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CHAPTER 2

Joint modelling of time-varying

adherence to medication and survival

This chapter has been published in Biometrical Journal, 63(2):305–322, 2021 as M. Spreafico

and F. Ieva “Dynamic monitoring of the effects of adherence to medication on survival in Heart

Failure patients: a joint modelling approach exploiting time-varying covariates” [188].

In pharmacoepidemiology literature and current practice, the way adherence to medica-

tion is computed and accounted for into predictive models is far from being informative as

it may be. As shown in the previous chapter, the most used adherence measures [14, 102]

are computed over a pre-defined observation period over time and are usually included

in classical survival models, such as Cox proportional hazard [46] or parametric survival

[106] regressions, as a time-fixed baseline covariate considering as new origin event the

end of the observation period (see classical framework in Figure 2.1). In this way, the

dynamics of drug consumption over therapy are completely discarded. Moreover, patients

need to survive for a period at least equal to the observation period, which leads to a pos-

sible bias due to exclusion of early dying patients. Both issues can be overcame modelling

adherence as a time-varying covariate that jointly evolves with patient’s outcome, i.e.,

both starting from the origin event T0 as shown in the time-varying framework in Figure

2.1.

Bijlsma et al. (2016) [29] performed a first attempt to measure time-varying adherence

using electronic records, proving that their time-varying method better distinguished an

irregularity dosing patient from a stably dosing patient and better accounted for changes

over time in drug utilization behaviour. However, through their method, time-varying

adherence to medication has been computed over a time-period defined by three successive

fills, time-lapse different from the global time-scale of the most studied clinical outcomes

(e.g., time-to-event in survival analysis). Therefore, as Steiner (2016) [193] highlighted,

to establish a relationship between time-varying adherence and clinical outcomes, it is

fundamental that these two components are measured on the same time scale. In this

way, it could be possible to investigate the effect of the longitudinal adherence on the

clinical outcome.

In this chapter we propose an innovative method to represent and measure adherence as

time-varying covariate exploiting administrative databases of Regione Lombardia [164].
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2. Joint modelling of time-varying adherence to medication and survival
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Figure 2.1. Classical framework : binary adherence is computed on a pre-defined observation period and

time-to-event outcome refers to the follow-up period. Time-varying framework : time-varying adherence is

computed jointly with the time-to-event outcome. T0 is the origin event, T ∗0 is the end of the observation

period.

Our method could be seen as an extension of the time-fixed Proportion of Days Covered

[102, 14] and it is computed on the same time scale of our event of interest, i.e., the death

of HF patients (see time-varying framework in Figure 2.1). In particular, we observed

that the dynamics of consumption and adherence to medication can be reconstructed

using secondary databases related to (i) patient admission to hospital (Hospital Discharge

Charts - HSC), which contain data related to hospital admissions and time to death (or

administrative censoring), and (ii) pharmaceutical purchases, which provide information

on the number and times of drug purchases. Since data on drugs prescriptions are nor

publicly available neither accessible, the approximation of drug consumption with drug

purchase is the only viable option. Examples and limitations of using this approach into

a pharmacoepidemiological setting are discussed in [14, 80, 102, 118, 187].

Motivated by the clinical question regarding the association between adherence to med-

ication and patients’ survival, we compared two different time-varying covariates: the

continuous time-dependent cumulative months covered by drug consumption and the di-

chotomous time-dependent adherence to medication. The first one represents the dynamic

behaviour and shape of drug intake, whereas the second one reflects the patient’s purpose

of taking the medication during time. Once these dynamic indicators are computed, we

plug them into joint models [167]. These models are used in follow-up studies where

interest is in associating an endogenous time-dependent response [97] with an event time

outcome. Since the data we came up with in our procedure were jointly determined with

the responses of interest and may be intended as endogenous covariates, this framework

enables their proper treatment. The flexibility and wide range applicability of joint models

to clinical setting [83] allow for subject-specific predictions and construction of personal-

ized medicine tools. In fact, the added value of our approach consists in performing an

ongoing analysis and a quantification of adherence effect on patient’s outcome that allow

to carry out a real-time monitoring and profiling of patients as well as a personalised

prediction about long-term prognosis.
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2.1. Statistical Methodologies

The remaining part of this chapter is organized as follows. In Section 2.1 we describe

the statistical methodologies. First, we introduce two novel time-varying representation

methods for drug consumption and adherence to medication; then we model them into

a joint modelling framework. Data extraction, inclusion criteria and representation of

pharmacological time-varying covariates are described in Section 2.2. Key results from

applying these methods to administrative data provided by Regione Lombardia - Health-

care Division within the project HFData [164] are presented in Section 2.3. In Section

2.4, we end with a discussion of the strengths and limitations of the current approach.

All the analyses were carried out using the free software R [161], in particular JMbayes

package [168]. Codes are available as Supplementary Material of [188].

2.1. Statistical Methodologies

2.1.1. Pharmacological time-varying covariates

In classical survival models, such as Cox’s proportional hazard model [46] or parametric

survival models [106], pharmacological consumption and adherence are usually considered

as binary (or categorical) baseline covariates. One of the most used adherence measure

is the Proportion of Days Covered (PDC) [102, 14], defined as in Equation (1.2). PDC

measure is computed on a pre-defined observation period (see classical framework in

Figure 2.1) and returns a number between 0 and 1. PDC is usually dichotomized to

identify as adherent those patients that reach an established threshold. However, since

the dynamics of drug intake changes during therapy depending on patient’s health status,

a time-varying representation could be more appropriate and informative. Therefore,

starting from PDC definition in Equation (1.2), we define time-varying adherence to

medication in two alternative ways:

(i) y
(C)
i (t): a continuous (C) time-dependent variable which indicates the cumulative

time covered by therapy consumption up to time t by the i-th subject, ∀i = 1, ..., n,

(ii) y
(D)
i (t): a dichotomous (D) time-dependent variable which indicates if the i-th pa-

tient is adherent to therapy at time t, ∀i = 1, ..., n

y
(D)
i (t) :=

1 if PDCi(t) =
y
(C)
i (t)

t
≥ τ

0 otherwise,

where τ is a pre-defined threshold and time t can be expressed in days, weeks, months or

years, depending on the type of data and on the focus of the research.

Variable y(C)(t) =
{
y

(C)
i (t), i = 1, ..., n

}
could be seen as an extension of PDC numerator

in (1.2) in which we considered time-varying observation periods, i.e., periods that begins

from our survival origin event (the index date, i.e., time T0 = 0) and ends up at different

times t. Variable y(D)(t) =
{
y

(D)
i (t), i = 1, ..., n

}
was a dichotomization of y(C)(t) to

35



C
H
A
P
T
E
R
2

2. Joint modelling of time-varying adherence to medication and survival

identify as adherent those patients with a proportion of therapy consumption up to time

t greater or equal to a pre-defined threshold τ , i.e., the τ×100% of the observation period

up to t. Using this approach, our covariates were measured on the same time-scale of the

survival framework, since they both started at the origin event of the survival analysis,

i.e., time T0 = 0.

Variables y(C)(t) and y(D)(t) represent two different ways to include into a longitudinal

framework the information related to patients’ adherence to continuity in routine therapy

assumption, leading to two different approaches that we want to compare. The dichoto-

mous covariate y(D)(t) provided an “easy” time-dependent representation of adherence,

since it represented the therapy assumption rate during time, i.e., the proportion of days

covered at time t PDC(t) dichotomized according to a certain threshold τ , as usually done

in the literature. This allowed us to distinguish patients with good
(
y(D)(t) = 1

)
and poor(

y(D)(t) = 0
)

adherence continuity rates during time. On the contrary, the continuous

covariates y(C)(t) was able to reflect how “compliant” they were in assuming therapy

with continuity and in which periods they actually assumed the drug. In fact, while the

value of y(C)(t) was a measure of the cumulative time on which the patient took the drug

(i.e., how “compliant” it was), the slope of the longitudinal trajectory was able to provide

information on modifications in patient’s behaviours during different periods. Indeed,

considering the longitudinal trajectory for a given patient between two consecutive times

t and t+ 1, we had that:

(i) a slope equal to 0 indicated that the patient never took the drug during interval

[t; t+ 1];

(ii) a slope equal to 1 indicated that the patient took the drug every day of interval

[t; t+ 1];

(iii) a slope in in (0,1) indicated that the patient took the drug sometimes, but not every

day.

Moreover, changes in the value of the trajectory slope over time reflected changes in

patient’s adherence continuity: an increasing slope indicated that patient’s behaviour

became more appropriate in terms of continuity in adherence to medication, a decreasing

slope indicated that patient’s behaviour became more inappropriate and a constant slope

indicated that patient’s behaviour remained unchanged (proper or improper according

to the value of the slope). Therefore, since the continuous variable y(C)(t) was more

descriptive and informative than the dichotomous y(D)(t), we expected that the approach

with y(C)(t) resulted more powerful in predicting and real-time evaluating the effect of

the covariate on patient’s survival status.

We finally underline that in clinical practice therapies are usually modified according to

the disease progression. This aspect allowed us to consider covariates (2.8) and (2.9) as

endogenous (or internal) time-dependent covariates, since their time paths were jointly

determined with the responses of interest. Indeed, as Kalbfleisch and Prentice (2011) [97]

stated, the key point of endogenous covariates is that their existence and future path are
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2.1. Statistical Methodologies

directly related to the event status. Hence, since they were related to the behaviour of

the individual over time, both the time-varying variables could be seen as endogenous.

2.1.2. Joint model specification

We now introduce the joint model approach proposed by Rizopoulos (2012) [167] for

dealing with time-to-event and endogenous longitudinal covariates. The choice of a joint

model is driven by the fact that, when the outcome processes are correlated, joint mod-

elling has empirically demonstrated to reduce biases, improve efficiency and prediction

and can be applicable to outcome surrogacy [83].

Let T ∗i denotes the true event time for the i-th subject, Ci the censoring time, Ti =

min(T ∗i , Ci) the corresponding observed event time and Di = 1(T ∗i ≤ Ci) the event

outcome indicator, with I(·) being the indicator function that takes the value 1 when

T ∗i ≤ Ci, and 0 otherwise. Let Dn = {Ti, Di,yi; i = 1, ..., n} denote a sample from

the target population, where yi denote the ni × 1 longitudinal response vector for the

i-th subject
(
y

(C)
i or y

(D)
i in our analyses

)
, with element yil denoting the value of the

longitudinal process taken at time point til, l = 1, ..., ni. The general form of joint models

we used for our analysis is the following:

g[E{yi(t)|bi}] = ηi(t) = xTi (t)β + zTi (t)bi (2.1)

hi(t|Hi(t),ωi) = h0(t) exp
{
θTωi(t) + f(Hi(t), bi,α)

}
, t > 0. (2.2)

The longitudinal process, given by equation (2.1), is a generalized linear mixed effects

model in which g(·) denotes a known one-to-one monotonic link function, yi(t) denotes the

value of the longitudinal process for the i-th subject at time point t, β is the vector of the

unknown fixed effects parameters, bi is the vector of subject-specific random effects, xi(t)

and zi(t) denote the time-dependent vectors for the fixed and random effect, respectively.

The event process, given by equation (2.2), assumes that the risk hi(·) for an event

depends on a function f(·) of the subject-specific linear predictor ηi(t). In particular,

Hi(t) = {ηi(s), 0 ≤ s < t} denotes the history of the underlying longitudinal process up

to time point t, h0(·) denotes the baseline hazard function, ωi(t) is a vector of exogenous,

baseline or possibly time-varying, covariates with corresponding regression coefficients

θ. The parameter α is the vector that quantifies the association between features of the

marker process up to time t and the hazard of an event at the same time point. Moreover,

the baseline hazard function h0(·) is modelled using a B-splines approach.

In JMbayes package, the estimation of the models parameters proceeds under a Bayesian

approach, using MCMC algorithms. Details regarding Bayesian estimation of joint models

can be found in [168, 88, 33].
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2. Joint modelling of time-varying adherence to medication and survival

Longitudinal and event processes for pharmacological time-varying covariates

In this section we specify longitudinal and event processes that we used to properly model

the pharmacological time-varying covariates introduced in Section 2.1.1. The choice of the

longitudinal submodels was driven by the nature of the time-varying processes themselves:

on one hand we needed a model able to capture the dynamic shape of drug consumption,

on the other hand we used a model for binary values.

For the continuous time-varying variable y(C)(t) =
{
y

(C)
i (t), i = 1, ..., n

}
, which indicates

the cumulative time covered by therapy consumption up to time t, we postulated a linear

mixed effect model as longitudinal submodel (2.1). Since the longitudinal trajectories

were nonlinear for many patients, we included natural cubic splines in both the fixed

and random effects parts in order to properly accounting for non-linearity, adjusting each

trajectory for baseline covariates with fixed effects. The resulting longitudinal process

was then of the following form:

y
(C)
i (t) = ηi(t) + εi(t) = (β0 + bi0) +

4∑
k=1

(βk + bik)Bn(t, λk) + x̃Ti β̃ + εi(t) (2.3)

where i is the patient’s index, {Bn(t, λk) : k = 1, 2, 3, 4} denotes the B-spline basis matrix

for a natural cubic spline of time t with three internal knots placed at 25th, 50th and 75th

percentiles of the follow-up times, x̃i is the vector of baseline covariates with fixed effects

with regression parameters β̃, εi(t) ∼ N (0, σ2
εIni) is the unknown vector of random errors

and bi ∼ N (0,D) is the vector of the patient-specific random effects, with D unstruc-

tured variance-covariance matrix. Therefore the time-dependent vectors for the fixed and

random effects for the i-th patient in (2.1) were xi(t) =
[
1, Bn(t, λ1), . . . , Bn(t, λ4), x̃Ti

]T
and zi(t) = [1, Bn(t, λ1), . . . , Bn(t, λ4)]T , with relative vectors of regression coefficients

β =
[
β0, . . . , β4, β̃

T
]T

and bi = [bi0, . . . , bi4]T .

For the dichotomous time-varying variable y(D)(t) =
{
y

(D)
i (t), i = 1, ..., n

}
, which indi-

cates adherence to therapy at time t, we postulated a logistic mixed effect model as

longitudinal submodel (2.1), as follows:

log
Pr
[
y

(D)
i (t) = 1

]
1− Pr

[
y

(D)
i (t) = 1

] = ηi(t) = β0 + bi0 + (β1 + bi1) t+ x̃Ti β̃ (2.4)

where i is the patient’s index, x̃i is the vector of baseline covariates with fixed effects

with regression parameters β̃ and bi ∼ N (0,D) is the vector of the patient-specific

random effects, with D an unstructured variance-covariance matrix. Therefore the time-

dependent vectors for the fixed and random effects for the i-th patient in (2.1) were

xi(t) =
[
1, t, x̃Ti

]T
and zi(t) = [1, t]T , with relative vectors of regression coefficients

β =
[
β0, β1, β̃

T
]T

and bi = [bi0, bi1]T .

For the event submodels, we wanted to focus on patient’s cumulative and current adher-

ence paths. On one hand, the current value of the subject-specific linear predictor gives
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2.2. Materials and Administrative data

information about the pharmacological history of drug assumption of each patient, i.e., its

cumulative path. On the other hand, the first derivative, i.e., the slope, is able to reflect

changes in drug intake between different time periods, especially through the continu-

ous covariate y(C)(t), giving us information about the patient’s current path. Therefore,

we focused on three different forms of f(Hi(t), bi,α) in (2.2), corresponding to different

meaning of the linear predictor:

(i) the risk of death for the i-th patient depends on the current true value of the

subject-specific linear predictor at time t:

hi(t) = h0(t) exp
{
θTωi(t) + α1ηi(t)

}
; (2.5)

(ii) the risk of death for the i-th patient depends on both the current true value of the

subject-specific linear predictor and its slope at time t:

hi(t) = h0(t) exp
{
θTωi(t) + α1ηi(t) + α2η

′
i(t)
}

; (2.6)

(iii) the risk of death for the i-th patient depends on the slope of the subject-specific

linear predictor at time t:

hi(t) = h0(t) exp
{
θTωi(t) + α2η

′
i(t)
}
. (2.7)

In this way we were able to investigate the effects of (i) cumulative adherence, (ii) both

cumulative and current adherence and (iii) current adherence on patients’ long-term sur-

vival, adjusting for other baseline or time-varying exogenous characteristics in ωi(t).

2.2. Materials and Administrative data

2.2.1. Study setting

Between January 2000 and December 2012, non-paediatric (age ≥ 18 years) patients

living in Lombardy (one of the biggest and most populated Italian region accounting for

10 million residents) hospitalized with a principal diagnostic code of HF were recruited

(see Mazzali et al., 2016 [136]). Enrolment occurred from the data of discharge of the

first HF hospitalization (i.e., the index date). Among the disease-modifying drugs for

HF patients mentioned in [139] and [154], we focused on Angiotensin-Converting Enzyme

inhibitors (ACE) and Angiotensin II Receptor Blockers (ARB), which are drugs of routine

use for HF [222] therefore they should be taken regularly by HF patients, regardless of

the level of severity of their health status. In particular, patients who bought at least one

medication of ACE or ARB during the first year of follow-up were selected.
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2. Joint modelling of time-varying adherence to medication and survival

2.2.2. Administrative data sources

The project database was built for residents in Lombardy which were hospitalized for

HF from 2000 to 2012. Data were provided by Regione Lombardia - Healthcare Division,

within the research project HFData [HFData–RF-2009-1483329] [164]. In order to pro-

tect privacy, information retrieved from the different databases were linked via a single

anonymous ID (identification) code. For further details regarding data extraction and

selection see Mazzali et al. (2016) [136].

Each record in the dataset was related to an event, which could be an hospitalization

or a drug purchase of a given patient. With regard to ordinary hospital admission, the

date of discharge from hospital and the length of stay in hospital were retrieved. For

drug purchases, identified by their Anatomical Therapeutic Chemical (ATC) codes [214],

the date of purchase and the number of days of treatment covered by the prescription,

based on the number of boxes and the Defined Daily Dose (DDD) [220] for that specific

medicinal product, were retrieved.

In this work we focused on a representative sample of HFData related to patients with their

first HF discharge between January 2006 to December 2012, excluding patients who died

during the index hospitalization. A 5-years pre-study period from 2000 to 2005 (Figure 2.2)

was used in order to consider only ”incident” HF patients, i.e., patients with no contacts

with healthcare system in the previous five years due to HF. This choice allowed us to

reduce potential time-lag biases [155] due to different severity of the disease. To avoid

a possible survival bias due to patient’s critical conditions, we excluded those patients

who died within 30 days from the index date. Moreover, we defined the ACE/ARB

therapy period (Figure 2.2) to select purchases within 1 year of follow-up, since we were

interested in the effect the time-varying adherence to the first year of ACE/ARB therapy.

Therefore, only patients with at least one ACE/ARB purchase were included in the final

study cohort. Demographics and comorbidities were considered to adjust models.

End of follow-up

31/12/2012

Pre-study period

Index HF hospitalization

01/01/2006 – 31/11/2012 

01/01/2000 – 31/12/2005

Follow-up period

1 year (365 days)

ACE/ARB therapy period

T0

Figure 2.2. Study design. HF = Heart Failure, ACE = Angiotensin-Converting Enzyme inhibitors,

ARB = Angiotensin II Receptor Blockers.
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2.2.3. Pharmacological time-varying covariates for ACE/ARB

therapy

As explained in Section 2.1.1, starting from PDC definition (1.2), we represented time-

varying adherence to ACE/ARB therapy in two alternative ways:

(i) a continuous time-dependent variable which indicates the cumulative months cov-

ered by ACE/ARB consumption up to time t for the i-th patient

cum monthsi(t) = y
(C)
i (t) := distinct coverage months up to time t; (2.8)

(ii) a dichotomous time-dependent variable which indicates if the i-th patient is adherent

to the ACE/ARB therapy at time t

adherencei(t) = y
(D)
i (t) :=

{
1 if cum monthsi(t)

t
≥ 0.80

0 otherwise.
(2.9)

In both cases, times t were expressed in months. In particular, we considered the first day

of follow-up (t = 0.033 months) and each months (t = 1, ..., 12 months) up to the end of

the first year or up to the patient’s death, if he/she died during the first year of follow-up.

Using this approach, our covariate was measured on the same time-scale of our survival

framework. For cum monthsi(t) (2.8) computation we considered only the coverage of

distinct periods, which means that, in case of overlapping of two subsequent purchases,

we considered the period covered by the first purchase entirely and the second purchase

only in those days that were not covered by the first one. Moreover, we assumed full

adherence during re-hospitalization period [14], and we based our analysis on purchased

drugs instead of prescribed drugs, as done in Spreafico et al. (2020) [187]. In particular,

for each months we firstly computed the cumulative coverage days up to the current

month t. Then, converting days into months, we obtained the continuous time-varying

covariate cum monthsi(t), which indicates the cumulative months covered by ACE/ARB

assumption up to time t.

Finally, variable adherencei(t) (2.9) was a dichotomization of variable cum monthsi(t) to

identify as adherent those patients with a proportion of months covered by ACE/ARB

consumption up to time t greater or equal to τ = 0.8, i.e., the 80% of the observation

period up to t. Therefore, adherencei(t) was equal to 1 if cum monthsi(t)/t ≥ 0.8 at time

t, 0 otherwise.

This reconstruction process ended up with a long-format database with multiple rows for

each patient, one for each time point of his/her time-varying covariates. In Figure 2.3

we reported an example of the final reconstruction of the covariates cum monthsi(t) (top

panel) and adherencei(t) (bottom panel) for a random patient.

41



C
H
A
P
T
E
R
2

2. Joint modelling of time-varying adherence to medication and survival

0

1

2

3

4

5

6

7

8

9

10

11

12

0 1 2 3 4 5 6 7 8 9 10 11 12

C
um

ul
at

iv
e 

m
on

th
s

Time-varying cumulative months and adherence

0

1

0 1 2 3 4 5 6 7 8 9 10 11 12
Time [months]

A
dh
er
en
ce

Non adherent (0) Adherent (1)

Figure 2.3. Example of time-varying consumption and adherence to ACE/ARB therapy, cum monthsi(t)

and adherencei(t) respectively.

2.2.4. Outcome measure

Study outcome of interest was patient’s death for any cause. Deaths were collected from

the Hospital Discharge Forms Database (for in-hospital deaths) or Vital Statistics Re-

gional Dataset (for out-hospital deaths). For the survival analysis, each patient was fol-

lowed from the index date (i.e., the discharge from the index HF hospitalization, T0 = 0)

until the end of the study or the date of death (see follow-up period in Figure 2.2). The

administrative censoring date was December 31st, 2012.

2.3. Results

2.3.1. Study cohort

A representative sample cohort of 4,870 patients were identified with principal diagnostic

code of HF during the period 2006-2012. Of these, we excluded 13 (0.3%) patients who

died during the 30 days after the index hospitalization. Moreover, 883 patients (18.1%)

were removed since they did not present any purchase of ACE or ARB in the first year

after the index hospitalization. Thus, a total of 3,974 (81.6%) patients met study selection

criteria (see Figure 2.4).
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Overall, at index hospitalization mean age of the study cohort was 72.82 years (s.d. =

11.16) with a percentage of male patients equal to 55.8% (2,219 patients). The mean

number of comorbidities was 2.09 (s.d. = 1.08) with 30.5% of patients presenting ≥ 3

comorbidities). The median time of follow-up period was 48.85 (IQR = [30.72; 66.94])

months. At administrative censoring date 1,012 patients (25.5%) were dead and 2,962

(74.5%) were censored. Moreover, at the end of ACE/ARB therapy period (i.e., t = 12

months), the percentage of living patients was 94.7% (3,764 patients), with a mean value

of distinct coverage months, i.e., mean value of cum monthsi(12), equal to 8.77 months

(s.d. = 3.04) and only 2,039 patients (54.2%) with adherencei(12) = 1.

Initial dataset

n = 4,870

Patients survived at least 30 days after the first 
discharge for HF


n = 4,857

Patients with at least one ACE or ARB purchase during 
the first year after the first discharge for HF


n = 3,974

13 dead patients in 
the first 30 days

883 patients 
without ACE/ARB 

purchases

Figure 2.4. Flowchart of cohort selection.

2.3.2. Joint models for time-varying consumption and adherence to

ACE/ARB therapy

In order to assess the role of time-varying consumption and adherence to ACE/ARB

therapy with respect to the overall survival time of a patient, we estimated six different

joint models.

Referring to the continuous time-varying consumption of ACE/ARB therapy cum monthsi(t),

we considered three joint models, namely M1, M2 and M3, with the same longitudinal

subprocess (2.3) given by

cum monthsi(t) = ηi(t) + εi(t)

= β0 + bi0 +
4∑

k=1

(βk + bik)Bn(t, λk) + β5n comi + εi(t)
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and the event submodels (2.5)-(2.6)-(2.7) defined as follows

M1 : hi(t) = h0(t) exp{θ1agei + θ2genderi + θ3n comi + α1ηi(t)};
M2 : hi(t) = h0(t) exp{θ1agei + θ2genderi + θ3n comi + α1ηi(t) + α2η

′
i(t)};

M3 : hi(t) = h0(t) exp{θ1agei + θ2genderi + θ3n comi + α2η
′
i(t)}.

Referring to the dichotomous time-varying adherence to ACE/ARB therapy adherencei(t),

we considered three joint models, namely M4, M5 and M6, with the same longitudinal

subprocess (2.4) given by

log
Pr [adherencei(t) = 1]

1− Pr [adherencei(t) = 1]
= ηi(t) = β0 + bi0 + (β1 + bi1) t+ β2n comi

and the event submodels (2.5)-(2.6)-(2.7) defined as follows

M4 : hi(t) = h0(t) exp{θ1agei + θ2genderi + θ3n comi + α1ηi(t)};
M5 : hi(t) = h0(t) exp{θ1agei + θ2genderi + θ3n comi + α1ηi(t) + α2η

′
i(t)};

M6 : hi(t) = h0(t) exp{θ1agei + θ2genderi + θ3n comi + α2η
′
i(t)}.

In both cases, the longitudinal submodel was adjusted for the the total number of comor-

bidities at the index hospitalization. Therefore, in submodels (2.3) and (2.4) the vector

of baseline covariates with fixed effects was given by x̃i = n comi.

Moreover, each event submodel was adjusted for three baseline covariates: age, gender and

total number of comorbidities at the index hospitalization. The choice of these covariates

was driven by clinical relevance and availability from administrative data and were used

to prevent as much as possible biases induced by the use of secondary database. Hence,

in the event submodels (2.5)–(2.6)–(2.7) the vector of the exogenous baseline covariates

was given by ωi = (agei, genderi, n comi).

For the model fitting, we used version 3.6.2 of R software and version 0.8-85 of JMbayes

package. We ran the MCMC sampler implemented in jointModelBayes() function for a

total number of 36,000 iterations, discarding the first 3,000 as burn-in and other 3,000 as

adaptation and thinning every 15 iterations; the final sample size was 2,000. Covariates

age (age) and number of comobidities (n com) have been standardized for easing conver-

gence during parameters estimation.

Results

Considering the continuous time-varying variable y(C)(t) = cum months(t) as longitudinal

process like in (2.3), we fitted the three different joint models M1, M2 and M3 introduced

in Section 2.3.2. The results of the model parameter estimations are shown in Table 2.1,

together with their deviance information criterion (DIC) values. Results from the different
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models were similar, but model M2 presented a lower DIC value with respect to M1 and

M3. Therefore, the selected model for time-varying cum months(t) was the following:

M2 :


cum monthsi(t) = ηi(t) + εi(t)

= β0 + bi0 +
∑4

k=1(βk + bik)Bn(t, λk) + β5n comi + εi(t)

hi(t) = h0(t) exp{θ1agei + θ2genderi + θ3n comi + α1ηi(t) + α2η
′
i(t)}.

From parameter estimation of model M2 we observed that all the 95% credibility intervals

did not contain 0, except for the parameters β0 and α1. From the longitudinal process, we

observed that the number of baseline comorbidities negatively influenced the cumulative

months covered by ACE/ARB assumption (β̂5 = −0.3414 < 0 with 2.5%–97.5% CI =

[−0.6453;−0.0495]), probably reflecting that as comorbidities increased as the mix of

drugs changed accordingly. In the event process, all the covariates were associated with

the risk of death, except for the current level of the linear predictor. In particular, being

younger or a female corresponded to a higher survival probability, whereas having a higher

number of initial comorbidities corresponded to a lower survival probability, as it might

be expected. Moreover, the slope of the linear predictor had a protective role: the HR

related to the slope value is exp(α̂2) = exp(−0.6301) = 0.533. Hence, a 1-unit increase in

the value of the slope corresponded to a 0.533-fold decrease in the risk of death (2.5–97.5%

CI = [0.380; 0.743]). Figure 2.5 shows the survival probability plot for two male patients,

A and B, aged 72 with two comorbidities and yA(12) = yB(12) = 5.191. From the figure,

we observed that the patient with the higher slope of the linear predictor at time t = 12

(patient A in right panel) had a higher survival probability during time. Hence, having a

good adherence trend during time reflected a protective role on patients’ survival.
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Figure 2.5. Survival probability plots for two male patients aged 72 years and with two comorbidities

at the index date using joint model M2. The values of continuous time-varying covariate cum months(t)

are reported in the left part of both panels (stars) with their linear predictors ηi(t) (line). In particular,

at t = 12 months cum monthsA(12) = cum monthsB(12) = 5.191, with relative linear predictors ηA(12) =

5.183 and ηB(12) = 5.271 and slopes η′A(12) = 0.029 and η′B(12) = 0.503.
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On the other hand, considering the dichotomous time-varying variable as longitudinal

process y(D)(t) = adherence(t) like in (2.4), we fitted the three different joint models M4,

M5 and M6 introduced in Section 2.3.2. The results of the model parameter estimations

are shown in Table 2.2, together with their deviance information criterion (DIC) values.

Results from the different models were similar, but model M4 presented a lower DIC value

with respect to M5 and M6. Therefore, the selected model for time-varying adherence(t)

was the following:

M4 :

{
log Pr[adherencei(t)=1]

1−Pr[adherencei(t)=1]
= ηi(t) = β0 + bi0 + (β1 + bi1) t+ β2n comi

hi(t) = h0(t) exp{θ1agei + θ2genderi + θ3n comi + α1ηi(t)}

From parameter estimation of model M4 we observe that all the 95% credibility intervals

did not contain 0. From the longitudinal process, we observed that, also in this case,

the number of baseline comorbidities negatively influenced the probability of adherence

to ACE/ARB assumption (β̂2 = −0.2955 < 0 with 2.5%–97.5% CI = [− − 0.4166;− −
0.1753]), probably reflecting a change in drugs mix according to the increased number

of morbidities. In the event process, all the covariates were associated with the risk

of death. In particular, being younger or a female corresponded to a higher survival

probability, whereas having a higher number of initial comorbidities corresponded to a

lower survival probability, as it might be expected. Moreover, the current value of linear

predictor had a protective role: the HR for a 10-units increase in the current value is

exp(α̂1 · 10) = exp(−0.0011 · 10) = 0.989. Hence, a 10-units increase in the value of the

predictor corresponded to a 0.989-fold decrease (2.5–97.5% CI = [0.981; 0.997]) in the

risk of death. Figure 2.6 shows the survival probability plot for two male patients, C

and D, aged 72 with two comorbidities, yC(12) = 1 and yD(12) = 0. From the figure,

we observed that the adherent patient at time t = 12 (patient C in left panel) had a

higher survival probability during time. Patient C was the one with the higher value of

the linear predictor at time t = 12. Indeed, the current values of their linear predictors at

time t = 12 were ηC(12) = 9.64 and ηD(12) = −7.64. Therefore, also in this case, having

a good adherence trend during time reflected a protective role on patients’ survival.

Note that in the selected models, the risk of death depended on the slope of cum months(t)

in M2 but on the current value of adherence(t) in M4. This difference is due to the

different meaning of the two covariates, as explained in Section 2.1.1. On one hand,

cum months(t) is the cumulative months covered by ACE/ARB consumption and its slope

reflects current adherence. On the other hand, the current value of adherence(t) is

directly related to the rate of cumulative months covered by therapy assumption, since it

represents its dichotomization in good and poor continuity using an 80% threshold.

Comparison of the two approaches

We finally compared models M2 and M4. Both models led to similar considerations

concerning adherence to medication. On one hand, they both indicated that patients with

different number of comorbidities are characterized by different mix of drugs, suggesting

that polytherapy, i.e., the use of multiple medications simultaneously, must be taken into
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Figure 2.6. Survival probability plots for two male patients aged 72 years and with two comorbidities at

the index date using joint model M4. The values of dichotomous time-varying covariate adherence(t) are

in the left part of both panels (stars) with sigmoid transformation of their linear predictors, exp(ηi(t))/(1+

exp(ηi(t)) (line). In particular, at t = 12 months adherenceC(12) = 1 and adherenceD(12) = 0, with

relative linear predictors ηC(12) = 9.64 and ηD(12) = −7.64.

account. On the other hand, they allowed us to confirm that non-adherence is commonly

associated with adverse health conditions [102]. However, this was what we expected

and it did not represent the key result of the study. In fact, the added value of our

work consists in performing an ongoing analysis and quantification of adherence effect

on patient’s outcome that allowed to carry out a real-time monitoring and profiling of

patients.

In this sense, we need to assess which of the two models allowed for a better dynamic

monitoring of patient’s status. We observed that DIC value of model M2 was lower than

the one of M4 (61372.08 vs 74869.36), which suggested that joint model M2 outperformed

M4. Then, we performed a 10-fold cross validation to assess the predictive performances

of the models in terms of calibration, i.e., how well the model predicts the observed event

rates [181], and discrimination, i.e., how well can the model discriminate between patients

who had experience the event from patients who did not [152]. In terms of calibration, we

evaluated the accuracy of predictions of survival models through the integrated prediction

error that accounts for censoring, introduced by Schemper and Henderson (2000) [181].

In particular, the integrated predictor at time u giving the longitudinal measurements up

to time t is indicated by IPE(u|t) and it is a weighted average of the expected prediction

errors over interval [t, u], i.e., {PE(s|t), t < s < u}. The index PE(s|t) measures the

predictive accuracies at specific time points s, considering the longitudinal information

up to time t. In particular, using the available longitudinal data up to two different

time points t1 = 3 and t2 = 12 months, we focused on two different time points of

medical relevance for HF: mid-term mortality, u1 = 12 (1 year), and long-term mortality,

u2 = 60 months (5 years). On the other hand, to assess the discriminative capability of

each model we used the dynamic concordance index C∆t
dyn(u) introduced by Rizopoulos
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Table 2.3. Estimated means along with standard deviations (s.d.) of the integrated prediction errors

IPE(u|t) and the dynamic discrimination indexes C∆t
dyn(u) computed through 10-fold cross-validation at

time points u = 12 months (1 year) and u = 60 months (5 years) under the joint modelling analyses M2

and M4.

M2 M4

Calibration Mean (s.d.) Mean (s.d.)

ÎPE(u = 12|t = 3) 0.0095 (0.0052) 0.0095 (0.0052)

ÎPE(u = 60|t = 12) 0.1012 (0.0107) 0.1019 (0.0107)

Discrimination Mean (s.d.) Mean (s.d.)

Ĉ∆t=1
dyn (u = 12) 0.7051 (0.0794) 0.6994 (0.0342)

Ĉ∆t=6
dyn (u = 60) 0.6891 (0.0704) 0.6822 (0.0354)

(2016) [168], which is weighted average of the time-dependent areas under the receiver

operating characteristic curves (AUCs) and takes into account the fact that not all the

time points contribute equally, because at later time points less subjects are still available.

In particular, we focused on the same time points u1 = 12 and u2 = 60 months, using

one-month and six-months intervals ∆t, respectively. For further details on integrated

prediction error, dynamic concordance index and their estimates see Rizopoulos (2016)

[168]. For each fold k with k ∈ {1, . . . , 10}, we computed the integrated prediction error

IPEk(u|t) and the dynamic concordance index C∆t
dyn,k(u), taking advantage of prederrJM()

and dynCJM() functions implemented in the JMbayes package. Table 2.3 reports the means

over the 10 folds along with standard deviations of the two indexes for both models M2

and M4. We observed that the two models had comparable performances in terms of

calibration and discrimination, but model M2 turned out slightly better (lower errors and

higher concordances), confirming our suspects.

Finally, in Figure 2.7 we compared the survival probability plots for the same 72 year-old

male patient E with two comorbidities at the index hospitalization and the pharmacolog-

ical history shown in Figure 2.3. Top panels referred to model M2 and bottom panels to

model M4. We considered three different time points of the time-varying variables, i.e.,

t ∈ {4, 8, 12} months (left, central and right panels, respectively). We observed that the

two approaches led to two different behaviours of the survival probability plots during

time. In particular, we noticed that the variability in survival predictions due to ongoing

consumption was more informative and pronounced in model M2 than in model M4, which

was less able to capture and differently quantify the ongoing effect on patient’s outcome.

Indeed, looking at the ongoing behaviour of patient’s ACE/ARB consumption, we ob-

served that the patient assumed some drugs during the first three months but at time

t = 4 months he presented a non-adherence trend, with the long-term survival predictions

showed in left panels. Then, he started to assume ACE/ARB again in order to improve

his health status, but at time t = 8 months he was still non-adherent to the therapy. That

behaviour had a negligible impact on long-term prediction of model M4 (bottom-central

panel), whereas the one of model M2 improved (top-central panel). He then continued

to take the therapy, resulting adherent at time t = 12 months. Also in that case, his

behaviour had a negligible impact on long-term prediction of model M4 (bottom-right

panel), whereas the one of model M2 further improved (top-right panel), also determining

50



C
H
A
P
T
E
R
2

2.3. Results

0
1
0

2
0

3
0

4
0

5
0

6
0

024681012

T
im

e
 [

m
o

n
th

s
]

Cumulative months at time t

P
a

ti
e

n
t 

E
 −

 M
o

d
e

l 
2

 −
 t

 =
 4

0
.6

0
.7

0
.8

0
.9

1
.0

0
1
0

2
0

3
0

4
0

5
0

6
0

024681012

T
im

e
 [

m
o

n
th

s
]

P
a

ti
e

n
t 

E
 −

 M
o

d
e

l 
2

 −
 t

 =
 8

0
.6

0
.7

0
.8

0
.9

1
.0

0
1
0

2
0

3
0

4
0

5
0

6
0

024681012

T
im

e
 [

m
o

n
th

s
]

P
a

ti
e

n
t 

E
 −

 M
o

d
e

l 
2

 −
 t

 =
 1

2

0
.6

0
.7

0
.8

0
.9

1
.0

Survival Probability

0
1
0

2
0

3
0

4
0

5
0

6
0

0.00.20.40.60.81.0

T
im

e
 [

m
o

n
th

s
]

Adherence at time t

P
a

ti
e

n
t 

E
 −

 M
o

d
e

l 
4

 −
 t

 =
 4

0
.6

0
.7

0
.8

0
.9

1
.0

0
1
0

2
0

3
0

4
0

5
0

6
0

0.00.20.40.60.81.0

T
im

e
 [

m
o

n
th

s
]

P
a

ti
e

n
t 

E
 −

 M
o

d
e

l 
4

 −
 t

 =
 8

0
.6

0
.7

0
.8

0
.9

1
.0

0
1
0

2
0

3
0

4
0

5
0

6
0

0.00.20.40.60.81.0

T
im

e
 [

m
o

n
th

s
]

P
a

ti
e

n
t 

E
 −

 M
o

d
e

l 
4

 −
 t

 =
 1

2

0
.6

0
.7

0
.8

0
.9

1
.0

Survival Probability

F
ig

u
re

2
.7

.
S

u
rv

iv
al

p
ro

b
ab

il
it

y
p

lo
ts

at
d

iff
er

en
t

ti
m

e
p

oi
n
ts

fo
r

th
e

7
2

ye
a
r-

o
ld

m
a
le

p
a
ti

en
t
E

w
it

h
tw

o
co

m
o
rb

id
it

ie
s

a
t

th
e

in
d

ex
d

a
te

a
n

d
th

e
p

h
a
rm

a
co

lo
g
ic

a
l

h
is

to
ry

sh
ow

n
in

F
ig

u
re

2.
3

u
si

n
g

jo
in

t
m

o
d

el
M

2
(l

ef
t

p
an

el
)

a
n

d
M

4
(r

ig
h
t

p
a
n

el
).

T
h

e
va

lu
es

o
f

th
e

ti
m

e-
va

ry
in

g
co

va
ri

a
te

s
c
u
m
m
o
n
t
h
s
E

(t
)

a
n

d
a
d
h
e
r
e
n
c
e
E

(t
)

ar
e

re
p

or
te

d
in

th
e

le
ft

p
ar

t
of

th
e

p
an

el
s

(s
ta

rs
)

w
it

h
th

e
li

n
ea

r
p

re
d

ic
to

r
fo

r
m

o
d

el
M

2
a
n

d
th

e
si

g
m

o
id

tr
a
n
sf

o
rm

a
ti

o
n

o
f

li
n

ea
r

p
re

d
ic

to
r

fo
r

m
o
d

el
M

4
(l

in
es

).

L
ef

t
p

an
el

s
ar

e
re

la
te

d
to

lo
n

gi
tu

d
in

al
p

ro
ce

ss
cu

t
at

ti
m

e
p

o
in

t
t

=
4

m
o
n
th

s,
ce

n
tr

a
l

p
a
n

el
s

a
t

ti
m

e
t

=
8

m
o
n
th

s
a
n

d
ri

g
h
t

p
a
n

el
s

a
t

ti
m

e
t

=
1
2

m
o
n
th

s.

51



C
H
A
P
T
E
R
2

2. Joint modelling of time-varying adherence to medication and survival

a reduction in the credibility intervals (and so in the uncertainty) of the survival predic-

tion. This was probably due to the fact that dichotomous covariate adherence(t) is a

poorer representation that only reflects the patient’s purpose of taking the medication

over time, whereas the continuous covariate cum months(t) is able to capture the dynamic

behaviour and shape of the consumption. Therefore the use of variable cum months(t) in

model M2 was preferable, since it provided a more detailed real-time monitoring of drug

intake and of its effects on patient’s outcome.

2.4. Final remarks

Since in pharmacotherapy practice the way adherence is usually computed discards valu-

able information related to the changes in patient drug utilization behaviour over time,

in this chapter we proposed an innovative method to represent adherence to medication

as time-varying covariate exploiting administrative database. In particular, we explored

time-varying adherence to medication using two different representations: a continuous

time-dependent variable, which indicated the cumulative months covered by drug as-

sumption up to time t, and a dichotomous time-dependent variable, which indicates if

the patient is adherent to the therapy at time t. For the computation, at each time-

point t we took advantage of pharmacological records about drugs purchases collected

in administrative databases, increasingly used for clinical and epidemiological purposes.

These covariates were able to reflect the dynamics and the behaviour of adherence during

the therapy, resulting more realistic and informative with respect to the commonly used

baseline-fixed measures.

Once the covariates were determined, we applied the joint modelling technique in order

to investigate how patients’ time-to-event outcome was influenced by longitudinal data.

We observed that modelling the drug intake process as time-varying covariates in a joint

modelling setting represents an effective interpretative and forecasting approach for ex-

ploring the effects of adherence to medication on patients’ survival, especially through the

continuous time-varying representation. First of all, using both variables we confirmed

that having a good adherence trend during time reflected a protective role on patients’

survival, as we expected. Then, with a dynamic study of adherence, it was possible to real-

time understand its effects on patient’s health status directly monitoring the treatment,

above all thanks to the use of the continuous time-dependent covariate able to satisfactory

capture the dynamic behaviour and shape of drug intake. A real-time monitoring and

profiling of patients could allow to tailor therapeutic interventions and adjustments in

order to prevent disease progression, leading to healthcare improvements, social benefits

and economic utilities. In this sense, studying factors that could influence time-varying

consumption, also through a deeper exploitation of administrative databases and a proper

management of their population based massive records, could lead to interesting analysis

and strong external validity. Furthermore, the use of a time-varying covariates into an

appropriate survival framework, such as joint modells, allowed to avoid the survival bias

due to exclusion of early dying patients in the study cohort.
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2.4. Final remarks

Some limitations of the present chapter have to be noted, mainly due to the use of sec-

ondary databases in the real case-study. First, the use of theoretical Defined Daily Dose

(DDD) instead of Prescribed Daily Doses (PDD) could reflect a bias in the estimated ad-

herence if the underlying PDD/DDD ratio is different from 1 [220, 69, 187], as mentioned

in the previous chapter. It could be interesting to explore, whenever the linkage is possi-

ble, databases with information about dosages prescribed by doctors, in order to obtain

a more realistic analysis of coverage periods. More in general, pharmacoepidemiology

observational studies based on healthcare utilization databases are often characterized by

potential biases, which can be divided in four categories according to [155]: confounding,

selection bias, measurement bias and time-related biases. In particular, this study suffers

from three main biases that usually occur in observational studies of pharmacoepidemio-

logic databases. First of all, HF patients are usually in a polytherapy, i.e., they usually

take multiple drugs at the same time. Other treatments represent possible time-varying

confounding factors, since they also influence the outcome of interest. The second issue

concerned unmeasured confounding: our analysis was based on the information available

in our dataset, and we could not control for other relevant not reported confounding

factors, such as socio-economic or adverse drug reactions data. Finally, we could have

biases related to the misclassification of exposure. Indeed, administrative data allowed

to measure the effective consumption and adherence to medication with a big limitation:

we were not able to assert if the patient was currently consuming the dispensed drug or if

during re-hospitalizations period he/she actually received the treatment. These issues are

related to the nature of administrative data: they address ’operational’ goals, i.e., they

are collected with no clinical question in mind and mainly for managerial and economic

purposes [89], and the validity of using these kind of data is critically dependent on the

reliability of the data [115, 180, 90]. Nevertheless, they are population based, compre-

hensive, capture real health system use, longitudinal and can be linked to other data,

representing a valuable clinical research resource.

Despite the aforementioned limitations, this work opens doors for many further devel-

opments, both in the fields of statistical methods and clinical research. First of all, the

considered models could be further improved (i) adding an autoregressive error in longi-

tudinal submodel (2.3) in order to take into account the strong dependence of the value at

previous time, (ii) exploring a more flexible longitudinal logistic mixed effects submodel

(2.4) in which a nonlinear effect in time could allow for a better predictive ability of the

model, and (iii) considering a nonlinear effect for demographics and comorbidity charac-

teristics in the event submodels in order to allow for a better tailoring of predictions to

different groups of patients. Nevertheless, such improvements present a number of issues

in terms of convergence and patches to be added to the current version of JMbayes package

(where autoregressive errors are not available), which go beyond the scope of the current

work. For these reasons, point (i) was not implemented within this study, whereas points

(ii) and (iii) were not pursued since their application encountered convergence issues.

From a pharmacotherapy point of view, it will be necessary to simultaneously combine all

the disease-modifying drugs for HF mentioned in [139] and [154] (ACE/ARB, Beta Block-

ing agents, Anti Aldosterone agents, Diuretics) since patients are usually in a polytherapy,

as suggested by the decreasing mix of ACE/ARB drugs in case of increasing number of
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2. Joint modelling of time-varying adherence to medication and survival

comorbidities. This would surely imply many issues related to the representation of the

dynamic evolution of the multivariate time-varying datum and to include simultaneously

all the treatments in a not trivial task. It could also be interesting to concomitantly

analyse adherence to medication and, if available, other subject-specific measurements

registered during follow-up, i.e., biomarkers. These measurements could be of clinical

interest since they represent dynamic patterns that could reflect patient’s disease progres-

sion, incorporating lots of information related to his health status and possibly leading to

further improvements in subject-specific treatment and personalized medicine.

In summary, in this chapter we proposed a novel method to represent adherence to med-

ication as time-varying covariate through administrative databases and we analysed its

dynamic effect on patients’ survival using a joint modelling framework. The developed

approach is very flexible and can be generalized to many different settings. The main

added value is the ongoing analysis and quantification of adherence effects on patient’s

outcome, which may allow researchers to proper modelling individual actual treatment,

and clinicians to better target therapies for their patients. This study confirmed the im-

portance of developing approaches to the representation of drugs consumption using a

time-varying perspective, so that they are more realistic and informative than the com-

monly used time-fixed measures. In this sense, the modelling of time-varying covariates

might be further exploited within the framework of functional data analysis [163, 162]

or recurrent events theory [44]. In the next chapter, we propose an innovative method-

ology combining the exploitation of both as a first attempt to use these methods for an

observational study in the pharmacotherapy field.
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