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PART II

Chemotherapy in Osteosarcoma
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CHAPTER 4

Modelling time-varying covariates effect

on survival via Functional Data Analysis

This chapter has been published in Statistical Methods & Applications 2022 as M. Spreafico, F.

Ieva and M. Fiocco “Modelling time-varying covariates effect on survival via Functional Data

Analysis: application to the MRC BO06 trial in osteosarcoma” [192].

Osteosarcoma is a malignant bone tumour mainly affecting children and young adults

with an annual incidence of 3-4 patients per million [185]. Multidisciplinary management

including neoadjuvant and adjuvant chemotherapy with aggressive surgical resection [166]

or intensified chemotherapy has improved clinical outcomes although the overall 5-year

survival rate has remained unchanged in the last 40 years at 60-70% [15]. Therefore, it is

extremely important to provide an effective tool to evaluate the prognosis for osteosarcoma

and to guide the diagnosis.

Time-varying (or time-dependent) covariates are often of interest in clinical and epidemio-

logical research: patients are followed during the study and subject-specific measurements

are recorded at each visit. Well-known examples include biomarkers which change during

follow-up or cumulative exposure to medications [18], such as chemotherapy. Depending

on patients’ treatment history or development of toxicity, biomarkers values change and

chemotherapy treatment is modified by delaying a course or reducing the dose intensity.

To study the association between time-varying responses with time-to-event outcome

(e.g., death) is a challenging task which could offer new insights into the direction of

personalised treatment.

In osteosarcoma treatment, patients usually undergo assessment of haematologic and

serum biochemical parameters [119], such as white blood cell (WBC) counts and alkaline

phosphatase (ALP). The role of ALP as tumour marker for osteosarcoma has not been

established, although several studies suggested that high ALP level is associated with poor

overall or event-free survival and presence of metastasis [165, 71]. Chemotherapy is usually

modelled by different allocated regimens, i.e., by Intention-To-Treat (ITT) analysis [70].

ITT ignores anything that happens after randomization, such as protocol deviations or

changes in drug intake over time, i.e., delays or dose reduction [110]. Lancia et al. (2019)

[111] showed that there is mismatch between target and achieved dose of chemotherapy

and the impact of dosis on patients’ survival is still unclear. For these reasons, in this
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4. Modelling time-varying covariates effect on survival via Functional Data Analysis

chapter a novel method to study received chemotherapy dose and biomarkers as time-

varying variables is proposed. This approach has never been applied to osteosarcoma

treatment and provides new insight in understanding the effect of chemotherapy dosis

intensity on sarcoma in childhood cancer. Moreover, as will be clear in the following, the

application is inspiring from a statistical modelling perspective.

Models for time-to-event data which are able to deal with the dynamic nature of time-

varying responses during follow-up are not well developed. One approach for using time-

varying covariate data is the Time-Varying covariate Cox Model (TVCM) [202, 97], that

is an extension of the Cox proportional hazard model [46] accounting for covariates that

can change value during follow-up. Since time-dependent observations are only available

at the time of measurements, TVCM uses the last-observation-carried-forward (LOCF)

approach [206], which leads to the pitfall of introducing bias due to the continuous nature

of the process underlying the data, and fails to account for possible measurement errors

[16]. Joint models address these issues by modelling simultaneously longitudinal and

time-to-event data using shared random effects [76, 206, 38, 49, 167, 168, 65, 157, 81, 82].

As seen in Chapter 2, they are parametric models that allow for the inference on the

association between the hazards characterizing the event outcome and the longitudinal

processes. However, they require additional strong assumptions over TVCM that need

to be carefully validated to avoid biased estimates [16]. Their benefits are hence strictly

linked to the correct specification of longitudinal trajectories and baseline hazard function.

In addition, inference computations could become prohibitive, especially for approaches

developed in a Bayesian framework.

During the past two decades, Functional Data Analysis (FDA) has been increasingly used

to analyse, model and predict dynamic processes [163, 162, 144, 223, 56, 128, 207, 92, 91,

134, 189]. The idea behind FDA and functional models is to express discrete observa-

tions arising from time series, i.e., longitudinal time-varying observations, in the form of

functions [163, 162]. Functional representation incorporates trends and variations in the

evolution of the process over time [207]. Since functional data are infinite-dimensional

covariates, some dimensionality reduction methods are needed to summarize and select

a finite dimensional set of elements representing the most important features of each co-

variate. This information can then be included into time-to-event models. To model the

relationship between survival outcomes and a set of finite and infinite dimensional pre-

dictors Functional Linear Cox Regression Models (FLCRM) have been recently proposed

[62, 116, 159, 109, 121]. In case of an infinite dimensional process, Kong et al. (2018) [109]

characterized the joint effects of both functional and scalar predictors on time-to-event

outcome employing Functional Principal Component Analysis (FPCA). FPCA is one of

the most popular dimensionality reduction method in FDA and it is used to summarise

each function to a finite set of covariates through FPC scores, while losing a minimum part

of the information. An extended version of the FLCRM by [109] to the case of multiple

functional predictors – named Multivariate FLCRM (MFLCRM) – was introduced in the

previous chapter to model recurrent events effect on long-term survival [189]. However,

since the main focus of Chapter 3 was to develop a methodology for effectively mod-

elling time-varying recurrent events in terms of the functional compensators underlying
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the processes of interest, we have neither compared MFLCRM with other survival mod-

els, nor considered its predictive performances over time. In case of multiple longitudinal

processes, Li and Lou (2019) [121] exploited the multivariate FPCA approach by [72] to

extract the FPC scores from the multiple longitudinal trajectories in order to make per-

sonalized dynamic predictions. However, the authors did not focus on the smoothing and

functional representation aspects of the processes realized by the observed longitudinal

data, on the clinical interpretation of the FPC scores and on their association with over-

all survival. Since it is often the changing patterns of the functional trajectories rather

than the actual values that affects patients’ survival, FDA provides a novel modelling and

prediction approach, with a great potential for many applications in public health and

biomedicine [207].

Motivated by a clinical question concerning the effect of biomarkers and dose variations

during treatment on survival for osteosarcoma patients, in this chapter a FDA-based ap-

proach, named Functional covariate Cox Model (FunCM), is proposed and compared to a

standard TVCM. In FunCM, FDA techniques are first exploited to represent time-varying

processes and their derivatives over time in terms of functional data. Unlike joint models,

FDA approach does not make assumptions on the distributions of longitudinal processes

being computationally advantageous [121]. Then, additional information contained into

the evolution of the functions over time are included into MFLCRMs for overall sur-

vival through FPCA. A cross-validation method is implemented to compare MFLCRMs

and standard TVCM in terms of their predictive performances at different time horizons.

Three novelties of this work are listed here: (i) application of advanced statistical tech-

niques to deal with time-varying covariates in the field of osteosarcoma treatment; (ii)

reconstruction of the functional representations for biomarkers and chemotherapy dose

values, and their rates of change, to retrieve information on the progression of processes

over time; (iii) comparison between TVCM and FunCM in terms of both clinical inter-

pretability and time-dependent predictive performances. This novel approach provides

more information about the effect of individualized treatment adaption on survival for

osteosarcoma patients.

The rest of this chapter is organized as follows. In Section 4.1 TVCM and FunCM to

represent time-varying covariates by means of FDA and to include them into survival

models are discussed. MRC BO06/EORTC 80931 Randomized Controlled Trial [119]

and longitudinal representations of time-varying covariates are described in Section 4.2.

Results are presented in Section 4.3. Section 4.4 ends with a discussion of strengths and

limitations of the current approach, identifying some developments for future research.

4.1. Statistical Methodologies

4.1.1. Time-varying covariates and survival frameworks

A time-varying (or time-dependent) process is a covariate whose value can change over

the duration of follow-up (e.g., time-varying biomarkers, current use of medication, and
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Follow-up

𝑇0 𝑇0
∗

Randomization

Overall Survival
Functional

representationFunctional
Cox model Observation period

Time-varying
Cox model

Time-varying LOCF covariates and Overall Survival

Chemotherapy 
treatment period

𝑇𝑖 , 𝛿𝑖
∗

Post-treatment follow-up period

Figure 4.1. Follow-up periods. Time-varying (LOCF/functional) representation and Overall Survival

(OS) for Time-Varying covariate Cox Model (TVCM) and Functional covariate Cox Model (FunCM). T0

is the time of randomization. T ∗0 = T0 + 180 days is the end of the 6-months chemotherapy treatment

period. LOCF = last-observation-carried-forward.

cumulative dose of drugs). In this study, the main interest is in analysing the asso-

ciation between patient’s survival and variations during treatment of his/her multiple

time-varying characteristics. The focus is hence on patients who had completed the en-

tire chemotherapy treatment protocol in a pre-defined and clinically acceptable timing

period.

Follow-up starts from date of randomization T0 and is divided into a pre-defined 6-months

chemotherapy treatment period [T0;T ∗0 ] – also called observation period – considered for

chemotherapy treatment completion, and a post-treatment follow-up period from T ∗0 on-

wards (see Figure 4.1).

Under the TVCM framework, the Overall Survival (OS) is measured from randomiza-

tion (T0) to the date of death or last follow-up date, and the time-varying covariates can

be defined over the entire follow-up period. Let M be a set of time-varying processes.

Let z
(m)
i =

{
z

(m)
il = z

(m)
i (til), l = 1, ..., n

(m)
i

}
be the vector of longitudinal values related

time-varying process m ∈M for each patient i, where til is the time of the l-th measure-

ment, z
(m)
i (til) is the value of the process at time til and n

(m)
i is the number of different

measurements.

Under the FunCM framework, the observation period [T0;T ∗0 ] is used to reconstruct the

functional representations of time-varying covariates. OS is then measured from the

end of the observation period (T ∗0 ) to the date of death or last follow-up date. Only

patients still alive at T ∗0 are included in the study cohort. To reconstruct the functional

covariates, only measurements registered during the observation period (i.e., up to T ∗0 )

are considered, namely vector z̄
(m)
i =

{
z

(m)
il = z

(m)
i (til), l = 1, ..., n̄

(m)
i

}
⊆ z(m)

i , where n̄
(m)
i

denotes the index of last measurement of type m for patient i in [T0;T ∗0 ], with n̄
(m)
i ≤ n

(m)
i

and t
in̄

(m)
i
≤ T ∗0 < t

in̄
(m)
i +1

.

In both cases, the observed time-to-death outcome for patient i ∈ {1, ..., N} can be

denoted as (Ti, Di), where Ti = min(T ∗i , Ci) is the observed event time (measured from

T0 or T ∗0 according to the framework), T ∗i is the true event time, Ci is the censoring time
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and Di = 1(T ∗i ≤ Ci) is the event indicator, with 1(·) being the indicator function that

takes the value 1 when T ∗i ≤ Ci, and 0 otherwise.

4.1.2. Time-Varying covariate Cox Model

Starting from vector of longitudinal values z
(m)
i , a time-varying covariate z

(m)
i (t) can be

defined over the entire follow-up period, according to the LOCF approach [206]:

• when z
(m)
i (t) is not observed at time t ∈

[
T0; t

in
(m)
i

]
, the most updated value is used:

z
(m)
il = z

(m)
i (til) with til ≤ t < til+1;

• from t
in

(m)
i

onwards, the last available measurement z
(m)
i (t

in
(m)
i

) is considered.

The TVCM is an extension of the proportional hazard model by [46] accounting for co-

variates that can change value during follow-up [202, 97]. Under TVCM, the proportional

hazards model for patient i has the form

hi (t|ωi, zi(t)) = h0(t) exp
{
θTωi +αTzi(t)

}
(4.1)

where h0(t) is the baseline hazard function, ωi and zi(t) =
(
z

(1)
i (t), ..., z

(M)
i (t)

)
are the

vectors of baseline and time-varying covariates with regression parameters θ and α, re-

spectively. Inference for coefficients (θ,α) is based on maximizing the partial likelihood

[97].

TVCM can also be stratified to allow for control by ”stratification” of a predictor that does

not satisfy the proportional hazard assumption [97]. Under stratified TVCM, the hazard

function hig (t|ωi, zi(t)) contains also a subscript g that indicates the g-th stratum, as well

as the baseline hazards h0g(t), where the strata are different categories of the stratification

variable. Notice that the baseline hazard functions are different in each stratum.

4.1.3. Functional covariate Cox Model

The FunCM approach consists of four parts: Steps 1 and 2 are devoted to the reconstruc-

tion of functional trajectories; Steps 3 and 4 provide a suitable framework for including

these time-varying covariates in a time-to-event model. Specifically, once the data have

been pre-processed and longitudinal time-varying characteristics during the observation

period have been identified (Step 1), the corresponding functional trajectories and their

derivatives are reconstructed by applying FDA techniques (Step 2). FPCA is then applied

to perform dimensionality reduction and summarise the information from the functional

predictors into a finite set of FPC scores (Step 3). Finally, once the best set of covari-

ates and number of principal components have been selected through cross-validation,

the MFLCRM is estimated to quantify the association between functional processes and

patients’ overall survival (Step 4).
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From longitudinal to functional representation

To model the continuous longitudinal vectors z̄
(m)
i defined over [T0;T ∗0 ] as functions

x̃
(m)
i (t), FDA techniques can be exploited, as discussed by [163, 162]. The observed

data z
(m)
il are assumed as noisy measurements of the latent processes X̃

(m)
i (t), where time

t ∈ [T0;T ∗0 ] and i is the patient’s index.

For each process m, first the time-scale t ∈ Sm ⊆ [T0;T ∗0 ] is chosen. There are no

restrictions on the choice of unit of measurement for t, though the specific choice can

simplify the computational process. According to the type of observed data (i.e., periodic

or open-ended data) and the number of measurements n̄
(m)
i , the basis function system

φ
(m)
i (t) (e.g., polynomials, B-spline, Fourier, wavelets) is selected, with a number of basis

less or equal to n̄
(m)
i . Functional data objects are usually expressed by a general functional

form as linear combination of the basis functions W
(m)
i (t) = φ

(m)
i (t)Tc

(m)
i , where c

(m)
i

is the vector of coefficients for patient i. Other functional forms can be used to take

into account the nature of the process itself (e.g., positive, increasing, decreasing). For

example, for an increasing process, the functional data object can be defined using the

monotone functional form W
(m)
i (t) = β0i+β1i

∫ t
t0

exp[φ
(m)
i (u)Tc

(m)
i ]du [162]. Once selected

the type of basis functions and the functional form, data can be smoothed by regression

analysis minimizing the (penalized) sum of squared errors, obtaining functions x̃
(m)
i (t) =

Ŵ
(m)
i (t).

In the presence of constrain due to the specific application, data can be alternatively

smoothed by regression analysis using the transformation g(x) = log x−Lm
Um−x , where Lm and

Um denote the lower and upper bounds respectively. For each patient i the customized

functional predictor m is defined as:

x̃
(m)
i (t) =

Lm + Um · exp [Ŵ
(m)
i (t)]

1 + exp [Ŵ
(m)
i (t)]

. (4.2)

Starting from the customized functional datum, the FDA approach also allows to recon-

struct its derivative dx̃
(m)
i (t) as function of the derivatives of the basis functions dφ

(m)
i (t).

The derivative of the functional process, indicated as x̃
(dm)
i (t), represents the rate of change

of process values over time. Both functional data x̃
(m)
i (t) and derivatives x̃

(dm)
i (t) can be

incorporated as functional predictors into a functional Cox regression model for overall

survival by taking into account that they are correlated.

Multivariate functional linear Cox regression model

As shown in Chapter 3, MFLCRM extends the functional Cox regression model by [109] to

the case of multiple functional predictors [189]. Let
{
x̃

(m)
i

}
m∈M

be the set of realizations

of the |M|-variate functional predictors for individual i. MFLCRM includes the multiple

functional predictors in the classical Cox model [46] as:

hi

(
t|ωi,

{
x̃

(m)
i

}
m∈M

)
= h0(t) exp

{
θTωi +

∑
m∈M

∫
Sm

x̃
(m)
i (s)α(m)(s)ds

}
(4.3)
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where h0(t) is the baseline hazard function, ωi is the vector of scalar (non functional)

covariates with regression parameters θ. α(m)(s) are the functional regression parameters.

Sets Sm ⊆ [T0;T ∗0 ] are compact sets in R and can be different (both in period length and

time scale) among between different types m of functional predictors.

As shown in Section 3.2.2, by applying FPCA, each functional trajectory x̃
(m)
i (s) can

be approximated with a finite sum of Km orthonormal basis
{
ξ

(m)
1 , ..., ξ

(m)
Km

}
, i.e., the

principal components, and the hazard function in Equation (4.3) becomes:

hi

(
t|ωi,

{
x̃

(m)
i

}
m∈M

)
= h∗0(t) exp

{
θTωi +

∑
m∈M

Km∑
k=1

f
(m)
ik α

(m)
k

}
(4.4)

where h∗0(t) = h0(t) exp
{∑

m∈M
∫
Sm
µ(m)(s)α(m)(s)ds

}
is the baseline hazard function

with functional means µ(m)(s). The FPC score of individual i related to the k-th orthonor-

mal base ξ
(m)
k , representing the projection of the i-th functional compensator related to

process m along the direction of the k-th principal component, is denoted by f
(m)
ik . Pa-

rameters Km and α
(m)
k are the truncation and the k-th score regression parameters related

to process m, respectively, with α
(m)
k =

∫
Sm
ξ

(m)
k (s)α(m)(s)ds.

Therefore, through FPCA, MFLCRM can be expressed as Cox model with vector of

regression coefficients θ̃ =
[
θT ,

{(
α

(m)
1 , ..., α

(m)
Km

)}
m∈M

]T
that can be estimated by max-

imising the partial likelihood function [46]. For details related to MFLCRM formulation

see Section 3.2.2.

To select the truncation parameters Km, representing the number of FPCs to be consid-

ered, in Chapter 3 we chose the model with the highest Concordance index [151], that

is an overall measure of discrimination in survival analysis. In this work, the truncation

parameters Km are selected in terms of predictive discrimination and calibration perfor-

mances at different time horizons through the cross-validation procedure introduced in

the next Section.

Selection of truncations parameters

The truncation parameters Km in Equation (4.4) can be chosen in different ways: (i)

the Proportion of Variance Explained (PVE) [162], (ii) Akaike Information Criterion

(AIC) or Bayesian Information Criterion (BIC) or (iii) data-adaptive methods, such as

cross-validation [223]. In this analysis, a combination of these three methods is used.

Let the sets of baseline and functional predictors be fixed. First, different combina-

tions of increasing values of the truncation parameters Km for different time-varying

processes m are considered and the best models according to both AIC and BIC criteria

are selected. Then, models according to five different thresholds for PVE (Km such that

PVE≥ 80, 85, 90, 95, 99%) are identified. Finally all the selected models are compared in

terms of their predictive performances at different time horizons through cross-validation

to identify the best one.
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The predictive performance of the models is assessed in terms of discrimination and

calibration. Discrimination is assessed through the time-dependent area under the curve

(AUC), estimated through the nonparametric method by [122]. Calibration is assessed

by the weighted version of the Brier score under the assumption of independent censoring

[66]. Higher AUC and lower Brier score indicate better discrimination and calibration,

respectively.

4.2. MRC BO06 randomized clinical trial data

MRC BO06/EORTC 80931 randomized controlled trial (International Standard Ran-

domised Controlled Trial Number : https://www.isrctn.com/ISRCTN86294690, ISRCTR

86294690) was funded by the Medical Research Council (MRC) (https://www.ukri.org/

councils/mrc/) and the European Organisation for Research and Treatment of Cancer

(EORTC) (https://www.eortc.org). BO06 Randomized Controlled Trial (RCT) com-

pared the effectiveness combination chemotherapy and surgery in operable osteosarcoma

using the conventional European Osteosarcoma Intergroup (EOI) treatment of doxoru-

bicin (DOX) and cisplatin (CDDP) versus a dose-intensified regimen of DOX and CDDP

supported by granulocyte colony-stimulating factor (G-CSF). Results of the primary anal-

yses can be found in Lewis et al. (2007) [119].

4.2.1. Trial protocol

Newly diagnosed patients with non-metastatic high-grade operable osteosarcoma were re-

cruited between 1993 and 2002. BO06 RCT randomised patients between conventional

treatment with DOX and CDDP given every 3 weeks (Reg-C ) versus a dose-intense

regimen of the same two drugs given every 2 weeks supported by G-CSF (Reg-DI ).

Chemotherapy was administered for six cycles (a cycle is a period of either 2 or 3 weeks

depending on the allocated regimen), before and after surgical removal of the primary

osteosarcoma. Surgery to remove the primary tumour was scheduled at week 6 after

starting treatment in both arms, i.e., after 2 cycles (2 × [DOX+CDDP]) in Reg-C and

after 3 cycles (3 × [DOX+CDDP]) in Reg-DI. Postoperative chemotherapy was intended

to resume 2 weeks after surgery in both arms. Planned total cumulative dose was 1,050

mg/m2 in both regimens, i.e., 25 mg/m2/day for 3 days of DOX plus 100 mg/m2 of

CDDP as a continuous 24-h infusion on cycle-day 1 were given at each cycle. Planned

treatment time from beginning first cycle was 122 and 87 days for Reg-C (5 cycles · 3

weeks/cycle · 7 days/week + 14 days of surgery period + 3 days of last cycle) and Reg-DI

(5 cycles · 2 weeks/cycle · 7 days/week + 14 days of surgery period + 3 days of last cycle),

respectively. Figure 4.2 shows the trial design.

Patients baseline characteristics (age, sex, allocated chemotherapy regimen, site and loca-

tion of the tumour) were registered at randomization. Treatment-related factors (admin-

istered dose of chemotherapy, cycles delays, haematological and biochemical parameters,
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Regimen-DI:  6 cycles of DOX+CDDP every 2 weeks (DOX: 75 mg/m2/cycle;  CDDP: 100 mg/m2/cycle) 

Regimen-C:   6 cycles of DOX+CDDP every 3 weeks (DOX: 75 mg/m2/cycle;  CDDP: 100 mg/m2/cycle) 


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C1 C2 Surgery
 C3 C4 C5 C6

 Week

122 days 

1 2 3 4 5 6 7 8 9 10 11 12 13

C1 C2 C3 Surgery C4 C5 C6

 Week

87 days 

Figure 4.2. Patients are randomized at baseline to one of the two regimens, with the same anticipated

cumulative dose (DOX: 25 mg/m2/d for 3 days + CDDP: 100 mg/m2 as a continuous 24-h infusion on

day 1) but different duration (3-weekly vs 2-weekly cycles, i.e., 122 vs 87 days).

chemotherapy-induced toxicity) were collected prospectively at each cycle of chemother-

apy [119]. The resected specimen was examined histologically to assess response to pre-

operative chemotherapy. Haematological and biochemical laboratory tests were usually

performed before each cycle of chemotherapy (for blood count also at the expected nadir

of the course, that is day 10 of the cycle in Reg-C or day 8 in Reg-DI ) in order to

monitor patient’s health status and the development of toxicities or adverse events. De-

lays or chemotherapy dose reductions during treatment were possible in case of toxicity.

Non-haematological chemotherapy-induced toxicity for nausea/vomiting, mucositis, neu-

rological toxicity, cardiac toxicity, ototoxicity and infection were graded according to the

Common Terminology Criteria for Adverse Events Version 3 [208] (see next chapters).

Additional details related to the trial protocol can be found in [119].

4.2.2. Sample cohort selection and baseline characteristics

BO06 trial dataset included 497 eligible patients; 19 patients who did not start chemother-

apy (13) or reported an abnormal dosage of one or both agents (6) were excluded. Moti-

vated by the clinical research question concerning the effect of doses intensity on survival,

only patients who completed all six cycles within 180 days (i.e., T ∗0 of the observation

period) were included in the analyses. The final cohort of 377 patients (75.9% of the

initial sample) is shown in Figure 4.3. Among them, one subject presented Ti < T ∗0 and

was excluded from the FunCM cohort (376 patients – 75.7% of the initial sample).

Follow-up starts from date of randomization (T0) and the observation period [T0;T ∗0 ] is

given by the first 180 days after randomization (i.e., the 6-months chemotherapy treatment

period). Patients’ characteristics at baseline are provided in Table 4.1. Three age groups

were defined according to [43]: child (male: 0-12 years; female: 0-11 years), adolescent

(male: 13-17 years; female: 12-16 years) and adult (male: 18 or older; female: age 17

years or older). Among 377 patients, 229 (60.7%) were males and Reg-DI was allocated

in 52.3% of the patients (197). Median age was 15 years (IQR = [11; 18]) with 40.9% of

adolescents (154) and 30.2% of adults (114). Median follow-up time, computed using the
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Initial sample size

n = 497

Patients who started the therapy

n = 484

Patients with normal dosages

n = 478

Final sample size for FunCM analysis

n = 376

Patients who did not start the 
therapy: 13

Patient who did not complete all 
six cycles within 180 days: 8

Patient who did not complete

all six cycles: 93

Patients with abnormal 
dosages: 6

Patients who completed the chemotherapy

n = 385

Patients with : 1𝑇𝑖 < 𝑇 ∗0

Final sample size

n = 377

Figure 4.3. Flowchart of cohorts selection.

reverse Kaplan-Meier method by [182], was 62.19 months (IQR = [38.93; 87.46]) and 245

patients (65%) were alive at the last follow-up visit.

4.3. Results

Since the role of received chemotherapy dose, ALP and WBC biomarkers on patient’s

survival is still unclear for osteosarcoma [165, 71, 111], a new time-varying/functional

perspective may help in understanding their relationship, providing new insights for child-

hood cancer. In this regard, the methodologies proposed in Section 4.1 were applied to

the BO06 trial. Statistical analyses were performed in the R-software environment [161].

R code is provided here: https://github.com/mspreafico/BO06-FunCM.

4.3.1. Time-varying characteristics

Due to the skewed nature of the longitudinal trajectories of both ALP and WBC biomark-

ers, their logarithmic transformations shifted by one were considered. The vectors of

longitudinal values of ALP and WBC measurements for patient i are given as

z
(ALP )
i =

{
z

(ALP )
i (til), l = 1, ..., n

(ALP )
i

}
(4.5)

z
(WBC)
i =

{
z

(WBC)
i (til), l = 1, ..., n

(WBC)
i

}
(4.6)
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4.3. Results

Table 4.1. Patients’ characteristics at randomization and histological responses.

Baseline characteristic

Patients 377

Age* [years]

Median (IQR) 15 (11; 18)

Minimum/maximum 3/40

Child* 109 (28.9%)

Adolescent* 154 (40.9%)

Adult* 114 (30.2%)

Sex

Female 148 (39.3%)

Male 229 (60.7%)

Allocated treatment

Regimen-C 180 (47.7%)

Regimen-DI 197 (52.3%)

Site of tumour

Femur 227 (60.2%)

Fibula 22 (5.8%)

Humerus 37 (9.8%)

Radius 3 (0.8%)

Tibia 87 (23.1%)

Ulna 1 (0.3%)

Location of tumour

Distal 217 (57.6%)

Mid-shaft 11 (2.9%)

Proximal 148 (39.2%)

Missing (NA) 1 (0.3%)

Histological Response**

Poor 186 (49.3%)

Good 144 (38.2%)

Missing (NA) 47 (12.5%)

White Blood Count‡ [×109/L]

Median (IQR) 7.65 (6.30; 9.13)

Minimum/maximum 3.60/16.20

Alkaline Phospathase‡ [IU/L]

Median (IQR) 311.5 (190.0; 551.5)

Minimum/maximum 49.0/3680.0

* Age groups were defined according to Collins et al. (2013) [43]: child (male: 0-12 years; female: 0-11 years),

adolescent (male: 13-17 years; female: 12-16 years) and adult (male: 18 or older; female: age 17 years or older).

** The resected specimen was examined histologically to assess response to pre-operative chemotherapy [119]. Good

histological response was defined as ≥ 90% necrosis in the tumour resected; 10% or more viable tumour after pre-

operative chemotherapy was defined poor [119].

‡ Baseline White Blood Count (WBC) and Alkaline Phospathase (ALP) levels refer to the measure performed before

the beginning of cycle 1, i.e., at randomization.
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4. Modelling time-varying covariates effect on survival via Functional Data Analysis

where til is the time of the l-th laboratory ALP or WBC test, z
(ALP )
i (til) = log(ALPil+1)

and z
(WBC)
i (til) = log(WBCil + 1) are the logarithmic values of ALP and WBC mea-

surements at time til, n
(ALP )
i and n

(WBC)
i are the number of different ALP and WBC

laboratory tests, respectively. Left and central panels of Figure 4.4 show the longitudi-

nal trajectories over time of z
(ALP )
i and z

(WBC)
i respectively. Each line represents the

time-varying logarithmic biomarker values for a specific patient coloured by event status

(black: Censored, red: Dead). Observed longitudinal data can be sparse and irregularly

measured among patients and different biomarkers. ALP point-measurements z
(ALP )
i (til)

observed among all patients over time ranged from a minimum of 2.708 to a maximum

of 8.211 (corresponding to ALP values of 14 and 3680 IU/L, respectively). WBC point-

measurements z
(WBC)
i (til) observed among all patients over time ranged from a minimum

of 0.095 to a maximum of 4.771 (corresponding to WBC values of 0.1 and 117.0 ×109/L,

respectively). The presence in both biomarkers of extremely high/low levels compared

to normal ranges is due to the presence of conditions usually experienced by patients in

childhood cancer therapies, such as bone growth, tumour necrosis, inflammatory states,

infections or toxicity (see [218].

The time-varying standardized cumulative dose of chemotherapy is now introduced. Let

l ∈ {1, ..., 6} be the cycle index and til the time of the l-th cycle for the i-th patient.

The standardized cumulative dose of chemotherapy (DOX+CDDP) for the i-th patient

at time til is defined as:

z
(δ)
i (til) =

Cumulative dose of DOX+CDDP until cycle l [mg/m2]

Total target dose at the end of six cycles [mg/m2]

=
1

175 [mg/m2] · 6
·

l∑
c=1

DOXic + CDDPic
surface areaic

[mg
m2

]
.

(4.7)

This can be interpreted as the regulated Received Dose Intensity (rRDI) introduced by

Lancia et al. (2019) [110] evaluated over real time and not over cumulative time on treat-

ment. For each patient i, the vector of longitudinal values of standardized cumulative

dose of chemotherapy over time is defined as z
(δ)
i = {z(δ)

i (til), l = 1, ..., 6}. The right

panel of Figure 4.4 shows the longitudinal trajectories z
(δ)
i over time. Each line represents

the individual time-varying standardized cumulative chemotherapy dose coloured by allo-

cated regimen (pink: Reg-DI, purple: Reg-C ). Patients – also within the same regimen –

reported different values of standardized cumulative dose during time, depending on the

delays and dose reductions required during chemotherapy due to toxicity. In particular,

the lines form a tight bundle in the early phase of the treatment, but later they open up

in a hand-fan shape because treatment adjustments are generally more frequent towards

the end of the protocol. Median value of total standardized cumulative dose z
(δ)
i (ti6) was

0.998 (IQR = [0.901; 1.000]), with minimum and maximum final values equal to 0.613

and 1.056, respectively. Median value of time from randomization to last cycle ti6 was

127 days (IQR = [114; 179]), with minimum and maximum periods of 85 and 179 days,

respectively.
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4.3. Results
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Figure 4.4. Time-varying covariates for each patient. Left panel: longitudinal logarithmic values of ALP

biomarker over time coloured by event status (black: Censored, red: Dead). Central panel: longitudinal

logarithmic values of WBC biomarker over time coloured by event status (black: Censored, red: Dead).

Right panel: longitudinal values of standardized cumulative dose of chemotherapy coloured by allocated

regimen (pink: Reg-DI, purple: Reg-C )

4.3.2. Time-Varying covariate Cox Model

To study the effect of time-varying biomarkers and doses on survival, a TVCM was fitted

on the final cohort of 377 patients (see Figure 4.3). In particular, the hazard function in

Equation (4.1) was adjusted for gender at randomization (ωi) and stratified by age group

g ∈ {child, adolescent, adult}, as follows:

hig (t|ωi, zi(t)) = h0g(t) exp

{
θ1 · genderi + α1 · z(ALP )

i (t)+

α2 · z(WBC)
i (t) + α3 · 100z

(δ)
i (t)

} (4.8)

where h0g(t) is the baseline hazard function for the g-th age stratum, z
(ALP )
i (t), z

(WBC)
i (t)

and z
(δ)
i (t) are the time-varying covariates of ALP and WBC biomarkers and standardized

cumulative dose (multiplied by 100 due to its different values scale), obtained applying

LOCF method to longitudinal vectors z
(ALP )
i , z

(WBC)
i and z

(δ)
i respectively.

In Table 4.2 hazard ratios along with their 95% confidence intervals are shown. Gender at

randomization and time-varying WBC were associated to survival, whereas time-varying

ALP biomarker and chemotherapy dose showed no effects on survival. Being a male was

associated to a 1.5-times faster experience of the event. The higher the value of WBC

at time t, the higher the risk of death. This model ignored the continuous nature of the

processes underlying the data.
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4. Modelling time-varying covariates effect on survival via Functional Data Analysis

Table 4.2. Estimated hazard ratios (HR) along with 95% confidence intervals (CI) from the stratified

time-varying covariate Cox model (TVCM) in Equation (4.8).

Covariates HR 95% CI

gender (male) 1.539 [1.046; 2.263]

z
(ALP )
i (t) 0.991 [0.711; 1.383]

z
(WBC)
i (t) 0.647 [0.477; 0.877]

z
(δ)
i (t) · 100 1.005 [0.984; 1.027]

4.3.3. Functional covariate Cox Model

Functional representation of time-varying biomarkers and chemotherapy dose

To convert the longitudinal values of ALP and WBC biomarkers registered during the

observation period, z̄
(ALP )
i and z̄

(WBC)
i , into the functions x̃

(ALP )
i (t) and x̃

(WBC)
i (t), mea-

surements by cycles were used. This implies that all time-varying values were on the

same temporal domain, i.e., t ∈ SALP = SWBC = [1, 6] cycles. For both ALP and WBC

biomarkers (m = {ALP,WBC}), B-spline basis functions φ
(m)
i (t) (ALP : 2 or 3 basis of

order 2 or 3; WBC : 6 or 7 basis of order 5, according to each patient i) and a general

functional form were used. Clinical bounds [Lm;Um] (ALP : [0;9]; WBC : [0;5]) were em-

ployed in order to include the extremely high/low levels experienced by patients during

treatment. Lower bounds equal to 0 were chosen to ensure the non-negativity of the

functional values. A data driven approach was used to select the upper bounds defined

as Um =
⌈
maxi,l z

(m)
i (til)

⌉
. For each patient i the following functional ALP and WBC

predictors were provided:

x̃
(ALP )
i (t) =

9 · exp
[
φ

(ALP )
i (t)T ĉ

(ALP )
i

]
1 + exp

[
φ

(ALP )
i (t)T ĉ

(ALP )
i

] , (4.9)

x̃
(WBC)
i (t) =

5 · exp
[
φ

(WBC)
i (t)T ĉ

(WBC)
i

]
1 + exp

[
φ

(WBC)
i (t)T ĉ

(WBC)
i

] (4.10)

where ĉ
(m)
i (m = {ALP,WBC}) are the vectors of coefficients estimated by regression

analysis using the transformation g(x) = log x−Lm
Um−x . Starting from the customized func-

tional data in Equations (4.9) and (4.10), the derivatives x̃
(dm)
i (t) (m = {ALP,WBC}),

which represents the rate of change in the biomarkers values over time, were reconstructed.

A graphical representation of functional biomarkers curves and their derivatives are shown

in Figure 4.5 and 4.6, respectively (left panels: ALP biomarker; central panels: WBC

biomarker). Each line represents the functional predictor for patient i coloured according

to the death-event status.

To convert the longitudinal values of standardized cumulative chemotherapy dose z
(δ)
i into

the functional form x̃
(δ)
i (t), measurements in days were considered since different duration

in treatment is a key-point in the chemotherapy protocol. Based on clinical motivations,
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Figure 4.5. Left panel: functional representations of ALP biomarker over cycles coloured by status

(black: Censored, red: Dead). Central panel: functional representations of WBC biomarker over cycles

coloured by status (black: Censored, red: Dead). Right panel: functional representations of standardized

cumulative dose of chemotherapy over time coloured by allocated regimen (pink: Reg-DI, purple: Reg-C ).

Each line is the graphical representation of the functional predictor of a patient.
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Figure 4.6. Left panel: functional representations of the rate of change of ALP biomarker over cycles

coloured by status (black: Censored, red: Dead). Central panel: functional representations of the rate

of change of WBC biomarker over cycles coloured by status (black: Censored, red: Dead). Right panel:

functional representations of the rate of change of standardized cumulative dose of chemotherapy over time

coloured by allocated regimen (pink: Reg-DI, purple: Reg-C ). Each line is the graphical representation

of the functional predictor of a patient.
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the interval Sδ = [0, 180] days was selected, since all the patients completed the therapy

within 180 days from randomization. B-spline basis functions φ
(δ)
i (t) (5 basis of order 5),

a monotone functional form and clinical bounds Lδ = 0 and Uδ = 1.1 were used. For

each patient i a functional predictor of standardized cumulative dose of chemotherapy

was obtained:

x̃
(δ)
i (t) =

1.1 · exp
(
β̂0i + β̂1i

∫ t
0

exp
[
φ

(δ)
i (u)T ĉ

(δ)
i

]
du
)

1 + exp
(
β̂0i + β̂1i

∫ t
0

exp
[
φ

(δ)
i (u)T ĉ

(δ)
i

]
du
) (4.11)

where ĉ
(δ)
i is the vector of coefficients estimated by penalized regression analysis using

the transformation g(x) = log x−Lδ
Uδ−x

. Finally, starting from the customized functional

data in Equation (4.11), the derivatives x̃
(dδ)
i (t), which represents the rate of change of

chemotherapy dose over time, were reconstructed. A graphical representation of func-

tional standardized cumulative dose curves x̃
(δ)
i (t) and their derivatives x̃

(dδ)
i (t) are shown

in right panels of Figure 4.5 and 4.6, respectively. Each line represents the functional

predictor for patient i coloured according to the allocated regimen. Functional standard-

ised cumulative dose curves x̃
(δ)
i (t) (right panel in Figure 4.5) also provide information on

treatment adjustments. Dose reductions are represented by final standardised cumulative

dose smaller than 1. For patients with a similar final dose, the slope displays information

on the duration of treatment: the lower the slope, the longer the duration of treatment,

reflecting delays compared to protocol.

Figure 4.5 and 4.6 show that, taking into account the continuous nature of the processes

underlying the data, a customized functional representation of the time-varying covariates

and their derivatives highlights trends and variations in the shape of the processes over

time.

Functional principal component analysis for time-varying biomarkers and

chemotherapy

The functional trajectories provided in Equations (4.9), (4.10) and (4.11) and their deriva-

tives were summarised into a finite set of covariates by applying Functional Principal

Component Analyses (FPCAs). Only results of FPCA on functional predictors x̃
(ALP )
i (t)

and x̃
(δ)
i (t) are presented. In both cases, two principal components were enough to account

for at least 95% of the observed variability.

Results of FPCA on functional ALP predictors x̃
(ALP )
i (t) are provided in Figure 4.7. Left

panel reports the FPC scores plot
(
f

(ALP )
i1 , f

(ALP )
i2

)
with relative boxplots, which show

the distributions of the estimated FPC score values among censored and dead patients.

Each point represents a patient coloured by status (black: Censored, red: Dead). Central

and right panels displays how to interpret the first two Principal Components ξ
(ALP )
k ,

showing the average ALP curve µ(ALP )(t) ± c

√
ν

(ALP )
k · ξ(ALP )

k (t) where ν
(ALP )
k is the is

eigenvalue related to the k-th component and c are constants chosen in order to let the

scores values lie within one, two or three (±c = ±1,±2,±3) standard deviations (i.e.,
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Figure 4.7. FPCA for functional Alkaline Phosphatase x̃
(ALP )
i (t).

Left panel: Functional PC scores plot
(
f

(ALP )
i1 , f

(ALP )
i2

)
with boxplots (black: Censored, red: Dead).

Central panel: Interpretation of first FPC ξ
(ALP )
1 – average standardized cumulative dose µ(ALP )(t) ±

c

√
ν

(ALP )
1 · ξ(ALP )

1 (t), with

√
ν

(ALP )
1 = 1.48 and ±c = ±1,±2,±3.

Right panel: Interpretation of second FPC ξ
(ALP )
2 – average standardized cumulative dose µ(ALP )(t) ±

c

√
ν

(ALP )
2 · ξ(ALP )

2 (t), with

√
ν

(ALP )
2 = 0.23 and ±c = ±1,±2,±3.
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Figure 4.8. FPCA for functional standardized cumulative dose x̃
(δ)
i (t).

Left panel: Functional PC scores plot
(
f

(δ)
i1 , f

(δ)
i2

)
with boxplots (pink: Reg-DI, purple: Reg-C ).

Central panel: Interpretation of first FPC ξ
(δ)
1 – average standardized cumulative dose µ(δ)(t)± c

√
ν

(δ)
1 ·

ξ
(δ)
1 (t), with

√
ν

(δ)
1 = 1.31 and ±c = ±1,±2,±3.

Right panel: Interpretation of second FPC ξ
(δ)
2 – average standardized cumulative dose µ(δ)(t)± c

√
ν

(δ)
2 ·

ξ
(δ)
2 (t), with

√
ν

(δ)
1 = 0.15 and ±c = ±1,±2,±3.
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4. Modelling time-varying covariates effect on survival via Functional Data Analysis

square roots of ν
(ALP )
k ). The first component ξ

(ALP )
1 explained 83.8% of the variability

and a positive (negative) score reflected higher (lower) values of ALP trajectories during

treatment compared to the mean (left panel). The second component ξ
(ALP )
2 explained

13.1% of the variability and positive scores reflected “flat” curves, whereas negative score

reflected curves with highly negative slopes in the first cycles (right panel). The lower the

score, the higher the ALP levels during the first two cycles of the treatment. FPC scores

thus summarize the different patterns of the functional biomarker trajectories between

patients during treatment, being a more informative representation than the baseline

value or the last available measure used through LOCF.

Results of FPCA on functional standardized cumulative dose x̃
(δ)
i (t) are shown in Figure

4.8. Left panel reports the FPC scores plot
(
f

(δ)
i1 , f

(δ)
i2

)
with relative boxplots, which

show the distributions of the estimated FPC score values among the two regimens. Each

point corresponds to a patient. Different colours represent the two regimens. Central and

right panels displays how to interpret the first two Principal Components ξ
(δ)
k , showing

the average curve µ(δ)(t) ± c

√
ν

(δ)
k · ξ

(δ)
k (t) where ν

(δ)
k is the is eigenvalue related to the

k-th component and c are constants chosen in order to let the scores values lie within

one, two or three (±c = ±1,±2,±3) standard deviations (i.e., square roots of ν
(δ)
k ).

The first component ξ
(δ)
1 explained 86.9% of the variability and reflects information on

treatment administration and adjustments with respect to protocol. Positive scores (i.e.,

curves above the average µ(δ)(t) in the left panel) indicate patients without dose-reduction

(i.e., their final standardized cumulative dose is greater or equal to 1) and with possible

delays in treatment: the lower the positive score, the higher the time needed to end

the treatment. Negative scores (i.e., curves below the average µ(δ)(t)) represent patients

with both time-delays and dose-reduction: the lower the negative score, the higher the

total dose-reduction. The second component ξ
(δ)
2 explained 9.8% of the variability and

a positive score indicated a faster growth in the chemotherapy assumption in the first

period compared to the second one, with respect to the mean (right panel). Every two

patients reported different values of FPC scores, reflecting delays or dose reductions during

chemotherapy. This representation illustrates different treatment dynamics, also among

patients allocated to the same regimen. Summarizing differences in both trends and

variations related to the shape of chemotherapy doses consumption processes over time,

the use of FPC scores is more informative than an IIT analysis by different allocated

regimens or a LOCF approach that considers only the last available value.

Multivariate functional linear Cox regression model

To study the effect of risk factors on survival, several MFLCRMs based on different sets

of baseline and functional predictors (see Table 4.3) were estimated. Since functional

trajectories and their relative derivatives are correlated, in each MFLCRM only one type

was considered. Each model was adjusted for gender and stratified by age group at

randomization g ∈ {child, adolescent, adult}. When functional rate of changes of ALP

or WBC biomarkers were included in the models, the values of logarithmic ALP or WBC
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4.3. Results

Table 4.3. Selected truncation parameters Km and integrated AUC (iAUC) for different sets of baseline

and functional predictors. iAUC for stratified time-varying covariate Cox model (TVCM) in Equation

(4.8).

Model Baseline Truncation parameters Km iAUC

ωi ALP dALP WBC dWBC δ dδ

1 (genderi) 2 - 7 - 1 - 0.650

2 (genderi) 2 - 7 - - 1 0.635

3 (genderi, wbci) 2 - - 4 2 - 0.666

4 (genderi, wbci) 2 - - 4 - 3 0.664

5 (genderi, alpi, wbci) - 2 - 4 2 - 0.650

6 (genderi, alpi, wbci) - 2 - 4 - 3 0.647

7 (genderi, alpi) - 1 7 - 1 - 0.645

8 (genderi, alpi) - 1 7 - - 1 0.641

TVCM 0.592

levels at randomization were also considered as adjusting baseline covariates. Cross-

validation with five folds was employed to select the truncation parameters Km for each

set of covariates (see Table 4.3). Time-dependent AUCs and Brier scores were estimated

with R packages tdROC (function tdROC) by [123] and ipred (function sbrier) by [153],

respectively. Figure 4.9 shows the cross-validated mean values of time-dependent AUC

and Brier score over different time horizons for all estimated models (solid lines) and for

TVCM in Equation (4.8) (dashed black lines). All functional models outperformed TVCM

and showed similar Brier score measures over time, therefore time-dependent AUC was

used to select the final model. Weighted averages of the several time-dependent AUCs

over time, estimated through the integrated AUCs (iAUC) by [74], are reported in Table

4.3.
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Figure 4.9. Left panel: time-dependent AUC over different time horizons (from 1 to 7 years after

randomization) for Models 1-8 of Table 4.3 (solid coloured lines) and TVCM in Equation (4.8) (dashed

black line). Right panel: Brier score over different time horizons.
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4. Modelling time-varying covariates effect on survival via Functional Data Analysis

According to the highest iAUC, the best MFLCRM was Model 3, defined as follows:

hig

(
t|ωi, x̃(ALP )

i (t), x̃
(dWBC)
i (t), x̃

(δ)
i (t)

)
=

= h0g(t) exp

{
θ1 genderi + θ2wbci +

2∑
k=1

f
(ALP )
ik α

(ALP )
k +

4∑
k=1

f
(dWBC)
ik α

(dWBC)
k +

2∑
k=1

f
(δ)
ik α

(δ)
k

} (4.12)

where h0g(t) is the baseline hazard function for the g-th age stratum, ωi = (genderi, wbci)

is the vector of baseline covariates; x̃
(ALP )
i (t), x̃

(dWBC)
i (t) and x̃

(δ)
i (t) are the functional pre-

dictors of ALP biomarker, rate of change of WBC and standardized cumulative dose, re-

spectively, with relative FPC scores f
(m)
ik (k = 1, ..., Km; m ∈ {ALP, dWBC, δ};KALP =

2;KdWBC = 4;Kδ = 2).

To estimate the effect of the selected functional predictors on survival, MFLCRM (4.12)

was fitted on the FunCM cohort of 376 patients (see Figure 4.3). In Table 4.4 hazard ratios

along with their 95% confidence interval are shown. Level of WBC at randomization and

the FPC scores related to alkaline phosphatase f
(ALP )
i1 , f

(ALP )
i2 were associate to survival.

The higher the value of WBC at randomization the higher the risk of death, whereas no

effects were observed due to the rate of change in WBC during the protocol observation

period. Patients with high ALP trajectories had poor survival, especially in case of curves

with highly negative slopes during the first cycles of chemotherapy protocol. FPC scores

related to functional chemotherapy dose showed no effects on survival. Estimated survival

probabilities are shown in Figure 4.10. High values of baseline WBC corresponded to poor

survival (top-left panel). The score f
(δ)
i1 related to the first PC of functional chemotherapy

indicated that there was no improvement on survival due to dose-intense profiles (top-right

panel). The effect of functional ALP biomarker suggested that patients with high ALP

trajectories over time (i.e., high value of f
(ALP )
i1 – bottom-left panel), especially during the

first cycles of the chemotherapy protocol (i.e., low value of f
(ALP )
i2 - bottom-right panel),

had poor survival.

4.4. Final remarks

In this chapter, a novel approach based on FDA techniques to investigate the dynamics

of time-varying processes over time and to include additional information that may be

related to the survival into the time-to-event model was presented. Data from the MRC

BO06/EORTC 80931 randomized clinical trial for osteosarcoma treatment were anal-

ysed. Biomarkers and chemotherapy dose were incorporated as time-varying covariates

into time-to-event models using both a TVCM and a FunCM approach. The standard

TVCM with LOCF approach ignored the continuous nature of the processes underly-

ing the data. To overcome this issue, FunCM exploited FDA techniques to represent

time-varying characteristics in terms of functions, enriching the information available for
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4.4. Final remarks

Table 4.4. Estimated hazard ratios (HR) along with 95% confidence intervals (CI) from the multivariate

functional linear Cox regression model.

Covariates HR 95% CI

gender (male) 1.431 [0.964; 2.123]

wbc 3.169 [1.525; 6.585]

f
(ALP )
1 1.210 [1.018; 1.437]

f
(ALP )
2 0.554 [0.399; 0.768]

f
(δ)
1 0.869 [0.719; 1.051]

f
(δ)
2 0.885 [0.547; 1.432]

f
(dWBC)
1 0.990 [0.889; 1.102]

f
(dWBC)
2 0.916 [0.789; 1.062]

f
(dWBC)
3 1.161 [0.892; 1.512]

f
(dWBC)
4 1.219 [0.898; 1.655]
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Figure 4.10. Estimated survival probability based on the multivariate functional linear Cox regression

model (4.12). Time t0 = 0 corresponds to T ∗0 in Fig. 4.1. Top-left panel: patients with different values

of WBC [× 109/L] at randomization (green: WBC = 4; blue: WBC = 8; red: WBC = 12). Top-

right panel: patients with different values of the first PC score for functional chemotherapy (purple:

f
(δ)
1 = −0.8; pink: f

(δ)
1 = 0.8). Bottom-left panel: patients with different values of the first PC score

for functional ALP biomarker (red: f
(ALP )
1 = 1; blue: f

(ALP )
1 = −1). Bottom-right panel: patients with

different values of the second PC score for functional ALP biomarker (red: f
(ALP )
2 = 0.5; blue: f

(ALP )
2 =

−0.5). When not specified, the other risk factors are fixed to the most frequent class for categorical

covariates, i.e., adolescent males, and to the median value for continuous ones, i.e., WBC = 7.65×109/L

at randomization, f
(δ)
1 = 0.08, f

(δ)
2 = −0.03, f

(ALP )
1 = −0.10, f

(ALP )
2 = 0.07, f

(dWBC)
1 = −0.12,

f
(dWBC)
2 = −0.02, f

(dWBC)
3 = −0.07 and f

(dWBC)
4 = −0.08.
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4. Modelling time-varying covariates effect on survival via Functional Data Analysis

modelling survival with relevant time-varying features related to the evolution of the pro-

cesses over time. These features were included into MFLCRMs by FPCA to study the

effects of functional risk factors on patients’ overall survival.

Differences in results for TVCM and MFLCRM were due to the different nature of the

information incorporated in the two models. As a piecewise-constant approach, TVCM

considered as constants the last biomarkers/dose levels over different time points (ex-

pressed in days). In practice, among the measurements recorded during the observation

period, only the last value had any real impact on overall survival, as only one patient

presented with a time-to-event of less than 180 days. This discarded both information

about the continuous nature of the processes and the history of the actual levels measured.

MFLCRM included information related to different levels variations and timing during the

entire observation period, and functional biomarkers were defined over cycles. Thanks to

the introduction of relevant dynamic features related to the continuous functional nature

of the processes, MFLCRM resulted more informative than TVCM, outperforming it both

in terms of calibration and discrimination over time. MFLCRM results suggested that

osteosarcoma patients with high ALP trajectories during treatment, especially during the

first cycles of the chemotherapy protocol, have poor overall survival. Dose-intense profiles

were not associated with survival, even if functional chemotherapy representations were

able to capture individual realisations of the intended treatment, detecting differences

between patients randomised to the same regimen. This suggested that considering only

the assumed dose as treatment proxy is not enough. Chemotherapy presents some par-

ticular aspects, such as latent accumulation of toxicity, which must be taken into account

[112].

The proposed FunCM focused on the representation and the reconstruction of the func-

tional trajectories related to the time-varying processes of interest. Such data are usually

considered in a very simplistic way in cancer prediction models, where they act as fixed

baseline or as time-dependent LOCF covariates. In this way the amount of information

they may provide is not considered, as it is often the changing patterns of the func-

tional trajectories rather than the baseline/last value that affects patients’ survival. The

strength and innovation of FunCM was the ability to capture the individual realisations

of the process over time through a customized functional reconstruction. The developed

techniques allowed (i) to account for the continuous time-varying nature of the processes

underlying the data and their properties, such as nonlinearity, positivity, constraints,

monotonicity, (ii) to move from sparse and irregular longitudinal data to functions de-

fined over a common continuous domain, overcoming the issues of values missingness and

different temporal grids, and (iii) to reconstruct and provide derivatives information in

a tailored way. The use of derivatives is important both in extending the range of sim-

ple graphical exploratory methods and in the development of more detailed methodology

[162]. In fact, interesting patterns are often much more apparent in derivatives than in

the original curves. Furthermore, through a proper dimensionality reduction technique,

this methodology allowed to extract additional information contained in the functions.

This result is an effective exploratory and modelling technique to highlight trends and

variations in the evolution of the processes over time.
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4.4. Final remarks

In contrast to a TVCM approach, the use of FunCM requires that patients survived

for a period at least equal to the length of the observation period used to compute the

functional predictors. This might imply a loss of information in situations with high rate

of mortality during the observation period (that is not the case under study as only one of

the cohort patients who had completed the chemotherapy treatment protocol died during

the first 6-months after randomization – see Figure 4.3). In those cases, a joint modelling

approach can be used to overcome both LOCF and selection bias issues, since its allows

the simultaneous modelling of longitudinal and time-to-event outcomes. However, joint

models are computational expensive in case of multiple longitudinal outcomes and require

assumptions on the distributions of the processes that need to be carefully validated to

avoid biased estimates.

This work opens doors to many further developments, both in the field of statistical

methods and in cancer research. The dimensionality reduction via FPCA is just one way

to work with these data in order to use them within inferential contexts. In fact, the

reconstruction via FDA allows to properly use the functional data to address relevant

clinical research questions, according to the needs of the analysis and the outcomes of

interest. From a clinical point of view, it will be necessary to simultaneously consider

chemotherapy modifications and the occurrence of adverse events. This aspect need to

be taken into account into the representation of the dynamic evolution of these processes.

To model them simultaneously is not straightforward, as we will see in Chapter 7.

In conclusion, this study showed that working in this direction is a difficult but profitable

approach, which could lead to new improvements for subject-specific survival predictions

and personalised treatment. The complexity of the phenomenon asks for the developments

of new methodologies able to deal with the peculiar aspects of chemotherapy treatment,

such as the presence of multiple types of toxic side effects during chemotherapy cycles.

In this sense, Chapters 5 and 6 will be devoted to the development of new methods, still

lacking in the medical literature, capable of appropriately representing the overall toxicity

burden experienced by patients during treatment.
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