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CHAPTER 6

Modelling longitudinal profiles of latent

probability and relative risk via latent

Markov models and compositional data

This chapter has been extracted and extended from M. Spreafico, F. Ieva and M. Fiocco “Lon-

gitudinal Latent Overall Toxicity (LOTox) profiles in osteosarcoma: a new taxonomy based on

latent Markov models” in arXiv, 2107.12863, 2021 [191]. [Submitted]

Since patients may have multiple toxic Adverse Events (AEs) with different levels of

severity, identifying the actual extent of toxic burden and investigating the evolution of

patient’s overall toxicity status during treatment represent challenging problems in can-

cer research, as explained in Chapter 5. No standard method is available for analysing

AEs due to the complexity of longitudinal chemotherapy data. Toxicity data are usually

recorded as nominal grades of AEs severity [204] according to the Common Terminology

Criteria for Adverse Events (CTCAE) [208], and analysed as summary indexes over the

whole treatment period [28, 172, 205, 117, 140, 184, 199, 198, 226, 35], discarding substan-

tial amount of information. As neglecting the time component may give an inaccurate

depiction of toxicity, alternative methods for a longitudinal analysis of AEs have been

proposed [205, 198, 200, 84, 190], such as the longitudinal MOTox procedure introduced

in Chapter 5. These approaches are not suitable for the nominal CTCAE grades still

they provide more insights into treatment-related toxicity, suggesting that longitudinal

methods should become routine in future analyses of cancer trials. Models to deal with

both longitudinal and categorical aspects of toxicity levels progression are then necessary,

still not well developed.

Longitudinal data are often of interest in a wide range of research fields, such as social,

economic and behavioural sciences, education or public health. In many applications

involving longitudinal data, the interest lies in analysing the evolution of a latent char-

acteristic of a group of individuals over time, rather than in studying their observed

attributes [23]. The phenomenon which affects the distribution of the response variables

that are relevant for the problem under consideration may not be directly observable. In

a clinical context, this latent characteristic may reflect patients’ quality-of-life and could

contain valuable information related to patient’s health status and disease progression.
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6. Longitudinal profiles of latent probability and relative risk via LM models and CoDa

In the statistical literature many models have been proposed for the analysis of longi-

tudinal data; for a concise review see [57]. For longitudinal categorical data, where the

interest is in describing individual changes with respect to a latent status, Latent Markov

(LM) models can be used [216, 22]. These models study the evolution of an individual

characteristic of interest, when it is not directly observable. The idea behind a LM model

is that the latent process fully explains the observable behaviour of a subject, assuming

that the response variables are conditionally independent given the latent process. The

latent process follows a Markov chain with a finite number of states, which represent

different conditions of the latent characteristic of interest. LM models can also account

for the effect of observable covariates, serial dependence between observations, measure-

ment errors, or unobservable heterogeneity. For a detailed overview on LM models see

[22, 23].

Motivated by the need to improve methods for summarising and quantifying the overall

toxicity level and its evolution during treatment, in this chapter a novel procedure based

on LM models for longitudinal toxicity data is proposed. The latent status of interest is

the Latent Overall Toxicity (LOTox) condition of a patient, which affects the distribution

of the observed categorical toxic grades measured over treatment. The proposed approach

aims at identifying different latent states of overall toxicity burden (LOTox states) and

investigating how patients move between states during chemotherapy treatment.

A LM model for longitudinal toxicity data assumes that at each time occasion for each

patient a vector of probabilities of being in the various LOTox states is given. Since the

probability elements of each vector are non-negative coordinates whose sum is one, these

vectors are naturally confined to a suitably dimensioned simplex, thus being Compositional

Data (CoDa) or compositions. In statistics, CoDa are quantitative descriptions of the

parts of some whole, carrying relative information. In this context, Aitchison (1986) [6]

developed a methodology based on log-ratio transformations of CoDa, which nowadays

represent the mainstream approach in the analysis of compositions formed by probabilities

or percentages. Among the developed transformations, the additive log-ratios consider a

specific reference part in contrast with all the others. In this chapter, this approach is

exploited to compare over time a reference “good” overall toxicity condition (i.e., the

LOTox state characterized by the lowest toxicity burden) in contrast with all the other

LOTox states, characterized by worsening overall toxicity. In this way, the dynamic risk

of experiencing “worse” overall toxicity statuses relative to a “good” toxic condition over

time is investigated.

Three are the main novelties presented in this work: (i) the introduction of a new method

based on LM models to summarize and quantify multiple AEs and their evolution during

treatment, where both longitudinal and categorical aspects of the observed toxic levels

are included in the model; (ii) the identification of groups of patients with a common

distribution for the observed toxic categories, and thus a similar overall toxicity burden;

(iii) the reconstruction of personalized longitudinal LOTox profiles, which represent the

probability over time of being in a specific LOTox state or the relative risk with respect to a

reference “good” toxic condition, to study the individual overall toxic risk evolution during

treatment for each subject. The proposed approach is applied to osteosarcoma treatment
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to provide novel techniques which could support clinicians in planning new protocols

and guidelines for childhood cancer therapy. Provided that longitudinal CTCAE-graded

toxicity data are available, the developed procedure is a flexible approach that can be

adapted and applied to other cancer studies.

The rest of the chapter is organized as follows. Statistical methods are introduced in

Section 6.1. Results for MRC BO06/EORTC 80931 Randomized Controlled Trialdata are

presented in Section 6.2. Section 6.3 ends with a discussion of strengths and limitations

of the proposed approach, identifying some possible developments for future research.

6.1. Statistical Methods

Motivations for a latent Markov approach for treating the longitudinal toxicity data are

discussed in Section 6.1.1. Mathematical details are provided in Section 6.1.2. Model

selection procedure and longitudinal profiles are presented in Sections 6.1.3 and 6.1.4,

respectively.

6.1.1. Motivations for latent Markov models for longitudinal toxicity

data

LM models are statistical methods employed for the analysis of longitudinal (categorical)

data specifically designed to study the evolution of an individual characteristic of interest,

when it is not directly observable [216, 22]. A LM approach for longitudinal toxicity data

assumes the existence of a latent process representing the “true” LOTox status, which

affects the distribution of the response variables, in our case the observed toxicities. Two

main motivations justify the use of LM models to quantify the toxic risk in cancer studies:

(i) account for measurement errors in the observed toxicity variables, and (ii) identify

different LOTox sub-populations (i.e., the latent states) in the global population (i.e., the

patients’ cohort) and their changes over time.

Since therapy protocol is adapted at each cycle depending on patient’s reaction to treat-

ment, it is reasonable to assume that the latent variables follow a first-order Markov

chain, so that the “true” level of overall toxicity at a given cycle is influenced only by the

previous level. Non-haematological toxicities (see Section 5.1.1) do not depend directly

on each other as they relate to different systems and functions of the human body (i.e.,

nausea/vomiting is part of the stomach-gastrointestinal system, infections of the immune

system, oral mucositis of the mouth-gastrointestinal system, cardiotoxicity of the car-

diovascular system, ototoxicity of the auditory-sensory system and neurotoxicity of the

nervous system). Therefore, the response toxicity variables can be assumed conditionally

independent, as each observed response is expected to depend only on the corresponding

“true” LOTox level.
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In this context, a LM model may be seen as an extension of the latent class model [42],

where patients are allowed to move between latent states during the observation period.

LM models for longitudinal toxicity data are characterized by several parameters: the

initial probability of each LOTox state, the transition probabilities among different states

over chemotherapy cycles, and the conditional response probabilities given the latent

variable. Individual covariates (if available) can be included in the latent model and may

affect the initial and transition probabilities of the Markov chain [24], as explained in

Section 6.1.2.

A LM approach is appropriate to both identify the actual overall toxicity burden and

investigate its evolution during treatment for each patient. On one hand, patients that at

a specific time result in the same sub-population are characterized by a common distri-

bution for the observed toxic categories, and by a similar overall toxicity burden. On the

other hand, individual dynamic changes among latent states allow to evaluate the LOTox

evolution during treatment for each subject.

6.1.2. Latent Markov model with covariates

Let J be the set of J = |J | categorical response variables measured at each time t =

1, . . . , T . Denote by Y
(t)
ij the response variable j ∈ {1, . . . , J} for subject i ∈ {1, ..., n} at

time t, with set of categories Cj coded from 0 to cj − 1. Let Y
(t)
i =

(
Y

(t)
i1 , ..., Y

(t)
iJ

)
denote

the observed multivariate response vector at time t for patient i and Ỹi =
(
Y

(1)
i , . . . ,Y

(T )
i

)
be the corresponding complete response vector. Denote by X̃i =

(
X

(1)
i , . . . ,X

(T )
i

)
the

complete vector of individual covariates, where elements X
(t)
i =

(
Si,Z

(t)
i

)
are the vectors

of time-fixed Si and time-varying Z
(t)
i covariates for subject i at occasion t. The general

LM model assumes the existence of a latent process Ui =
(
U

(1)
i , . . . , U

(T )
i

)
which affects

the distribution of the response variables Ỹi. The latent process follows a first-order

Markov chain with state space {1, . . . , k}, where k is the total number of latent states.

LM models usually assume that the response vectors Y
(1)
i , . . . ,Y

(T )
i are conditionally

independent given the latent process Ui (local independence of the response vectors) and

that the elements Y
(t)
ij are conditionally independent given U

(t)
i (conditional independence

of elements). The motivation of these assumptions is that the latent process fully explains

the observable behaviour of a subject, as explained in Section 6.1.1.

LM models are made by two components: the measurement model concerns the condi-

tional distribution of the response variables given the latent process, and the latent model

is related to the distribution of the latent process (i.e., initial and transition probabilities).

The latent process represents an individual characteristic of interest that is not directly

observable that may evolve over time, also depending on observable covariates. The main

research interest hence lies in modelling the latent process and the effect of covariates

on its dynamic. LM models where both the initial and the transition probabilities of the
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latent process may depend on covariates is considered. Three different sets of probabilities

(i.e., parameters) can be defined.

• Conditional response probability (or item-response probability) φ
(t)
jy|u is the proba-

bility of observing a response y for variable j at time t, given the latent status

u ∈ {1, ..., k}:

P
(
Y

(t)
ij = y

∣∣U (t)
i = u

)
= φ

(t)
jy|u j = 1, . . . , J y = 0, ..., cj − 1.

To ensure that the interpretation of the latent states remains constant over time,

conditional response probabilities are assumed time-homogeneous, i.e., φ
(t)
jy|u = φjy|u

∀t = 1, . . . , T . Given the estimated φ̂jy|u, the latent states can be characterized in

terms of observed response categories.

• Initial latent states prevalence δ
u|x(1)

i
is the probability of membership in latent state

u ∈ {1, . . . , k} at time t = 1, given the vector of covariates x
(1)
i for individual i:

P
(
U

(1)
i = u|X(1)

i = x
(1)
i

)
= δ

u|x(1)
i
.

The estimated δ̂
u|x(1)

i
may be interpreted as quantities proportional to the size of

each latent state at the first time-occasion, given the covariates. A natural way to

allow the initial probabilities of the LM chain to depend on individual covariates is

a multinomial logit parametrization:

log
P
(
U

(1)
i = u |X(1)

i = x
(1)
i

)
P
(
U (1) = 1 |X(1)

i = x
(1)
i

) = log
δ
u|x(1)

i

δ
1|x(1)

i

= β0u + x
(1)>
i β1u (6.1)

where u = 2, ..., k and βu =
(
β0u,β

>
1u

)>
are the parameters vectors to be estimated.

• Transition probability τ
(t)

u|ūx(t)
i

is the probability of a transition to latent state u at

time t, conditional on membership in latent state ū at time t−1, given the individual

vector of covariates x
(t)
i (if available):

P
(
U

(t)
i = u | U (t−1)

i = ū,X
(t)
i = x

(t)
i

)
= τ

(t)

u|ūx(t)
i

where t = 2, . . . , T and u, ū = 1, . . . , k. The estimated τ̂
(t)

u|ūx(t)
i

reflect changes or

persistence in the various states over time, given the individual covariates whose

effects can be modelled through a multinomial logit parametrization:

log
P
(
U

(t)
i = u | U (t−1)

i = ū,X
(t)
i = x

(t)
i

)
P
(
U

(t)
i = ū | U (t−1)

i = ū,X
(t)
i = x

(t)
i

) = log
τ

(t)

u|ūx(t)
i

τ
(t)

ū|ūx(t)
i

= γ0ūu + x
(t)>
i γ1ūu (6.2)

for t = 2, ..., T and ū, u = 1, ..., k with ū 6= u. γūu =
(
γ0ūu,γ

>
1ūu

)>
are the parameters

vectors to be estimated.
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Under the assumptions of local and conditional independence, the manifest distribution

of the response variables (i.e., the conditional distribution of Ỹi given X̃i) is given by:

P(ỹi | x̃i) = P
(
Ỹi = ỹi | X̃i = x̃i

)
=

=
∑
u

P
(
Ỹi = ỹi | X̃i = x̃i,Ui = u

)
× P

(
Ui = u | X̃i = x̃i

)
=

=
∑
u

P
(
Ui = u | X̃i = x̃i

)
× P

(
Ỹi = ỹi | Ui = u

)
=

=
∑
u

δ
u(1)|x(1)

i

T∏
t=2

τ
(t)

u(t)|u(t−1)x
(t)
i

×
T∏
t=1

J∏
j=1

φ
jy

(t)
ij |u(t)

(6.3)

where u = (u(1), . . . , u(T )). The vector ỹi =
(
y

(1)
i , . . . ,y

(T )
i

)
is a realization of Ỹi, where

y
(t)
i is an observation of Y

(t)
i with elements y

(t)
ij . The vector x̃i =

(
x

(1)
i , . . . ,x

(T )
i

)
is a

realization of X̃i, where x
(t)
i =

(
si, z

(t)
i

)
is an observation of X

(t)
i =

(
Si,Z

(t)
i

)
.

Parameters estimation is performed maximizing the log-likelihood for a sample of n in-

dependent units, i.e., `(θ) =
∑n

i=1 logP (ỹi | x̃i), using an Expectation-Maximization

algorithm ([22, 23, 25]). Deterministic and random initializations are implemented to

reach the global maximum of `(θ) and prevent identifiability issue related to the multi-

modality of the likelihood function.

6.1.3. Model selection

The choice of the final LM model for the application consists of two steps: (i) identification

of the number of latent states k, and (ii) selection of the covariates to be included in the

final model. When the number of latent states k can not be a priori defined based on

clinical indications, it can be selected according different measures. Akaike information

criterion (AIC) by [7] or the Bayesian information criterion (BIC) by [183], defined as

AIC = −2ˆ̀+ 2g and BIC = −2ˆ̀+ log(n)g,

where ˆ̀ is the maximum of the log-likelihood of the model of interest and g denotes the

number of free parameters, are used. In particular, the smaller the values of the above

criteria, the better the model represents the optimum compromise between goodness-of-fit

and complexity. If the two criteria lead to selecting a different number of states, BIC is

usually preferred [20, 26].

Basic LM models (i.e., LM models with time-heterogeneous transitions and no covariates

–named M1) were fitted increasing the value of k from 1 to 10, and the number of latent

states k was selected according to the minimum BIC. Once k was determined, a forward

strategy was adopted to identify the covariates to be included in the final model. In partic-

ular, the smallest basic LM model with k latent states and time-homogeneous transitions

(i.e., the LM model restricted to the case in which initial and transition probabilities are
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parametrized by multinomial logit without covariates – named M2) was initially fitted

and then the effect of each covariate on initial and/or transition probabilities (models

M3-M12) was added. Only the covariates whose effect reduces the value of the BIC index

were included in the final LM model.

6.1.4. Longitudinal profiles: latent probability and relative risk

In LM models literature, once the model has been estimated, a decoding procedure is usu-

ally implemented to obtain a path prediction for each subject, i.e., finding the most likely

sequence of latent states on the basis patient-specific observed data [22, 23]. However,

this sequence represents a summary of how the entire latent process evolves over time, as

it only provides information about the most-likely condition without giving details about

other states (see Appendix C.1). To obtain more insights into the entire latent process and

its evolution, longitudinal information related to each latent state can be reconstructed

for each subject.

For each patient-specific observed data (x̃i, ỹi), the Expectation-Maximization algorithm

provides the posterior probabilities of variables U
(t)
i

p
(t)
iu = P

(
U

(t)
i = u

∣∣Ỹi = ỹi, X̃i = x̃i

)
t = 1, . . . , T u ∈ {1, ..., k}, (6.4)

which can be estimated using recursions and involving the manifest distribution in Equa-

tion (6.3). For each latent state u ∈ {1, . . . , k}, probabilities in (6.4) can be used to

reconstruct the longitudinal latent probability profile of the i-th subject, as follows:

piu =
{
p

(t)
iu = P

(
U

(t)
i = u

∣∣Ỹi = ỹi, X̃i = x̃i

)
, t = 1, . . . , T

}
. (6.5)

Each profile piu represents the probability over time t of being in latent state u for

individual i, given the observed complete response ỹi and covariates x̃i (if available).

Applying this procedure, k longitudinal latent probability profiles (one for each latent

state) are obtained for each subject i, which can be expressed as a k × T matrix

Pi =


pi1
. . .

. . .

pik

 =


p

(1)
i1 p

(2)
i1 . . . p

(T )
i1

. . . . . .

. . . . . .

p
(1)
ik p

(2)
ik . . . p

(T )
ik

 =
[
p

(1)
i p

(2)
i . . . p

(T )
i

]

with longitudinal latent probability profiles piu as row-components. Columns of Pi rep-

resent the vectors p
(t)
i of posterior probabilities over time t = 1, . . . , T and can be seen

as Compositional Data (CoDa) vectors belonging to the k-part Aitchison-Simplex Sk [6],

i.e.,

p
(t)
i ∈ Sk =

{
p = [p1, ..., pk] ∈ Rk

∣∣∣pu > 0, u = 1, . . . , k;
k∑

u=1

pu = 1

}
. (6.6)

Due to the sum constraint in Equation (6.6), elements p
(t)
iu of the composition p

(t)
i are mu-

tually dependent features which only carry relative information. In this context, Aitchison
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(1986) [6] introduced a methodology based on log-ratio transformations of CoDa, which

are required to remove constraints and eventually to map the composition to a real space,

allowing standard statistical techniques to be applied to the transformed data. In most

practical settings, the choice of transformation will depend on the preferred interpreta-

tion.

In the current framework, rather than considering the absolute individual elements p
(t)
iu ,

it is interesting to study the relative risk over time of being in a reference latent state

u = R compared to all the other latent states. Among the transformations introduced

by Aitchison (1986) [6], this can be done considering the additive log-ratios of each CoDa

vector p
(t)
i , as follows:

alr
(
p

(t)
i

)
=

[
log

p
(t)
i1

p
(t)
iR

. . . log
p

(t)
iR−1

p
(t)
iR

log
p

(t)
iR+1

p
(t)
iR

. . . log
p

(t)
ik

p
(t)
iR

]T
=
[
r

(t)
i1 . . . r

(t)
iR−1 r

(t)
iR+1 . . . r

(t)
ik

]T
= r

(t)
i ∈ Rk−1

(6.7)

where R is the reference latent state which can be chosen arbitrary among {1, . . . , k}. Note

that this transformation maps each bounded sample into a real space
(
alr: Sk → Rk−1

)
and if one of the p

(t)
iu elements is exactly zero, a zero-handling procedure is needed before

applying the transformation. In that case, an easily applicable possibility would be to

replace each zero with a small appropriate value, modifying the non-zero values of the

relative composition in a multiplicative way in order to satisfy the sum constraint require-

ment. For further details see [135]. Applying this procedure to each compositions, k − 1

longitudinal relative risk profiles (one for each non-reference state) are obtained for each

subject i, given as a (k − 1)× T matrix

Ri =
[
r

(1)
i r

(2)
i . . . r

(T )
i

]
=



ri1
. . .

riR−1

riR+1

. . .

rik


where column-element r

(t)
i are given by Equation (6.7) and row-element riu with u 6= R

are the longitudinal relative risk profile of state u for subject i

riu =

{
r

(t)
iu = log

p
(t)
iu

p
(t)
iR

, u 6= R, t = 1, . . . , T

}
. (6.8)

Each profile riu represents the relative risk (in logarithmic scale) over time t of being

in latent state u 6= R with respect to the reference state R for individual i. Since this

procedure is a transformation-based analysis, transformed elements r
(t)
iu must then be

interpreted with respect to the chosen reference. A positive (negative) value r
(t)
iu at time t

means that the risk for subject i of being in latent state u 6= R is exp
{
r

(t)
iu

}
times higher

(lower) than being in reference state R.
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For the application discussed in this work, the LOTox states summarize different levels

of overall toxicity burden, representing a proxy for patient’s quality of life. Therefore,

for each patient i, longitudinal latent probability profile (6.5) represents the probability

over time of being in the LOTox state u (i.e., the probability over time of developing

an overall toxic burden quantified by state u) given patient’s history: observed toxicity

categories ỹi and personal characteristics x̃i over treatment. Once the LOTox states have

been identified, it is reasonable to analyse and interpret the different results in relation to

the state characterized by the lowest overall toxicity burden (i.e., “good” toxic condition),

which is chosen as the reference R. In this way, the longitudinal relative risk profile (6.8)

represents the risk of being in LOTox condition u 6= R compared to the lowest toxic

status.

By reconstructing the longitudinal LOTox profiles, it is possible to (i) describe patient’s re-

sponse to therapy over cycles, (ii) quantify the overall toxicity burden evolution over treat-

ment cycles given patient’s history and (iii) investigate the individual dynamic changes

among latent states, detecting differences in health status and quality of life among pa-

tients.

6.2. Data application

In childhood cancer research, the development of new evidence-based guidelines to sup-

port clinical decisions in tailored interventions for an effective management of adverse

symptoms and treatments is still a key issue. In this section, the results obtained from

the application of the proposed LM model to the MRC BO06/EORTC 80931 random-

ized clinical trial are reported. Analysing the evolution of toxicities in patients who have

completed the treatment could lead to new insights into the progression and tolerance of

toxic AEs during therapy. For these reasons, we focused on the same cohort analysed in

Chapters 4 and 5 concerning the 377 patients who completed the entire chemotherapy

protocol, finishing the sixth cycle within 180 days after randomisation without abnormal

dosages (see Figure 4.3 in Chapter 4). Patient characteristics at randomization are shown

in Table 4.1 in Chapter 4. Statistical analyses were performed in the R-software envi-

ronment [161], using LMest package by [26]. R code for the current study is available at

https://github.com/mspreafico/BO06-LOTox.

6.2.1. Longitudinal toxicity data: item-response categories

During the trial treatment, case report forms were used to document across cycles all the

information required by the MRC BO06/EORTC 80931 trial protocol for each patient

(see Section 4.2.1 in Chapter 4). Non-haematological chemotherapy-induced toxicity for

nausea/vomiting (naus), infection (inf), oral mucositis (oral), cardiac toxicity (car),

ototoxicity (oto) and neurological toxicity (neur) were graded according to the CTCAE

v3.0 [208], with grades ranging from 0 (none) to 4 (life-threatening) (see Table 5.2 in

Chapter 5). Nausea/vomiting, infection and oral mucositis were classified as generic
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6. Longitudinal profiles of latent probability and relative risk via LM models and CoDa

toxicities since they represent common adverse events for chemotherapeutic treatments

in general. Cardiac toxicity, ototoxicity and neurological toxicity, which could also cause

irreversible conditions, were classified as drug-specific toxicities since they are related to

the use of cisplatin or doxorubicin [8, 51].

Grades of chemotherapy-induced non-haematological toxicity over cycles recorded for the

selected cohort have been reported in Figure 5.1 in Chapter 5. At each cycle, CTCAE-

grade 4 for generic toxicities and CTCAE-grades ≥ 2 for drug-specific toxicities were

reported in less than 5% of patients. Low-frequency classes were merged and toxic cate-

gories were represented according to the degree of severity or as present or not, depending

on the type of toxicity as follows:

• the severity of the toxic event for generic toxicities: none (CTCAE-grade 0), mild

(CTCAE-grade 1), moderate (CTCAE-grade 2), severe (CTCAE-grades 3 or 4);

• the absence or the presence of toxic event for drug-specific toxicities: no (CTACE-

grade 0) and yes (CTACE-grades ≥ 1).

These categories identified for each toxicity constitute the item-response elements selected

to model the latent process representing the “true” overall toxic status. Table 6.1 shows

the observed frequencies (and percentages) of the selected categories for each toxicity over

cycles for the final cohort. The observed responses for each patient are then given by the

longitudinal toxic categories measured along the cycles, which are then used to evaluate

the LOTox condition during treatment.

6.2.2. Latent Markov model for longitudinal toxicity data

For each cycle t = 1, . . . , 6, let J = {naus, inf, oral, car, oto, neur} be the set of non-

haematological toxicities, representing response variables Y
(t)
ij . The relative sets of re-

sponse categories identified in the previous section were coded from 0 to cj − 1, as fol-

lows:

Cj = {0 : none, 1 : mild, 2 : moderate, 3 : severe} for generic toxicities (j = 1, 2, 3),

Cj = {0 : no, 1 : yes} for drug-specific toxicities (j = 4, 5, 6).

The procedure described in Section 6.1.3 was applied to first identify the number of

latent states k and then select the covariates to be included in the final model. Age,

gender and allocated regimen at randomization were considered as time-fixed covariates,

while percentage of achieved chemotherapy dose up to cycle t (see Equation 5.3), white

blood cell, neutrophils and platelets counts measured at each cycle were considered as

time-varying ones. Results are shown in Table 6.2. The unrestricted LM model without

covariates (M1) with the minimum BIC (16728.90) was obtained for k = 4, identifying

a latent process with four LOTox states. Moreover, the basic model M2 with initial

and transition probabilities parametrized by multinomial logit was preferable (BIC =

16512.16) to the unrestricted model M1 with the same number of latent states. Several
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Table 6.1. Frequencies of toxic categories over the six cycles. For nausea, infection and mucositis

(j = 1, 2, 3), the set of toxic categories indicating the severity of the toxic event is defined as Cj =

{none; mild; moderate; severe}. For cardiotoxicity, otoxocity and neurological toxicity (j = 4, 5, 6), the

set of toxic categories indicating the presence or the absence of the toxic event is defined as Cj = {no; yes}.
Toxicity Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6

Nausea

none 57 (15.1%) 88 (23.3%) 115 (30.5%) 126 (33.4%) 146 (38.7%) 179 (47.5%)

mild 74 (19.6%) 87 (23.1%) 76 (20.2%) 72 (19.1%) 86 (22.8%) 74 (19.6%)

moderate 117 (31.1%) 117 (31.1%) 114 (30.2%) 113 (30.0%) 96 (25.5%) 87 (23.1%)

severe 129 (34.2%) 85 (22.5%) 72 (19.1%) 66 (17.5%) 49 (13.0%) 37 (9.8%)

Infection

none 259 (68.7%) 287 (76.1%) 268 (71.1%) 265 (70.3%) 268 (71.1%) 286 (75.9%)

mild 30 (7.9%) 24 (6.4%) 26 (6.9%) 31 (8.2%) 23 (6.1%) 16 (4.3%)

moderate 64 (17.0%) 45 (11.9%) 61 (16.2%) 54 (14.3%) 52 (13.8%) 45 (11.9%)

severe 24 (6.4%) 21 (5.6%) 22 (5.8%) 27 (7.2%) 34 (9.0%) 30 (8.0%)

Mucositis

none 265 (70.3%) 228 (60.5%) 234 (62.1%) 237 (62.9%) 214 (56.8%) 262 (69.5%)

mild 54 (14.3%) 46 (12.2%) 59 (15.6%) 52 (13.8%) 62 (16.4%) 44 (11.7%)

moderate 44 (11.7%) 54 (14.3%) 43 (11.4%) 55 (14.6%) 63 (16.7%) 50 (13.2%)

severe 14 (3.7%) 49 (13.0%) 41 (10.9%) 33 (8.7%) 38 (10.1%) 21 (5.6%)

Cardiotoxicity

no 374 (99.2%) 361 (95.8%) 362 (96.0%) 359 (95.2%) 357 (94.7%) 355 (94.2%)

yes 3 (0.8%) 16 (4.2%) 15 (4.0%) 18 (4.8%) 20 (5.3%) 22 (5.8%)

Ototoxicity

no 357 (94.7%) 361 (95.8%) 350 (92.8%) 342 (90.7%) 346 (91.8%) 326 (86.5%)

yes 20 (5.3%) 16 (4.2%) 27 (7.2%) 35 (9.3%) 31 (8.2%) 51 (13.5%)

Neurological toxicity

no 371 (98.4%) 367 (97.3%) 362 (96.0%) 367 (97.3%) 356 (94.4%) 363 (96.3%)

yes 6 (1.6%) 10 (2.7%) 15 (4.0%) 10 (2.7%) 21 (5.6%) 14 (3.7%)

models (M3-M12) with four latent states, obtained from M2 adding covariates effect to

initial and/or transition probabilities, were fitted. By comparing models M3-M12 with

M2, age (centred with respect to the mean) at randomization was the only covariate

leading to a significant improvement in terms of both BIC and AIC (M5). Model M5,

whose path diagram for a given subject i is shown in Figure 6.1, was then selected as final

model:

• initial probabilities were associated with patient’s age at randomization and Equa-

tions (6.1) for a patient i became

log
δu|agei
δ1|agei

= β0u + β1u · (agei − 15) u = 2, 3, 4; (6.9)

• transition probabilities were assumed time-homogeneous and Equations (6.2) be-

came

log
τu|ū
τū|ū

= γ0ūu ū, u = 1, 2, 3, 4 with ū 6= u. (6.10)

Figure 6.2 shows the estimated conditional response probabilities φ̂jy|u for each type of

non-haematological toxicity under the selected model M5, which can be used for inter-

preting the latent states. In each toxicity-panel, each column refers to a different latent
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Table 6.2. Results for Latent Markov (LM) model selection for longitudinal toxicity data with different

values of latent states k and different restrictions. The maximum log-likelihood of each model is denoted

by ˆ̀ and g is the number of free parameters. WBC, PLT and NEUT in models M10-12 refers to white

blood cell, platelets and neutrophils counts, respectively.

Latent Markov (LM) model k g ˆ̀ AIC BIC

M1: Unrestricted LM model without covariates 1 18 -8794.91 17625.81 17696.59

2 35 -8420.19 16910.38 17048.01

3 68 -8216.99 16569.98 16837.37

4 111 -8035.21 16292.42 16728.90

5 164 -7902.59 16133.18 16778.07

6 227 -7793.14 16040.29 16932.91

7 300 -7688.12 15976.24 17155.91

8 383 -7603.30 15972.61 17478.66

9 476 -7530.49 16012.98 17884.73

10 579 -7462.34 16082.68 18359.45

M2: Multinomial logit LM model without covariates 4 63 -8069.21 16264.43 16512.16

M3: M2 + regimen effect on initial prob. 4 66 -8065.49 16262.97 16522.50

M4: M2 + gender effect on initial prob. 4 66 -8061.73 16255.45 16514.98

M5: M2 + age effect on initial prob. 4 66 -8055.35 16242.69 16502.22

M6: M2 + regimen effect on transition prob. 4 75 -8063.37 16276.74 16571.66

M7: M2 + gender effect on transition prob. 4 75 -8060.33 16270.66 16565.58

M8: M2 + age effect on transition prob. 4 75 -8061.07 16272.14 16567.06

M9: M2 + time-var chemotherapy dose on both prob. 4 78 -8045.55 16247.10 16553.82

M10: M2 + time-var WBC count on both prob. 4 78 -8062.53 16281.07 16587.78

M11: M2 + time-var PLT count on both prob. 4 78 -8047.15 16250.30 16557.02

M12: M2 + time-var NEUT count on both prob. 4 78 -8062.67 16281.34 16588.05

𝑌𝑖1
(1)

𝑌𝑖2
(1)

𝑌𝑖3
(1)

𝑌𝑖4
(1)

𝑌𝑖5
(1)

𝑌𝑖6
(1)

Cycle  𝑡 = 1

𝑼𝑖
(1)

…

Cycle 𝑡 = 2
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(2)

𝑎𝑔𝑒𝑖 − 15

Covariates
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(1)
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(6)

𝒀𝑖
(1)
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(2)
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(6)

Cycle 𝑡 = 6

Response
variables

Initial latent states 
prevalence 𝛿

𝑢|𝒙𝑖
(1)

Transition probabilities 𝜏𝑢|ഥ𝑢

Conditional response
probabilities 𝜙𝑗𝑦|𝑢

Latent variables

nausea infection cardiac
toxicity

oral
mucositis

ototoxicity neurological
toxicity

Figure 6.1. Path diagram for a given subject i under the latent Markov model M5 with non-

haematological toxicities as response variables, time-homogeneous transitions and age at randomization

as covariate affecting the initial probabilities of the latent variables.
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Figure 6.2. Estimated conditional response probabilities φ̂jy|u for the final LM model in Figure 6.1.

Each panel refers to a different toxicity j ∈ J = {1 : naus, 2 : inf, 3 : oral, 4 : car, 5 : oto, 6 : neur}.
Each row refers to a response categories y ∈ {none; mild; moderate; severe} for j = 1, 2, 3 (generic

toxicities) and y ∈ {no; yes} for j = 4, 5, 6 (drug-specific toxicities). Each column refers to a latent states

u ∈ {1, 2, 3, 4}.

state u ∈ {1, 2, 3, 4}. People in good conditions are allocated in state 1, since for all non-

haematological toxicities the most probable category was the absence of the adverse event.

State 2 seems to correspond to patients with non-severe nausea and it was the only state

where drug-specific toxicities occurred with a relevant probability, especially for ototoxi-

city where φ̂51|2 = 0.429. State 3 seems to be characterized by patients undergoing only

nausea or vomiting, mostly moderate or severe. In State 4 people with multiple generic

toxicities - mostly severe or moderate - with the certainty of having nausea (φ̂10|4 = 0)

are present. Based on these results, the following LOTox states labelling were derived:

• State 1: quite good conditions (non-toxic) → no LOTox

• State 2: non-severe nausea with possible drug-specific AEs → moderate LOTox

• State 3: moderate/severe nausea/vomiting only → low LOTox (limited to nausea)

• State 4: multiple severe/moderate generic toxicities → high LOTox.

Note that the states numbering (from 1 to 4) does not correspond with the progressive

severity of overall toxicity burden (from no to high).

Table 6.3 displays the estimated regression parameters β̂u =
(
β̂0u, β̂1u

)
for the initial

probabilities in Equation (6.9) and the estimated transition probabilities τ̂u|ū in Equation

(6.10). The estimated intercepts indicates that for 15-year patients the most prevalent

state at cycle 1 was low LOTox state 3 (limited to nausea), followed by no LOTox state

1, high LOTox state 4 and moderate LOTox state 2. The estimates for age were all

positive, indicating that older individuals reported a higher overall severity at the first

cycle compared to younger patients. The estimated transition probabilities τ̂u|ū shows a

quite high persistence in the same state, especially for non-toxic state 1 and moderate
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Table 6.3. Estimated regression parameters affecting the distribution of the initial probabilities in

Equation (6.9) and estimated transition probabilities in Equation (6.10).

Regression parameters for initial probabilities

u 2 3 4

Intercept β̂0u -1.2679 1.0138 -0.3031

Age β̂1u 0.1858 0.0014 0.0512

Transition probabilities from ū to u (τ̂u|ū)

ū \ u 1 2 3 4

1 0.9674 0.0167 0.0032 0.0127

2 0.0525 0.9214 0.0245 0.0016

3 0.1070 0.0526 0.7581 0.0824

4 0.1555 0.0356 0.0868 0.7221
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Figure 6.3. Left panel: estimated initial probabilities of latent states for patients aged 10, 15 and 20

years old and average δ̄ of the initial probabilities over all the 377 subjects in the sample.

Right panel: latent states prevalences over cycles t = 1, . . . , 6 averaged over all the subjects.

Different colours refer to different Latent Overall Toxicity (LOTox) state (green: no LOTox state 1 ;

yellow: low LOTox state 3 ; orange: moderate LOTox state 2 ; red: high LOTox state 4 ).

state 2, where drug-specific AEs may also lead to permanent conditions (see Table 5.2

in Chapter 5). The highest transition probability was 15.6% and was observed from the

high LOTox state 4, where the effects of generic AEs are reversible and temporary, to

the first non-toxic state. Other transitions were observed from high LOTox state 4 to

nausea/vomiting only in state 3 (8.7%) and from low LOTox state 3 (limited to nausea)

to no LOTox state 1 (10.7%) or high LOTox state 4 (8.2%). The remaining transition

probabilities were always lower than 8%.

Starting from these parameter estimates, Figure 6.3 (left panel) displays the estimated

vectors of initial probabilities δ̂i =
(
δ̂1|agei , δ̂2|agei , δ̂3|agei , δ̂4|agei

)
for patients aged 10, 15

and 20 years old and the vector δ̄ =
(
δ̄1, δ̄2, δ̄3, δ̄4

)
= (0.202, 0.093, 0.557, 0.148) obtained

as average of vectors δ̂i over all the 377 subjects in the sample. On average, at cycle

1 low LOTox state 3 of subjects with nausea/vomiting only had the largest dimension

(55.7%), followed by 20.2% of individuals for no LOTox state 1. No and low LOTox

states together, representing the states with the lowest overall toxic severity, accounted
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for more than 75% of the patients, whereas less than 25% belonged to the latent states

corresponding to the worst toxic conditions (moderate and high LOTox states 2 and 4).

Right panel in Figure 6.3 shows the estimated average probability of each latent state

at each time-occasion, i.e., the latent states prevalences averaged over all the subjects

at each cycle. On average, the presence of low overall severity limited to nausea (state

3) decreased over cycles from 55.7% to 19.3% (t = 6), whereas no and moderate overall

toxicity (state 1 and 2, respectively) increased from 20.2% to 49.7% and from 9.2% to

18.9%. The presence in high overall severity (state 4) was rather stable over cycles ranging

in 10.1%-15.6%, with peaks at cycles 2 and 3.

6.2.3. Longitudinal profiles of Latent Overall Toxicity

Once the parameters were estimated for the final LM model, the longitudinal latent prob-

ability profiles piu were reconstructed for each patient i and latent state u, as explained

in Section 6.1.4. In case of longitudinal toxicity data, profiles piu in (6.5) are defined as

longitudinal Probability profiles of LOTox (P-LOTox ) since they represent the probability

over cycles t = 1, 2..., 6 of being in the LOTox state u ∈ {1, 2, 3, 4} for each patient i,

given the observed toxic categories over treatment and individual characteristics (i.e., the

age at randomization).

Figure 6.4 shows the longitudinal P-LOTox profiles piu for four patients i = {A,B,C,D}
aged 15 years old and with different observed toxic categories over cycles, as reported in

Table 6.4. Each panel refers to a different patient and displays the individual realisations

of the latent process over cycles. Different patterns of overall toxicity evolution during

treatment can be observed between subjects, based on patient-specific observed toxicity

data. For example, right panel shows that at cycle 1 patient D had probabilities 79.6% of

being in low LOTox state, 15.5% of having a non-toxic condition, 4.5% and 0.4% of high

and moderate LOTox, respectively. The probabilities evolved over the cycles, as shown

by the four profiles, ending with a 99.7% probability of being in quite good conditions at

the end of treatment.

The lowest toxic burden is represented by the non-toxic state 1 of patients in good con-

ditions, chosen as reference state (R = 1: no LOTox ) to reconstruct the longitudinal

latent relative risk profiles riu for each patient i and latent state u ∈ {2, 3, 4}. In case

of longitudinal toxicity data, profiles riu in Equation (6.8) can be also called longitudi-

nal Relative Risk profiles of LOTox (RR-LOTox ). They represent for each patient i the

relative risk (in logarithmic scale) over cycles t = 1, 2..., 6 of being in the LOTox state

u ∈ {2, 3, 4} rather than in the non-toxic state R = 1, given the observed toxic categories

over treatment and individual characteristics.

Figure 6.5 shows the longitudinal RR-LOTox profiles riu for patients i = {A,B,C,D}.
Different toxic risk progressions during treatment can be observed among patients, de-

pending on their observed toxicity data. For example, right panel shows that at first cycle

patient D’s risk of being in low LOTox state was 5.14 times higher the risk of having a
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Table 6.4. Observed toxicity categories over cycles t = 1, ..., 6 for four random patients i ∈ {A,B,C,D}
aged 15 years old. Categories for generic toxicities (nausea, infection and oral mucositis) are {0 : none, 1 :

mild, 2 : moderate, 3 : severe} (j = 1, 2, 3). Categories for drug-specific toxicities (cardiac toxicity,

ototoxicity and neurological toxicity) are {0 : no, 1 : yes} (j = 4, 5, 6). For each patient i the complete

response vector is ỹi =
(
y

(1)
i , . . . ,y

(1)
i

)
where y

(t)
i =

(
y

(t)
i1 , . . . , y

(t)
i6

)
.

Patient i Cycle t agei Naus y
(t)
i1 Inf y

(t)
i2 Oral y

(t)
i3 Car y

(t)
i4 Oto y

(t)
i5 Neur y

(t)
i6

A 1 15 3 0 1 0 0 0

2 3 1 0 0 0 0

3 3 3 0 0 0 0

4 3 2 1 0 0 0

5 3 0 2 0 0 0

6 3 0 1 0 0 0

B 1 15 1 0 0 0 0 0

2 1 0 0 0 0 0

3 3 0 0 0 0 0

4 1 0 0 0 1 0

5 1 0 0 0 1 0

6 1 0 0 0 1 0

C 1 15 2 0 0 0 0 0

2 1 0 0 0 0 0

3 1 0 0 0 0 0

4 1 0 0 0 0 0

5 1 0 0 0 0 0

6 1 0 0 0 0 0

D 1 15 2 0 0 0 0 0

2 2 0 2 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0

non-toxic condition, whereas risks of high and moderate LOTox were 0.29 and 0.03 times

lower, respectively. Then, RR-LOTox profiles evolved over the cycles, as shown by the

four trajectories, ending up with negligible relative risks (< 0.01) for low/moderate/high

LOTox conditions compared with a non-toxic condition at the end of treatment.

Both longitudinal P-LOTox and RR-LOTox profiles summarize and quantify the overall

toxic risk over time for each patient based on observed individual characteristics, capturing

differences in the overall history of toxicity across patients. P-LOTox profiles reflect the

absolute size of the probabilities over time for each latent state, whereas RR-LOTox

profiles focus on the relative risk with respect to the clinically desirable condition, i.e.,

the non-toxic one.
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P−LOTox: longitudinal Probability profiles of LOTox over cycles
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Figure 6.4. Longitudinal Probability profiles of Latent Overall Toxicity (P-LOTox) piu. Each panel

refers to a different patient i = {A,B,C,D} in Table 6.4. Different colours refer to different latent states

u ∈ {1, 2, 3, 4} (green: no LOTox state 1 ; yellow: low LOTox state 3 ; orange: moderate LOTox state 2 ;

red: high LOTox state 4 ).

RR−LOTox: longitudinal Relative Risk profiles of LOTox over cycles
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Figure 6.5. Longitudinal Relative Risk profiles of Latent Overall Toxicity (RR-LOTox) riu. Each panel

refers to a different patient i = {A,B,C,D} in Table 6.4. Reference LOTox state is no LOTox state

R = 1. Different colours refer to different non-reference latent states u ∈ {2, 3, 4} (light-blue: low LOTox

state 3 vs no LOTox ; blue: moderate LOTox state 2 vs no LOTox ; purple: high LOTox state 4 vs no

LOTox ).

6.3. Final remarks

Due to the presence of multiple types of Adverse Events (AEs) with different levels of

severity, identifying the actual extent of toxic burden and investigating the evolution of

patient’s overall toxicity represent challenging problems in cancer research. AEs are one

of the main factors determining clinical decisions in medical interventions and treatment

planning, playing a fundamental role in health assessment and patient monitoring. The

development of statistical methods able to summarize multiple AEs and to deal with

the complexity of chemotherapy data, considering both the longitudinal and categorical

aspects of toxicity levels progression, is necessary and clinically relevant.

This chapter proposed a new taxonomy based on LM models with covariates and CoDa

methods to provide novel techniques for investigating the evolution of the latent overall

toxicity condition for each patient over chemotherapy treatment. This is important for the

development of new tools to support clinical decisions in tailored interventions for effec-
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6. Longitudinal profiles of latent probability and relative risk via LM models and CoDa

tive management of adverse symptoms and treatments. The novel approach was applied

to longitudinal chemotherapy data for osteosarcoma patients from MRC BO06/EORTC

80931 Randomized Controlled Trial.

By assuming the existence of a LM chain for the LOTox condition of a patient, the

proposed taxonomy identified sub-populations of patients characterized by a common

distribution of toxic categories, and by a similar overall toxicity burden. Four LOTox

states were found, which represent different levels of multiple AEs severity: (i) people

in quite good conditions (no LOTox state 1 ), (ii) patients undergoing only nausea or

vomiting - mostly moderate or severe - (low LOTox state 3 ), (iii) subjects with non-severe

nausea and the possibility to develop drug-specific AEs (moderate LOTox state 2 ), or (iv)

people with multiple severe/moderate generic toxicities (high LOTox state 4 ). The LM

approach estimated the initial prevalence of each state and the probability of individual

changes over time. This allowed to reconstruct the patient-specific longitudinal LOTox

profiles to assess the dynamic evolution of overall toxicity burden during treatment for

each subject.

Both longitudinal P-LOTox and RR-LOTox profiles captured the individual realisations

of the latent process over cycles, showing different patterns of overall toxicity evolution

during treatment among patients. P-LOTox profiles illustrated the latent process using

absolute terms, giving insights into the actual probabilities of being in the various LOTox

states over cycles. RR-LOTox profiles – obtained by additive log-ratios transformation –

reported relative risk measures to emphasize the difference between low/moderate/high

LOTox states and the clinically desirable non-toxic condition. These aspects can not

be investigated using a simple path prediction (see Appendix C.1). Together, absolute

probabilities and relative risks provide a full picture of the individual LOTox dynamics

during treatment, which may be considered as a proxy for patient’s quality of life and

used to describe patient’s response to therapy over cycles in terms of toxic AEs.

This retrospective exploratory analysis has some limitations. The procedure used to se-

lect the final model may miss the best available one, since not all possible models have

been fitted. However, it is computationally efficient and follows a standard stepwise for-

ward selection approach. The analysis was performed on a single trial in osteosarcoma,

considering only non-haematological toxicities. Other factors of potential interest were

not routinely recorded during the trial, including among others nephrotoxicity, lympho-

cytes count or tumour size. To get more information about the robustness of the model

developed in this study, it should be applied to other osteosarcoma data provided that

the toxicity are longitudinally recorded. Nevertheless, this work opens doors to further

researches, both in the field of statistical methodology development as well as in can-

cer research. The additive log-ratios transformation allowed to remove non-negative and

sum-to-one constraints of the CoDa vectors, mapping the compositions to a real space.

Standard statistical techniques could then be applied to the transformed data, opening

doors for further research. Based on their different LOTox dynamics, patients could be

stratified in different risk groups to be used during treatment. The relationship between

AEs, treatment modifications and time-to-event outcomes may be investigated to pro-

vide new insights in the treatment effect during the evolution of the disease. To model
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6.3. Final remarks

them simultaneously is not a trivial task since a suitable characterisation of the intricate

mechanism between toxicity, chemotherapy dose and survival requires both statistical and

clinical expertises, as we will see in Chapter 7.

In summary, in this chapter we proposed a novel approach to summarise and quantify

patient’s overall toxic risk and its evolution during treatment. Provided that toxicities

are recorded according to the CTCAE scale or an analogous grading system, the LM

approach represents a general and flexible method to quantify the personal evolution

of overall toxic risk during chemotherapy. In cooperation with medical staff, this novel

methodology might provide insights for the definition of new guidelines to reduce the

impact of chemotherapy treatment in terms of toxicity burden.
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Appendix C

C. Appendix to Chapter 6

C.1. Path prediction for latent Markov models

In latent Markov models literature, once the model has been estimated, a decoding pro-

cedure is usually implemented to obtain a path prediction
∗
ui =

(
∗
u

(1)

i , . . . ,
∗
u

(T )

i

)
of the

most likely latent states over time for each subject i, on the basis patient-specific observed

data.

Among the developed procedures, local decoding finds the most likely state occupied by a

subject at any time point t: elements of
∗
ui can be obtained by maximizing the posterior

probabilities at each time t in Equation 6.4, as follows

∗
u

(t)

i = max
u∈{1,...,k}

p
(t)
iu = max

u∈{1,...,k}
P
(
U

(t)
i = u

∣∣Ỹi = ỹi, X̃i = x̃i

)
for all t = 1, ..., T.

As an alternative, global decoding finds the most likely sequence of latent states for a given

subject on the basis of the responses he/she provided. It is based on an adaptation of

the Viterbi algorithm [211, 96] which maximises the joint conditional probability for each

subject i, i.e.,
∗
ui = arg max

u
P
(
Ui = u

∣∣Ỹi = ỹi, X̃i = x̃i

)
,

through a forward-backward recursion. For further details see [22, 23].

C.1.1. BO06 data application: LOTox sequences

In case of longitudinal toxicity data, path prediction
∗
ui represents the sequence of LOTox

states over time for subject i. Let us consider the four patients aged 15 years old with

different observed toxic categories over cycles reported in Table 6.4. The LOTox sequences

for patients i = {A,B,C,D} can be then obtained as

(i) the sequences of the most probable LOTox states at each cycle t (i.e., local decoding)

∗
uA = (3, 3, 4, 4, 4, 4),

∗
uB = (3, 3, 3, 2, 2, 2),

∗
uC = (3, 3, 3, 3, 3, 3),

∗
uD = (3, 1, 1, 1, 1, 1);

(ii) or the sequences of the most likely LOTox states across cycles (i.e., global decoding)

∗
uA = (3, 3, 4, 4, 4, 4),

∗
uB = (3, 3, 3, 2, 2, 2),

∗
uC = (3, 3, 3, 3, 3, 3),

∗
uD = (3, 3, 1, 1, 1, 1).

Differences between (i) and (ii) are due to the different types of probabilities that are

maximized, respectively posterior and joint conditional probabilities. The individual LO-

Tox sequence allows to predict the LOTox state to which every patient belongs at a given

cycle. However, it represents a summary of how the entire latent process evolves during

treatment for a patient, as it only provides information about the most-likely condition

without giving details about other states.
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