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INTRODUCTION

Survival analysis [97, 106, 202] is an important field of statistics dealing with time-to-event

(or life-time) data. In life-time data the outcome variable of interest, named survival time,

is the amount of time elapsed from a so-called origin/initiating event until an event of

interest. Many examples exist in several research fields: time from diagnosis of disease

until death in medicine, time to failure of a machine part in engineering, or duration of

unemployment in socio-economic sciences. A key characteristic of survival data is that

they are generally partially observed, coming as a mixture of complete and incomplete

observations. Some individuals might not have experienced the event of interest at the

end of the study period or have dropped out before the event has occurred. It is only

known that the event had not occurred before the last observation time but the exact event

time is unknown. This type of mechanism is called right-censoring. Whether studying

a specific event or a sequence of events, special statistical methodologies are required

to handle this particular type of partially observed data, as censoring complicates all

technical issues involved in life-time analyses.

The work carried out in this thesis is motivated by specific medical questions. For example

in chronic diseases or cancers, survival models can be used to investigate if a patient’s

age, gender, medical treatment, or other covariates are associated to the risk of death.

Typically, the term covariate refers to time-fixed predictive or explanatory variable, whose

value does not change over time (e.g., demographic or baseline information). However,

medical follow-ups are characterized by time-varying covariates (i.e., attributes that may

have different values at different time points), such as drugs intake, treatment doses,

biomarkers or toxicity, or by repeated events occurring during the study, like office visits,

subsequent drug consumption or hospital admissions. These processes that change or

re-occur over time are of great interest because the way their dynamic patterns evolve

may affect patient’s health status and disease progression.

Due to the complexity of these phenomena, a piecewise-constant or fixed-baseline approach

is usually preferred in the clinical literature, discarding their dynamic and/or temporal

components. In this way, the information that these processes can provide if the associ-

ation between time-varying and time-event data is properly captured is completely lost.

Complex mathematical methods are therefore required to model disease evolution and

characterise its relationship to the dynamic nature of time-dependent features.

The current thesis arises in cross-sectional fields of biostatistics and healthcare research

and focuses on developing mathematical and statistical methods to represent time-varying

processes from complex raw data, and model them within the context of time-to-event

analysis. The main purpose is to enrich the knowledge available for modelling survival
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with relevant features related to the dynamic characteristics of interest. These aspects are

rarely addressed in the literature and may provide new insights for medical research, rep-

resenting a challenge of both clinical relevance and statistical interest. This work focuses

on time-varying processes and, more specifically, examines (i) dynamic representation and

(ii) modelling in a time-to-event setting.

In terms of representation, the main issue consists on identifying appropriate dynamic

characterizations of the processes under study. Here, several levels of complexities must

be considered. On one hand, producing models that are suitable for dealing with complex

data is not straightforward. A huge amount of data-integration and preprocessing work is

needed to make data suitable for the statistical analysis preserving clinical interpretabil-

ity. On the other hand, when defining the mathematical formulation, the nature of the

processes and aspects such as temporal dynamics, categorical levels or recurring events

must be taken into account. Different methodologies are therefore proposed throughout

this thesis, including:

• complex data integration to define novel pooled or longitudinal representations re-

lated to time-dependent covariates (Chapters 1, 2, 5);

• recurrent events modelling and point processes theory to retrieve the trajectories

of compensators related to appropriate stochastic processes for recurrent events

(Chapter 3);

• functional data analysis techniques to reconstruct features able to incorporate trends

and variations in the evolution of the processes as continuous smoothed functions

of time (Chapters 3, 4);

• latent Markov models and compositional data analysis to model latent disease evo-

lution on the basis of interval-based categorical observations (Chapter 6);

• direct acyclic graphs to identify all possible confounders and their relation with the

time-dependent exposure under study and then engage a causal inference paradigm

(Chapter 7).

At this stage, the main challenge is to best represent the time-varying characteristics of

interest by managing the complex trade-off between clinical interpretability and mathe-

matical formulation.

In terms of time-to-event modelling, innovative statistical models for identifying and quan-

tifying the association between time-varying processes and patient survival are proposed.

In medical statistics the Cox proportional hazards model [46] has been widely used for

survival data due to its flexibility. It has also been extended to account for time-dependent

covariates [202, 97] using piecewise-constant values among different time measurements.

Discarding the continuous nature of the process underlying the data, this approach leads

to biased results and fails to account for possible measurement errors [16]. Therefore,

the main purpose during the survival modelling phase is to develop advanced versions

of Cox-type methods capable of handling dynamic covariates, while preserving clinical
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interpretability. Depending on the context of the study, different approaches are then

proposed, such as:

• a joint modelling to simultaneously analyse longitudinal and time-to-event data

through appropriate mixed-effect and Cox-type models (Chapter 2);

• dimensionality reduction techniques for functional data in order to incorporate dy-

namic predictors into advanced version of traditional Cox regression models (Chap-

ters 3, 4);

• Cox-type marginal structural models to assess the causal effects of a joint-exposure

on survival outcomes, in presence of time-varying confounders (Chapters 7).

The main purpose is to add to the current literature relevant survival models which are

able to incorporate dynamic information usually discarded by standard approaches.

This work has an impact on the community of researchers in mathematics and statistics,

but it provides also useful tools to support doctors and clinicians in their daily work. All

research topics are motivated by specific clinical questions related to two different medical

domains, corresponding to the two main parts of the thesis: cardiological (Part I) and

oncological (Part II) patients.

The identification of dynamic representations able to reflect variability and differences

among patients may improve patients’ profiling and tailor their therapies. This can lead

to new knowledge for both general guidelines and personalised treatments, and make the

pathway of patients through the healthcare system more efficient and effective. Therefore,

the development of novel methodologies capable of extracting additional information to

enrich survival models may represent a significant step forward in the definition of new

customized and flexible monitoring tools, which could then be applied to the study of

different pathologies characterised by complex data sources.

The remainder of this Chapter is composed as follows. Section I.1 introduces basic con-

cepts of survival analysis. Section I.2 presents the motivating epidemiological and clinical

frameworks. Section I.3 gives an overview of the remaining Chapters of this thesis.

I.1. Basics of Survival Analysis

This section aims at providing notation for the rest of the thesis. A first step in under-

standing survival analysis [97, 106, 202] is in understanding the partially-observed time-

to-event data it has to deal with.

Let T ∗ be the non-negative random variable denoting the true event time, i.e., the amount

of time elapsed from the origin event until an event of interest. If a patient dropped out

of the study early or the study ended before the event of interest occurred, or another

event occurred, the event time may not be observed and right-censoring occurs. Let C

be a random variable that denotes the time for the censoring mechanism (i.e., the last

time a subject was observed in the study). The time-to-event information observed for
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an individual is given by the pair (T,D), where T = min(T ∗, C) is the survival time and

D = 1(T ≤ C) is the event indicator, D = 1 if the true event time was observed or D = 0

if censored. The event time T ∗ and the right-censoring time C are usually assumed to be

independent.

To study the distribution of the survival time T different quantities are of interest. The

survival function (or survival curve) S(t) = Pr(T > t) at time t is equal to the probability

of being event-free at time t. It is a non-increasing function with S(0) = 1 because

everybody is event-free at the time origin, and as t gets large as S(t) tends to 0 because

everybody eventually experiences the event of interest. The hazard function, i.e., the

instantaneous risk of failure at time t, conditional on survival to that time, is defined

as:

h(t) = lim
∆t→0

Pr(t ≤ T < t+ ∆t|T ≥ t)

∆t
.

The hazard function can be used to express:

• the survival function:

S(t) = exp

{
−
∫ t

0

h(u)du

}
,

which can be estimated by using a non-parametric method called the product limit

estimator better known as the Kaplan-Meier estimator [99]

Ŝ(t) =
∏
j: t∗j≤t

(
1− dj

nj

)
;

• the cumulative hazard function representing the total accumulated risk of experi-

encing the event of interest that has been gained by progressing to time t:

H(t) =

∫ t

0

h(u)du,

which can be estimated by using the Nelson-Aalen estimator [145, 146, 1]

Ĥ(t) =
∑
j: t∗j≤t

dj
nj
.

In both estimators Ŝ(t) and Ĥ(t), 0 < t∗1 < t∗2 < · · · < t∗J < ∞ denote the observed

ordered true event times with J equal to the total number of events, dj and nj denote the

number of events and the number of individual still at risk at time t∗j , respectively. Figure

I.1 shows an example of time-to-event data (left panel) and the corresponding estimated

survival and cumulative hazard curves (central and right panels, respectively). Subjects

2, 5, 8 and 12 are right-censored. Both curve have steps at event times (red points) and

remain unchanged at censoring times (light-blue diamonds). The censoring times however

affect the size of the jumps the curves make.

The main goal of survival studies is to estimate the hazard function and to assess how

the covariates affect it. The most widely used model to study the effect of a covariate
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Figure I.1. Left panel: time-to-event data for 12 subjects (light-blue diamonds: censored subjects;

red points: event subjects). Central panel: Kaplan-Meier survival estimate. Right panel: Nelson-Aalen

cumulative hazard estimate.

vector ω on the survival is the Cox proportional-hazard regression [46]. It is based on the

proportional hazards assumption stating the effects of the covariates are multiplicatively

related to the hazard, defined as:

h (t|ω) = h0(t) exp
{
θTω

}
,

where h0(t) is the unspecified non-negative baseline hazard function and θ is the vectors

of regression coefficients. Inference for coefficients θ is based on maximizing the partial

likelihood [46]:

L(θ) =
J∏
j=1

exp
(
θTω(j)

)∑
i∈R(t∗j ) exp (θTωi)

where 0 < t∗1 < t∗2 < · · · < t∗J < ∞ are the observed ordered event times, ω(j) denotes

the covariates of the individual who experiences the event at time t∗j , ωi is the covariate

vector of individual i and R(t∗j) denotes the set of individuals still at risk at time t∗j . The

baseline hazard h0(t) can then be estimated by Breslow estimator [32].

For each covariate l, the quantity exp(θ̂l) = HRl is called Hazard Ratio (HR). For a

categorical explanatory variable, the HR represents the ratio between the predicted hazard

for a member of one group and for a member of the reference group, by holding everything

else constant. For a continuous explanatory variable, the same interpretation applies to

a 1-unit difference. In particular, a HRl < 1 indicates a reduction in the hazard function

(i.e., an increase in the survival), meaning that the l-th covariate is a protective factor for

the time to the event of interest; whereas the opposite (HRl > 1) indicates that the l-th

covariate is a risk factor.

The Cox model has also been extended to account for a covariate vector ω(t) which can

change values during follow-up [202, 97]. Since time-dependent observations are only

available at the times of measurements, the Time-Varying covariate Cox Model (TVCM)

uses the last-observation-carried-forward (LOCF) approach [206]: between two subsequent
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observations, the value of the time-varying covariate is kept constant at the last observed

value. Under TVCM, the hazard function is

h (t|ω(t)) = h0(t) exp
{
θTω(t)

}
.

The partial likelihood is defined similarly to the model with only time-fixed covariates

[202, 97], considering piecewise-constant values for the time-dependent covariates.

I.2. Epidemiological and clinical framework

As mentioned before, the research topics of this thesis are related to two different ap-

plications: (i) the study of pharmacotherapy in patients with heart failure and (ii) the

investigation of chemotherapy treatment in patients with osteosarcoma. The motivating

clinical research issues for both cases are now introduced.

I.2.1. Pharmacoepidemiology in Heart Failure

Pharmacoepidemiology is the study of the use and the effects of drugs in large numbers of

people though the application of epidemiological methods [194, 195]. A modern definition

of pharmacoepidemiology [220] is

“the study of the use and effects/side-effects of drugs in large numbers of people with the

purpose of supporting the rational and cost-effective use of drugs in the population

thereby improving health outcomes”.

The investigation about quantification, understanding and evaluation of the processes of

prescribing, dispensing and consumption of medicines and their effect on patients’ clinical

courses refers to a branch of pharmacoepidemiology known as Drug Utilization Research

(DUR) [53]. As defined by the World Health Organization in 1977 [220], DUR consists

in the

“marketing, distribution, prescription, and use of a drug in the society, with special

emphasis on the resulting medical, social and economic consequences”.

The ultimate goal of DUR is hence to identify and communicate the proper use of drugs

to patients, combining researches which belong to the medical, economical and social

fields.

In DUR and pharmacotherapy, the achievement of a certain level of medication intake

or adherence is an important component of patient’s care. According to the taxonomy

introduced in [212], adherence to medication is defined as the process by which patients

take their medication as prescribed. In the past decade there has been substantial growth

in clinical research focused on adherence to medication, partly owing to the increasing

awareness of the problem and partly due to the pervasiveness of non-adherence behaviours

among patients [212]. Individual patient’s adherence is usually reported as a percentage

of the actual medication taken over a defined period of time [27]. Poor adherence to
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medication regimens accounts for substantial worsening of disease, death and increased

health care costs [147]. In particular, in long-term therapies poor adherence severely

compromises the effectiveness of treatment, representing a critical issue both for quality

of life and health economics [219].

Long-term therapies are typical in chronic diseases, such as Heart Failure (HF). HF is a

major and growing public health issue, characterized by high costs, steep morbidity and

mortality rates [129]. HF is widespread all over the world, especially among people over

65 years, with a prevalence of 1–2% in Western countries and an incidence from 5 to 10

per 1000 persons per year [150]. In particular, in Italy about 80,000 new cases per year

are recorded [131] and it is the second cause of hospitalization, after vaginal delivery. This

complex clinical syndrome is characterized by structural or functional cardiac disorders

that impair the ability of one or both ventricles to fill with or eject blood [87]. It may be

provoked by several different cause, such as myocardial ischaemia, high blood pressure,

cardiomyopathies, valvular heart disease, pulmonary hypertension or congenital heart

disease [150]. Due to HF, organs and tissues receive insufficient quantities of oxygen and

nutrients for their metabolic needs, and there is an accumulation of excess fluid in the

lungs and tissues [143]. This condition can worsen to the point of acute pulmonary oedema

and death. According to data from different studies conducted in America and Europe,

30-day, 1-year, and 5-year mortality are around 10% to 20%, 30%, and 65% respectively

[150].

Patients hospitalized for HF are at high risk for all-cause re-hospitalization, with a 1-

month readmission rate of 25%. Self-care in HF comprises treatment adherence and health

maintenance behaviours [75]. HF patients should learn to take medications as prescribed,

stay physically active, restrict sodium intake, get vaccinations and understand how to

monitor for signs of worsening HF [75]. Therapeutic and pharmacological interventions

in HF patients aim at reducing symptoms, morbidity and mortality. Depending on the

different symptoms, the following pharmacological treatments have been established as

disease-modifying drugs of routine use in HF treatment: Angiotensin-Converting Enzyme

(ACE) inhibitors, Angiotensin II Receptor Blockers (ARB – as an alternative for people

who cannot tolerate ACE), Beta Blockers (BB), Anti-Aldosterone agents (AA) and di-

uretics [139, 222, 221, 154, 75]. Different studies showed that a proper and monitored drug

intake in HF patients could improve their clinical status, functional capacity and quality of

life, prevent hospital admission and reduce mortality [154]. However, it is well known that

adherence in HF is low and not satisfactory [179], even few months after the first hospital

discharge for HF. Poor adherence to medications leads to increased HF exacerbations, re-

duced physical function, higher risk for hospital readmission and death [154], representing

a significant problem in HF management in both healthy and economic terms.

In the last decades, secondary or administrative databases have increasingly been used

in the pharmacotherapy field [14], becoming one of the most employed sources to evalu-

ate adherence to medication [102]. Although administrative data are mainly collected for

managerial and economic purposes [89], their use for clinical and epidemiological purposes

has become an accepted practice [90] as they are particularly suitable for investigating

different areas, such as profile of drug uses [45]. This requires intensive computational
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effort to link different data sources (e.g., drug purchases, death registry, hospitalisation

records) in order to create usable databases. According to the state of the art, adherence

to medication is usually modelled by a numerical variable representing the percentage

of the actual drug taken over a pre-defined period of time [27]. This approach does not

consider changes in drugs consumption over time or the occurrence of re-hospitalizations.

Moreover, the most used adherence measures [14, 102] refer to monotherapy medication,

although chronic HF patients usually undergo a polypharmacy treatment (i.e., the simul-

taneous use of different medications). Given the clinical relevance of these aspects and

the impact they may have on patients’ survival, the development of new methodologies to

overcome these problems is a challenge for both clinical research and statistical modelling.

This topic is discussed in Part I of this thesis.

I.2.2. Chemotherapy in Osteosarcoma

Osteosarcoma is a malignant bone tumour mainly affecting children and young adults.

Although osteosarcoma is the most common primary malignant bone cancer, it is a rare

disease and has an annual incidence of 3-4 patients per million [185]. Osteosarcoma

can occur in any bone but it is often localized in the extremities: the most common

primary sites are the distal femur, the proximal tibia, and the proximal humerus, with

> 50% originating around the knee [166, 15]. Local pain, followed by localized swelling

and limitation of joint movement, are the typical signs and symptoms of osteosarcoma

[166].

Osteosarcoma treatment typically involves surgery and chemotherapy. The goal of surgery

is the complete tumour removal. Different surgical techniques are available and the sur-

geon must choose the most appropriate for each individual, taking into account several fac-

tors such as the size of the tumour and its location, as well as the influence the surgery will

have on the patient’s daily life. In case of unresectable tumours or of microscopic residual

tumour foci following attempted resection, recent research also suggests radiotherapy in

addition to standard therapy [166]. In modern treatment schedules, chemotherapy to kill

cancer cells is usually a combination of doxoubicine (DOX) and cisplatin (CDDP), with

or without high-dose methotrexate and/or ifosfamide and/or etoposide. DOX and CDDP

are considered the most active agents against osteosarcoma, but the ideal combination

remains to be defined [166, 15]. Since the extent of histological response to pre-operative

chemotherapy (i.e., the improvement in the appearance of microscopic tissue specimens)

represents the strongest prognostic factor of survival known so far in osteosarcoma [31],

most current protocols include a period of pre-operative (neoadjuvant) chemotherapy.

Post-operative (adjuvant) chemotherapy is then used to kill any cancer cells that might

remain after surgery.

Multidisciplinary management including neoadjuvant and adjuvant chemotherapy with

aggressive surgical resection [166] or intensified chemotherapy has improved clinical out-

comes although the overall 5-year survival rate has remained unchanged in the last 40
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years at 60-70% [15]. The impact of chemotherapy dose modification on patients’ sur-

vival is still unclear [111]. In cancer trials the relationship between chemotherapy dose

and clinical efficacy outcomes is difficult to analyse due to the presence of negative feed-

back between exposure to cytotoxic drugs and other aspects, such as latent accumulation

of chemotherapy-induced toxicity. Patients may develop different types of toxic side ef-

fects, ranging in severity from minor, asymptomatic changes to life-threatening injuries

or death [204]. Depending on patients’ treatment history or development of toxicity,

biomarkers values change and chemotherapy treatment is modified by delaying a course

or reducing the dose intensity. Being at the same time risk factors for mortality and pre-

dictors of future exposure levels, toxicities are time-dependent confounders for the effect

of chemotherapy on patient’s survival [112].

Due to the complexity of longitudinal chemotherapy data, the ways chemotherapy doses

and toxicities are accounted for into predictive models in literature and current practice

for cancer research is far from being informative as it may be. Chemotherapy is usu-

ally modelled by different allocated regimens, i.e., by Intention-To-Treat (ITT) analysis

[70]. This means that protocol deviations or changes in drug intake over time are not

considered in the analysis [110]. Toxicities are usually incorporated as summary indexes

(e.g., maximum toxicity over time, maximum grade among events, or weighted sums of

individual toxic effects) discarding substantial amount of information (e.g., isolated vs

repeated events, single vs multiple episodes, longer-lasting lower-grade toxicities, toxic

events timing). As neglecting the time component may give an inaccurate depiction of

toxicity and chemotherapy regimen intensity, characterisation of both aspects is of interest

to patients and clinicians engaged in shared decision making about a treatment strategy.

The development of models and methods able to deal with all these peculiar aspects is

hence of statistical interest and of clinical relevance. This topic is discussed in Part II of

the this thesis.

I.3. Overview of the thesis

The current thesis aims at developing mathematical and statistical methods to properly

represent time-dependent processes and modelling them within the context of time-to-

event analysis by means of appropriate Cox-type survival models.

Part I “Pharmacoepidemiology in Heart Failure” focuses on methods for representing

drug consumption, adherence to medications or re-hospitalization events exploiting ad-

ministrative databases, and modelling their effect on long-term survival in HF patients.

Administrative data from Friuli Venezia Giulia and Lombardia [164] regions in Italy are

analysed. In particular, records from Hospital Discharge Charts (i.e., admission to hos-

pital), Public Drug Distribution Systems (i.e., drugs purchases) and Registries of Deaths

are considered.

In Chapter 1 we investigate patients’ adherence to disease-modifying therapies and the

prognostic impact on survival, exploiting administrative databases of the Friuli Venezia

9
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Giulia Italian region. A novel method to represent adherence to polypharmacy, i.e., the

Patient Adherence Index (PAI), is proposed as the ratio between the number of drugs

to which a patient is adherent and the number of purchased drugs. Taking advantage of

the developed index, the effect of adherence to polypharmacy on patients survival is then

investigated through Cox regression model, adjusting for patient-specific characteristics.

Although PAI is still a time-fixed covariate, this study requires complex data integration

procedures among different data sources, representing a first step forward in the pharma-

coepidemiology context for HF patients as few data on polypharmacy adherence exist in

a real-world setting. The content of this chapter is based upon:

• M. Spreafico, F. Gasperoni, G. Barbati, F. Ieva, A. Scagnetto, L. Zanier, A. Iorio,

G. Sinagra and A. Di Lenarda. Adherence to Disease-Modifying Therapy in Patients

Hospitalized for HF: Findings from a Community-Based Study. American Journal

of Cardiovascular Drugs, 20:179–190, 2020 [187].

In Chapter 2 we propose an innovative method to represent adherence to medication as

time-varying covariate and to investigate its dynamic effect on patients’ survival using a

joint modelling framework. Two different longitudinal representations are introduced: a

continuous time-dependent variable, which indicated the cumulative months covered by

drug consumption up to time t, and a dichotomous time-dependent variable, which indi-

cates if the patient is adherent to the therapy at time t. The development of (generalized)

mixed effect models for these longitudinal processes joint with Cox-type regression model

for time-to-death allows to capture the interaction among processes over time, representing

a more realistic and informative approach with respect to the commonly used time-fixed

measures. Administrative databases of the Lombardia Italian region provided by Regione

Lombardia - Healthcare Division [164] are analysed. The content of this chapter is based

upon the following publication:

• M. Spreafico and F. Ieva. Dynamic monitoring of the effects of adherence to

medication on survival in heart failure patients: A joint modeling approach exploiting

time-varying covariates. Biometrical Journal, 63(2):305–322, 2021 [188].

Chapter 3 concerns the development of a new methodology to extract and summarize

information from trajectories of compensators of suitable marked point processes for re-

current events intended as functional data. The developed methodology involves database

integration, Functional Data Analysis (FDA) and marked point process modelling of crit-

ical events of interest, i.e., drugs purchases and re-hospitalizations. First, the functional

trajectories (i.e., the compensators of such processes, which may represent the rate at

which events happen) are retrieved by means of FDA theory. This new information is

then included into a predictive Cox-type model, exploiting Functional Principal Com-

ponent Analysis (FPCA) techniques. The introduction of this novel way to account for

dynamic processes allows for modelling self-exciting behaviours, for which the occurrence

of events in the past increases the probability of a new event, including a large piece of

information about patient’s clinical history contained in the administrative data. The de-

veloped approach is able to take into account the fact that HF patients usually experience

several re-hospitalizations and consume different types of drugs at the same time, rep-

resenting a novelty for clinical and pharmacological research in the direction of properly

10
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treating multimorbidity and polypharmacy. Administrative databases of the Lombardia

Italian region [164] are analysed. This chapter is based on the following publication:

• M. Spreafico and F. Ieva. Functional modeling of recurrent events on time-to-event

processes. Biometrical Journal, 63(5):948–967, 2021 [189].

Part II “Chemotherapy in Osteosarcoma” focuses on methods to represent and model

chemotherapy treatment and related effects in cancer patients, such as dose modifications,

biomarkers changes, toxicities evolution over time and their associations with survival.

Clinical data from randomized trials funded by the Medical Research Council (MRC)

(https://www.ukri.org/councils/mrc/) and the European Organisation for Research

and Treatment of Cancer (EORTC) (https://www.eortc.org) for patients with high-

grade osteosarcoma are analysed.

In Chapter 4 we propose a Functional covariate Cox Model (FunCM) to study the asso-

ciation between time-varying processes and time-to-death outcome. FunCM first exploits

FDA techniques to represent time-varying processes in terms of functional data. Then,

information related to the evolution of the functions over time is incorporated into func-

tional regression models for survival data through FPCA. FunCM is compared to a stan-

dard TVCM, commonly used despite its limiting assumptions that covariate values are

piecewise-constant in time and measured without errors. Data from MRC BO06/EORTC

80931 randomised controlled trial [119] are analysed. Time-varying covariates related to

alkaline phosphatase levels, white blood cell counts and chemotherapy dose during treat-

ment are investigated. The proposed method allows to detect differences between patients

with different biomarkers and treatment evolutions, and to include this information in the

survival model. The content of this chapter is based on the following work:

• M. Spreafico, F. Ieva and M. Fiocco. Modelling time-varying covariates effect

on survival via Functional Data Analysis: application to the MRC BO06 trial in

osteosarcoma. Statistical Methods & Applications, 2022 [192]. https://doi.org/

10.1007/s10260-022-00647-0

Chapters 5 and 6 focus on the methodological aspects concerning a proper representation

of the overall toxicity burden over time, still lacking in the medical literature due to the

complex nature of both chemotherapy protocol and data. In both cases, data from the

MRC BO06/EORTC 80931 randomized clinical trial [119] are analysed. In Chapter 5 we

exploit complex database processing and aggregation methods to introduce two innovative

longitudinal representations of Multiple Overall Toxicity (MOTox), a continuous mean-

max score and a dichotomous one. These new representations are then used to investigate

the evolution of high-MOTox over treatment through the implementation of cycle-specific

multivariable logistic regression models adjusted for previous toxicity levels and patient’s

characteristics. Although this approach represents a flexible method for quantifying the

individual evolution of overall toxicity in cancer patients compared to traditional indexes,

it discards the categorical nature of the observed toxic grades. For this reason, in Chap-

ter 6 we propose a new taxonomy based on latent Markov models with covariates and

compositional data theory to (i) represent the overall toxicity as the latent process that
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affects the distribution of the observed response variables (i.e., the interval-based categor-

ical toxic levels), (ii) identify different states of Latent Overall Toxicity (LOTox) burden,

and (iii) model the personalized longitudinal LOTox profiles representing the probability

over time of being in a specific LOTox state or the relative risk with respect to a reference

“good” toxic condition. Together, absolute probabilities and relative risks provide a full

picture of the individual LOTox dynamics during treatment, which may be considered as

a proxy for patient’s quality of life and used to describe patient’s response to therapy over

cycles in terms of toxic side effects. Chapter 5 is based upon the following publication:

• M. Spreafico, F. Ieva, F. Arlati, F. Capello, F. Fatone, F. Fedeli, G. Genalti,

J. Anninga, H. Gelderblom and M. Fiocco. Novel longitudinal Multiple Overall

Toxicity (MOTox) score to quantify adverse events experienced by patients during

chemotherapy treatment: a retrospective analysis of the MRC BO06 trial in osteosar-

coma. BMJ Open, 11(12):e053456, 2021 [190].

Chapter 6 is extracted and extended from the following work:

• M. Spreafico, F. Ieva and M. Fiocco. Longitudinal Latent Overall Toxicity (LO-

Tox) profiles in osteosarcoma: a new taxonomy based on latent Markov models.

arXiv:2107.12863, 2021 [191]. [Submitted]

In Chapter 7 we introduce marginal structural models in combination with Inverse-

Probability-of-Treatment Weighted estimators to model the causal effects of chemother-

apy intensity exposure on Event-Free Survival (EFS) in presence of time-dependent con-

founders. Statistical and clinical expertises are merged to propose a suitable characterisa-

tion of the causal structure of the chemotherapy data through the introduction of appro-

priate direct acyclic graphs that identify all possible (time-dependent) confounders (i.e.,

toxicities and other individual characteristics) and their relationships with exposure and

EFS outcome. Data from the control arms of European Osteosarcoma Intergroup studies

MRC BO03/EORTC 80861 [120] and MRC BO06/EORTC 80931 [119] for patients with

osteosarcoma are analysed. Since drug administration is longitudinal while only the most

severe side-effects are recorded, the analysis of such mixed longitudinal/non-longitudinal

data requires both an original analytical strategy and an unconventional model formula-

tion. The main contribution of this chapter is the presentation of an all-round analysis of

complex chemotherapy data, with tutorial-like explanations of the difficulties encountered

and the problem-solving strategies deployed. The content of this chapter is based on the

following work:

• M. Spreafico, C. Spitoni, C. Lancia, F. Ieva and M. Fiocco. Causal effects

of chemotherapy regimen intensity on survival outcome in osteosarcoma patients

through Marginal Structural Cox Models, 2022. [Submitted]

In the final Conclusions we summarise the contributions and achievements of this work

from both a statistical and clinical point of view, identifying the added values of the entire

thesis from a global perspective.

Codes to perform the analysis is written in R software environment [161] and are available

on my personal Github repository (https://github.com/mspreafico) or as supplemen-

tary material of the relative published papers.
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