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CHAPTER 3

Functional modelling of recurrent

events on time-to-event processes

This chapter has been published in Biometrical Journal, 63(5):948–967, 2021 as M. Spreafico

and F. Ieva “Functional modeling of recurrent events on time-to-event processes” [189].

In clinical practice many situations can be modelled in the framework of recurrent events,

i.e., the repeated occurrence of the same type of events for the same patient over time.

Chronic patients are usually involved in long-term therapies, that are often characterized

by repeated situations like office visits, subsequent drug consumption, hospital admissions

and many others. Examples include recurrences in breast cancer [174], asthma attacks

[52], episodic relapses of follicular lymphoma [174], readmission after colorectal cancer

[64, 36], epileptic seizures [215]. In patients with HF, two main types of events recur dur-

ing treatment: (i) repeated consumption of multiple types of drugs and (ii) hospital read-

missions [104, 21, 173]. Since models capable of simultaneously treating multiple drugs

have not been well developed in pharmacotherapy, it could be interesting to concomitantly

analyse more than one medication at the same time, along with re-hospitalizations events

which usually herald a substantial worsening of patient’s survival prognosis. As discussed

in Chapter 2, the natural and most appropriate way to look at these repeated events is to

treat them as time-varying covariates, since their changing patterns over time could carry

out information that may be related to patient’s health status and disease progression.

In biostatistical, epidemiological and medical literature, several approaches to analyse

recurrent event data have been proposed and compared [202, 103, 44, 95, 106, 11, 149].

Different methods differ in the assumptions and in the interpretation of the results, but

they all take into account the correlation between repeated events regarding the same

individual. The most frequently applied method is the AG model by Andersen and Gill

(1982) [12], which is an extension of the Cox proportional-hazard regression by Cox (1972)

[46]. The AG model for recurrent events introduces the counting process formulation in

terms of increments in the number of events along time. It assumes that the correlation

between event times for an individual can be explained by past events, which share a

common baseline hazard. In this way, the dependence could be captured by appropri-

ate specification of time-varying covariates which are functions of the realisation of past

events, such as the number of previous occurrences. This model is usually indicated for
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analysing data when correlations among events for each individual are induced by mea-

sured covariate and the interest lies in the overall effect on the intensity of the occurrence

of the event [11]. Two alternative approaches are the stratified Cox-type conditional [156]

and marginal [213] models, which can incorporate both overall and event-specific effects

for each covariate. The stratified conditional Prentice-Williams-Peterson (PWP) model

analyses repeated events ordered by stratification, based on the prior number of events

during the follow-up period. However, it can give unreliable estimates for higher order of

events [11]. The stratified marginal Wei-Lin-Weissfeld (WLW) model ignores the order

of occurrence of the events. Therefore, an individual is at risk for every event as long

as he/she is under observation, even if no previous events occurred, leading to a ‘carry-

over effect’ as explained by [103] and [149]. As a further alternative, Cox model can be

also extended using frailty models [85, 202, 175, 176, 44, 106, 60], in which a random

covariate that induces dependence among the event times is introduced. This approach

assumes that recurrent event times are independent conditional on the covariates and the

random effects, and it is used to model individual patients’ heterogeneity in the base-

line hazards. Furthermore, approaches able to connect several event processes (recurrent

and fatal/non-fatal ones) have been proposed. Among others, (copula-based) joint frailty

models [177, 174, 54, 124, 125] allow the prediction of a terminal event time given recur-

rent event times. Alternatively, rate-based models [34, 197, 37, 224, 196] or multi-state

models [13, 44] can be used in case of multiple types of recurrent events. The choice of the

proper approach for the analysis of recurrent event data will therefore be determined by

many factors, including among others, number and types of events, relationship between

subsequent events and biological processes [11].

Aforementioned methods are used to analyse single or several event processes, possibly

connecting them to another event of interest. However, none of these approaches has

been used to extrapolate information from repeated events in the form of dynamic func-

tional covariates, and then study how these covariates affect other specific events, such

as patient’s death. In this framework, Baraldo et al. (2013) [21] proposed a method to

model the realized trajectories of the cumulative hazard functions underlying a recurrent

event process of interest (i.e., hospital readmissions in time). Estimated trajectories were

treated as functional data and included into a generalized linear model to predict a binary

telemonitoring outcome. However, the authors focused only on a counting process formu-

lation for recurrent events, without considering further information about them. Indeed,

many situations and events are characterized by both a location (in time or space) and

a weight or other distinguish attribute, called mark [47]. For example, in HF treatment

a longer period in hospital could reflect the aggravation of patient’s health condition, as

well as a shorter drug coverage period could lead to nonadherence to therapy, commonly

associated with adverse health conditions [102, 187, 188]. The development of models and

methods able to deal with all these peculiar aspects is of statistical interest and of clinical

relevance.

Motivated by the clinical question concerning the effect of re-hospitalizations and subse-

quent consumption of different drugs on survival in HF patients, in this chapter we pro-

posed a new methodology that exploits recurrent events modelling [44], point processes
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theory [113, 47] and Functional Data Analysis (FDA) [162] to represent time-varying

events in terms of functions, plugging them into a suitable functional Cox model for over-

all survival. In order to take into account many aspects that could influence the events, our

idea was to look at time-varying recurrent events as particular non-stationary stochas-

tic counting processes which can depend on their marks, i.e., marked point processes

[113, 47]. Starting from the idea by [21], we developed a marked point process formulation

for recurrent events to compute the realized trajectories of the cumulative hazard func-

tions (i.e., the compensators) underlying specific counting processes of interest, allowing

the dependence on the marks. In particular, among the aforementioned methods to deal

with recurrent events, we modelled the compensators through AG models [12], ending up

with functional data that represent the dynamic evolution of the events risk. Then, we

applied Functional Principal Component Analysis (FPCA) [162] in order to perform a

dimensionality reduction and summarise information emerging from the functional com-

pensators to a finite set of covariates, while losing a minimum part of the information.

This information was finally included into a functional linear Cox regression model [109],

extended to the case of multiple functional predictors.

The procedure presented in this chapter can hence be divided into two phases:

(i) the representation of time-varying functional compensators,

(ii) the modelling of such covariates in a time-to-event framework.

In doing so, we aimed to enrich the information available for modelling survival with rele-

vant dynamic features, as well as to provide a new setting for quantifying the association

between time-varying processes and patients’ overall survival.

The remaining part of the chapter is organized as follows. In Section 3.1 we describe the

real study design used in this work. In Section 3.2 we present the whole methodology.

First, we focus on the main novelty introduced by the present work, i.e., the marked point

process formulation for recurrent events to represent the compensators (Section 3.2.1).

Then we introduce the functional linear Cox regression model for overall survival in case

of multiple functional predictors (Section 3.2.2). In Section 3.3 we apply the proposed

methodology to HF administrative database provided by Regione Lombardia - Healthcare

Division [164] . Finally, Section 3.4 contains some concluding remarks, discussion of

strengths and limitations of the proposed approach and opportunities for future work.

Statistical analyses were performed in the R software environment [161]. Source code is

available as Supporting Information of [189].

3.1. Materials and Administrative data

3.1.1. Administrative data sources

As in Chaper 2, in this work we focused on a representative sample of the real administra-

tive HFData database [136] provided by Regione Lombardia - Healthcare Division [164]
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related to non-paediatric patients living in Lombardy with their first HF discharge (index

event) between January 2006 to December 2012. As explained in Section 2.2.2, patients’

clinical history of hospitalizations or drug consumption could be reconstructed using sec-

ondary registry data related to (i) patient admission to hospital (i.e., date of discharge

from hospital, length of stay in hospital) and (ii) pharmaceutical purchases (i.e., ATC

code, date of purchase, number of treatment days covered by the prescription). Among

the disease-modifying drugs for HF patients [138, 139, 154], we focused on polyphar-

macy treatment as a combination of Angiotensin-Converting Enzyme (ACE) inhibitors,

Beta-Blocking (BB) agents and Anti-Aldosterone (AA) agents.

3.1.2. Study design and outcome measure

Figure 3.1 shows the study design. A 5-years pre-study period from 2000 to 2005 was

used in order to consider only ”incident” HF patients, i.e., patients with no contacts with

healthcare system in the previous five years due to HF. The study-period started from

the first discharge for HF (time T0 in Figure 3.1) and was divided into the observation

period (365 days from the index date), used for the compensators reconstruction, and the

follow-up period, used for the survival analysis, whose starting time was T ∗0 = T0 + 365.

The modelling of the compensators related to the stochastic processes of interest regarded

the time interval [T0;T ∗0 ] in Figure 3.1. Therefore, only patients alive at the end of the

observation period were selected in the study cohort and followed up to observe survival

outcomes. We underline that this choice, necessary for the reconstruction of compensator

trajectories, could imply a survival bias in case of the exclusion of too many early dying

patients (that is not our case since only 6.8% of patients died during the observation

period).

Study outcome of interest was patient’s death for any cause. Deaths were collected from

the Hospital Discharge Forms Database (for in-hospital deaths) or Vital Statistics Re-

gional Dataset (for out-hospital deaths). Overall survival was measured from the end of

Observation periodPre-study period Follow-up period

1 year (365 days)

Survival analysis“New incident” patients

T*0

Compensator reconstruction

T0 Tend
End of follow-up


31/12/2012
Index HF hospitalization


01/01/2006 – 31/11/2012 

01/01/2000 – 31/12/2005

Figure 3.1. Study design for a HF patient of the study cohort. The pre-study period is used to define

”incident” HF patients. The observation period is used for the selection of patient’s clinical history

and the compensators reconstruction. The follow-up period is used for survival analysis. T0 is the time

instant the patient is discharged by her/his first hospitalization and enrolled into the current study.

T ∗0 = T0 + 365 is the starting time of the follow-up. Tend is the minimum between the death or the

administrative censoring (December 31st, 2012).
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the observation period (T ∗0 in Figure 3.1) to the date of death or to the administrative cen-

soring date (December 31st, 2012). Outcome (Ti, Di) denotes the observed time-to-death

data of patient i ∈ {1, ..., n}, where Ti = min(T ∗i , Ci) is the observed event time, T ∗i is the

true event time, Ci is the censoring time and Di = 1(T ∗i ≤ Ci) is the event indicator, with

I(·) being the indicator function that takes the value 1 when T ∗i ≤ Ci, and 0 otherwise.

Independent censoring between true death and censoring times was assumed.

3.2. Statistical Methodologies

We now introduce the methodology developed and then applied on the case study of

interest in Section 3.3. In Section 3.2.1 we focus on the main novelty introduced by the

present work, i.e., the marked point process formulation for recurrent events. In Section

3.2.2 we introduce the functional linear Cox regression model for overall survival in case

of multiple functional compensators.

3.2.1. Marked point process formulation for recurrent events

A recurrent event process is characterized by an increasing sequence of events times, where

each element denotes the time of the corresponding event [44]. To this sequence of times

could be associated (i) a counting process that at time t records the cumulative number

of events occurred up to t [44] and (ii) other random elements, called marks, containing

further information about the events [113, 47]. Marks can also be thought of as the

size, weight or magnitude related to the jumps of the counting process. Extending the

approach by [21], we now introduce the marked point process formulation for recurrent

events to compute the realized trajectories of the compensators underlying a specific

counting process of interest, allowing the dependence on the marks.

Let us consider a setM of recurrent events for a set of n individuals as stochastic processes.

For each patient i ∈ {1, ..., n}, let
{
t
(m)
i,j , j = 0, 1, ..., n

(m)
i

}
be the increasing sequence of

event times related to recurrent event process m, where n
(m)
i is the total number of events

of type m experienced by the i-th subject, t
(m)
i,j denotes the time of the j-th event and

t
(m)
i,0 = 0∀i,m. Let w

(m)
i be the vector of marks elements, where each jump mark w

(m)
i,j

is the magnitude of the information associated to each jump time t
(m)
i,j . The observations

(possibly censored) may be considered as the realisation of N
(m)
1 , ..., N

(m)
n processes, where

N
(m)
i is the stochastic process which counts the observed events (or jumps) of the process

m in the observation period related to the i-th individual. According to the Doob–

Meyer (D-M) decomposition theorem [142], each counting process N
(m)
i (t), adapted to

the filtration {F (m)
t,i , t ≥ 0} representing the history of realisations of the process itself,

can be seen as:

N
(m)
i (t) = M

(m)
i (t) + Λ

(m)
i (t) = M

(m)
i (t) +

∫ t

0

λ
(m)
i (s)ds (3.1)

59



C
H
A
P
T
E
R
3

3. Functional modelling of recurrent events on time-to-event processes

where M
(m)
i (t) is a zero-mean uniformly integrable martingale which represents the resid-

ual of the process, and Λ
(m)
i (t) =

∫ t
0
λ

(m)
i (s)ds is a unique predictable, non-decreasing,

cadlag (right-continuous with left limits) and integrable process, i.e., the compensator (or

cumulative hazard). Process λ
(m)
i (t) is the conditional intensity function, in which we

omitted the conditioning with respect to the history F (m)
t,i for ease of notation, and rep-

resents the infinitesimal risk of occurrence of an event m at time t, given the history, i.e.,

λ
(m)
i (t) = lim∆t→0 E

[
N

(m)
i (t+ ∆t)−N (m)

i (t)|F (m)
t,i

]
/∆t. The compensator Λ

(m)
i (t) may

be thought of as a positive non-decreasing L2-function over the temporal domain and will

be the core of our modelling effort.

A counting process where jumps may have different size can be modelled as a marked point

process, assuming that a given distribution regulates the size of the jumps. A marked

point process is the couple of processes describing the behaviour of jump times and marks

modelled through the conditional intensity function λ
(m)
i

(
t,w

(m)
i

)
, i.e., the infinitesimal

risk of occurrence of event m at time t with marks w
(m)
i given the history:

λ
(m)
i

(
t,w

(m)
i

)
= λ

(m)
ig (t)f

(m)
i

(
w

(m)
i

)
(3.2)

where λ
(m)
ig is the intensity process of the counting process, also called ground intensity,

and f
(m)
i is the multivariate density of the marks w

(m)
i . Using this formulation, condi-

tional independence of jump times and marks is assumed. Note that, if λ
(m)
i

(
t,w

(m)
i

)
is properly modelled, the D-M decomposition in (3.1) is still valid in the marked point

process framework considering Equation (3.2) as conditional intensity process.

To handle recurrent events and allow predictors to change over time, we use the count-

ing process formulation for recurrent events introduced by [12], also called AG model for

recurrent events, assuming a particular distribution for the marks in order to ease compu-

tations. In particular, we assume that the density f
(m)
i depends on some time-dependent

features related to the marks w
(m)
i . Under these hypotheses, for each event m the con-

ditional intensity function λ
(m)
i

(
t,w

(m)
i

)
in Equation (3.2) related to patient i takes the

form:

λ
(m)
i

(
t,w

(m)
i

)
= Y

(m)
i (t)λ

(m)
0 (t) exp

{
β(m)Tx

(m)
i (t)

}
exp

{
γ(m)T z

(m)
i (t)

}
= Y

(m)
i (t)λ

(m)
0 (t) exp

{
β(m)Tx

(m)
i (t) + γ(m)T z

(m)
i (t)

}
= λ

(m)
i (t)

(3.3)

where x
(m)
i (t) and z

(m)
i (t) are the possibly time-dependent vectors of covariates of the i-th

individual, the latter related to the marks w
(m)
i . Parameters β(m) and γ(m) are fixed vec-

tors of coefficients, λ
(m)
0 is the baseline hazard function shared across patients and Y

(m)
i

is a predictable process taking values in {0, 1}. Whenever Y
(m)
i = 1, the i-th individual

is under observations, i.e., Y
(m)
i takes the role of the censoring variable.

Parameters β(m) and γ(m) are estimated maximizing the partial likelihood function con-

structed given the history, using a counting process approach [12]. The baseline cumulative
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hazard Λ
(m)
0 (t) =

∫ t
0
λ

(m)
0 (s)ds can be estimated ∀m ∈M using the Breslow estimator [32]

Λ̂
(m)
0 (t), which returns a step-function. However, since true underlying functions Λ

(m)
0 (t)

are absolutely continuous, we smooth the estimates using the approach adopted in [21],

obtaining regularised version of Λ
(m)
0 (t), namely Λ̃

(m)
0 (t).

Let us now consider the sequence 0 = t
(m)
i,0 < t

(m)
i,1 < ... < t

(m)

i,N
(m)
i (τ)

of realised jump

times related to process N
(m)
i (t), with τ equal to the censoring time (possibly equal for

all individuals or not) and n
(m)
i = N

(m)
i (τ)∀m, i. In our case, τ is the censoring time

of the observation period, i.e., T0 in Figure 3.1. We can express the realisations of each

compensator Λ
(m)
i (t) for the process m of the i-th patient as a function of Λ

(m)
0 (t), β(m)

and γ(m):

Λ
(m)
i (t) =

∫ t

0
λ

(m)
i (s)ds =

∫ t

0
Y

(m)
i (s)λ

(m)
0 (s) exp

{
β(m)Tx

(m)
i (s) + γ(m)T z

(m)
i (s)

}
ds

=

N
(m)
i (t)∑
j=1

∫ min
(
t
(m)
i,j ,t

)
t
(m)
i,j−1

λ0(s) exp
{
β(m)Tx

(m)
i (ti,j−1) + γ(m)T z

(m)
i (ti,j−1)

}
ds

=

N
(m)
i (t)∑
j=1

exp
{
β(m)Tx

(m)
i (ti,j−1) + γ(m)T z

(m)
i (ti,j−1)

}[
Λ

(m)
0

(
min

(
t
(m)
i,j , t

))
− Λ

(m)
0

(
t
(m)
i,j−1

)]
.

(3.4)

An estimate of the compensator in Equation (3.4) can be then obtained as:

Λ̂
(m)
i (t) =

N
(m)
i (t)∑
j=1

exp
{
β̂(m)Tx

(m)
i (ti,j−1) + γ̂(m)T z

(m)
i (ti,j−1)

}[
Λ̃

(m)
0

(
min

(
t
(m)
i,j , t

))
− Λ̃

(m)
0

(
t
(m)
i,j−1

)]
(3.5)

where β̂(m) and γ̂(m) are the estimated vectors of coefficients and Λ̃
(m)
0 (t) is the smoothed

estimate of the cumulative baseline hazard.

To check the fitting of Λ̂
(m)
i (t), we have to verify whether the estimates of martingale

residuals M
(m)
i (t) involved in the D-M decomposition (3.1), i.e., the residuals [203] given

by

M̂
(m)
i (t) = Λ̂

(m)
i (t)−N (m)

i (t), (3.6)

may be effectively considered as realisations of zero-mean processes. In order to do so, we

can plot the residuals evaluated in the whole observation period and check if the average

residual curve M̄ (m)(t) = 1
n

∑n
i=1 M̂i

(m)
(t) is approximately close to 0 over time.

This formulation extends the one proposed in [21], allowing the counting processes to

depend on their marks and setting up a framework for multiple processes to be considered.

In fact, applying this procedure ∀m ∈M, we end up with a multivariate time-dependent

data
{

Λ
(m)
i

}
m∈M

for each patient i, characterizing her/his recurrent events dynamics

during the observation period [T0;T ∗0 ]. These compensator trajectories may be thought

of as patient-specific time-varying covariates and, mathematically speaking, as positive

non-decreasing L2-functions over the temporal domain [T0;T ∗0 ].
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3.2.2. Functional linear Cox regression model with multiple

functional compensators

To include the functional compensators into a survival model, the functional linear Cox

regression model introduced by Kong et al. (2018) [109] can be extended to the case of

multiple functional predictors, i.e., Multivariate Functional Linear Cox Regression Model

(MFLCRM). For each patient i, let
{

Λ
(m)
i

}
m∈M

be the realizations of the |M|-variate

compensators related to a set M of recurrent events. The functional compensators are

included in the hazard function of Cox model [46] as:

hi

(
t|ωi,

{
Λ

(m)
i

}
m∈M

)
= h0(t) exp

{
θTωi +

∑
m∈M

∫
Sm

Λ
(m)
i (s)α(m)(s)ds

}
(3.7)

where h0(t) is the baseline hazard function, ωi is the vector of scalar (non functional)

covariates with regression parameters θ. The realizations
{

Λ
(m)
i

}
m∈M

are defined over the

temporal domains Sm = [T0;T ∗0 ] ∀m. Parameters α(m)(s) denote the functional regression

coefficients.

By applying Functional Principal Component Analysis (FPCA) [162], each functional

compensator Λ
(m)
i (s) can be approximated with a finite sum of Km orthonormal basis{

ξ
(m)
1 , ..., ξ

(m)
Km

}
:

Λ
(m)
i (s) ≈ µ(m)(s) +

Km∑
k=1

f
(m)
ik ξ

(m)
k (s) (3.8)

where µ(m)(s) is the functional compensator mean and f
(m)
ik is the FPC score of individual

i related to the k-th orthonormal base ξ
(m)
k and Km is the truncation parameter, repre-

senting the number of FPCs to be considered. In particular, the score f
(m)
ik represents

the projection of the i-th functional observation Λ
(m)
i (t) related to event m along the

direction of the k-th principal component ξ
(m)
k (t). From (3.8) the integrals in (3.7) can be

approximated considering:∫
Sm

[
Λ

(m)
i (s)− µ(m)(s)

]
α(m)(s)ds ≈

∫
Sm

Km∑
k=1

f
(m)
ik ξ

(m)
k (s)α(m)(s)ds

=
Km∑
k=1

f
(m)
ik

∫
Sm

ξ
(m)
k (s)α(m)(s)ds =

Km∑
k=1

f
(m)
ik α

(m)
k

(3.9)

where α
(m)
k is the scalar representing the quantity

∫
Sm
ξ

(m)
k (s)α(m)(s)ds. Introducing ap-

proximation (3.9) in Equation (3.7), the hazard function becomes:

hi

(
t|ωi,

{
Λ

(m)
i

}
m∈M

)
= h0(t) exp

{
θTωi +

∑
m∈M

[∫
Sm

µ(m)(s)α(m)(s)ds+
Km∑
k=1

f
(m)
ik α

(m)
k

]}

= h∗0(t) exp

{
θTωi +

∑
m∈M

Km∑
k=1

f
(m)
ik α

(m)
k

}
(3.10)
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where h∗0(t) = h0(t) exp
{∑

m∈M
∫
Sm
µ(m)(s)α(m)(s)ds

}
is the baseline hazard function

and α
(m)
k =

∫
Sm
ξ

(m)
k (s)α(m)(s)ds is the regression parameter related to the k-th FPC score

of the functional compensator of event m. Therefore, defining the following quantities:

θ̃ =
[
θT ,

{(
α

(m)
1 , ..., α

(m)
Km

)}
m∈M

]T
ω̃i =

[
ωTi ,

{(
f

(m)
i1 , ..., f

(m)
iKm

)}
m∈M

]T
and substituting them in Equation (3.10), through FPCA the MFLCRM can be expressed

as Cox model with hazard function

hi(t|ω̃i) = h0(t) exp
{
θ̃
T
ω̃i

}
.

All the properties of the Cox model still hold in this framework and the vector of coeffi-

cients θ̃ can be estimated by maximising the partial likelihood function [46]. In R software

[161] the MFLCRM can be fitted through coxph function of package survival by [201].

In this analysis, the truncation parameters Km, representing the number of FPCs to be

considered for each event m, are chosen through a 10-fold cross validation procedure to

select the best set of covariates among patients’ baseline characteristics ωi and scores

f
(m)
ik , according to the highest Concordance Index [151].

The entire procedure may be resumed in four steps, as shown in Figure 3.2:

• Steps 1 and 2 are devoted to reconstruct the compensators of suitable marked point

processes as time-varying (functional) covariates;

• Steps 3 and 4 set up a suitable framework for including such time-varying covariates

in a time-to-event model.

Step 1 Step 2 Step 3 Step 4

Select the cohort
of patients

Identify the events of 
interest happened during 
the observation period

Data preprocessing and 
clinical history

Modelling compensators 
of marked point 

processes

Andersen-Gill
(AG) models: features 

selection and coefficients 
estimation 

Fit and smooth 
cumulative baseline 

hazard

Reconstruct functional 
compensators

Summarise information 
emerging from 

compensators through 
Functional Principal 
Component Analysis

(FPCA) 

Summarize 
compensators through 

FPCA

Cross-validation to select 
the best set of covariates

Fit the Multivariate 
Functional Linear Cox 

Regression Model 
(MFLCRM)

on the whole data

Predictive functional Cox 
model for overall survival

Figure 3.2. Summary of the entire methodological procedure presented in Section 3.2.
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3.3. Data application

We now proceed with the application of the methodology described in Section 3.2/Fig-

ure 3.2 to the administrative database of Lombardy Region, in order to study how re-

hospitalizations and multiple drugs consumption processes affect overall survival in HF

patients. R source code is available as Supporting Information of [189].

3.3.1. Step 1: Data preprocessing & clinical history

We focused on a representative sample of the administrative database of Lombardy Region

related to 4,872 patients with their first HF discharge between January 2006 to December

2012. Excluding patients who died during the observation period, a final cohort of n =

4, 541 (93.2%) patients was selected. Overall, at index hospitalization, mean age of the

study cohort was 73.98 years (s.d. = 11.37) with a percentage of male patients equal to

54.4% (2,466 patients). The median value of overall survival was 37.32 (IQR = [20.53;

54.93]) months. At administrative censoring date 1,200 patients (26.4%) were dead and

3,341 (73.6%) were censored.

We identified four stochastic processes of interest: hospitalizations due to HF, purchases

of ACE, BB and AA drugs, identified by their ATC codes. Hence, the set of recurrent

events of interest was M = {m : ACE,BB,AA,HF hosp}. In particular, we selected

only events within the 1-year observation period (censoring time τ = T ∗0 ). For each patient

i ∈ {1, . . . , n = 4, 541}, repeated events of process m were modelled as a marked point

process N
(m)
i (t), with jump times t

(m)
i,j equal to event times (i.e., date of j-th admission in

hospital or date of j-th drug purchase) and jump marks w
(m)
i,j equal to the length of stay

in hospital or the duration of drug coverage respectively, where j ∈
{

0, 1, . . . , N
(m)
i (τ)

}
.

Figure 3.3 shows the counting processes N
(m)
i (t) describing ACE purchase (top-left panel),

BB purchase (top-right panel), AA purchase (bottom-left panel) and HF hospitalization

(bottom-right panel) for a sample of 500 HF patients belonging to the administrative

database. Overall, at the end of the observation period (time t = τ = T ∗0 ), the most

frequent events were ACE and BB purchases: 2,916 patients (64.2%) purchased ACE

at least once with a median of 4 purchases (IQR = [0;8]), and 2,890 patients (63.6%)

purchased BB at least once with a median of 4 purchases (IQR = [0;7]), where the median

number of events m at time τ is given by mediani∈{1,...,n}N
(m)
i (τ). Purchase of AA and

hospitalization due to HF were less frequent: 2,007 patients (44.2%) purchased AA at

least once with a median of no purchases (IQR = [0;4]) and 2,699 patient (59.4%) were

re-hospitalized due to HF, with a median of 1 HF hospitalization (IQR = [0;2]).

In order to proceed with the analyses, we reformatted the administrative data as explained

in Appendix A.1.
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Figure 3.3. Representation of counting processes N
(m)
i (t) related to purchases of ACE inhibitors (top-

left panel), BB agents (top-right panel), AA (bottom-left panel) and of HF hospitalizations (bottom-right

panel) during the observation period for a sample of 500 HF patients belonging to the administrative

database. Each non-decreasing step function is related to a different patient.

3.3.2. Step 2: Modelling compensators of marked point processes

We can now reconstruct the compensators of the marked point processes for recurrent

events, as explained in Section 3.2.1. For each process m ∈ {ACE,BB,AA,HF hosp},
we first select the best set of features for the AG model for recurrent events in Equation

(3.3) using 10-fold cross validation and we estimate the selected coefficients on the whole

dataset. Then, we fit and smooth cumulative baseline hazard using the constrained B-

spline smoothing algorithm introduced by [73]. Finally, we reconstruct the compensator

trajectories as functions of the estimated coefficients and of the smoothed estimate of the

cumulative baseline hazard through Equation (3.5).

Features selection and coefficients estimation

For each process m ∈ {ACE,BB,AA,HF hosp}, we used as covariates z
(m)
i (t) of patient

i: the time-dependent variable enum which indicates the number of events related to

process m occurred in the past and the time-dependent variable marks representing the

sum of the corresponding marks. Also the logarithmic transformations (shifted away from

0) of the same variables, i.e., log(enum+1) and log(marks+1), and respective interactions,

were considered. Adjustments for age and gender at baseline were performed. The vector

of all the covariates considered for the model is indicated by x
(m)
i (t). In particular, for each

process m we performed a 10-fold cross-validation to determine the best sets of features

according to the lowest Mean Absolute Martingale Residual (MAMR) (see Appendix A.2

for details). Once covariates were selected, we fitted four AG models in Equation (3.3),
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one for each process m, using the selected features on the entire dataset to estimate

coefficients β̂(m) and γ̂(m).

In Table 3.1 selected features, hazard ratios and corresponding 95% CI are reported.

Among all the models tested through the cross-validation procedure, features related

to enum, marks and their interaction were selected and their coefficients were always

significantly different from 0. In particular, the procedure selected the original features

for HF hospitalization process (m = HF hosp) and their logarithmic transformations

for drug purchases (m ∈ {ACE,BB,AA}). This was probably due to the fact that

hospitalizations were rarer than drug purchases, so they might have a greater effect in

increasing the risk of experiencing a new event. The signs of the fitted coefficients relative

to these three types of features were consistent throughout the four processes, allowing

us to give similar interpretations. HRs related to the number of past events enum and

to the sum of the past marks marks were greater than 1. This could be interpreted as

a “self-exciting” behaviour: many events (drug purchases or hospitalizations) in the past

and higher marks (the purchase of big quantities of drug or having spent longer periods in

hospital) both increase the risk of a new event. HR related to the interaction terms were

lower than 1, meaning that (i) in case of the same number of events, the increase in the

risk of experiencing a new event is softened by higher marks, or (ii) in case of the same

cumulative marks, it is softened by an higher number of events enum. Furthermore, males

[HR > 1] were more likely to buy medications or being re-hospitalized than females, except

for AA purchases [HR < 1], and elder patients were more likely to be re-hospitalized than

younger ones [HR > 1].

Table 3.1. Selected features, Hazard Ratios (HRs) and corresponding 95% Confidence Intervals (CIs) of

the AG models for recurrent events for the stochastic processes describing the purchase of ACE inhibitors,

BB agents, AA agents and the HF hospitalizations.

Process m Selected features HR [2.5; 97.5]% CI

ACE gender (Male) 1.0586 [1.0309; 1.0871]

log(enum+ 1) 4.5271 [4.1674; 4.9178]

log(marks+ 1) 1.1026 [1.0862; 1.1192]

log(enum+ 1)× log(marks+ 1) 0.9148 [0.9033; 0.9265]

BB gender (Male) 1.0612 [1.0333; 1.0898]

log(enum+ 1) 5.4270 [5.1195; 5.7529]

log(marks+ 1) 1.1404 [1.1206; 1.1606]

log(enum+ 1)× log(marks+ 1) 0.8332 [0.8213; 0.8454]

AA gender (Male) 0.9435 [0.9073; 0.9811]

log(enum+ 1) 9.8781 [8.6116; 11.3310]

log(marks+ 1) 1.2023 [1.1722; 1.2332]

log(enum+ 1)× log(marks+ 1) 0.7780 [0.7561; 0.8005]

HF hosp age 0.9957 [0.9934; 0.9979]

gender (Male) 1.1510 [1.0854; 1.2207]

enum 1.4319 [1.3809; 1.4848]

marks 1.0083 [1.0051; 1.0116]

enum×marks 0.9976 [0.9968; 0.9985]
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Fit and smooth cumulative baseline hazard

Once we estimated the coefficients β̂(m) and γ̂(m) of each AG model for recurrent events

of type m, we computed the estimated cumulative baseline hazards Λ̂
(m)
0 (t) using the

Breslow estimator. We smoothed them through the use of constrained B-splines [73] with

increasing monotone constraints and no roughness penalties. In particular, we used 20

knots for the B-spline basis and we assumed that they took value 0 at time t = 0.

Figure 3.4 shows both the estimates obtained with the Breslow estimator Λ̂
(m)
0 (t) (dashed

blue lines) and the corresponding smoothed estimates Λ̃
(m)
0 (t) (solid red lines) for the four

stochastic processes describing ACE purchase (top-left panel), BB purchase (top-right

panel), AA purchase (bottom-left panel) and HF hospitalization (bottom-right panel).

We observed that ∀m ∈M we obtained monotonically increasing estimates Λ̃
(m)
0 (t) of the

cumulative baseline hazards with Λ̃
(m)
0 (0) = 0.

Reconstruct compensators

At this point, we could reconstruct the trajectories of the compensators Λ̂
(m)
i (t) of the

four considered stochastic processes for all the patients, exploiting Equation (3.5). The

trajectories of compensators Λ̂
(m)
i (t) constitute our functional data. Figure 3.5 shows

the compensators of the stochastic processes describing ACE purchase (top-left panel),

BB purchase (top-right panel), AA purchase (bottom-left panel) and HF hospitalization

(bottom-right panel) of the same sample of 500 HF patients mentioned above. We ob-

served that the trajectories Λ̂
(m)
i (t) are monotonically non-decreasing and take value 0 at

time t = 0, as did the smoothed baseline cumulative hazards Λ̃
(m)
0 (t). For each patient

0 100 200 300

0
.0

0
.4

0
.8

1
.2

Purchase of ACE

Time [days]

B
a

s
e

lin
e

 c
u

m
u

la
ti
ve

 h
a

z
a

rd

Λ
~

0

(ACE)
(t)

Λ
^

0

(ACE)
(t)

0 100 200 300

0
.0

0
.4

0
.8

1
.2

Purchase of BB

Time [days]

B
a

s
e

lin
e

 c
u

m
u

la
ti
ve

 h
a

z
a

rd

Λ
~

0

(BB)
(t)

Λ
^

0

(BB)
(t)

0 100 200 300

0
.0

0
.4

0
.8

1
.2

Purchase of AA

Time [days]

B
a

s
e

lin
e

 c
u

m
u

la
ti
ve

 h
a

z
a

rd

Λ
~

0

(AA)
(t)

Λ
^

0

(AA)
(t)

0 100 200 300

0
.0

0
.4

0
.8

1
.2

HF hospitalization

Time [days]

B
a

s
e

lin
e

 c
u

m
u

la
ti
ve

 h
a

z
a

rd

Λ
~

0

(HFhosp)
(t)

Λ
^

0

(HFhosp)
(t)

Figure 3.4. Cumulative baseline hazards of the Cox models for recurrent events describing the stochastic

processes of purchases of ACE inhibitors (top-left panel), BB agents (top-right panel), AA (bottom-left

panel) and of HF hospitalizations (bottom-right panel), fitted with the Breslow estimator Λ̂
(m)
0 (t) (dashed

blue lines) and smoothed Λ̃
(m)
0 (t) according to the procedure described in [21] (solid red lines).
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Figure 3.5. Compensators Λ̂
(m)
i (t) of the marked counting processes of purchases of ACE inhibitors

(top-left panel), BB agents (top-right panel), AA (bottom-left panel) and of HF hospitalizations (bottom-

right panel) fitted using Equation (3.5) for a sample of 500 HF patients belonging to the administrative

database. Each line is related to a different patient. Note that in HF hospitalizations the ordinate axis

range is smaller than the other ones due to less number of hospitalization events with respect to drugs

purchases.

i, the compensator curve Λ̂
(m)
i (t) represents the expected number of events by time t

given the covariates, i.e., the dynamic evolution of the events risk. This means that for

a patient with a higher curve the cumulative risk of a new event (i.e., drug purchases

or re-hospitalizations) is higher over time compared to a patient with a less steep curve.

The large variability of the compensators across different patients reflects the variability

of the realizations of their recurrent events times and marks.

Finally, we had to check for adequate fitting of the procedure. In order to do so, for each

process of interest, we plotted the residuals evaluated in the whole observation period and

we checked graphically that their means M̄ (m)(t) were approximately equal to 0. Figure

3.6 show the fitted residuals M̂
(m)
i (t) for each process for the sample of the 500 patients

mentioned above (ACE : top-left; BB : top-right; AA: bottom-left; HF hosp: bottom-

right). The black line in each panel corresponds to the temporal average residual curve

M̄ (m)(t), computed using all the n = 4, 541 patients. From the figure we observed that the

time-varying means were approximately constant lines equal to zero for all the considered

processes. Hence, we might conclude that we succeeded in fitting the compensators of the

stochastic processes.

For each patient i ∈ {1, . . . , 4, 541}, we ended up with a four-variate time-varying data

given by the compensator trajectories
{

Λ̂
(m)
i (t)

}
h∈M

withM = {ACE,BB,AA,HF hosp},
which could be though of as positive non-decreasing L2-functions over the temporal do-

main [T0;T ∗0 ].
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Figure 3.6. Residuals M̂
(m)
i (t) of the compensators of the stochastic process describing the purchase

of ACE inhibitors (top-left panel), BB agents (top-right panel), AA (bottom-left panel) and of HF

hospitalizations (bottom-right panel) for a sample of 500 HF patients belonging to the administrative

database, computed according to Equation (3.6). Each line is related to a different patient. Solid black

lines represent the temporal average residual curve M̄ (m)(t) computed using all the n = 4, 541 patients.

3.3.3. Step 3: Summarize compensators through Functional

Principal Component Analysis

Once we computed the functional trajectories of the compensators Λ̂
(m)
i (t), we performed

Functional Principal Component Analysis (FPCA) [162] in order to summarise infor-

mation emerging from the time-varying compensators to a finite set of covariates while

losing a minimum part of the information. Although it was no longer guaranteed that

the functions reconstructed through FPCA were positive and non-decreasing, for each

process m we observed that two Principal Components (PCs) were enough to have a

L2-reconstruction error lower than 1%.

Figure 3.7 and Figure 3.8 show results of FPCA on functional compensators and are re-

lated to first and second PCs, respectively. In both figures, each column is related to a

different type of process (ACE : first column; BB : second column; AA: third column; HF

hosp: fourth column). Top panels show that first and second PCs, i.e., ξ
(m)
1 (t) and ξ

(m)
2 (t),

across the four processes types m ∈ {ACE,BB,AA,HF hosp} have similar shapes. Bot-

tom panels report the plots of compensators as perturbation of the mean [162]. In partic-

ular, the black lines constitute the average compensators curves µ(m)(t) = 1
n

∑n
i=1 Λ̂

(m)
i (t),

also denoting subjects with null FPC scores. Red plus and blue minus curves represent

the perturbations µ(m)(t)±ck
√
ν

(m)
k ξ

(m)
k (t) (red ’+’ and blue ’−’ respectively), where ν

(m)
k

is the eigenvalues related to the k-th component and ck are constants chosen in order to

let the values lie within one (ck = 1) or three (ck = 3) standard deviations (i.e., square

roots of ν
(m)
k ).
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Figure 3.7. First functional Principal Components (PCs) of the compensators of the stochas-

tic processes describing the purchase of ACE (first column), BB (second column), AA (third col-

umn) and HF hospitalization (fourth column). Upper panels show the first PCs ξ
(m)
1 (t) with m ∈

M = {ACE,BB,AA,HFhosp}. Lower panels report the average compensators curves µ(m)(t) =

1
n

∑n
i=1 Λ̂

(m)
i (t) (black lines) and µ(m)(t)±

√
ν

(m)
1 ξ

(m)
1 (t) (red ’+’ and blue ’−’ respectively) where ν

(m)
1

are the eigenvalues related to the first components. Note that in HF hospitalizations the ordinate axis

range is smaller than the other ones due to less number of hospitalization events with respect to drugs

purchases.
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Figure 3.8. Second functional Principal Components (PCs) of the compensators of the stochas-

tic processes describing the purchase of ACE (first column), BB (second column), AA (third col-

umn) and HF hospitalization (fourth column). Upper panels show the second PCs ξ
(m)
2 (t) with

m ∈ M = {ACE,BB,AA,HFhosp}. Lower panels report the average compensators curves µ(m)(t) =

1
n

∑n
i=1 Λ̂

(m)
i (t) (black lines) and µ(m)(t)± 3

√
ν

(m)
2 ξ

(m)
2 (t) (red ’+’ and blue ’−’ respectively) where ν

(m)
2

are the eigenvalues related to the second components. Note that in HF hospitalizations the ordinate axis

range is smaller than the other ones due to less number of hospitalization events with respect to drugs

purchases.
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In Figure 3.7 we observe that the first components ξ
(m)
1 (t) distinguish patients with dif-

ferent events risks. In particular, positive scores related to the first PC (red plus curve)

reflect higher curves with respect to negative ones (blue minus curve), indicating that a

patient with a high score on the first component is likely to experience more events than a

patient with a low score. Figure 3.8 shows that the second components ξ
(m)
2 (t) distinguish

patients with different time distribution of the events. In particular, a patient with a high

score (red plus curve) on the second PC is likely to experience more events in the first

months of the observation period and less events in the last months than a patient with

a low score (blue minus curve), indicating different events timing.

3.3.4. Step 4: Predictive functional Cox model for overall survival

At this point we wanted to quantify the association between time-varying processes and

patients’ overall survival through a Multivariate Functional Linear Cox Regression Model

(MFLCRM) in Equation (3.10). First, we applied 10-fold cross validation to select the

best set of covariates among possible combinations of patients’ baseline characteristics age,

gender and truncation parameters Km of FPCA with m ∈ {ACE,BB,AA,HF hosp},
according to the highest median Concordance Index [151]. The selected MFLCRM, given

by

hi

(
t|ωi,

{
Λ

(m)
i

}
m∈M

)
= h∗0(t) exp

{
θ1agei + θ2genderi+

α
(ACE)
1 f

(ACE)
i1 + α

(BB)
1 f

(BB)
i1 + α

(AA)
1 f

(AA)
i1 +

α
(HF hosp)
1 f

(HF hosp)
i1 + α

(HF hosp)
2 f

(HF hosp)
i2

}
,

(3.11)

was then fitted on the whole data to quantify the association between functional compen-

sators and overall survival.

Table 3.2 reports the summary of fitted model (3.11). All the covariates resulted statisti-

cally significant at confidence level 5%, except for f
(AA)
1 . Elder patients coherently have

a higher risk of dying [HR = 1.067] and being a male corresponds to 1.25-times faster

experience of the event. The HR relative to the scores of the first PCs for ACE and BB

processes, i.e., f
(ACE)
1 and f

(BB)
1 , are lower than 1, indicating that a proper ACE/BB

drug intake is correlated to longer life expectancy. On the contrary, the HR related to

f
(HF hosp)
1 is greater than 1, standing as a proxy of patients’ critical conditions: patients

experiencing many hospitalizations in the past present a higher risk of dying. Interest-

ingly, even if the second PC of compensators related to HF hosp process concerned only

the 2% of the total explained variance of the original data, f
(HF hosp)
2 is strongly significant

with HR = 0.773 < 1 (95% CI = [0.725; 0.825]). This means that patients with many

hospitalizations at the beginning of the observation period and few hospitalizations in the

end have higher survival probability, since they probably correspond to the ones who had

already experienced a critical phase of the disease and survived from it.
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3. Functional modelling of recurrent events on time-to-event processes

Table 3.2. Hazard ratios (HRs) along with 95% Confidence Intervals (CIs) of the final multivariate

functional linear Cox regression model (MFLCRM) for overall survival fitted on the whole cohort using

the covariates selected through 10-fold cross-validation.

Covariates HR [2.5; 97.5]% CI p-value

gender (Male) 1.2540 [1.1080; 1.4194] < 0.001

age 1.0670 [1.0592; 1.0748] < 0.001

f
(ACE)
1 0.9977 [0.9963; 0.9992] 0.003

f
(BB)
1 0.9964 [0.9945; 0.9982] < 0.001

f
(AA)
1 1.0006 [0.9986; 1.0026] 0.550

f
(HF hosp)
1 1.0157 [1.0049; 1.0266] 0.004

f
(HF hosp)
2 0.7733 [0.7251; 0.8247] < 0.001

3.4. Final remarks

In this chapter, a novel approach to reconstruct the compensators of suitable marked point

processes of interest as time-varying covariates has been proposed. This approach was

exploited to enrich information to be included into a survival model. The development of

this procedure is due to the need of effectively describing and resuming information from

dynamic processes affecting an outcome of interest, with the purpose of obtaining deeper

insight on the patient’s health status using administrative databases. This methodology

extends the one proposed in [21], allowing the counting processes to depend on their marks

and moving towards the multivariate setting.

From the study on the administrative database of Regione Lombardia, we observed that

modelling patient’s clinical history in terms of compensators of suitable stochastic pro-

cesses as time-varying covariates and plug them into a survival model represents an effec-

tive, interpretative and forecasting approach for exploring the effects of these processes on

patients’ survival. The marked point process formulation is a natural way of representing

the occurrence of hospitalizations or drugs purchases over time. The use of FPCA allowed

to extract additional information contained in the functions, representing a powerful ex-

ploratory and modelling technique for highlighting trends and variations in the shape of

the processes over time. The introduction of this novel way to account for time-varying

variables by means of compensators allowed for modelling self-exciting behaviours, for

which the occurrence of events in the past increases the probability of a new event. This

enabled us to include a large piece of information contained in the administrative data to

describe the patient’s clinical history. Furthermore, our approach was able to take into

account the fact that HF patients usually consume different types of drugs at the same

time, representing a novelty for clinical and pharmacological research in the direction of

properly treating multimorbidity patients and polypharmacy. To the best of our knowl-

edge, our approach represents the first attempt in literature of merging potential of FDA,

recurrent events theory and survival analysis.

Thanks to its flexibility, the proposed methodology could be extended and generalized

to many different settings, adapting the procedure to the different biological and clinical

aspects of the specific application. In particular, alternative ways to get the trajectories
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related to the L2 functional compensators could be considered. The AG model for recur-

rent events in Equation (3.3) represents only one of the possible approaches to express the

conditional intensity function. Alternative methods or distributions for the marks could

be considered according to many factors, among others number of events, relationship be-

tween subsequent events and intrinsic characteristics of the processes. For example, our

case study was also analysed considering a shared gamma-frailty model [175], in which

the intensity function in Equation (3.3) was assumed to partly depend on an unobservable

random variable that acted multiplicatively on it. In that case, the compensator trajec-

tories were expressed as functions of estimated coefficients, smoothed cumulative baseline

hazard and estimated frailties. Obtained results were comparable to the ones shown in the

paper in terms of both estimated effects on patients’ overall survival and clinical implica-

tions. In case of a limited number of events, stratified Cox models for recurrent events,

such as the Prentice-Williams-Peterson [156] or the Wei-Lin-Weissfeld [213] model, could

be used modifying Equation (3.4) in order to consider the proper strata of the cumulative

baseline hazards. As a further alternative, in case of multiple events with cyclical occur-

rence, the best choice would be to account for seasonality in the model through cyclic

functions, such as in the rate model with multiple event types by [196]. In that case, the

L2 functions could be obtained by smoothing the cumulative rate functions. Therefore,

thanks to its adaptability, the presented methodology can be generalized and applied to

the study of many different pathologies characterized by complex data sources.

Some limitations of the present study have to be mentioned. Firstly, the use of a pre-

defined observation period could lead to survival bias due to cohort selection. Indeed, it

is necessary that patients survived for a period at least equal to the length of the period

used to compute the functional compensators trajectories. This could imply a survival

bias in case of the exclusion of too many early dying patients. This is softened if low-rate

short-term mortality diseases are considered. In the present work, the final choice for a

pre-defined observation period of 1 year after the index hospitalization was made under

clinical indication, once performed a sensitivity analysis to evaluate the robustness of our

method using two different clinically acceptable periods of 6 months and 1 year whose

results led to common conclusions. From a modelling point of view, the assumption of in-

dependence between jump times and marks in Equation (3.2) could in general be relaxed,

but this could lead to several issues [132]. In fact, considering re-hospitalization process,

it is difficult to conjecture a mathematical relation of length of stay in hospital with time

of hospitalization. The same is valid for drug purchases. Moreover, there could be com-

putational limitations in terms of modelling a temporary dependence. Since dependence

is harder to be dealt with due both to computational and modelling issues, we limited our

analysis to the independence case, which was considered a clinically acceptable assump-

tion. The development of proper statistical tools to test this hypothesis can be of great

help for our topic, since existing techniques for testing independence are rather complex

to apply and customize to the current context. Furthermore, FPCA was performed in

L2 [T0;T ∗0 ] and not in the subspace of positive non-decreasing L2-functions. In this way,

we obtained a good reconstruction of compensators approximated using PCs but it was

no longer guaranteed that these functions were positive and non-decreasing.
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Other limitations are mainly due to the use of secondary databases in the real case-

study, as in the previous chapters. First, not being able to ascertain whether the patient

was currently consuming the dispensed drug remains the major limitation of using drug

purchases as a proxy for drug intake, which is the only possible way through administrative

data. Second, the use of theoretical Defined Daily Dose (DDD) instead of Prescribed Daily

Doses (PDD) could reflect a bias in the computation of coverage days, i.e., of jump marks,

if the underlying PDD/DDD ratio is different from 1 [187, 220]. In future analysis, it could

be interesting to explore, whenever the linkage is possible, databases with information

about dosages prescribed by doctors, in order to obtain a more realistic analysis of coverage

periods. Since administrative data are collected with no clinical question in mind and

mainly for managerial and economic purposes [89], the validity of using these kind of data

is critically dependent on the reliability of the data [115, 180, 90]. Nevertheless, in the last

decade significant improvements have been gained through administrative data sources,

and their use in clinical biostatistics has become an accepted practice, representing a great

challenge for statistics and related modelling [90].

Despite the aforementioned limitations, our approach opens doors for many further de-

velopments, both in the fields of statistical methods and clinical research. The proposed

predictive models could be enriched by considering other relevant clinical information as

covariates, and enlarging the cohort of patients. For example, it could be of clinical inter-

est to further extend the study of polypharmacy by considering also drug-drug interaction

terms, which could be included in the model through compensator-compensator interac-

tion terms. However, a compensator-compensator interaction term involves the modelling

of bivariate (or more in general multivariate) marked point processes, which represents a

non-trivial task beyond the scope of the present work.

In summary, the presented methodology, involving database integration, marked point

process modelling of critical events and FDA techniques, enabled a manageable and rela-

tively simple analysis of the results, describing complex dynamics in an easily interpretable

form. Both parts of the procedure represent flexible approaches that can be used to quan-

tify personal behaviours and to investigate their effect of on survival. On one hand, the

developed marked point processes formulation could be applied in many different clinical

contexts characterized by recurrent occasions. On the other, the use of FPCA to extract

additional information contained in the functions and to include them into a MFCLRM

can be easily applied to all settings where the time-varying characteristics of interest are

adequately reconstructed by FDA, as we will see in Chapter 4 for the case of biomarkers

and chemotherapy dose in osteosarcoma patients. Its possible generalization to many

different contexts, combined with cooperation with medical staff, could therefore lead to

improvements in the definition of useful tools for health care assessment and treatment

planning.
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A. Appendix to Chapter 3

A.1. Data Preparation

Once selected the cohort of patients being part of the analysis and identified the events

related to each patient’s clinical history (Section 3.3 – Step 1 of the procedure), we had

to reformat the administrative data building four different datasets, one for each process

m ∈ M = {m : ACE,BB,AA,HF hosp}, in the form required by coxph function for

recurrent events of survival R package by [201]. Table 3.3 shows an example of reformatted

dataset related to ACE purchases process for a hypothetical patient with four ACE events

during the observation period. In the Table, start indicates the time of the patient’s

previous event (equal to 0 for the index date), stop is the time of the current event

(equal to 365.5 if it is the censoring event), status is the event indicator (0 if censored,

1 otherwise), enum is the number of events related to process m occurred in the past

and marks is the sum of the corresponding marks. In particular, the choice to consider

the time limit at 365.5 was made in order to not have events at censoring time t = 365.

Moreover, it could also happen that a patient i experienced the first event of type m

during the index day. In that specific case, we considered jump time equal to 0.5, i.e.,

t
(m)
i,1 = 0.5, in order to not have events at time t = 0. Hence, for each process m we ended

up with a long-format dataset with multiple rows for each patient (specifically the number

of patient’s events of type m during the observation period plus one). In particular, in

the first row of each patient enum and marks are always 0 and in the last one status is

always equal to 0.

Table 3.3. Example of reformatted dataset related to ACE purchases process for a hypothetical patient

with four ACE events during the 1-year observation period.

ID start stop status gender age enum marks

id 0 0.5 1 Female 87 0 0

id 0.5 83 1 Female 87 1 56

id 83 91 1 Female 87 2 70

id 91 215 1 Female 87 3 98

id 215 365.5 0 Female 87 4 112

A.2. Mean Absolute Martingale Residual

Given two or more Andersen-Gill (AG) models for recurrent events in Equation (3.3)

fitted using different sets of covariates, we need a metric to evaluate the goodness of fit

of each model and select the best set of features. Since we are dealing with stochastic

processes and recurrent events, we cannot rely on standard regression metrics, like mean

squared error. A possible way is given by functions of the residuals in Equation (3.6):

smaller residuals correspond to a greater predictive power of the model. Therefore, to

compare models fitted with different features, for each process m we would like to use the
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Mean Absolute Martingale Residual (MAMR):

MAMR(m) =
n∑
i=1

∫ T
0
|M̂ (m)

i (s)|ds
T

(3.12)

where T represents the length of the observation period. Using this indicator, the smaller

the MAMR the better the model.

To correctly compute the MAMR, we should first compute the compensators using Equa-

tion (3.5) and then evaluate the residuals on a grid of points. Since we want to use

this quantity only to rank models fitted with different sets of predictors, to avoid high

computational costs we decided to rely on the following estimate:

M̂AMR
(m)

=
1∑n

i=1 n
(m)
i

n∑
i=1

n
(m)
i∑
j=1

| ˆ̂
M

(m)
i (t

(m)
i,j )| (3.13)

where i and m are respectively the patient and event indices,
ˆ̂
M

(m)
i (t) is the residual

obtained by fitting the compensator without smoothing the baseline hazard, i.e., using

Λ̂
(m)
0 (t) instead of Λ̃

(m)
0 (t) in Equation (3.5), n

(m)
i is the total number of events of type m

experienced by the i-th patient and t
(m)
i,j is the time instant in which patient i experienced

the j-th event of type m.

This estimate is not accurate since the residuals are evaluated only when events hap-

pen (rather than on the continuous interval corresponding to the one year observation

period) and because the estimate is done by reconstructing the compensators without

the smoothing of the baseline hazard. However, it allows to rank models while limiting

computational needs.
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