black markers) appeared on the boundary between
ward and ICU clusters or among the ICU samples. The loadings of the PCA (Table S7;
Figure S1) indicate the metabolites directing these clusters, including, for example, higher
tryptophan, serotonin, glutamine, and glutathione in ward patients and higher kynurenine,
methionine sulfone, and cystathionine in ICU patients. To further assess the potential
biomarkers, a univariate analysis was conducted.

2.2. Metabolic Markers Associated with Disease Severity

The disease severity at the time of sampling was first defined as the hospitalisa-
tion status (ICU; ward), and all samples were utilised in a univariate regression analysis.
Compared with ward patients, ICU patients exhibited elevated levels of 14 amines and
a decrease in 8 amines (n = 19 with Q < 0.05; see Table S8 and Document S2). The most
prominent differences consisted of ICU-elevated markers of oxidative stress and inflam-
mation (n = 12). Increases of 2.5- to 6.5-fold in ICU patients (Q ≤ 3.3 × 10−8) were led by
the inflammation-related ratio kynurenine/tryptophan (Kyn/Trp) and post-translationally
modified amino acids including methionine sulfone, N6,N6,N6-trimethyllysine, and 4-
hydroxyproline (Figure 2). Milder increases of 50–70% in ICU patients were recorded
for glycylglycine, glutamate, and proline, while decreases of 55–70% were observed for
S-methylcysteine (Figure 2d), tryptophan (Figure 2e), and glutathione (Figure 2f).
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Table 1. Selected characteristics of the COVID-19 patients in the metabolomics study *. Values are n
(%) or median [full range]. See Tables S1 and S2 for further information.

Patients
(n = 44)

Samples
(n = 103)

Age, years 73 [49–87] 71 [49–87]
Male (%) 30 (68%) 65 (63%)

BMI 27 [19–42]
Diabetes and/or cardiovascular disease (CVD) 14 (32%)

Chronic obstructive pulmonary disease (COPD) 8 (18%)
Days with symptoms until hospitalisation 8 [1–19]

Total hospitalisation days 7 [2–62]
Admitted to ward 37 (84%) 78 (76%)
Admitted to ICU 7 (16%) 25 (24%)

Deceased 9 (20%)
Treatment with chloroquine 35 (80%)
Treatment with antibiotics 38 (86%)

Treatment with corticosteroids 2 (5%)
CRP, mg/L (normal < 10) 104.5 [3–577]

Lymphocytes, 109/L (normal 1.0–2.8) 0.95 [0.26–3.15]
Neutrophils, 109/L (normal 1.7–6.5) 6.36 [2.3–17.5]

* Information about comorbidities and medication (4 weeks pre-admission) is missing for 25% of patients (n = 12).
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samples taken within 4 days of death are in black. Each data point is tagged with the patient ID and 
sample day (corresponding with Table S2). ICU patients #7 and #17 appeared among the ward 
patients, both on day 3 when they deteriorated and were transferred from ward to ICU. Ward 
patient #8 (n = 2) appeared among the ICU cluster, an elderly male with chronic kidney disease 
(CKD), the only known active smoker, who died after a week in the ward. Ward patient #11 
appeared within the ICU cluster (n = 4), has metabolic syndrome and CKD, suffered kidney failure 
during the hospitalisation, yet recovered. 
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status (ICU; ward), and all samples were utilised in a univariate regression analysis. 
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Figure 1. PCA scores plot of samples from patients admitted to ward (blue markers) or ICU (red
markers), based on all metabolite data (cube-root transformed and Pareto-scaled). Data points of
samples taken within a day of release from hospital (“recovery”) are described by open circle, and
samples taken within 4 days of death are in black. Each data point is tagged with the patient ID
and sample day (corresponding with Table S2). ICU patients #7 and #17 appeared among the ward
patients, both on day 3 when they deteriorated and were transferred from ward to ICU. Ward patient
#8 (n = 2) appeared among the ICU cluster, an elderly male with chronic kidney disease (CKD),
the only known active smoker, who died after a week in the ward. Ward patient #11 appeared
within the ICU cluster (n = 4), has metabolic syndrome and CKD, suffered kidney failure during the
hospitalisation, yet recovered.
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Figure 2. Box and whisker and scatter plots of metabolites differentiating between hospitalisation
status: ICU (red) vs. ward (blue; open markers for recovering patients within 24 h of release). Black
markers represent patients who died within 4 days. Prior to plotting, metabolite peak area ratios with
internal standards were cube root-transformed. Metabolites: (a) methionine sulfone; (b) N6,N6,N6-
trimethyllysine; (c) 4-hydroxyproline; (d) S-Methylcysteine; (e) tryptophan; (f) glutathione. The
detailed results are in Table S8.

Next, the measured plasma cytokine IL-6 was utilised as a proxy for COVID-19
severity, reflecting the extent of the inflammatory response [27–30]. Considering the
literature and the distribution of IL-6 levels in our cohort, patient samples were grouped
as follows (in pg/mL): normal (<8), n = 18; low (8–20), n = 34; medium (21–45), n = 32;
high (>45) n = 19, noting that no levels were recorded above 500 pg/mL, classified as
“hyper-inflammation” [27,31]. The above classification did not fully overlap with the
severity classification by hospitalisation status, as about 25 samples from non-recovered
ward patients had medium-high IL-6 levels (Figure S2). Regression analysis differentiating
between pairs of IL-6 classes revealed 38 metabolites with significant differences between
samples with high IL-6 levels and normal or low IL-6 (Table S9; Document S3). For
most modified amino acids, the significant changes between normal + low classes and
medium + high classes were statistically driven by the ICU class.

A gradual change along the increased IL-6 levels was observed for kynurenine and
Kyn/Trp (Figure 3a). Among the metabolites with no apparent impact on ICU status,
phenylalanine was elevated with increased IL-6 (Figure 3b), while serine and glycine
decreased (Figure 3c). Only patients with high IL-6 had lower gamma-aminobutyrate
(GABA) levels or higher cystathionine (Figure 3d). Using the IL-6 stratification approach,
we found 18 amines that were not significantly different between ICU and ward patients.
Although directed by inflammation, this provides complementary biochemical information,
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assessing the disease state without the non-COVID-19 specific impact of ICU admission
(i.e., due to strong antibiotics and extreme changes in feeding).

Metabolites 2022, 12, 618 5 of 19 
 

 

A gradual change along the increased IL-6 levels was observed for kynurenine and 
Kyn/Trp (Figure 3a). Among the metabolites with no apparent impact on ICU status, 
phenylalanine was elevated with increased IL-6 (Figure 3b), while serine and glycine 
decreased (Figure 3c). Only patients with high IL-6 had lower gamma-aminobutyrate 
(GABA) levels or higher cystathionine (Figure 3d). Using the IL-6 stratification approach, 
we found 18 amines that were not significantly different between ICU and ward patients. 
Although directed by inflammation, this provides complementary biochemical 
information, assessing the disease state without the non-COVID-19 specific impact of ICU 
admission (i.e., due to strong antibiotics and extreme changes in feeding). 

 
Figure 3. Box and whisker and scatter plots of metabolite levels, classified according to IL-6 groups 
(normal < 8 pg/mL, n = 18; low, 8–20, n = 34; medium, 21–45, n = 32; high, >45, n = 19). Metabolite 
peak area ratios with internal standards were cube root-transformed prior to plotting. Metabolites: 
(a) kynurenine/tryptophan; (b) phenylalanine; (c) glycine; (d); cystathionine. red markers represent 
patients in ICU, and blue markers are patients in ward. Significant differences between IL-6 classes 
(FDR Q < 0.1), based on linear regression, are indicated by dissimilar letters above each box plot. 
Detailed results are provided in Table S9. 

2.3. Paired Analysis in Non-Critical Patients 
The infrequent availability of plasma samples at varying time points for some of the 

patients (Table S2) allowed limited longitudinal analysis or outcome prediction by 
baseline parameters. Nevertheless, sufficient samples taken from patients in the ward (but 
not in ICU) enabled the exploration of the metabolic changes during recovery from mild-
moderate COVID-19. Two plasma samples were compared per patient (n = 16): one taken 
at the start of hospitalisation (days 1–4 since admission) and one at the recovery stage (up 
to a day before release from the hospital) with no less than 3 days in between. 

Figure 3. Box and whisker and scatter plots of metabolite levels, classified according to IL-6
groups (normal < 8 pg/mL, n = 18; low, 8–20, n = 34; medium, 21–45, n = 32; high, >45, n = 19).
Metabolite peak area ratios with internal standards were cube root-transformed prior to plotting.
Metabolites: (a) kynurenine/tryptophan; (b) phenylalanine; (c) glycine; (d); cystathionine. red mark-
ers represent patients in ICU, and blue markers are patients in ward. Significant differences between
IL-6 classes (FDR Q < 0.1), based on linear regression, are indicated by dissimilar letters above each
box plot. Detailed results are provided in Table S9.

2.3. Paired Analysis in Non-Critical Patients

The infrequent availability of plasma samples at varying time points for some of the
patients (Table S2) allowed limited longitudinal analysis or outcome prediction by baseline
parameters. Nevertheless, sufficient samples taken from patients in the ward (but not in
ICU) enabled the exploration of the metabolic changes during recovery from mild-moderate
COVID-19. Two plasma samples were compared per patient (n = 16): one taken at the start
of hospitalisation (days 1–4 since admission) and one at the recovery stage (up to a day
before release from the hospital) with no less than 3 days in between.

This approach enabled a patient-corrected analysis of metabolic changes and a more
meaningful metabolite fold-change than that calculated in the non-paired analysis. Alto-
gether, 33 plasma amines significantly changed by at least 20% towards the recovery of
ward patients (Table S10; Document S4). Thirty amines increased in recovering patients, led
by 1.7–2 fold increases in putrescine (Figure 4a), GABA (Figure 4b), O-acetylserine, and tau-
rine. Milder increases of 20–65% towards recovery were recorded in 16 amines, including
glycine, hydroxylysine, carnosine, and S-methylcysteine (Figure 4c; statistically driven by



Metabolites 2022, 12, 618 6 of 18

males). Owing to the small sample size, some metabolite changes were statistically driven
by one sex (mostly females, increasing), while 14 alterations were observed in one sex only,
stemming mainly from differences in baseline levels and from high within-sex variance.
Only male patients showed a significant decrease of 25% in phenylalanine towards recov-
ery (Figure 4d) and a two-fold decrease in cystathionine. Only female patients showed a
50% increase in glutathione and 20–75% in nine other amines, alongside a dramatic 7-fold
decrease in glycylproline.
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Figure 4. Box and whisker and scatter plots of paired changes of metabolite levels in COVID-19 ward
patients. A line connects each patient’s paired samples, with the first time point being not more than
4 days from admission and last time point during the 24 h before release from hospital. Metabolite
peak area ratios with internal standards were cube root-transformed. Metabolites: (a) putrescine;
(b) GABA; (c) S-methylcysteine; (d) Phenylalanine. The legend shows the individual patient by
marker colour, with indication of patient number, sex, age and number of days between time points.
Patient information is provided in Table S2.

2.4. Correlation between Metabolites and Immune Response Markers

The immune profiles of the cohort patients were characterised as reported previously
by Schrijver et al. [26]. Briefly, neutrophils, CRP, IL-6, CCL2, CXCL10, and GM-CSF were
elevated in baseline samples taken from patients who were admitted to ICU or died,
compared to patients admitted to the ward (who also showed greater decline along the
hospitalisation period in most of the elevated markers). To link the metabolic perturbations
measured in the current study to relevant immune processes, Pearson correlations were
calculated between all metabolites and 37 immune response markers, including different
leukocytes, chemokines, cytokines, and others (Tables S11–S13). A correlation heatmap
was generated for metabolites and selected immune markers (Figure S3), providing a
snapshot of interesting correlations out of over 600 significant correlations (FDR-corrected).
These correlations are embedded in the discussion, and some of the strong correlations
(|R| > 0.55) are individually plotted in Figure 5 (see Document S5 for all plots).
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Figure 5. Pearson correlation between metabolites and immune response markers (cube root-
transformed). Red markers are samples from ICU patients, and blue markers are from ward patients.
The regression lines and Pearson R values and p values (uncorrected) are in black for all samples,
red for ICU, and blue for ward. (a) N6,N6,N6-trimethyllysine vs. TNF-alpha; (b) S-methylcysteine
vs. CRP; (c) glutamate vs. IL-18; (d) GABA vs. CXCL10; (e) kynurenine/tryptophan vs. TNF-alpha;
(f) serotonin vs. IL-7.

3. Discussion

The presented study demonstrated consistent perturbations in the plasma amines
profile of COVID-19 patients, as consolidated in Figure 6.

For metabolites including glutamine, glutamate, dimethylarginines, kynurenine, tryp-
tophan, and phenylalanine, observations were in line with studies in patients with critical
illness and sepsis [32–40], respiratory conditions (COPD, asthma, and ARDS) [41–43],
bacterial pneumonia [44], and HIV-AIDS [45–47]. Similar differences in individual metabo-
lites were reported in other studies comparing patients at varying COVID-19 stages, and
those are indicated in Figure 6 per metabolite [21–25,27,30,48–67]. Although sporadic, the
common findings highlight a consistency in the field despite the highly varied cohort char-
acteristics, technical, and statistical approaches. Our study suffers from some limitations
that are common among COVID-19 studies, including a small and imbalanced cohort, with
sporadic time points that are not ideal for longitudinal analysis. Furthermore, we did not
utilise a control group, for example, one consisting of patients with similar symptoms
yet not infected by SARS-CoV2 [68]. Some COVID-19 metabolomics studies obtained
significant findings based on comparisons with healthy individuals, and these were not
highlighted here. We refrained from adding control samples from a separate cohort to avoid
an expected technical bias. The above limitations warrant a follow-up study with a larger
cohort. The metabolic map in Figure 7 illustrates established biochemical processes as
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well as generated hypotheses stemming from the results. The overall picture relates severe
COVID-19 to the innate immune response (“hyper-inflammation”) and increased oxidative
stress, as reflected by metabolites in red boxes. The metabolic profile of non-severe patients
was related to the adaptive immune response (resolution of inflammation), with increased
levels of immune-supportive and antioxidative amino acids and derivatives (in blue boxes).
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Figure 7. Biochemical processes and hypotheses (broken grey arrows) incorporating the study
results. Red boxes indicate metabolites up-regulated in severe COVID-19, and blue boxes are
generally down-regulated. Correlations appear in broken lines, blue (positive) or red (negative),
including tags for specific immune markers, or icons of neutrophils (count), T cells (count), ferritin,
or macrophage activation (CD206 and CD163; CCL2 (MCP1) that attract various immune cells).
Tryptophan correlations are in addition to those indicated for amino acids. IDO, indoleamine 2,3-
dioxygenase. TDO, Tryptophan 2,3-Deoxygenase. The figure was created with BioRender.com.

3.1. Post-Translationally-Modified Amino Acids

The strongest and most consistent findings in this study included an array of modified
amino acids that were significantly higher in ICU patients compared to ward patients
and, as a result, also higher in patients with medium-high IL-6 levels. They are listed
in Figure 6 alongside the specific post-translational modification of amino acid residue
in a protein, which can then release the metabolite by proteolysis. In a disease state,
older age, higher BMI, inflammation, and oxidative stress accelerate post-translational
modifications. Such modifications lead not only to the malfunction of proteins but also have
the ability to regulate many signalling reactions, including thrombosis [68]. Some modified
amino acids, such as dimethylarginines, also inhibit nitric-oxide synthases (NOS) and are
associated with endothelial dysfunction in COVID-19 [30,65]. The close link between the
modified amino acids and hyper-inflammation is demonstrated in Figure 7 via multiple
correlations with neutrophils, markers of macrophage and leukocyte activation (CD163,
CD206, CCL2, sIL-2R), and TNF-alpha (e.g., trimethyllysine in Figure 5a). Modified amino
acids were the only metabolites to show a negative association with IL-1 receptor antagonist
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(IL-1RA) that acts against the exacerbated inflammation induced by IL-1 and IL-6. Post-
translational modifications and proteolysis also occur at a high rate in skeletal muscles;
therefore, the detected metabolites could indicate muscle breakdown or the consumption
of meat. The former is an inevitable ICU bias that should be addressed in a future study
by the inclusion of a control group consisting of ICU patients who are COVID-19-free [69].
Nevertheless, the strong correlations we found between the modified amino acids and
COVID-19-characterising inflammation markers support a production mechanism that is
beyond muscle breakdown.

S-methylcysteine was the sole post-translational modification product that was strongly
and consistently associated with better health status (Figure 6) and negatively correlated
with CRP (Figure 5b), IL-6 and also ferritin, which promotes the formation of reactive
oxygen species (ROS). S-methylcysteine is a powerful antioxidant, and its most common
sources are from the ingestion of plants; therefore, diet and gut microbiota profile could
contribute to its status as a strong marker of recovery (Figures 2d and 4c). However, another
hypothesis is outlined in Figure 7, suggesting that it may originate in the repair of methy-
lated DNA by the enzyme MGMT (O6-methylguanine-DNA methyltransferase) [70,71].

3.2. Amino Acids and Derivatives

Amino acids are mainly viewed as building blocks that support the increased cellu-
lar demands in disease. However, they also regulate the innate and adaptive immune
responses, especially via catabolism of tryptophan, phenylalanine, cysteine, glutamine,
and arginine [72–74]. In our cohort, the only amino acids that were lower in ICU patients
were tryptophan, serine, and glutamine, that aid in immune cell proliferation [75,76]. Close
to 20 amino acids and derivatives decreased with increasing inflammation (indicated by
IL-6) and also increased towards recovery in the ward (Figure 6). Such alterations could
be non-specific to COVID-19; however, a study found lower levels of some of the above
amino acids in hospitalised patients with COVID-19 compared to patients who tested
negative for SARS-CoV2 [69]. Figure 7 groups the amino acids and derivatives together
as related to the adaptive immune response, characterised by increased pro-resolving T
cells, unlike the low levels typical of severe COVID-19 [1,16,17]. These metabolites showed
positive correlations with T cells (especially CD4+) and the anti-inflammatory IL-6 receptor
alpha (Figure S3). Most amino acids also negatively correlated with markers of innate
immune response and hyper-inflammation, which characterise severe COVID-19 [26]: CRP,
IL-6, the cytokine GM-CSF that promotes the activation of granulocytes (e.g., differentiate
to macrophages) [53], and the chemokine CXCL10 (IP10) that attracts various immune
cells [1].

A few exceptions to these trends are listed next. Phenylalanine accumulated in a
worse health state, perhaps due to the excessive oxidation of a cofactor critical to its
metabolism into tyrosine and catecholamines [33,77]. Glutamate also showed higher levels
in severe patients, and similar to glutamine, exhibited a unique correlation pattern with
immune response markers (see IL-18 in Figure 5c). Glutamate modulates immune cell
development [78,79], and its excessive production was related to damage in endothelial
cells [80–82]. The glutamine–glutamate conversion cycle is regulated by cellular demand
and uptake [83] and was hypothesised to be re-programmed in host cells infected by
SARS-CoV2 [84].

Tryptophan declined in patients in ICU and patients with higher IL-6 and was nega-
tively correlated with an array of markers of hyper-inflammation, wider than any other
amino acid (Figure S3). As expected, the exact opposite observations were recorded for
its metabolite kynurenine and for the conversion ratio Kyn/Trp (e.g., with TNF-alpha
in Figure 5e). The absolute Kyn/Trp values along the hospitalisation period (Figure S4)
were related to disease severity, agreeing with reference levels and other COVID-19 stud-
ies [57,85]. Kynurenine acts as a pro-inflammatory mediator through binding to the aryl-
hydrocarbon receptor (AhR) [86]. It also affects T cell differentiation [87] and contributes to
endothelial activation and impaired microvascular reactivity [31,40]. Kynurenine was re-
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ported as a strong predictor of long hospitalisation or death in COVID-19 patients [21,66,88]
and was elevated in hospitalised patients with COVID-19 compared to non-COVID-19 [69].
The same large cohort showed no difference in tryptophan levels between the hospitalised
patients, yet lower tryptophan levels were a strong marker of fatality in patients with
COVID-19 [69].

3.3. Amines and Antioxidative Defenses

The increased inflammation in patients with COVID-19 was accompanied by a de-
crease in amino acid derivatives that are part of the anti-oxidative and immune-regulating
arsenal (see icons in Figure 6). Glutathione depletion was proposed to be a major contrib-
utor to COVID-19 severity and tissue and organ damage [89–91]. We found significantly
lower glutathione levels in ICU patients and in patients with higher IL-6. Moreover, TNF-
alpha (and BMI) negatively correlated with glutathione and showed a strong positive
correlation with cystathionine. Glutathione production is controlled by the rate-limiting
step catalysed by glutamate-cysteine ligase and enhanced by ROS (see the metabolic path-
way in Figure S5). However, low glutathione levels can also result from the impaired
metabolism of cystathionine into cysteine (by cystathionine-gamma-lyase), a common
bottleneck in the pathway. The expression of cystathionine–gamma–lyase is enhanced
by estrogen and protects from oxidative stress [92,93]. Interestingly, only in male ward
patients, there was a decrease in cystathionine towards recovery, while only female ward
patients recorded increased glutathione. Additional immune-supportive and anti-oxidative
amines that decreased in worse disease states, include carnosine, taurine, putrescine, GABA
(that exhibited a negative correlation with CXCL10, see Figure 5d), and serotonin. Apart
from impaired regulation of immune cell function, the depletion of serotonin may worsen
hypoxia in COVID-19 patients [94]. Serotonin is a pulmonary vasoconstrictor and a calcium-
dependent activator of NOS in pulmonary endothelial cells [95], affecting the endothelial
barrier permeability [96]. In our cohort, the lower serotonin strongly correlated with IL-7
(Figure 5f) that is uniquely expressed in thrombocytes [97], which also store substantial
amounts of serotonin [95], perhaps merely indicating lower levels of thrombocytes.

Lower defences against inflammation, ROS and RNS may contribute to sex-dependent
metabolic differences observed in recovering ward patients (Figure 6); however, the sample
size is rather small to investigate this. The lower defences in males can stem from higher
expression and activity of the inflammation and ROS-promoting ACE2 [13,14] and lower
glutathione levels and activity compared to females [98]. In females, on the other hand, the
activation of endothelial estrogen receptors induces NOS activity and promotes vascular
health [12].

3.4. Biomarkers Implementation in COVID-19 Treatment

Various immunomodulatory strategies were suggested to reduce the “cytokine storm”
in COVID-19 patients [99]. The main findings in our study align with additional therapeutic
interventions targeting the metabolic perturbations related to inflammation and oxidative
stress. To decrease kynurenine levels and the positive feedback loop with inflammation,
key enzymes along the tryptophan–kynurenine pathway can be targeted by drugs [100],
as demonstrated in SARS-CoV-2 ex vivo models leading to a reduction in cytokines [23].
Addressing glutamine depletion [41], nutritional supplementation in critical patients [32]
and also in COVID-19 patients [101] was associated with a shorter hospitalisation period.
Supplementation with carnosine was suggested in COVID-19 patients [102] due to its
antioxidative properties [103], anti-inflammatory immune modulation [104], and struc-
tural potential to inhibit the binding of SARS-CoV2 spike to ACE2 receptor [105]. Other
approaches supporting the redox state include nano-carriers that deliver antioxidant en-
zymes (such as MSR) to vascular cells [106], arginine supplementation [23], the ingestion of
encapsulated glutathione (GSH) [91,107,108], or indirect increase in glutathione production
via vitamin D supplementation [109]. Reduced ARDS incidence and death of COVID-19
patients were reported after treatment with Dapsone, an amino-sulfone analogue of methio-
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nine oxidation products that competes with the inflammasome [110]. The above studies
showcase the potential of amine-related targets to support the immune system, reduce the
severity of COVID-19 and improve the survival rates.

4. Materials and Methods
4.1. Cohort

The cohort consisted of 44 adults admitted to the regional Amphia hospital in Breda,
the Netherlands, from 24 March 2020 to 14 April 2020. Table 1 summarises the key charac-
teristics of the 44 patients and 103 collected blood samples (a more detailed summary is
in Table S1).

Table S2 provides background information and hospitalisation details per patient,
such as comorbidities, treatment, and outcome. All patients reported COVID-19-related
complaints and tested positive for the SARS-CoV-2 by a PCR.

4.2. Samples

EDTA blood samples were collected in intervals of 3–4 days throughout the study, as
detailed in Table S2 per patient. A small aliquot of the collected blood was immediately
taken for flow cytometric immune profiling. The plasma was isolated from the remaining
blood, aliquoted and stored at −20 ◦C until serological analysis or until transportation to
the analytical chemistry laboratory, where they were kept at −80 ◦C until sub-aliquoting
and LC-MS analysis.

4.3. Haematological and Serological Analysis

Flowcytometric leukocyte analysis and serological analysis of cytokines and soluble
cell surface molecules have been reported previously by Schrijver; et al. [26]. All of the
assays were performed according to the manufacturer’s protocol. The measured parameters,
values, and units are detailed in Supplementary Table S3.

4.4. Plasma Amines Analysis

The analysis of amino acids and derivatives was conducted using LC-MS/MS fol-
lowing derivatisation by AccQ•Tag ™ kit purchased from Waters Corporation (Etten-
Leur, The Netherlands). For ultra-high performance liquid chromatography (UPLC),
an Agilent 1290 Infinity II system was used, equipped with a Waters AccQ-Tag Ultra
C18 column (2.1 × 100 mm, 1.7 µm). The Mass Spectrometer was an AB SCIEX Qtrap
6500 triple-quadrupole with an electrospray ionisation (ESI) source. Analytes were de-
tected in positive ionisation mode, using multiple reaction monitoring (MRM). Details of
the sample preparation, the metabolic coverage, and analytical method are provided in
Supplementary Document S1.

The acquired data were processed using the Sciex vendor software (MultiQuant v3.0.2).
MRM peaks were integrated and further corrected to match internal standards. An in-house
quality-control software (mzQual) was utilised to assess the analytical performance (based
on study pooled QC replicates, blanks, and internal standards) and perform necessary
corrections. A total of 69 metabolites were measured by the platform, of which 56 passed
the strict quality rules, as examined by a data analysis expert, and utilised in the statistical
analysis (see Document S1). The processed peak areas per metabolite and sample are
deposited in Table S4. MS Excel was used for absolute quantitation of selected metabolites
based on calibration curves (Table S5).

4.5. Statistical Analysis

All statistical analyses were performed in R, and graphs were plotted using the
packages ggpubr and stats. All 56 metabolites presented zero missingness, and we could
not identify clear outliers. Cytokine and immune marker data (n = 37) were analysed
as provided (Table S3 [26]). All variables were cube root-transformed prior to statistical
analyses. Differential analyses incorporating all samples were performed using linear
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regression correcting for age, sex and BMI, grouped by patient and weighted by the inverse
number of observations per patient. The correlation between age, sex, and BMI and all
variables is detailed in Supplementary Table S6. Paired analyses between two time points
of the same patient were performed using a paired t-test assuming unequal variances.
Metabolite fold-change values were calculated based on the untransformed data per patient
in the paired t-test analysis or by dividing the medians of experimental classes in non-paired
analysis. Pearson correlation analyses between metabolites and immune markers were
conducted for all samples together and per hospitalisation status (ICU or ward), plotted
as three regression lines to provide complementary information. The p values obtained
in all tests were adjusted for multiple testing using the Benjamini–Hochberg method
implemented in the p.adjust R function (v.4.0.3) and termed Q-values. The significance
levels were defined as Q < 0.1. The corrections were for either the number of variables
in univariate tests (n = 60, including four metabolic ratios) or for the number of unique
correlations in the Pearson correlation tests (n = 2220).

5. Conclusions

The presented study provided detailed evidence of altered amino acid metabolism
in severe COVID-19, tightly correlated with a multitude of immune response markers.
We demonstrated a significant decrease in immune-supporting and antioxidative amines,
accompanied by dramatic increases in post-translational modified amino acids. The latter
cluster was linked to oxidative stress and hyper-inflammation and has not been highlighted
elsewhere as such a strong group of biomarkers in critical COVID-19 patients. Although
our results cannot provide clear mechanistic conclusions, they can be utilised to generate
hypotheses to be studied in cell cultures or animal models, as well as in the treatment of
COVID-19 patients. In conclusion, our study can assist in the ongoing global efforts toward
a better understanding of the metabolic impact of COVID-19.
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