
Statistical modelling of time-varying covariates for survival data
Spreafico, M.

Citation
Spreafico, M. (2022, October 12). Statistical modelling of time-varying covariates for
survival data. Retrieved from https://hdl.handle.net/1887/3479768
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3479768
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3479768


Statistical modelling of time-varying

covariates for survival data

Proefschrift

ter verkrijging van

de graad van doctor aan de Universiteit Leiden,

op gezag van rector magnificus prof.dr.ir. H. Bijl,

volgens besluit van het college voor promoties

te verdedigen op woensdag 12 oktober 2022

klokke 13.45 uur

door

Marta Spreafico
geboren te Bellano, Italië
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Università degli Studi di Roma Tor Vergata

Universiteit van Amsterdam

Leids Universitair Medisch Centrum, Universiteit Leiden

This doctoral dissertation was part of a cotutelle agreement and was presented to Politecnico

di Milano (Italy) in fulfillment of the requirements for the degree of Doctor in Mathematical

Models and Methods in Engineering (Metodi e Modelli Matematici per l’Ingegneria), and to

Universiteit Leiden (The Netherlands) in fulfillment of the requirements for the degree of Doctor

in Mathematics (Wiskunde).



A mio nonno Ermanno†

con infinito amore

“Uau”





Contents

Introduction 1

I.1 Basics of Survival Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

I.2 Epidemiological and clinical framework . . . . . . . . . . . . . . . . . . . . 6

I.2.1 Pharmacoepidemiology in Heart Failure . . . . . . . . . . . . . . . 6

I.2.2 Chemotherapy in Osteosarcoma . . . . . . . . . . . . . . . . . . . . 8

I.3 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

PART I Pharmacoepidemiology in Heart Failure 13

1 A new method for measuring adherence to polypharmacy 15

1.1 Materials and Administrative data . . . . . . . . . . . . . . . . . . . . . . 16

1.1.1 Study setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1.2 Data sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1.3 Study population . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.1 Target dosages according to guidelines . . . . . . . . . . . . . . . . 18

1.2.2 Adherence measures . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.3 Adherence to polypharmacy . . . . . . . . . . . . . . . . . . . . . . 19

1.2.4 Outcome measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.5 Survival Analysis: multivariable Cox regression models . . . . . . . 20

1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.1 Cohort selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.2 Standardized Daily Dose . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3.3 Patients’ adherence measures . . . . . . . . . . . . . . . . . . . . . 25

1.3.4 Multivariable Cox models for survival outcome . . . . . . . . . . . . 27

1.4 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Joint modelling of time-varying adherence to medication and survival 33

2.1 Statistical Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1.1 Pharmacological time-varying covariates . . . . . . . . . . . . . . . 35

2.1.2 Joint model specification . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 Materials and Administrative data . . . . . . . . . . . . . . . . . . . . . . 39

2.2.1 Study setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.2 Administrative data sources . . . . . . . . . . . . . . . . . . . . . . 40

2.2.3 Pharmacological time-varying covariates for ACE/ARB therapy . . 41

i



Contents

2.2.4 Outcome measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.1 Study cohort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.2 Joint models for time-varying consumption and adherence to ACE/ARB

therapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Functional modelling of recurrent events on time-to-event processes 55

3.1 Materials and Administrative data . . . . . . . . . . . . . . . . . . . . . . 57

3.1.1 Administrative data sources . . . . . . . . . . . . . . . . . . . . . . 57

3.1.2 Study design and outcome measure . . . . . . . . . . . . . . . . . . 58

3.2 Statistical Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.1 Marked point process formulation for recurrent events . . . . . . . . 59

3.2.2 Functional linear Cox regression model with multiple functional

compensators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Data application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.1 Step 1: Data preprocessing & clinical history . . . . . . . . . . . . . 64

3.3.2 Step 2: Modelling compensators of marked point processes . . . . . 65

3.3.3 Step 3: Summarize compensators through Functional Principal Com-

ponent Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3.4 Step 4: Predictive functional Cox model for overall survival . . . . . 71

3.4 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A. Appendix to Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

PART II Chemotherapy in Osteosarcoma 77

4 Modelling time-varying covariates effect on survival via Functional Data

Analysis 79

4.1 Statistical Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1.1 Time-varying covariates and survival frameworks . . . . . . . . . . 81

4.1.2 Time-Varying covariate Cox Model . . . . . . . . . . . . . . . . . . 83

4.1.3 Functional covariate Cox Model . . . . . . . . . . . . . . . . . . . . 83

4.2 MRC BO06 randomized clinical trial data . . . . . . . . . . . . . . . . . . 86

4.2.1 Trial protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.2 Sample cohort selection and baseline characteristics . . . . . . . . . 87

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.1 Time-varying characteristics . . . . . . . . . . . . . . . . . . . . . . 88

4.3.2 Time-Varying covariate Cox Model . . . . . . . . . . . . . . . . . . 91

4.3.3 Functional covariate Cox Model . . . . . . . . . . . . . . . . . . . . 92

4.4 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 A novel longitudinal method for quantifying multiple overall toxicity 103

5.1 BO06 data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.1.1 Treatment-related factors . . . . . . . . . . . . . . . . . . . . . . . 105

ii



Contents

5.2 Statistical Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2.1 Longitudinal Multiple Overall Toxicity (MOTox) scores and outcomes107

5.2.2 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3.1 Non-haematological longitudinal Overall Toxicity scores . . . . . . . 109

5.3.2 Multivariable logistic regression models for high overall toxicity over

cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

B. Appendix to Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6 Modelling longitudinal profiles of latent probability and relative risk via

latent Markov models and compositional data 119

6.1 Statistical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.1.1 Motivations for latent Markov models for longitudinal toxicity data 121

6.1.2 Latent Markov model with covariates . . . . . . . . . . . . . . . . . 122

6.1.3 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.1.4 Longitudinal profiles: latent probability and relative risk . . . . . . 125

6.2 Data application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2.1 Longitudinal toxicity data: item-response categories . . . . . . . . . 127

6.2.2 Latent Markov model for longitudinal toxicity data . . . . . . . . . 128

6.2.3 Longitudinal profiles of Latent Overall Toxicity . . . . . . . . . . . 133

6.3 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

C. Appendix to Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7 Investigating the causal effects of joint-exposure on survival outcome in

presence of time-varying confounders 139

7.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.1.1 Control arms protocol and Cohort selection . . . . . . . . . . . . . 142

7.1.2 Complexity of chemotherapy data . . . . . . . . . . . . . . . . . . . 143

7.1.3 Chemotherapy exposure characteristics . . . . . . . . . . . . . . . . 146

7.2 Causal inference structure and methods . . . . . . . . . . . . . . . . . . . . 150

7.2.1 Event-Free Survival Outcome . . . . . . . . . . . . . . . . . . . . . 151

7.2.2 Causal inference assumptions for marginal structural models . . . . 151

7.2.3 Causal structure of chemotherapy data . . . . . . . . . . . . . . . . 153

7.2.4 Joint-exposure and marginal structural Cox model for DAG-1 . . . 156

7.2.5 Joint-exposure and marginal structural Cox model for DAG-2 . . . 158

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.3.1 Joint-exposure descriptive and association with EFS . . . . . . . . . 161

7.3.2 IPTW diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.3.3 Causal inference through marginal structural Cox models . . . . . . 165

7.4 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

D. Appendix to Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Conclusions 178

iii



Contents

Bibliography 192

Summary 193

Samenvatting 195

Sommario 197

List of Publications 199

Acknowledgments 201

Curriculum Vitae 203

iv



IN
T
R
O
D
U
C
T
IO

N
IN

T
R
O
D
U
C
T
IO

N

INTRODUCTION

Survival analysis [97, 106, 202] is an important field of statistics dealing with time-to-event

(or life-time) data. In life-time data the outcome variable of interest, named survival time,

is the amount of time elapsed from a so-called origin/initiating event until an event of

interest. Many examples exist in several research fields: time from diagnosis of disease

until death in medicine, time to failure of a machine part in engineering, or duration of

unemployment in socio-economic sciences. A key characteristic of survival data is that

they are generally partially observed, coming as a mixture of complete and incomplete

observations. Some individuals might not have experienced the event of interest at the

end of the study period or have dropped out before the event has occurred. It is only

known that the event had not occurred before the last observation time but the exact event

time is unknown. This type of mechanism is called right-censoring. Whether studying

a specific event or a sequence of events, special statistical methodologies are required

to handle this particular type of partially observed data, as censoring complicates all

technical issues involved in life-time analyses.

The work carried out in this thesis is motivated by specific medical questions. For example

in chronic diseases or cancers, survival models can be used to investigate if a patient’s

age, gender, medical treatment, or other covariates are associated to the risk of death.

Typically, the term covariate refers to time-fixed predictive or explanatory variable, whose

value does not change over time (e.g., demographic or baseline information). However,

medical follow-ups are characterized by time-varying covariates (i.e., attributes that may

have different values at different time points), such as drugs intake, treatment doses,

biomarkers or toxicity, or by repeated events occurring during the study, like office visits,

subsequent drug consumption or hospital admissions. These processes that change or

re-occur over time are of great interest because the way their dynamic patterns evolve

may affect patient’s health status and disease progression.

Due to the complexity of these phenomena, a piecewise-constant or fixed-baseline approach

is usually preferred in the clinical literature, discarding their dynamic and/or temporal

components. In this way, the information that these processes can provide if the associ-

ation between time-varying and time-event data is properly captured is completely lost.

Complex mathematical methods are therefore required to model disease evolution and

characterise its relationship to the dynamic nature of time-dependent features.

The current thesis arises in cross-sectional fields of biostatistics and healthcare research

and focuses on developing mathematical and statistical methods to represent time-varying

processes from complex raw data, and model them within the context of time-to-event

analysis. The main purpose is to enrich the knowledge available for modelling survival

1
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Introduction

with relevant features related to the dynamic characteristics of interest. These aspects are

rarely addressed in the literature and may provide new insights for medical research, rep-

resenting a challenge of both clinical relevance and statistical interest. This work focuses

on time-varying processes and, more specifically, examines (i) dynamic representation and

(ii) modelling in a time-to-event setting.

In terms of representation, the main issue consists on identifying appropriate dynamic

characterizations of the processes under study. Here, several levels of complexities must

be considered. On one hand, producing models that are suitable for dealing with complex

data is not straightforward. A huge amount of data-integration and preprocessing work is

needed to make data suitable for the statistical analysis preserving clinical interpretabil-

ity. On the other hand, when defining the mathematical formulation, the nature of the

processes and aspects such as temporal dynamics, categorical levels or recurring events

must be taken into account. Different methodologies are therefore proposed throughout

this thesis, including:

• complex data integration to define novel pooled or longitudinal representations re-

lated to time-dependent covariates (Chapters 1, 2, 5);

• recurrent events modelling and point processes theory to retrieve the trajectories

of compensators related to appropriate stochastic processes for recurrent events

(Chapter 3);

• functional data analysis techniques to reconstruct features able to incorporate trends

and variations in the evolution of the processes as continuous smoothed functions

of time (Chapters 3, 4);

• latent Markov models and compositional data analysis to model latent disease evo-

lution on the basis of interval-based categorical observations (Chapter 6);

• direct acyclic graphs to identify all possible confounders and their relation with the

time-dependent exposure under study and then engage a causal inference paradigm

(Chapter 7).

At this stage, the main challenge is to best represent the time-varying characteristics of

interest by managing the complex trade-off between clinical interpretability and mathe-

matical formulation.

In terms of time-to-event modelling, innovative statistical models for identifying and quan-

tifying the association between time-varying processes and patient survival are proposed.

In medical statistics the Cox proportional hazards model [46] has been widely used for

survival data due to its flexibility. It has also been extended to account for time-dependent

covariates [202, 97] using piecewise-constant values among different time measurements.

Discarding the continuous nature of the process underlying the data, this approach leads

to biased results and fails to account for possible measurement errors [16]. Therefore,

the main purpose during the survival modelling phase is to develop advanced versions

of Cox-type methods capable of handling dynamic covariates, while preserving clinical

2
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I.1. Basics of Survival Analysis

interpretability. Depending on the context of the study, different approaches are then

proposed, such as:

• a joint modelling to simultaneously analyse longitudinal and time-to-event data

through appropriate mixed-effect and Cox-type models (Chapter 2);

• dimensionality reduction techniques for functional data in order to incorporate dy-

namic predictors into advanced version of traditional Cox regression models (Chap-

ters 3, 4);

• Cox-type marginal structural models to assess the causal effects of a joint-exposure

on survival outcomes, in presence of time-varying confounders (Chapters 7).

The main purpose is to add to the current literature relevant survival models which are

able to incorporate dynamic information usually discarded by standard approaches.

This work has an impact on the community of researchers in mathematics and statistics,

but it provides also useful tools to support doctors and clinicians in their daily work. All

research topics are motivated by specific clinical questions related to two different medical

domains, corresponding to the two main parts of the thesis: cardiological (Part I) and

oncological (Part II) patients.

The identification of dynamic representations able to reflect variability and differences

among patients may improve patients’ profiling and tailor their therapies. This can lead

to new knowledge for both general guidelines and personalised treatments, and make the

pathway of patients through the healthcare system more efficient and effective. Therefore,

the development of novel methodologies capable of extracting additional information to

enrich survival models may represent a significant step forward in the definition of new

customized and flexible monitoring tools, which could then be applied to the study of

different pathologies characterised by complex data sources.

The remainder of this Chapter is composed as follows. Section I.1 introduces basic con-

cepts of survival analysis. Section I.2 presents the motivating epidemiological and clinical

frameworks. Section I.3 gives an overview of the remaining Chapters of this thesis.

I.1. Basics of Survival Analysis

This section aims at providing notation for the rest of the thesis. A first step in under-

standing survival analysis [97, 106, 202] is in understanding the partially-observed time-

to-event data it has to deal with.

Let T ∗ be the non-negative random variable denoting the true event time, i.e., the amount

of time elapsed from the origin event until an event of interest. If a patient dropped out

of the study early or the study ended before the event of interest occurred, or another

event occurred, the event time may not be observed and right-censoring occurs. Let C

be a random variable that denotes the time for the censoring mechanism (i.e., the last

time a subject was observed in the study). The time-to-event information observed for

3
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an individual is given by the pair (T,D), where T = min(T ∗, C) is the survival time and

D = 1(T ≤ C) is the event indicator, D = 1 if the true event time was observed or D = 0

if censored. The event time T ∗ and the right-censoring time C are usually assumed to be

independent.

To study the distribution of the survival time T different quantities are of interest. The

survival function (or survival curve) S(t) = Pr(T > t) at time t is equal to the probability

of being event-free at time t. It is a non-increasing function with S(0) = 1 because

everybody is event-free at the time origin, and as t gets large as S(t) tends to 0 because

everybody eventually experiences the event of interest. The hazard function, i.e., the

instantaneous risk of failure at time t, conditional on survival to that time, is defined

as:

h(t) = lim
∆t→0

Pr(t ≤ T < t+ ∆t|T ≥ t)

∆t
.

The hazard function can be used to express:

• the survival function:

S(t) = exp

{
−
∫ t

0

h(u)du

}
,

which can be estimated by using a non-parametric method called the product limit

estimator better known as the Kaplan-Meier estimator [99]

Ŝ(t) =
∏
j: t∗j≤t

(
1− dj

nj

)
;

• the cumulative hazard function representing the total accumulated risk of experi-

encing the event of interest that has been gained by progressing to time t:

H(t) =

∫ t

0

h(u)du,

which can be estimated by using the Nelson-Aalen estimator [145, 146, 1]

Ĥ(t) =
∑
j: t∗j≤t

dj
nj
.

In both estimators Ŝ(t) and Ĥ(t), 0 < t∗1 < t∗2 < · · · < t∗J < ∞ denote the observed

ordered true event times with J equal to the total number of events, dj and nj denote the

number of events and the number of individual still at risk at time t∗j , respectively. Figure

I.1 shows an example of time-to-event data (left panel) and the corresponding estimated

survival and cumulative hazard curves (central and right panels, respectively). Subjects

2, 5, 8 and 12 are right-censored. Both curve have steps at event times (red points) and

remain unchanged at censoring times (light-blue diamonds). The censoring times however

affect the size of the jumps the curves make.

The main goal of survival studies is to estimate the hazard function and to assess how

the covariates affect it. The most widely used model to study the effect of a covariate

4
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Figure I.1. Left panel: time-to-event data for 12 subjects (light-blue diamonds: censored subjects;

red points: event subjects). Central panel: Kaplan-Meier survival estimate. Right panel: Nelson-Aalen

cumulative hazard estimate.

vector ω on the survival is the Cox proportional-hazard regression [46]. It is based on the

proportional hazards assumption stating the effects of the covariates are multiplicatively

related to the hazard, defined as:

h (t|ω) = h0(t) exp
{
θTω

}
,

where h0(t) is the unspecified non-negative baseline hazard function and θ is the vectors

of regression coefficients. Inference for coefficients θ is based on maximizing the partial

likelihood [46]:

L(θ) =
J∏
j=1

exp
(
θTω(j)

)∑
i∈R(t∗j ) exp (θTωi)

where 0 < t∗1 < t∗2 < · · · < t∗J < ∞ are the observed ordered event times, ω(j) denotes

the covariates of the individual who experiences the event at time t∗j , ωi is the covariate

vector of individual i and R(t∗j) denotes the set of individuals still at risk at time t∗j . The

baseline hazard h0(t) can then be estimated by Breslow estimator [32].

For each covariate l, the quantity exp(θ̂l) = HRl is called Hazard Ratio (HR). For a

categorical explanatory variable, the HR represents the ratio between the predicted hazard

for a member of one group and for a member of the reference group, by holding everything

else constant. For a continuous explanatory variable, the same interpretation applies to

a 1-unit difference. In particular, a HRl < 1 indicates a reduction in the hazard function

(i.e., an increase in the survival), meaning that the l-th covariate is a protective factor for

the time to the event of interest; whereas the opposite (HRl > 1) indicates that the l-th

covariate is a risk factor.

The Cox model has also been extended to account for a covariate vector ω(t) which can

change values during follow-up [202, 97]. Since time-dependent observations are only

available at the times of measurements, the Time-Varying covariate Cox Model (TVCM)

uses the last-observation-carried-forward (LOCF) approach [206]: between two subsequent

5
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observations, the value of the time-varying covariate is kept constant at the last observed

value. Under TVCM, the hazard function is

h (t|ω(t)) = h0(t) exp
{
θTω(t)

}
.

The partial likelihood is defined similarly to the model with only time-fixed covariates

[202, 97], considering piecewise-constant values for the time-dependent covariates.

I.2. Epidemiological and clinical framework

As mentioned before, the research topics of this thesis are related to two different ap-

plications: (i) the study of pharmacotherapy in patients with heart failure and (ii) the

investigation of chemotherapy treatment in patients with osteosarcoma. The motivating

clinical research issues for both cases are now introduced.

I.2.1. Pharmacoepidemiology in Heart Failure

Pharmacoepidemiology is the study of the use and the effects of drugs in large numbers of

people though the application of epidemiological methods [194, 195]. A modern definition

of pharmacoepidemiology [220] is

“the study of the use and effects/side-effects of drugs in large numbers of people with the

purpose of supporting the rational and cost-effective use of drugs in the population

thereby improving health outcomes”.

The investigation about quantification, understanding and evaluation of the processes of

prescribing, dispensing and consumption of medicines and their effect on patients’ clinical

courses refers to a branch of pharmacoepidemiology known as Drug Utilization Research

(DUR) [53]. As defined by the World Health Organization in 1977 [220], DUR consists

in the

“marketing, distribution, prescription, and use of a drug in the society, with special

emphasis on the resulting medical, social and economic consequences”.

The ultimate goal of DUR is hence to identify and communicate the proper use of drugs

to patients, combining researches which belong to the medical, economical and social

fields.

In DUR and pharmacotherapy, the achievement of a certain level of medication intake

or adherence is an important component of patient’s care. According to the taxonomy

introduced in [212], adherence to medication is defined as the process by which patients

take their medication as prescribed. In the past decade there has been substantial growth

in clinical research focused on adherence to medication, partly owing to the increasing

awareness of the problem and partly due to the pervasiveness of non-adherence behaviours

among patients [212]. Individual patient’s adherence is usually reported as a percentage

of the actual medication taken over a defined period of time [27]. Poor adherence to
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medication regimens accounts for substantial worsening of disease, death and increased

health care costs [147]. In particular, in long-term therapies poor adherence severely

compromises the effectiveness of treatment, representing a critical issue both for quality

of life and health economics [219].

Long-term therapies are typical in chronic diseases, such as Heart Failure (HF). HF is a

major and growing public health issue, characterized by high costs, steep morbidity and

mortality rates [129]. HF is widespread all over the world, especially among people over

65 years, with a prevalence of 1–2% in Western countries and an incidence from 5 to 10

per 1000 persons per year [150]. In particular, in Italy about 80,000 new cases per year

are recorded [131] and it is the second cause of hospitalization, after vaginal delivery. This

complex clinical syndrome is characterized by structural or functional cardiac disorders

that impair the ability of one or both ventricles to fill with or eject blood [87]. It may be

provoked by several different cause, such as myocardial ischaemia, high blood pressure,

cardiomyopathies, valvular heart disease, pulmonary hypertension or congenital heart

disease [150]. Due to HF, organs and tissues receive insufficient quantities of oxygen and

nutrients for their metabolic needs, and there is an accumulation of excess fluid in the

lungs and tissues [143]. This condition can worsen to the point of acute pulmonary oedema

and death. According to data from different studies conducted in America and Europe,

30-day, 1-year, and 5-year mortality are around 10% to 20%, 30%, and 65% respectively

[150].

Patients hospitalized for HF are at high risk for all-cause re-hospitalization, with a 1-

month readmission rate of 25%. Self-care in HF comprises treatment adherence and health

maintenance behaviours [75]. HF patients should learn to take medications as prescribed,

stay physically active, restrict sodium intake, get vaccinations and understand how to

monitor for signs of worsening HF [75]. Therapeutic and pharmacological interventions

in HF patients aim at reducing symptoms, morbidity and mortality. Depending on the

different symptoms, the following pharmacological treatments have been established as

disease-modifying drugs of routine use in HF treatment: Angiotensin-Converting Enzyme

(ACE) inhibitors, Angiotensin II Receptor Blockers (ARB – as an alternative for people

who cannot tolerate ACE), Beta Blockers (BB), Anti-Aldosterone agents (AA) and di-

uretics [139, 222, 221, 154, 75]. Different studies showed that a proper and monitored drug

intake in HF patients could improve their clinical status, functional capacity and quality of

life, prevent hospital admission and reduce mortality [154]. However, it is well known that

adherence in HF is low and not satisfactory [179], even few months after the first hospital

discharge for HF. Poor adherence to medications leads to increased HF exacerbations, re-

duced physical function, higher risk for hospital readmission and death [154], representing

a significant problem in HF management in both healthy and economic terms.

In the last decades, secondary or administrative databases have increasingly been used

in the pharmacotherapy field [14], becoming one of the most employed sources to evalu-

ate adherence to medication [102]. Although administrative data are mainly collected for

managerial and economic purposes [89], their use for clinical and epidemiological purposes

has become an accepted practice [90] as they are particularly suitable for investigating

different areas, such as profile of drug uses [45]. This requires intensive computational
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effort to link different data sources (e.g., drug purchases, death registry, hospitalisation

records) in order to create usable databases. According to the state of the art, adherence

to medication is usually modelled by a numerical variable representing the percentage

of the actual drug taken over a pre-defined period of time [27]. This approach does not

consider changes in drugs consumption over time or the occurrence of re-hospitalizations.

Moreover, the most used adherence measures [14, 102] refer to monotherapy medication,

although chronic HF patients usually undergo a polypharmacy treatment (i.e., the simul-

taneous use of different medications). Given the clinical relevance of these aspects and

the impact they may have on patients’ survival, the development of new methodologies to

overcome these problems is a challenge for both clinical research and statistical modelling.

This topic is discussed in Part I of this thesis.

I.2.2. Chemotherapy in Osteosarcoma

Osteosarcoma is a malignant bone tumour mainly affecting children and young adults.

Although osteosarcoma is the most common primary malignant bone cancer, it is a rare

disease and has an annual incidence of 3-4 patients per million [185]. Osteosarcoma

can occur in any bone but it is often localized in the extremities: the most common

primary sites are the distal femur, the proximal tibia, and the proximal humerus, with

> 50% originating around the knee [166, 15]. Local pain, followed by localized swelling

and limitation of joint movement, are the typical signs and symptoms of osteosarcoma

[166].

Osteosarcoma treatment typically involves surgery and chemotherapy. The goal of surgery

is the complete tumour removal. Different surgical techniques are available and the sur-

geon must choose the most appropriate for each individual, taking into account several fac-

tors such as the size of the tumour and its location, as well as the influence the surgery will

have on the patient’s daily life. In case of unresectable tumours or of microscopic residual

tumour foci following attempted resection, recent research also suggests radiotherapy in

addition to standard therapy [166]. In modern treatment schedules, chemotherapy to kill

cancer cells is usually a combination of doxoubicine (DOX) and cisplatin (CDDP), with

or without high-dose methotrexate and/or ifosfamide and/or etoposide. DOX and CDDP

are considered the most active agents against osteosarcoma, but the ideal combination

remains to be defined [166, 15]. Since the extent of histological response to pre-operative

chemotherapy (i.e., the improvement in the appearance of microscopic tissue specimens)

represents the strongest prognostic factor of survival known so far in osteosarcoma [31],

most current protocols include a period of pre-operative (neoadjuvant) chemotherapy.

Post-operative (adjuvant) chemotherapy is then used to kill any cancer cells that might

remain after surgery.

Multidisciplinary management including neoadjuvant and adjuvant chemotherapy with

aggressive surgical resection [166] or intensified chemotherapy has improved clinical out-

comes although the overall 5-year survival rate has remained unchanged in the last 40

8
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years at 60-70% [15]. The impact of chemotherapy dose modification on patients’ sur-

vival is still unclear [111]. In cancer trials the relationship between chemotherapy dose

and clinical efficacy outcomes is difficult to analyse due to the presence of negative feed-

back between exposure to cytotoxic drugs and other aspects, such as latent accumulation

of chemotherapy-induced toxicity. Patients may develop different types of toxic side ef-

fects, ranging in severity from minor, asymptomatic changes to life-threatening injuries

or death [204]. Depending on patients’ treatment history or development of toxicity,

biomarkers values change and chemotherapy treatment is modified by delaying a course

or reducing the dose intensity. Being at the same time risk factors for mortality and pre-

dictors of future exposure levels, toxicities are time-dependent confounders for the effect

of chemotherapy on patient’s survival [112].

Due to the complexity of longitudinal chemotherapy data, the ways chemotherapy doses

and toxicities are accounted for into predictive models in literature and current practice

for cancer research is far from being informative as it may be. Chemotherapy is usu-

ally modelled by different allocated regimens, i.e., by Intention-To-Treat (ITT) analysis

[70]. This means that protocol deviations or changes in drug intake over time are not

considered in the analysis [110]. Toxicities are usually incorporated as summary indexes

(e.g., maximum toxicity over time, maximum grade among events, or weighted sums of

individual toxic effects) discarding substantial amount of information (e.g., isolated vs

repeated events, single vs multiple episodes, longer-lasting lower-grade toxicities, toxic

events timing). As neglecting the time component may give an inaccurate depiction of

toxicity and chemotherapy regimen intensity, characterisation of both aspects is of interest

to patients and clinicians engaged in shared decision making about a treatment strategy.

The development of models and methods able to deal with all these peculiar aspects is

hence of statistical interest and of clinical relevance. This topic is discussed in Part II of

the this thesis.

I.3. Overview of the thesis

The current thesis aims at developing mathematical and statistical methods to properly

represent time-dependent processes and modelling them within the context of time-to-

event analysis by means of appropriate Cox-type survival models.

Part I “Pharmacoepidemiology in Heart Failure” focuses on methods for representing

drug consumption, adherence to medications or re-hospitalization events exploiting ad-

ministrative databases, and modelling their effect on long-term survival in HF patients.

Administrative data from Friuli Venezia Giulia and Lombardia [164] regions in Italy are

analysed. In particular, records from Hospital Discharge Charts (i.e., admission to hos-

pital), Public Drug Distribution Systems (i.e., drugs purchases) and Registries of Deaths

are considered.

In Chapter 1 we investigate patients’ adherence to disease-modifying therapies and the

prognostic impact on survival, exploiting administrative databases of the Friuli Venezia

9
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Giulia Italian region. A novel method to represent adherence to polypharmacy, i.e., the

Patient Adherence Index (PAI), is proposed as the ratio between the number of drugs

to which a patient is adherent and the number of purchased drugs. Taking advantage of

the developed index, the effect of adherence to polypharmacy on patients survival is then

investigated through Cox regression model, adjusting for patient-specific characteristics.

Although PAI is still a time-fixed covariate, this study requires complex data integration

procedures among different data sources, representing a first step forward in the pharma-

coepidemiology context for HF patients as few data on polypharmacy adherence exist in

a real-world setting. The content of this chapter is based upon:

• M. Spreafico, F. Gasperoni, G. Barbati, F. Ieva, A. Scagnetto, L. Zanier, A. Iorio,

G. Sinagra and A. Di Lenarda. Adherence to Disease-Modifying Therapy in Patients

Hospitalized for HF: Findings from a Community-Based Study. American Journal

of Cardiovascular Drugs, 20:179–190, 2020 [187].

In Chapter 2 we propose an innovative method to represent adherence to medication as

time-varying covariate and to investigate its dynamic effect on patients’ survival using a

joint modelling framework. Two different longitudinal representations are introduced: a

continuous time-dependent variable, which indicated the cumulative months covered by

drug consumption up to time t, and a dichotomous time-dependent variable, which indi-

cates if the patient is adherent to the therapy at time t. The development of (generalized)

mixed effect models for these longitudinal processes joint with Cox-type regression model

for time-to-death allows to capture the interaction among processes over time, representing

a more realistic and informative approach with respect to the commonly used time-fixed

measures. Administrative databases of the Lombardia Italian region provided by Regione

Lombardia - Healthcare Division [164] are analysed. The content of this chapter is based

upon the following publication:

• M. Spreafico and F. Ieva. Dynamic monitoring of the effects of adherence to

medication on survival in heart failure patients: A joint modeling approach exploiting

time-varying covariates. Biometrical Journal, 63(2):305–322, 2021 [188].

Chapter 3 concerns the development of a new methodology to extract and summarize

information from trajectories of compensators of suitable marked point processes for re-

current events intended as functional data. The developed methodology involves database

integration, Functional Data Analysis (FDA) and marked point process modelling of crit-

ical events of interest, i.e., drugs purchases and re-hospitalizations. First, the functional

trajectories (i.e., the compensators of such processes, which may represent the rate at

which events happen) are retrieved by means of FDA theory. This new information is

then included into a predictive Cox-type model, exploiting Functional Principal Com-

ponent Analysis (FPCA) techniques. The introduction of this novel way to account for

dynamic processes allows for modelling self-exciting behaviours, for which the occurrence

of events in the past increases the probability of a new event, including a large piece of

information about patient’s clinical history contained in the administrative data. The de-

veloped approach is able to take into account the fact that HF patients usually experience

several re-hospitalizations and consume different types of drugs at the same time, rep-

resenting a novelty for clinical and pharmacological research in the direction of properly

10
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treating multimorbidity and polypharmacy. Administrative databases of the Lombardia

Italian region [164] are analysed. This chapter is based on the following publication:

• M. Spreafico and F. Ieva. Functional modeling of recurrent events on time-to-event

processes. Biometrical Journal, 63(5):948–967, 2021 [189].

Part II “Chemotherapy in Osteosarcoma” focuses on methods to represent and model

chemotherapy treatment and related effects in cancer patients, such as dose modifications,

biomarkers changes, toxicities evolution over time and their associations with survival.

Clinical data from randomized trials funded by the Medical Research Council (MRC)

(https://www.ukri.org/councils/mrc/) and the European Organisation for Research

and Treatment of Cancer (EORTC) (https://www.eortc.org) for patients with high-

grade osteosarcoma are analysed.

In Chapter 4 we propose a Functional covariate Cox Model (FunCM) to study the asso-

ciation between time-varying processes and time-to-death outcome. FunCM first exploits

FDA techniques to represent time-varying processes in terms of functional data. Then,

information related to the evolution of the functions over time is incorporated into func-

tional regression models for survival data through FPCA. FunCM is compared to a stan-

dard TVCM, commonly used despite its limiting assumptions that covariate values are

piecewise-constant in time and measured without errors. Data from MRC BO06/EORTC

80931 randomised controlled trial [119] are analysed. Time-varying covariates related to

alkaline phosphatase levels, white blood cell counts and chemotherapy dose during treat-

ment are investigated. The proposed method allows to detect differences between patients

with different biomarkers and treatment evolutions, and to include this information in the

survival model. The content of this chapter is based on the following work:

• M. Spreafico, F. Ieva and M. Fiocco. Modelling time-varying covariates effect

on survival via Functional Data Analysis: application to the MRC BO06 trial in

osteosarcoma. Statistical Methods & Applications, 2022 [192]. https://doi.org/

10.1007/s10260-022-00647-0

Chapters 5 and 6 focus on the methodological aspects concerning a proper representation

of the overall toxicity burden over time, still lacking in the medical literature due to the

complex nature of both chemotherapy protocol and data. In both cases, data from the

MRC BO06/EORTC 80931 randomized clinical trial [119] are analysed. In Chapter 5 we

exploit complex database processing and aggregation methods to introduce two innovative

longitudinal representations of Multiple Overall Toxicity (MOTox), a continuous mean-

max score and a dichotomous one. These new representations are then used to investigate

the evolution of high-MOTox over treatment through the implementation of cycle-specific

multivariable logistic regression models adjusted for previous toxicity levels and patient’s

characteristics. Although this approach represents a flexible method for quantifying the

individual evolution of overall toxicity in cancer patients compared to traditional indexes,

it discards the categorical nature of the observed toxic grades. For this reason, in Chap-

ter 6 we propose a new taxonomy based on latent Markov models with covariates and

compositional data theory to (i) represent the overall toxicity as the latent process that
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affects the distribution of the observed response variables (i.e., the interval-based categor-

ical toxic levels), (ii) identify different states of Latent Overall Toxicity (LOTox) burden,

and (iii) model the personalized longitudinal LOTox profiles representing the probability

over time of being in a specific LOTox state or the relative risk with respect to a reference

“good” toxic condition. Together, absolute probabilities and relative risks provide a full

picture of the individual LOTox dynamics during treatment, which may be considered as

a proxy for patient’s quality of life and used to describe patient’s response to therapy over

cycles in terms of toxic side effects. Chapter 5 is based upon the following publication:

• M. Spreafico, F. Ieva, F. Arlati, F. Capello, F. Fatone, F. Fedeli, G. Genalti,

J. Anninga, H. Gelderblom and M. Fiocco. Novel longitudinal Multiple Overall

Toxicity (MOTox) score to quantify adverse events experienced by patients during

chemotherapy treatment: a retrospective analysis of the MRC BO06 trial in osteosar-

coma. BMJ Open, 11(12):e053456, 2021 [190].

Chapter 6 is extracted and extended from the following work:

• M. Spreafico, F. Ieva and M. Fiocco. Longitudinal Latent Overall Toxicity (LO-

Tox) profiles in osteosarcoma: a new taxonomy based on latent Markov models.

arXiv:2107.12863, 2021 [191]. [Submitted]

In Chapter 7 we introduce marginal structural models in combination with Inverse-

Probability-of-Treatment Weighted estimators to model the causal effects of chemother-

apy intensity exposure on Event-Free Survival (EFS) in presence of time-dependent con-

founders. Statistical and clinical expertises are merged to propose a suitable characterisa-

tion of the causal structure of the chemotherapy data through the introduction of appro-

priate direct acyclic graphs that identify all possible (time-dependent) confounders (i.e.,

toxicities and other individual characteristics) and their relationships with exposure and

EFS outcome. Data from the control arms of European Osteosarcoma Intergroup studies

MRC BO03/EORTC 80861 [120] and MRC BO06/EORTC 80931 [119] for patients with

osteosarcoma are analysed. Since drug administration is longitudinal while only the most

severe side-effects are recorded, the analysis of such mixed longitudinal/non-longitudinal

data requires both an original analytical strategy and an unconventional model formula-

tion. The main contribution of this chapter is the presentation of an all-round analysis of

complex chemotherapy data, with tutorial-like explanations of the difficulties encountered

and the problem-solving strategies deployed. The content of this chapter is based on the

following work:

• M. Spreafico, C. Spitoni, C. Lancia, F. Ieva and M. Fiocco. Causal effects

of chemotherapy regimen intensity on survival outcome in osteosarcoma patients

through Marginal Structural Cox Models, 2022. [Submitted]

In the final Conclusions we summarise the contributions and achievements of this work

from both a statistical and clinical point of view, identifying the added values of the entire

thesis from a global perspective.

Codes to perform the analysis is written in R software environment [161] and are available

on my personal Github repository (https://github.com/mspreafico) or as supplemen-

tary material of the relative published papers.
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CHAPTER 1

A new method for measuring adherence

to polypharmacy

This chapter has been published in American Journal of Cardiovascular Drugs, 20:179–190, 2020

as M. Spreafico, F. Gasperoni, G. Barbati, et al. “Adherence to Disease-Modifying Therapy in

Patients Hospitalized for HF: Findings from a Community-Based Study” [187].

Heart failure (HF) is a major and growing public health issue, characterized by high

costs, steep morbidity and mortality [129]. Despite the advances in the understanding

the pathophysiology of chronic HF and the improvement of therapy, HF mortality and

morbidity rates remain high [141, 98]. HF guidelines [139, 221, 50] have consistently

focused on the benefits of neurohormonal therapy in HF patients with reduced ejection

fraction to delay progression and improve survival. These recommendations also under-

lined up-titration of neurohormonal doses toward target, when possible, by the time of

hospitalization discharge. However, medication non-adherence is a common issue, and

it is associated with adverse health conditions and increased economic burden to the

healthcare system especially in case of chronic diseases such as HF [158].

Recent observations suggest that up to 50% of early post discharge mortality may be

associated with guidelines non-adherence [61]. However, previous epidemiological studies

of adherence to polypharmacy have analyzed HF patients from surveys of highly selected

populations [225]. Further, these studies were based on physician’s prescriptions [108, 107]

regardless of patients’ adherence in the follow up [107]. Several concerns remain on

adherence of unselected patients of real world setting to evidence-based HF treatment.

To overcome the aforementioned gaps, it is possible to estimate patients’ adherence from

drugs purchases, and this is particularly feasible in a public health system using healthcare

administrative archives. Worth of note, methods for estimating adherence to single drug

classes from drugs purchases are well established [102, 14], whereas there are few studies

on patient’s adherence, especially in the setting of polypharmacy [17]. Specifically, in

cardiological literature, focusing both on polypharmacy and on adherence is still an open

research field [58, 63].

The present chapter aim is to investigate HF patients’ adherence to disease-modifying

therapies during the first year after HF hospitalization and to estimate its prognostic

impact on survival. First, we describe how evidence-based therapies are applied in a
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real world setting, including the evaluation of target dosages based on drugs purchases.

Secondly, we represent polypharmacy adherence during the first year as combinations of

prescriptions and adherence to the pharmacological classes of interest. In particular, we

introduce a novel method for measuring adherence to polypharmacy by computing the

ratio between two quantities: the “Polypharmacy Adherence” (PA) and the “Purchase

Indicator” (PI), so producing the Patient Adherence Indicator (PAI). Finally, we evaluate

the effect of PAI on survival using different Cox models [46], adjusting for demographic

characteristics, comorbidities, re-hospitalisations events and patterns of care in the year

following the index HF hospitalization.

1.1. Materials and Administrative data

1.1.1. Study setting

Between January 2009 and December 2015, patients hospitalized in the Friuli Venezia

Giulia Italian Region (FVG, a north-eastern region of Italy, with a population of about

1.2 million inhabitants) with a principal diagnostic code of HF and at least one pharmaco-

logical purchase of disease-modifying drugs for HF were recruited. Patients who were not

inhabitants of the FVG region or were younger than 18 years at the time of hospitalization

were excluded. Enrolment occurred from the data of discharge of HF hospitalization.

1.1.2. Data sources

The data of healthcare administrative archives were used for identification of HF patients.

The FVG regional Data Warehouse includes various sources of data, such as the Registry

of Births and Deaths, Hospital Discharge, the District Healthcare Services (intermediate

and home care), Public Laboratories and Public Drug Distribution System, that are ob-

ject of internal routinely quality checks. Of note, the availability of laboratory analyses

performed in public hospitals is a peculiar characteristic of this Region. Each record in

the dataset was related to an event, which could be a HF hospitalization or hospitalization

for other causes, an activation of Intermediate Care Unit (ICU) service or an Integrated

Home Care (IHC). For all these events (admission to hospital or ICU/IHC), we collected

dates of admission and discharge. Moreover, for each HF hospitalization, we identified

with a binary flag if the patient was discharged from a Cardiological Ward (CW), if a car-

diological visit and an echocardiogram were performed. In the Public Drug Distribution

System, each record represented a pharmacological purchase characterized by the date

of acquisition, ATC (Anatomical Therapeutic Chemical classification system) [220, 214]

and AIC codes (authorization code related to Italian market) [3] and the total number of

purchased boxes.
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1.1.3. Study population

HF primary diagnosis included ICD-9CM codes for HF (428, 398.91, 402.01, 402.11,

402.91, 404.01, 404.03, 404.11, 404.13, 404.91 and 404.93) selected according to the Na-

tional Outcome Evaluation Program. We focused on those patients with a first discharge

(associated with a principal diagnostic code of HF) between January 2009 to December

2015 and we excluded those patients who died during the first HF hospitalization. We

defined a 5 years pre-study period from 2004 to 2008 (Figure 1.1), in order to observe

chronic comorbidities and hospitalizations for HF. This allowed us to limit underesti-

mation of chronic comorbidities and to identify new incident HF patients (those with no

hospitalizations for HF during the pre-study time-window). The study-period was divided

into the observation period (365 days from the index discharge date) and the follow-up

period : only patients alive at the end of the observation period were followed up to observe

survival outcomes (Figure 1.1). Finally, only patients with at least one pharmacological

purchase related to the disease-modifying drugs were included [139, 50]. Specifically, we

considered the following drugs: Angiotensin-Converting Enzyme inhibitors (ACE), An-

giotensin Receptor Blockers (ARB) – these two considered as a unique class (ACE/ARB),

Beta-Blocking (BB) and Anti-Aldosterone agents (AA).

Patients were classified as Worsening Heart Failure (WHF) or De Novo on the basis of

the presence of at least one HF hospitalization in the 5 years preceding the index HF hos-

pitalization (Figure 1.1). Demographic, comorbidities, procedures and laboratory tests

performed during hospitalization were considered. Among procedures, we considered only

the major ones as Coronary Angiography, Percutaneous Transluminal Coronary Angio-

plasty (PTCA) (w/out implantation of stent in coronary artery), Coronary Artery Bypass

Graft surgery (CABG), implantation of pacemaker, Cardioverter defibrillator or Cardiac

Resynchronization Therapy (CRT), Transcatheter Aortic Valve Implantation (TAVI) or

percutaneous mitral valve repair with MitraClip device. Finally, the Charlson Comorbid-

ity Index [160] was computed using hospital diagnoses based on ICD-9CM that occurred

within 5 years before the hospitalization and integrated with laboratory data and diag-

nosis recorded at the hospitalization, as previously reported [59].

In order to protect privacy, information retrieved from the different databases were linked

End of follow-up

30/04/2018

Observation periodPre-study period

Index HF hospitalization

01/01/2009 – 31/11/2015 

01/01/2004 – 31/12/2008

Follow-up period

1 year (365 days)

Survival analysis“New incident” patients

T*0
Begin of follow-up


01/01/2010 - 31/12/2016

Adherence computation

T0

Figure 1.1. Study design for a HF patient of the study cohort. The pre-study period is used to define

“new incident” HF patients. The observation period is used for adherence computation. The follow-up

period is used for survival analysis. The administrative censoring date is April 30th, 2018.
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via a single anonymous identification code by institutional technical staff. The reverse

process is not possible since the generation code table is not available to the authors.

Data analyses were performed by authorized staff only on remotely controlled computer.

Any possibility to copy or export datasets was disabled. According to the rules from the

Italian Medicines Agency [5], retrospective studies using administrative databases do not

require Ethics Committee protocol approval.

1.2. Methodologies

1.2.1. Target dosages according to guidelines

In order to evaluate if the purchased drug quantity was in line with the expected target

dosage, we considered an observation period of 365 days starting from the index date

and we computed the total purchased milligrams of the main active principles for each

pharmacological class of interest. Dividing these quantities by 365, we obtained the mean

purchased daily doses (DD) of each active principle. Then, we divided them by the re-

spective target dosages (see Table 1.1) as recommended in the ESC (European Society of

Cardiology) Guidelines [139, 50] or, for those drugs not included in the guidelines, as pre-

scribed routinely in clinical practice and verified in the Italian Drug Agency’s (in Italian:

AIFA – Agenzia Italiana del Farmaco) website [4]. Thus, we obtained the standardized

Daily Doses (sDD) that patients assumed during the observation period:

sDD =
mean purchased daily dose (DD) during observation period

target dose recommended in ESC or AIFA guidelines
. (1.1)

If the sDD was 100% (i.e., sDD = 1) the mean purchased DD was equal to the perfect

target, whereas if it was < or > 100%, it was less or higher than the perfect target,

respectively.

1.2.2. Adherence measures

Medication adherence is generally defined as the process by which patients take their

medications as prescribed and three different constructs could be analyzed, i.e., initiation

of therapy, implementation of the dosing regimen and persistence with treatment [212].

In the present chapter, we focused on implementation, according with the review paper

[212], basing our analysis on purchased drugs instead of prescribed drugs. According to

[102, 14] we calculated two measure of adherence, i.e., the Proportion of Days Covered

(PDC), defined as:

PDC =
number of distinct coverage days

number of days in the observation period
(1.2)

and the Medical Possession Ratio (MPR):

MPR =
number of days supply during observation period

number of days in the observation period
. (1.3)
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Table 1.1. Target dosages of each active principle recommended in the ESC (European Society of

Cardiology) [139, 50] or AIFA (Agenzia Italiana del Farmaco) guidelines [4].

Pharmacological Active Daily target Guideline

class principle dose [mg]

Anti-Aldosterone Canrenone 50 AIFA

agents Potassium Canrenoate 50 AIFA

Spironolactone 25 ESC

Angiotensin-Converting Enalapril 20 ESC

Enzyme inhibitors Lisinopril 20 ESC

Ramipril 10 ESC

Angiotensin Receptor Candesartan 32 ESC

Blockers Losartan 150 ESC

Olmesartan 40 AIFA

Telmisartan 80 AIFA

Valsartan 320 ESC

Beta-Blocking Bisoprolol 10 ESC

agents Carvedilol 50 ESC

Metoprolol 200 ESC

Nebivolol 10 ESC

The distinction between PDC and MPR consists in the numerator that is different in case

of overlapping of two subsequent purchases. In particular, through PDC we considered

the period covered by the first purchase entirely and the second purchase only in those

days that were not covered by the first one. Conversely, through MPR we shifted the

second purchase at the day after the end of the first one, preserving the duration of all

purchases.

These measures were dichotomized to identify as adherent those patients with a PDC (or

MPR) at least 80% [14]. For adherence computation of each of the disease-modifying phar-

macological class (ACE/ARB, BB, AA) an observation period of 365 days from the index

date was considered [102]. If during the observation period a patient was re-hospitalized

or spent some time in ICU, we assumed that he/she was under treatment, i.e., he/she

was taking all the purchased types of drug during those periods.

1.2.3. Adherence to polypharmacy

In order to evaluate polypharmacy, we introduced a new index, the Patient Adherence

Indicator (PAI), based on the ratio between the Polypharmacy Adherence (PA) and the

Purchase Indicator (PI). These measures are computed using observed combinations of

the three pharmacological classes of interest: BB, AA and ACE or ARB. PI is defined as

the number of purchased types of drug at least once and it could be 1, 2 or 3 based on

patient’s different purchases:

PI = number of purchased types of drug at least once. (1.4)
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PA is the number of pharmacological classes to which the patient is adherent at the defined

threshold of 80% (0, 1, 2 or 3):

PA = (adherent to ACE or to ARB) + adherent to BB + adherent to AA. (1.5)

Finally, PAI is the number of pharmacological classes to which the patient is adherent

divided by the number of purchased types of drug:

PAI =
PA

PI
. (1.6)

PAI considers adherence to polypharmacy and it could be 0, 1/3, 1/2, 2/3 or 1 (3/3).

Based on the overall PAI percentage, patients were divided into two groups: those with

poor adherence percentage to polypharmacy (PAI < 50%, i.e., < 1/2) and good adherence

percentage (PAI ≥ 50%, i.e., ≥1/2).

1.2.4. Outcome measure

Study outcome of interest was patient’s death for any cause. Deaths were collected from

the Registry of Birth and Deaths included in the regional Data Warehouse. For the

survival analysis, each patient was followed from one year after the index date (i.e., one

year after the discharge from the index HF hospitalization – T ∗0 in Figure 1.1) until the end

of the study or the date of death (see follow-up period in Figure 1.1). The administrative

censoring date was April 30th, 2018.

1.2.5. Survival Analysis: multivariable Cox regression models

In order to assess the role of polypharmacy adherence with respect to the overall survival

time of a patient, we estimated four different Cox regression models [46], one for each

of the following polypharmacy indices: PAI and PAI group, computed with both PDC

and MPR adherence measures. Each model was adjusted for nine covariates: WHF

condition (WHF) and discharge from CW at the index hospitalization (CW), cardiological

visit in 24 months before the last hospitalization of the observation period (cardio),

number of re-hospitalizations (rehosp), number of ICU services (ICU) and IHC activation

during the observation period (IHC), Charlson index at the last hospitalization of the

observation period (charlson), age (age) and gender (gender) at the beginning of the

follow-up. The choice of these covariates was driven by clinical relevance and availability

from administrative data. The hazard functions for each patient i were hence given by:

hi (t|ωi) = h0(t) exp
{
θTωi

}
(1.7)

where the covariate vector for each patien was

ωi = (WHFi, agei, genderi, charlsoni, CWi, cardioi, rehospi, ICUi, IHCi, ω10,i)
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with polypharmacy index ω10,i equal to

PAI PDCi or PAI MPRi or PAIgroup PDCi or PAIgroup MPRi.

All the analyses were carried out using the free software R [161], in particular survival

package [201, 202]. Covariates with p-values < 0.05 were considered statistically signifi-

cant.

1.3. Results

Patient characteristics are presented as numbers and percentages for categorical variables.

For continuous variables we reported means with standard deviations or medians with

interquartile ranges (IQRs), as appropriate depending on the distribution shape.

1.3.1. Cohort selection

A total cohort of 20,622 patients were identified with principal diagnostic code of HF. Of

these, we excluded 13 paediatric patients. A substantial portion of patients (6,505, 32%)

was not considered because they died during the first year after the index hospitalization.

Moreover, 1,020 patients (5%) were removed since they did not present any purchase of

ACE, ARB, BB or AA during the observation period. Further, since their health residence

district was not in FVG region, other 146 (0.7%) patients were excluded. Thus, a total

of 12,938 (63%) patients met study selection criteria (Figure 1.2).

13 patients with 
incorrect records

13 paediatric patients

6,505 dead patients in 
the first year

1,020 patients without 
ACE/ARB/BB/AA

146 patients without 
Friuli V.G. district

Initial dataset

n = 20,635

Data cleaning

n = 20,622

Non paediatric patients (age ≥ 18)

n = 20,609

Patients survived at least one year after the first discharge for HF

n = 14,104

Patients with the first hospitalization in a district of Friuli V.G.

n = 12,938

Patients with pharmacological events of ACE, ARB, AA and BB 
during the first year after the first discharge for HF


n = 13,084

Figure 1.2. Flowchart of patient selection.
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Overall, at index hospitalization (Table 1.2) mean age was 80 years with a substantial

proportion of female patients (53.1%), high prevalence of De Novo patients (89.1%).

Percentage of patients who have undergone at least one major procedure was 3.2%. Co-

morbidity burden was high (median of Charlson index 2; 46.8% of patients presenting

Charlson index ≥ 3). The rate of discharge from Cardiological Ward (CW) was 10.3%.

In the 24 months before the index hospitalization, 6,030 (46.6%) patients underwent a

cardiological visit and 3,212 (24.8%) an echocardiogram.

Regarding pharmacological treatments, Figure 1.3 shows percentages of purchase of medi-

cations at discharge according to monotherapy, dual therapy or triple therapy. In monother-

apy the most common purchased drugs were BB (71%) and the less ones were ARB (27.1%,

light-blue columns); ACE or ARB (ACE/ARB) was purchased by 83.2% of patients. Re-

garding polypharmacy, the most common prescribed drugs were ACE or ARB and BB

(58.1%) and the less frequent were ARB and AA (11.5%, blue columns). Finally, the

triplet ACE or ARB, BB and AA was purchased by 27.3% of patients (purple column).

At the end of the observation period, i.e., one year after the index HF hospitalization

(Table 1.3), mean age was 81 years and the median of Charlson index remained high

(median of Charlson index 2; 47.4% with a Charlson index ≥ 3). Starting from the

end of the observation period, during a median follow-up of 33 (IQR = [17.1; 55.1])

months, 7,752 (59.9%) patients died. In the 24 months before the last hospitalization of

the observation period, 6,786 (52.5%) patients underwent a cardiological visit and 4,227

(32.7%) an echocardiogram. In the observation period, 53.6% patients were re-hospitalized

27.3
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58.1

33.4

11.5

29.2

19.3

44.6
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83.2
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63.4 Monotherapy

  Bitherapy

 Tritherapy(ACE or ARB) + BB + AA

(ACE or ARB) + AA
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BB + AA

ARB + AA

ACE + AA
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Figure 1.3. Barplots of percentages of patients in a monotherapy, a bitherapy or a tritherapy. Each

column is related to the purchase of specific types of drug (i.e., ACE, ARB, ACE/ARB, BB, AA). On the

top, light-blue columns show percentages about monotherapy, where ‘ACE or ARB’ means that a patient

presents at least one purchase for ACE and/or ARB during the observation period. Central dark-blue

columns show percentages about bitherapy and ‘ACE + BB’ means that a patient presents at least one

purchase both for ACE and for BB during the observation period. On the bottom, the purple column

shows the percentage about tritherapy and states that 27.3% of the whole cohort purchased ACE and/or

ARB, BB and AA.
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Table 1.2. Descriptive analysis of the whole cohort at index HF hospitalization.

Variable characteristics at index HF hospitalization

Study Cohort 12,938 pts

Age [year]

Mean (s.d.) 79.77 (9.62)

Gender

Female (%) 6,875 (53.1%)

Male (%) 6,063 (46.9%)

HF Condition

De Novo (%) 11,531 (89.1%)

Worsening (%) 1,407 (10.9%)

Number of procedures*

0 (%) 12,440 (96.1%)

1 (%) 411 (3.2%)

2 (%) 62 (0.5%)

3 (%) 25 (0.2%)

≥ 4(%) 0 (0%)

Charlson index

median (IQR) 2 (1; 4)

< 3 6,878 (53.2%)

≥ 3 6,060 (46.8%)

Cardiological Ward

No (%) 11,602 (89.7%)

Yes (%) 1,336 (10.3%)

Cardiological visit

No (%) 6,908 (53.4%)

Yes (%) 6,030 (46.6%)

Echocardiogram

No (%) 9,726 (75.2%)

Yes (%) 3,212 (24.8%)

Creatinine**

Median (IQR) 1.09 (0.89; 1.38)

Missing values (%) 1,599 (12.4%)

Glycated haemoglobin**

Median (IQR) 6.6 (6.0; 7.5)

Missing values (%) 10,084 (77.9%)

Haemoglobin**

Median (IQR) 12.3 (11.0; 13.6)

Missing values (%) 3,879 (30.0%)

Age, gender, number of procedures, Charlson index, laboratory tests and discharge from CW refer to the first event, the

index hospitalization. Cardiological visit and echocardiogram refer to the 24 months before the index hospitalization.

HF condition refers to the 5 years preceding the index admission.

* Examined major procedures: coronary angiography, Percutaneous Transluminal Coronary Angioplasty (PTCA)

(w/out implantation of stent in coronary artery), Coronary Artery Bypass Graft surgery (CABG), implantation of

pacemaker, cardioverter defibrillator or Cardiac Resynchronization Therapy (CRT), Transcatheter Aortic Valve Im-

plantation (TAVI) or percutaneous mitral valve repair with MitraClip device. For the descriptive of each procedure,

see supplementary material of Spreafico et al. (2020) [187].

** Laboratory tests: median values (if available) of creatinine, glycated haemoglobin and haemoglobin measured

during the index hospitalization. Creatinine and glycated haemoglobin values were integrated to hospital diagnosis in

the Charlson index computation.
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Table 1.3. Descriptive analysis of the whole cohort at the beginning of follow-up period.

Variable characteristics at index HF hospitalization

Study Cohort 12,938 pts

Age [year]

Mean (s.d.) 80.77 (9.62)

Follow-up time [months]

Median (IQR) 33 (17.1; 55.1)

Death

0 (%) 5,186 (40.1%)

1 (%) 7,752 (59.9%)

Charlson index*

median (IQR) 2 (1; 4)

< 3 6,801 (52.6%)

≥ 3 6,137 (47.4%)

Cardiological visit**

No (%) 6,152 (47.5%)

Yes (%) 6,786 (52.5%)

Echocardiogram***

No (%) 8,711 (67.3%)

Yes (%) 4,227 (32.7%)

Number of all-cause re-Hospitalizations

0 (%) 6,006 (46.4%)

1 (%) 3,462 (26.8%)

2 (%) 1,775 (13.7%)

≥ 3 (%) 1,695 (13.1%)

Number of HF re-Hospitalizations

0 (%) 10,422 (80.7%)

1 (%) 1,896 (14.7%)

2 (%) 437 (3.4%)

≥ 3 (%) 163 (1.2%)

Number of ICU services

0 (%) 11,356 (87.7%)

1 (%) 1,305 (10.1%)

≥ 2 (%) 277 (2.2%)

IHC activation

No (%) 8,718 (67.4%)

Yes (%) 4,220 (32.6%)

Dead patients cohort 7,752 pts

HF Condition‡
De Novo (%) 6,563 (84.7%)

Worsening (%) 1,189 (15.3%)

ICU = Intermediate Care Unit, IHC = Integrated Home Care.

Age and gender refer to the end of the observation period (i.e., 365 days after the index hospitalization). Charlson

index refers to the last hospitalization during the observation period. Cardiological visit and echocardiogram refer to

the 24 months before the last hospitalization of the observation period. Number of re-hospitalizations, number of ICU

and IHC activation refer to the observation period.

* Wilcoxon test with respect to the index date: p-value < 0.0001

** McNemar test on paired proportions with respect index date: p-value < 0.0001

*** McNemar test on paired proportions with respect index date: p-value < 0.0001

‡ Chi-square p-value < 0.0001
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at least once for any-cause, 13.7% for two times and 13.1% more than two times. In

particular, 19.3% of patients were re-hospitalized at least once for HF. Moreover, 12.3%

of patients was admitted in ICU and IHC was activated at least once in 32.6% (4,220

patients) of the study cohort. Of note, for patients without any re-hospitalization during

the observation period, the last hospitalization coincided with the index hospitalization.

1.3.2. Standardized Daily Dose

Figure 1.4 shows the standardized Daily Dose (sDD) of the main active principles under

study. We investigated ramipril, enalapril and lisinopril among ACE; losartan, valsartan,

olmesartan, telmisartan and candesartan among ARB; spironolactone, potassium can-

renoate and canrenone among AA; bisoprolol, carvedilol, metoprolol and nebivolol among

BB. Figure 1.4 shows distribution of sDD in our cohort by means of boxplots. To put

the target dosages in evidence, we considered both 100% (blue lines) and 80% (orange

lines). Considering 100% as the perfect target could be inappropriate, given the existence

of some dynamical processes like up-titration of the drugs dosages that cannot be investi-

gated through these data. So, we decided to consider also 80% as target in order to take

into account these unknown processes and having a more realistic estimate of patients

that actually reach target dosages. Percentages of patients with sDD > 80% were 11.6%,

28.9% and 32.3%, for ramipril, enalapril and lisinopril, respectively. Percentages of pa-

tients with sDD > 80% were 1.8%, 8.8%, 10%, 30.5% and 10.6%, for losartan, valsartan,

olmesartan, telmisartan and candesartan, respectively. Percentages of patients with sDD

> 80% were 34.2%, 43.7% and 29.5%, for spironolactone, potassium canrenoate and can-

renone, respectively. Percentages of patients with sDD > 80% were 4.3%, 10.4%, 14.4%

and 2.4%, for bisoprolol, carvedilol, metoprolol and nebivolol, respectively.

1.3.3. Patients’ adherence measures

Using PDC, at the end of the observation period 47.2% of 8,199 ACE patients, 39.7% of

3,503 ARB patients, 22.6% of 9,183 BB patients, 18.3% of 6,137 AA patients and 48.5%

of 10,759 of ACE or ARB patients were adherent to the corresponding treatment at the

threshold of 80% (see Table 1.4). Using MPR measure, percentages were higher: 63% of

ACE patients, 58.5% of ARB patients, 36% of BB patients, 31.5% of AA patients and

66% of ACE or ARB patients.

Descriptive statistics about adherence to polypharmacy indices of the study cohort are

reported in Table 1.5. Using PDC, the following PAI values emerged: 47.2% (0: non-

adherent patients), 11.1% (1/3), 20.5% (1/2), 5.1% (2/3) and 16.1% (1: fully adherent

patients). Consequently, 41.7% of the patients had good percentage of adherence to

polypharmacy (n = 5,393). Using MPR, the following PAI values were calculated: 29.1%

(0: non-adherent patients, n = 3,758), 11.4% (1/3), 23.8% (1/2), 8.8% (2/3) and 26.9%

(1: fully adherent patients). Consequently, 59.5% of the patients had good percentage of

adherence to polypharmacy (n = 7,700). Of note, in Table 1.6 we provided information
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about the number of purchased drugs and the percentage of poly-adherent patients. As

expected, we observe that the higher is the number of therapies, the lower is the poly-

adherence (both p-values are less than 0.0001).

Table 1.4. Numbers and percentages of adherent patients to the corresponding treatment at the thresh-

old of 80% using both PDC and MPR measures.

Adherent ACE ARB BB AA ACE/ARB

Cohort no. pts 8,199 3,503 9,183 6,137 10,759

PDC No (%) 4,325 (52.8%) 2,112 (60.3%) 7,110 (77.4%) 5,015 (81.7%) 5,544 (51.5%)

Yes (%) 3,874 (47.2%) 1,391 (39.7%) 2,073 (22.6%) 1,122 (18.3%) 5,215 (48.5%)

MPR No (%) 3,030 (37.0%) 1,454 (41.5%) 5,874 (64.0%) 4,202 (68.5%) 3,661 (34.0%)

Yes (%) 5,169 (63.0%) 2,049 (58.5%) 3,309 (36.0%) 1,935 (31.5%) 7,098 (66.0%)

Table 1.5. Descriptive analysis of Patient Adherence Indicators (PAIs) of the whole cohort.

PP Index PP scale PDC MPR

PAI 0 (%) 6,107 (47.2%) 3,758 (29.1%)

1/3 (%) 1,438 (11.1%) 1,480 (11.4%)

1/2 (%) 2,653 (20.5%) 3,080 (23.8%)

2/3 (%) 654 (5.1%) 1,139 (8.8%)

1 (%) 2,086 (16.1%) 3,481 (26.9%)

PAI group good (%) 5,393 (41.7%) 7,700 (59.5%)

poor (%) 7,545 (58.3%) 5,238 (40.5%)
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Figure 1.4. Boxplots of standardized Daily Dose (sDD) for the main active principles of each pharma-

cological class. Top-left panel reports ACE main subclasses: enalapril, lisinopril and ramipril. Top-right

panel reports AA main subclasses: canrenone, potassium canrenoate and spironolactone. Down-left panel

reports ARB main subclasses: candesartan, losartan, olmesartan, telmisartan and valsartan. Down-right

panel report BB main subclasses: bisoprolol, carvedilol, metoprolol and nebivolol. Dashed blue lines

(standardized daily dose = 100%) indicate that the mean purchased DD are equal to the respective

target dosages recommended in the ESC Guidelines [139, 50] or according to clinical practice of AIFA’s

website [4]. Dashed orange lines (standardized daily dose = 80%) indicate that the mean purchased DD

are equal to the 80% of the respective target dosages.
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1.3. Results

Table 1.6. Numbers and percentages of Poly-Adherence (PA), computed both with PDC and MPR,

with respect to number of different types of purchased drugs (i.e., PI, Purchase Indicator).

Poly-Adherence (PA) with PDC

no. pts 0 1 2 3

Purchase 1 3,331 2,068 1,263*
Not possible Not possible

Indicator (62.1%) (37.9%)

(PI) 2 6,073 2,699 2,653 721 *
Not possible

(44.4%) (43.7%) (11.9%)

3 3,534 1,438 1,438 654 102 *

(37.9%) (40.7%) (18.5%) (2.9%)

Poly-Adherence (PA) with MPR

no. pts 0 1 2 3

Purchase 1 3,331 1,577 1,754 **
Not possible Not possible

Indicator (47.3%) (52.7%)

(PI) 2 6,073 1,562 3,080 1,431 **
Not possible

(25.7%) (50.7%) (23.6%)

3 3,534 619 1,480 1,139 296 **

(17.5%) (41.9%) (32.2%) (8.4%)

* Test for proportions of global Poly-Adherence (1263/3331, 721/6073, 102/3534): p-value < 0.0001.

** Test for proportions of global Poly-Adherence (1754/3331, 1431/6073, 296/3534): p-value < 0.0001.

1.3.4. Multivariable Cox models for survival outcome

In Table 1.7 impact of covariates on survival for each Cox model is displayed. Among

risk factors we identified: WHF, age, Charlson score, re-hospitalizations, ICU and IHC.

Specifically, being a WHF patient with respect to a De Novo patient, being elder, having

a higher Charlson index, being re-hospitalized more often, being admitted in ICU and the

activation of IHC implied a higher risk of death. Conversely, among protective factors we

identified: the discharge from a Cardiological Ward (CW) in the index hospitalization and

a cardiological visit in the 24 months before the last hospitalization of the observation

period. Regarding polypharmacy indices, both PAI (first and second model) and PAI

group (third and fourth models) were significantly protective (HRs < 1). In particular,

higher values of PAI and being labelled as good in case of PAI group were associated with

a lower risk of death.

Figure 1.5 shows this result through the estimate of a survival curve stratified by good

and poor levels in the case of PAI group computed using PDC (third model) for a hy-

pothetical patient that should be representative of the studied cohort. Specifically, we

considered a 82-years old, female, De Novo patient with a previous cardiological visit and

a Charlson index (at the last hospitalization) equal to 2. Moreover, at index HF hospital-

ization this patient was not discharged from CW and during the observation period she

was re-hospitalized only once and did not benefit of any ICU service or IHC activation.

These values correspond to the medians of the continuous variables and the modes of the

categorical variables measured in our cohort.
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Table 1.7. Adjusted Hazard Ratios with 95% Confidence Intervals (CI) and p-values of each Cox’s

model. Each column corresponds to a different Cox regression models, one for each of the following

polypharmacy indices: PAI and PAI group computed with both PDC and MPR adherence results.

Model 1 – PDC Model 2 – MPR

HR (95% CI) p-value HR (95% CI) p-value

HF Condition [WHF] 1.24 [1.16; 1.32] 6.77e-11 1.24 [1.16; 1.32] 7.33e-11

Age 1.06 [1.06; 1.07] < 2e-16 1.06 [1.06; 1.07] < 2e-16

Gender (M] 1.32 [1.26; 1.39] < 2e-16 1.32 [1.26; 1.39] < 2e-16

Charlson index 1.11 [1.09; 1.12] < 2e-16 1.11 [1.09; 1.12] < 2e-16

CW 0.78 [0.71; 0.85] 1.97e-07 0.78 [0.71; 0.86] 2.39e-07

Cardiological visit 0.94 [0.89; 0.98] 0.00439 0.94 [0.90; 0.98] 0.00563

Re-hospitalizations 1.11 [1.10; 1.13] < 2e-16 1.12 [1.10; 1.13] < 2e-16

ICU services 1.14 [1.09; 1.20] 4.18e-08 1.14 [1.09; 1.20] 3.12e-08

IHC activation 1.27 [1.22; 1.34] < 2e-16 1.28 [1.22; 1.34] < 2e-16

PAI 0.91 [0.85; 0.97] 0.00270 0.94 [0.89; 0.99] 0.03819

Model 3 – PDC Model 4 – MPR

HR (95% CI) p-value HR (95% CI) p-value

HF Condition [WHF] 1.24 [1.16; 1.32] 9.33e-11 1.24 [1.16; 1.32] 7.97e-11

Age 1.06 [1.06; 1.07] < 2e-16 1.06 [1.06; 1.07] < 2e-16

Gender (M] 1.32 [1.26; 1.39] < 2e-16 1.32 [1.26; 1.39] < 2e-16

Charlson index 1.11 [1.09; 1.12] < 2e-16 1.11 [1.09; 1.12] < 2e-16

CW 0.78 [0.71; 0.85] 1.63e-07 0.78 [0.71; 0.85] 1.87e-07

Cardiological visit 0.94 [0.89; 0.98] 0.00466 0.94 [0.90; 0.98] 0.00572

Re-hospitalizations 1.11 [1.10; 1.13] < 2e-16 1.11 [1.10; 1.13] < 2e-16

ICU services 1.14 [1.09; 1.20] 3.73e-08 1.14 [1.09; 1.20] 3.20e-08

IHC activation 1.27 [1.22; 1.34] < 2e-16 1.28 [1.22; 1.34] < 2e-16

PAI group (good] 0.93 [0.88; 0.97] 0.00119 0.93 [0.89; 0.98] 0.00354

Each model was adjusted for nine time-independent covariates: HF condition and discharge from CW at index hos-

pitalization, cardiological visit in the 24 months before the last hospitalization of the observation period, number of

re-hospitalizations, number of ICU services and IHC activation during the observation period, Charlson index at the

last hospitalization, age and gender at the beginning of the follow-up period.
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Figure 1.5. Estimated survival from the Cox model stratified by good and poor patients in the case of

PAI group computed using PDC. Adjusting covariate values are the medians of the continuous variables

and the modes of the categorical variables measured in our cohort: female-De Novo patient aged 82 years

old with a Charlson index at the last hospitalization equal to 2; at index hospitalization this patient was

not discharged from Cardiologic Ward; during the observation period she was re-hospitalized only once

time, she did not benefit of ICU service or IHC activation, and she underwent one cardiological visit.

1.4. Final remarks

The goal of Drug Utilization Research [220] is to facilitate the rational use of drugs in

patient populations. A key point emerged from clinical trials is that the prescription of

drugs should be in the “optimal” dose for the therapeutic indication. To date, few data

exist regarding the adherence to drug therapies in a real world setting for HF patients.

Indeed, most of previous data have been focused on physician’s prescription adherence

to recommended medications in HF patients [108, 130]. In the present chapter, we took

advantage of real-world pharmacological records about drugs purchases in order to have

a proxy of patient’s adherence to polypharmacy.

Our study confirmed that, even when prescriptions of guideline-based HF treatment are

high, there is evidence of frequent failures to reach target doses [130]. In fact, results

showed high proportion of HF patients were treated with low dosages of recommended

therapies: mean daily dosages purchased by patients were well below the target dosages

for all the drugs considered. Data from quality surveys reported similar trend in the pre-

scriptions, with less than one-third of patients on guideline-recommended target dosages

[108]. Similarly, a recent European survey (BIOSTAT-CHF) conducted in 11 countries

and enrolling 2,500 patients showed that only a minority of patients reached the target

dose of ACE and BB [148]. These trends confirmed that simple calculation of the per-

centage of “treated” patients based on physician’s prescription might not be an adequate

measure to indicate the quality of healthcare provided for HF patients.

In addition, patients’ adherence to oral treatment of HF medications was widely un-

satisfactory, in particular taking into account the PDC approach (47% of non-adherent
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patients, PAI index based on PDC). This is in contrast to physician’s prescriptions of ap-

propriate classes of therapy that instead has improved considerably over the past decade,

from approximately a quarter of prescriptions in 2008 to nearly two thirds in 2016 [107]. In

particular, we focused on patient’s adherence in 1-year from an HF hospitalization. In this

observation period, we found that treatment with the association of oral BB, ACE/ARB

and AA was present in one-third of patients, and percentages of patients adherent to only

one or two drugs out of three prescribed ranged from 16% to 20% (PAI index computed

for 1/3 or 2/3 cases).

Our study indicated that the risk of death significantly decreased in presence of a good

adherence to polypharmacy. Importantly, we reported adherence measures on effective

purchases exploiting the potential of administrative healthcare databases. The proposed

index PAI can be viewed as a modified version of the Guideline Adherence Indicator, GAI,

[225] based only on physician’s prescriptions at discharge and not on effective patient’s

purchases and adherence patterns. The significant PAI effect on survival suggests that

medication non-adherence is associated with lower survival probability also in the case of

polypharmacy therapy, so extending previous results about the effect of non-adherence to

specific drugs classes [148].

The two methods of adherence calculations – based on PDC and MPR – showed some rel-

evant differences in terms of percentages of adherent patients for the specific single-drug

classes. These differences are due to the fact that adherence could be underestimated

by measures which ignore overlaps (i.e., PDC) and overestimated by ones which count

overlaps (i.e., MPR) during the observation period. In the current literature, PDC has

been suggested as the preferred method to reflect adherence of patients who are pre-

scribed multiple medications concurrently within a class [133] and recently a modified

MPR calculation has been proposed in the context of polypharmacy [17]. Noteworthy, we

did not observe relevant prognostic differences when PDC or MPR-based measures were

combined in the PAI index. This could indicate that adherence to drugs combinations is

prognostically more relevant, irrespective from the single-class measure adopted.

To the best of our knowledge, only one very recent paper published in 2018 tackled

the issue of polypharmacy adherence in a cardiovascular setting and proposed a novel

index [17]. Specifically, they introduced a new “daily polypharmacy possession ratio”

(DPPR) based on Australian pharmaceutical benefits scheme database. This work [17]

is of great interest, however it is not clear how much the obtained results are affected

by the initial strong selection procedure; indeed, they excluded more than half of the

cohort based on patients age. This procedure would lead to a not negligible selection

bias in our cohort. In line with previous real-word studies focused on HF [59, 94, 93] our

population included a high proportion of elderly patients and women, with high rates of

non-cardiac comorbidities. Of note, this could also explain the large proportion of HF

patients discharged from non-cardiological ward.

Some limitations of the present study have to be noted. First of all, in the healthcare ad-

ministrative archives no socio-economic data and no clinical data about New York Heart

Association (NYHA) class or Left Ventricular Ejection Fraction (LVEF) were available.
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Therefore, it was not possible to stratify patients according to clinical HF severity; as a

proxy, we used previous HF hospitalization in the patient history. Another limitation is

the absence of a specific analysis on diuretics adherence. Although the topic is intrigu-

ing, patients’ adherence to diuretics is hard to evaluate without clinical data, since their

modulation to fluid overload. Since the lack of physician’s prescriptions (at discharge

and during follow-up) and the possible development of drugs adverse reactions, several

concerns remain on the estimated rate of patient’s non-adherence. Dedicated future stud-

ies are encouraged on this topic integrating clinical and administrative sources of data.

Then, in the PDC and MPR computations, theoretical Defined Daily Doses (DDD) were

used instead of Prescribed Daily Doses (PDD) and therefore a bias could be present in

the estimated adherence if the underlying PDD/DDD ratio is different from 1 [220, 69].

Moreover, the cut-off of PDC or MPR greater than 80% to define patient adherence could

be further examined in a sensitivity analysis in order to find if other values or a dis-

tribution of thresholds could better stratify patient’s outcome. Finally, some technical

improvements may be included into the PAI definition in order to provide a more elabo-

rated formula which is able to reward more patients that are adherent to polypharmacy

with respect to those adherent in monotherapy. In the present definition of PAI a patient

scores 1 if he/she is fully adherent to only one drug or if he/she is fully adherent to a

combination of drugs. For example, the PAI definition could be modified combining the

terms with some weights, in order to maximize the predictive capacity of the model and

producing a more refined grading score among patients.

To summarize, the main purpose of the present chapter was to describe guidelines com-

pliance in a real-world HF community and evaluate the impact of combined drugs adher-

ence on survival. Patients’ adherence remained widely unsatisfactory especially taking

into account attainment of target dosages and polypharmacy. Adjusting for patient’s

characteristics and intermediate events, good adherence to polypharmacy in the first year

after HF hospitalization was associated with improved survival, irrespective of the specific

measure of single drug class adherence used. Although the PAI index represents a first

step forward in the assessment of adherence to polypharmacy using real-world data, it

exploits the PDC/MPR measures which are time-fixed indexes computed at the end of

the observation period, without taking into account changes in patient drug utilization

behaviour over time. In addition to discarding valuable information, this can lead to

selection bias due to the exclusion from the study cohort of patients who did not survive

the first 1-year period. To overcome this problem, it is necessary to explore alternative

statistical approaches that model adherence as a time-varying covariate, as we shall see

in the next chapter.
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CHAPTER 2

Joint modelling of time-varying

adherence to medication and survival

This chapter has been published in Biometrical Journal, 63(2):305–322, 2021 as M. Spreafico

and F. Ieva “Dynamic monitoring of the effects of adherence to medication on survival in Heart

Failure patients: a joint modelling approach exploiting time-varying covariates” [188].

In pharmacoepidemiology literature and current practice, the way adherence to medica-

tion is computed and accounted for into predictive models is far from being informative as

it may be. As shown in the previous chapter, the most used adherence measures [14, 102]

are computed over a pre-defined observation period over time and are usually included

in classical survival models, such as Cox proportional hazard [46] or parametric survival

[106] regressions, as a time-fixed baseline covariate considering as new origin event the

end of the observation period (see classical framework in Figure 2.1). In this way, the

dynamics of drug consumption over therapy are completely discarded. Moreover, patients

need to survive for a period at least equal to the observation period, which leads to a pos-

sible bias due to exclusion of early dying patients. Both issues can be overcame modelling

adherence as a time-varying covariate that jointly evolves with patient’s outcome, i.e.,

both starting from the origin event T0 as shown in the time-varying framework in Figure

2.1.

Bijlsma et al. (2016) [29] performed a first attempt to measure time-varying adherence

using electronic records, proving that their time-varying method better distinguished an

irregularity dosing patient from a stably dosing patient and better accounted for changes

over time in drug utilization behaviour. However, through their method, time-varying

adherence to medication has been computed over a time-period defined by three successive

fills, time-lapse different from the global time-scale of the most studied clinical outcomes

(e.g., time-to-event in survival analysis). Therefore, as Steiner (2016) [193] highlighted,

to establish a relationship between time-varying adherence and clinical outcomes, it is

fundamental that these two components are measured on the same time scale. In this

way, it could be possible to investigate the effect of the longitudinal adherence on the

clinical outcome.

In this chapter we propose an innovative method to represent and measure adherence as

time-varying covariate exploiting administrative databases of Regione Lombardia [164].

33



C
H
A
P
T
E
R
2
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𝑇0

𝑇0 𝑇 ∗0

Follow-up period

Time-varying adherence computation

&   Time-to-event outcome

Pre-defined

observation


period
Follow-up period

Binary adherence

computation

Time-to-event outcome

Figure 2.1. Classical framework : binary adherence is computed on a pre-defined observation period and

time-to-event outcome refers to the follow-up period. Time-varying framework : time-varying adherence is

computed jointly with the time-to-event outcome. T0 is the origin event, T ∗0 is the end of the observation

period.

Our method could be seen as an extension of the time-fixed Proportion of Days Covered

[102, 14] and it is computed on the same time scale of our event of interest, i.e., the death

of HF patients (see time-varying framework in Figure 2.1). In particular, we observed

that the dynamics of consumption and adherence to medication can be reconstructed

using secondary databases related to (i) patient admission to hospital (Hospital Discharge

Charts - HSC), which contain data related to hospital admissions and time to death (or

administrative censoring), and (ii) pharmaceutical purchases, which provide information

on the number and times of drug purchases. Since data on drugs prescriptions are nor

publicly available neither accessible, the approximation of drug consumption with drug

purchase is the only viable option. Examples and limitations of using this approach into

a pharmacoepidemiological setting are discussed in [14, 80, 102, 118, 187].

Motivated by the clinical question regarding the association between adherence to med-

ication and patients’ survival, we compared two different time-varying covariates: the

continuous time-dependent cumulative months covered by drug consumption and the di-

chotomous time-dependent adherence to medication. The first one represents the dynamic

behaviour and shape of drug intake, whereas the second one reflects the patient’s purpose

of taking the medication during time. Once these dynamic indicators are computed, we

plug them into joint models [167]. These models are used in follow-up studies where

interest is in associating an endogenous time-dependent response [97] with an event time

outcome. Since the data we came up with in our procedure were jointly determined with

the responses of interest and may be intended as endogenous covariates, this framework

enables their proper treatment. The flexibility and wide range applicability of joint models

to clinical setting [83] allow for subject-specific predictions and construction of personal-

ized medicine tools. In fact, the added value of our approach consists in performing an

ongoing analysis and a quantification of adherence effect on patient’s outcome that allow

to carry out a real-time monitoring and profiling of patients as well as a personalised

prediction about long-term prognosis.
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2.1. Statistical Methodologies

The remaining part of this chapter is organized as follows. In Section 2.1 we describe

the statistical methodologies. First, we introduce two novel time-varying representation

methods for drug consumption and adherence to medication; then we model them into

a joint modelling framework. Data extraction, inclusion criteria and representation of

pharmacological time-varying covariates are described in Section 2.2. Key results from

applying these methods to administrative data provided by Regione Lombardia - Health-

care Division within the project HFData [164] are presented in Section 2.3. In Section

2.4, we end with a discussion of the strengths and limitations of the current approach.

All the analyses were carried out using the free software R [161], in particular JMbayes

package [168]. Codes are available as Supplementary Material of [188].

2.1. Statistical Methodologies

2.1.1. Pharmacological time-varying covariates

In classical survival models, such as Cox’s proportional hazard model [46] or parametric

survival models [106], pharmacological consumption and adherence are usually considered

as binary (or categorical) baseline covariates. One of the most used adherence measure

is the Proportion of Days Covered (PDC) [102, 14], defined as in Equation (1.2). PDC

measure is computed on a pre-defined observation period (see classical framework in

Figure 2.1) and returns a number between 0 and 1. PDC is usually dichotomized to

identify as adherent those patients that reach an established threshold. However, since

the dynamics of drug intake changes during therapy depending on patient’s health status,

a time-varying representation could be more appropriate and informative. Therefore,

starting from PDC definition in Equation (1.2), we define time-varying adherence to

medication in two alternative ways:

(i) y
(C)
i (t): a continuous (C) time-dependent variable which indicates the cumulative

time covered by therapy consumption up to time t by the i-th subject, ∀i = 1, ..., n,

(ii) y
(D)
i (t): a dichotomous (D) time-dependent variable which indicates if the i-th pa-

tient is adherent to therapy at time t, ∀i = 1, ..., n

y
(D)
i (t) :=

1 if PDCi(t) =
y
(C)
i (t)

t
≥ τ

0 otherwise,

where τ is a pre-defined threshold and time t can be expressed in days, weeks, months or

years, depending on the type of data and on the focus of the research.

Variable y(C)(t) =
{
y

(C)
i (t), i = 1, ..., n

}
could be seen as an extension of PDC numerator

in (1.2) in which we considered time-varying observation periods, i.e., periods that begins

from our survival origin event (the index date, i.e., time T0 = 0) and ends up at different

times t. Variable y(D)(t) =
{
y

(D)
i (t), i = 1, ..., n

}
was a dichotomization of y(C)(t) to
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identify as adherent those patients with a proportion of therapy consumption up to time

t greater or equal to a pre-defined threshold τ , i.e., the τ×100% of the observation period

up to t. Using this approach, our covariates were measured on the same time-scale of the

survival framework, since they both started at the origin event of the survival analysis,

i.e., time T0 = 0.

Variables y(C)(t) and y(D)(t) represent two different ways to include into a longitudinal

framework the information related to patients’ adherence to continuity in routine therapy

assumption, leading to two different approaches that we want to compare. The dichoto-

mous covariate y(D)(t) provided an “easy” time-dependent representation of adherence,

since it represented the therapy assumption rate during time, i.e., the proportion of days

covered at time t PDC(t) dichotomized according to a certain threshold τ , as usually done

in the literature. This allowed us to distinguish patients with good
(
y(D)(t) = 1

)
and poor(

y(D)(t) = 0
)

adherence continuity rates during time. On the contrary, the continuous

covariates y(C)(t) was able to reflect how “compliant” they were in assuming therapy

with continuity and in which periods they actually assumed the drug. In fact, while the

value of y(C)(t) was a measure of the cumulative time on which the patient took the drug

(i.e., how “compliant” it was), the slope of the longitudinal trajectory was able to provide

information on modifications in patient’s behaviours during different periods. Indeed,

considering the longitudinal trajectory for a given patient between two consecutive times

t and t+ 1, we had that:

(i) a slope equal to 0 indicated that the patient never took the drug during interval

[t; t+ 1];

(ii) a slope equal to 1 indicated that the patient took the drug every day of interval

[t; t+ 1];

(iii) a slope in in (0,1) indicated that the patient took the drug sometimes, but not every

day.

Moreover, changes in the value of the trajectory slope over time reflected changes in

patient’s adherence continuity: an increasing slope indicated that patient’s behaviour

became more appropriate in terms of continuity in adherence to medication, a decreasing

slope indicated that patient’s behaviour became more inappropriate and a constant slope

indicated that patient’s behaviour remained unchanged (proper or improper according

to the value of the slope). Therefore, since the continuous variable y(C)(t) was more

descriptive and informative than the dichotomous y(D)(t), we expected that the approach

with y(C)(t) resulted more powerful in predicting and real-time evaluating the effect of

the covariate on patient’s survival status.

We finally underline that in clinical practice therapies are usually modified according to

the disease progression. This aspect allowed us to consider covariates (2.8) and (2.9) as

endogenous (or internal) time-dependent covariates, since their time paths were jointly

determined with the responses of interest. Indeed, as Kalbfleisch and Prentice (2011) [97]

stated, the key point of endogenous covariates is that their existence and future path are
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directly related to the event status. Hence, since they were related to the behaviour of

the individual over time, both the time-varying variables could be seen as endogenous.

2.1.2. Joint model specification

We now introduce the joint model approach proposed by Rizopoulos (2012) [167] for

dealing with time-to-event and endogenous longitudinal covariates. The choice of a joint

model is driven by the fact that, when the outcome processes are correlated, joint mod-

elling has empirically demonstrated to reduce biases, improve efficiency and prediction

and can be applicable to outcome surrogacy [83].

Let T ∗i denotes the true event time for the i-th subject, Ci the censoring time, Ti =

min(T ∗i , Ci) the corresponding observed event time and Di = 1(T ∗i ≤ Ci) the event

outcome indicator, with I(·) being the indicator function that takes the value 1 when

T ∗i ≤ Ci, and 0 otherwise. Let Dn = {Ti, Di,yi; i = 1, ..., n} denote a sample from

the target population, where yi denote the ni × 1 longitudinal response vector for the

i-th subject
(
y

(C)
i or y

(D)
i in our analyses

)
, with element yil denoting the value of the

longitudinal process taken at time point til, l = 1, ..., ni. The general form of joint models

we used for our analysis is the following:

g[E{yi(t)|bi}] = ηi(t) = xTi (t)β + zTi (t)bi (2.1)

hi(t|Hi(t),ωi) = h0(t) exp
{
θTωi(t) + f(Hi(t), bi,α)

}
, t > 0. (2.2)

The longitudinal process, given by equation (2.1), is a generalized linear mixed effects

model in which g(·) denotes a known one-to-one monotonic link function, yi(t) denotes the

value of the longitudinal process for the i-th subject at time point t, β is the vector of the

unknown fixed effects parameters, bi is the vector of subject-specific random effects, xi(t)

and zi(t) denote the time-dependent vectors for the fixed and random effect, respectively.

The event process, given by equation (2.2), assumes that the risk hi(·) for an event

depends on a function f(·) of the subject-specific linear predictor ηi(t). In particular,

Hi(t) = {ηi(s), 0 ≤ s < t} denotes the history of the underlying longitudinal process up

to time point t, h0(·) denotes the baseline hazard function, ωi(t) is a vector of exogenous,

baseline or possibly time-varying, covariates with corresponding regression coefficients

θ. The parameter α is the vector that quantifies the association between features of the

marker process up to time t and the hazard of an event at the same time point. Moreover,

the baseline hazard function h0(·) is modelled using a B-splines approach.

In JMbayes package, the estimation of the models parameters proceeds under a Bayesian

approach, using MCMC algorithms. Details regarding Bayesian estimation of joint models

can be found in [168, 88, 33].
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Longitudinal and event processes for pharmacological time-varying covariates

In this section we specify longitudinal and event processes that we used to properly model

the pharmacological time-varying covariates introduced in Section 2.1.1. The choice of the

longitudinal submodels was driven by the nature of the time-varying processes themselves:

on one hand we needed a model able to capture the dynamic shape of drug consumption,

on the other hand we used a model for binary values.

For the continuous time-varying variable y(C)(t) =
{
y

(C)
i (t), i = 1, ..., n

}
, which indicates

the cumulative time covered by therapy consumption up to time t, we postulated a linear

mixed effect model as longitudinal submodel (2.1). Since the longitudinal trajectories

were nonlinear for many patients, we included natural cubic splines in both the fixed

and random effects parts in order to properly accounting for non-linearity, adjusting each

trajectory for baseline covariates with fixed effects. The resulting longitudinal process

was then of the following form:

y
(C)
i (t) = ηi(t) + εi(t) = (β0 + bi0) +

4∑
k=1

(βk + bik)Bn(t, λk) + x̃Ti β̃ + εi(t) (2.3)

where i is the patient’s index, {Bn(t, λk) : k = 1, 2, 3, 4} denotes the B-spline basis matrix

for a natural cubic spline of time t with three internal knots placed at 25th, 50th and 75th

percentiles of the follow-up times, x̃i is the vector of baseline covariates with fixed effects

with regression parameters β̃, εi(t) ∼ N (0, σ2
εIni) is the unknown vector of random errors

and bi ∼ N (0,D) is the vector of the patient-specific random effects, with D unstruc-

tured variance-covariance matrix. Therefore the time-dependent vectors for the fixed and

random effects for the i-th patient in (2.1) were xi(t) =
[
1, Bn(t, λ1), . . . , Bn(t, λ4), x̃Ti

]T
and zi(t) = [1, Bn(t, λ1), . . . , Bn(t, λ4)]T , with relative vectors of regression coefficients

β =
[
β0, . . . , β4, β̃

T
]T

and bi = [bi0, . . . , bi4]T .

For the dichotomous time-varying variable y(D)(t) =
{
y

(D)
i (t), i = 1, ..., n

}
, which indi-

cates adherence to therapy at time t, we postulated a logistic mixed effect model as

longitudinal submodel (2.1), as follows:

log
Pr
[
y

(D)
i (t) = 1

]
1− Pr

[
y

(D)
i (t) = 1

] = ηi(t) = β0 + bi0 + (β1 + bi1) t+ x̃Ti β̃ (2.4)

where i is the patient’s index, x̃i is the vector of baseline covariates with fixed effects

with regression parameters β̃ and bi ∼ N (0,D) is the vector of the patient-specific

random effects, with D an unstructured variance-covariance matrix. Therefore the time-

dependent vectors for the fixed and random effects for the i-th patient in (2.1) were

xi(t) =
[
1, t, x̃Ti

]T
and zi(t) = [1, t]T , with relative vectors of regression coefficients

β =
[
β0, β1, β̃

T
]T

and bi = [bi0, bi1]T .

For the event submodels, we wanted to focus on patient’s cumulative and current adher-

ence paths. On one hand, the current value of the subject-specific linear predictor gives
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information about the pharmacological history of drug assumption of each patient, i.e., its

cumulative path. On the other hand, the first derivative, i.e., the slope, is able to reflect

changes in drug intake between different time periods, especially through the continu-

ous covariate y(C)(t), giving us information about the patient’s current path. Therefore,

we focused on three different forms of f(Hi(t), bi,α) in (2.2), corresponding to different

meaning of the linear predictor:

(i) the risk of death for the i-th patient depends on the current true value of the

subject-specific linear predictor at time t:

hi(t) = h0(t) exp
{
θTωi(t) + α1ηi(t)

}
; (2.5)

(ii) the risk of death for the i-th patient depends on both the current true value of the

subject-specific linear predictor and its slope at time t:

hi(t) = h0(t) exp
{
θTωi(t) + α1ηi(t) + α2η

′
i(t)
}

; (2.6)

(iii) the risk of death for the i-th patient depends on the slope of the subject-specific

linear predictor at time t:

hi(t) = h0(t) exp
{
θTωi(t) + α2η

′
i(t)
}
. (2.7)

In this way we were able to investigate the effects of (i) cumulative adherence, (ii) both

cumulative and current adherence and (iii) current adherence on patients’ long-term sur-

vival, adjusting for other baseline or time-varying exogenous characteristics in ωi(t).

2.2. Materials and Administrative data

2.2.1. Study setting

Between January 2000 and December 2012, non-paediatric (age ≥ 18 years) patients

living in Lombardy (one of the biggest and most populated Italian region accounting for

10 million residents) hospitalized with a principal diagnostic code of HF were recruited

(see Mazzali et al., 2016 [136]). Enrolment occurred from the data of discharge of the

first HF hospitalization (i.e., the index date). Among the disease-modifying drugs for

HF patients mentioned in [139] and [154], we focused on Angiotensin-Converting Enzyme

inhibitors (ACE) and Angiotensin II Receptor Blockers (ARB), which are drugs of routine

use for HF [222] therefore they should be taken regularly by HF patients, regardless of

the level of severity of their health status. In particular, patients who bought at least one

medication of ACE or ARB during the first year of follow-up were selected.
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2.2.2. Administrative data sources

The project database was built for residents in Lombardy which were hospitalized for

HF from 2000 to 2012. Data were provided by Regione Lombardia - Healthcare Division,

within the research project HFData [HFData–RF-2009-1483329] [164]. In order to pro-

tect privacy, information retrieved from the different databases were linked via a single

anonymous ID (identification) code. For further details regarding data extraction and

selection see Mazzali et al. (2016) [136].

Each record in the dataset was related to an event, which could be an hospitalization

or a drug purchase of a given patient. With regard to ordinary hospital admission, the

date of discharge from hospital and the length of stay in hospital were retrieved. For

drug purchases, identified by their Anatomical Therapeutic Chemical (ATC) codes [214],

the date of purchase and the number of days of treatment covered by the prescription,

based on the number of boxes and the Defined Daily Dose (DDD) [220] for that specific

medicinal product, were retrieved.

In this work we focused on a representative sample of HFData related to patients with their

first HF discharge between January 2006 to December 2012, excluding patients who died

during the index hospitalization. A 5-years pre-study period from 2000 to 2005 (Figure 2.2)

was used in order to consider only ”incident” HF patients, i.e., patients with no contacts

with healthcare system in the previous five years due to HF. This choice allowed us to

reduce potential time-lag biases [155] due to different severity of the disease. To avoid

a possible survival bias due to patient’s critical conditions, we excluded those patients

who died within 30 days from the index date. Moreover, we defined the ACE/ARB

therapy period (Figure 2.2) to select purchases within 1 year of follow-up, since we were

interested in the effect the time-varying adherence to the first year of ACE/ARB therapy.

Therefore, only patients with at least one ACE/ARB purchase were included in the final

study cohort. Demographics and comorbidities were considered to adjust models.

End of follow-up

31/12/2012

Pre-study period

Index HF hospitalization

01/01/2006 – 31/11/2012 

01/01/2000 – 31/12/2005

Follow-up period

1 year (365 days)

ACE/ARB therapy period

T0

Figure 2.2. Study design. HF = Heart Failure, ACE = Angiotensin-Converting Enzyme inhibitors,

ARB = Angiotensin II Receptor Blockers.
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2.2.3. Pharmacological time-varying covariates for ACE/ARB

therapy

As explained in Section 2.1.1, starting from PDC definition (1.2), we represented time-

varying adherence to ACE/ARB therapy in two alternative ways:

(i) a continuous time-dependent variable which indicates the cumulative months cov-

ered by ACE/ARB consumption up to time t for the i-th patient

cum monthsi(t) = y
(C)
i (t) := distinct coverage months up to time t; (2.8)

(ii) a dichotomous time-dependent variable which indicates if the i-th patient is adherent

to the ACE/ARB therapy at time t

adherencei(t) = y
(D)
i (t) :=

{
1 if cum monthsi(t)

t
≥ 0.80

0 otherwise.
(2.9)

In both cases, times t were expressed in months. In particular, we considered the first day

of follow-up (t = 0.033 months) and each months (t = 1, ..., 12 months) up to the end of

the first year or up to the patient’s death, if he/she died during the first year of follow-up.

Using this approach, our covariate was measured on the same time-scale of our survival

framework. For cum monthsi(t) (2.8) computation we considered only the coverage of

distinct periods, which means that, in case of overlapping of two subsequent purchases,

we considered the period covered by the first purchase entirely and the second purchase

only in those days that were not covered by the first one. Moreover, we assumed full

adherence during re-hospitalization period [14], and we based our analysis on purchased

drugs instead of prescribed drugs, as done in Spreafico et al. (2020) [187]. In particular,

for each months we firstly computed the cumulative coverage days up to the current

month t. Then, converting days into months, we obtained the continuous time-varying

covariate cum monthsi(t), which indicates the cumulative months covered by ACE/ARB

assumption up to time t.

Finally, variable adherencei(t) (2.9) was a dichotomization of variable cum monthsi(t) to

identify as adherent those patients with a proportion of months covered by ACE/ARB

consumption up to time t greater or equal to τ = 0.8, i.e., the 80% of the observation

period up to t. Therefore, adherencei(t) was equal to 1 if cum monthsi(t)/t ≥ 0.8 at time

t, 0 otherwise.

This reconstruction process ended up with a long-format database with multiple rows for

each patient, one for each time point of his/her time-varying covariates. In Figure 2.3

we reported an example of the final reconstruction of the covariates cum monthsi(t) (top

panel) and adherencei(t) (bottom panel) for a random patient.
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Figure 2.3. Example of time-varying consumption and adherence to ACE/ARB therapy, cum monthsi(t)

and adherencei(t) respectively.

2.2.4. Outcome measure

Study outcome of interest was patient’s death for any cause. Deaths were collected from

the Hospital Discharge Forms Database (for in-hospital deaths) or Vital Statistics Re-

gional Dataset (for out-hospital deaths). For the survival analysis, each patient was fol-

lowed from the index date (i.e., the discharge from the index HF hospitalization, T0 = 0)

until the end of the study or the date of death (see follow-up period in Figure 2.2). The

administrative censoring date was December 31st, 2012.

2.3. Results

2.3.1. Study cohort

A representative sample cohort of 4,870 patients were identified with principal diagnostic

code of HF during the period 2006-2012. Of these, we excluded 13 (0.3%) patients who

died during the 30 days after the index hospitalization. Moreover, 883 patients (18.1%)

were removed since they did not present any purchase of ACE or ARB in the first year

after the index hospitalization. Thus, a total of 3,974 (81.6%) patients met study selection

criteria (see Figure 2.4).
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Overall, at index hospitalization mean age of the study cohort was 72.82 years (s.d. =

11.16) with a percentage of male patients equal to 55.8% (2,219 patients). The mean

number of comorbidities was 2.09 (s.d. = 1.08) with 30.5% of patients presenting ≥ 3

comorbidities). The median time of follow-up period was 48.85 (IQR = [30.72; 66.94])

months. At administrative censoring date 1,012 patients (25.5%) were dead and 2,962

(74.5%) were censored. Moreover, at the end of ACE/ARB therapy period (i.e., t = 12

months), the percentage of living patients was 94.7% (3,764 patients), with a mean value

of distinct coverage months, i.e., mean value of cum monthsi(12), equal to 8.77 months

(s.d. = 3.04) and only 2,039 patients (54.2%) with adherencei(12) = 1.

Initial dataset

n = 4,870

Patients survived at least 30 days after the first 
discharge for HF


n = 4,857

Patients with at least one ACE or ARB purchase during 
the first year after the first discharge for HF


n = 3,974

13 dead patients in 
the first 30 days

883 patients 
without ACE/ARB 

purchases

Figure 2.4. Flowchart of cohort selection.

2.3.2. Joint models for time-varying consumption and adherence to

ACE/ARB therapy

In order to assess the role of time-varying consumption and adherence to ACE/ARB

therapy with respect to the overall survival time of a patient, we estimated six different

joint models.

Referring to the continuous time-varying consumption of ACE/ARB therapy cum monthsi(t),

we considered three joint models, namely M1, M2 and M3, with the same longitudinal

subprocess (2.3) given by

cum monthsi(t) = ηi(t) + εi(t)

= β0 + bi0 +
4∑

k=1

(βk + bik)Bn(t, λk) + β5n comi + εi(t)
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and the event submodels (2.5)-(2.6)-(2.7) defined as follows

M1 : hi(t) = h0(t) exp{θ1agei + θ2genderi + θ3n comi + α1ηi(t)};
M2 : hi(t) = h0(t) exp{θ1agei + θ2genderi + θ3n comi + α1ηi(t) + α2η

′
i(t)};

M3 : hi(t) = h0(t) exp{θ1agei + θ2genderi + θ3n comi + α2η
′
i(t)}.

Referring to the dichotomous time-varying adherence to ACE/ARB therapy adherencei(t),

we considered three joint models, namely M4, M5 and M6, with the same longitudinal

subprocess (2.4) given by

log
Pr [adherencei(t) = 1]

1− Pr [adherencei(t) = 1]
= ηi(t) = β0 + bi0 + (β1 + bi1) t+ β2n comi

and the event submodels (2.5)-(2.6)-(2.7) defined as follows

M4 : hi(t) = h0(t) exp{θ1agei + θ2genderi + θ3n comi + α1ηi(t)};
M5 : hi(t) = h0(t) exp{θ1agei + θ2genderi + θ3n comi + α1ηi(t) + α2η

′
i(t)};

M6 : hi(t) = h0(t) exp{θ1agei + θ2genderi + θ3n comi + α2η
′
i(t)}.

In both cases, the longitudinal submodel was adjusted for the the total number of comor-

bidities at the index hospitalization. Therefore, in submodels (2.3) and (2.4) the vector

of baseline covariates with fixed effects was given by x̃i = n comi.

Moreover, each event submodel was adjusted for three baseline covariates: age, gender and

total number of comorbidities at the index hospitalization. The choice of these covariates

was driven by clinical relevance and availability from administrative data and were used

to prevent as much as possible biases induced by the use of secondary database. Hence,

in the event submodels (2.5)–(2.6)–(2.7) the vector of the exogenous baseline covariates

was given by ωi = (agei, genderi, n comi).

For the model fitting, we used version 3.6.2 of R software and version 0.8-85 of JMbayes

package. We ran the MCMC sampler implemented in jointModelBayes() function for a

total number of 36,000 iterations, discarding the first 3,000 as burn-in and other 3,000 as

adaptation and thinning every 15 iterations; the final sample size was 2,000. Covariates

age (age) and number of comobidities (n com) have been standardized for easing conver-

gence during parameters estimation.

Results

Considering the continuous time-varying variable y(C)(t) = cum months(t) as longitudinal

process like in (2.3), we fitted the three different joint models M1, M2 and M3 introduced

in Section 2.3.2. The results of the model parameter estimations are shown in Table 2.1,

together with their deviance information criterion (DIC) values. Results from the different
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models were similar, but model M2 presented a lower DIC value with respect to M1 and

M3. Therefore, the selected model for time-varying cum months(t) was the following:

M2 :


cum monthsi(t) = ηi(t) + εi(t)

= β0 + bi0 +
∑4

k=1(βk + bik)Bn(t, λk) + β5n comi + εi(t)

hi(t) = h0(t) exp{θ1agei + θ2genderi + θ3n comi + α1ηi(t) + α2η
′
i(t)}.

From parameter estimation of model M2 we observed that all the 95% credibility intervals

did not contain 0, except for the parameters β0 and α1. From the longitudinal process, we

observed that the number of baseline comorbidities negatively influenced the cumulative

months covered by ACE/ARB assumption (β̂5 = −0.3414 < 0 with 2.5%–97.5% CI =

[−0.6453;−0.0495]), probably reflecting that as comorbidities increased as the mix of

drugs changed accordingly. In the event process, all the covariates were associated with

the risk of death, except for the current level of the linear predictor. In particular, being

younger or a female corresponded to a higher survival probability, whereas having a higher

number of initial comorbidities corresponded to a lower survival probability, as it might

be expected. Moreover, the slope of the linear predictor had a protective role: the HR

related to the slope value is exp(α̂2) = exp(−0.6301) = 0.533. Hence, a 1-unit increase in

the value of the slope corresponded to a 0.533-fold decrease in the risk of death (2.5–97.5%

CI = [0.380; 0.743]). Figure 2.5 shows the survival probability plot for two male patients,

A and B, aged 72 with two comorbidities and yA(12) = yB(12) = 5.191. From the figure,

we observed that the patient with the higher slope of the linear predictor at time t = 12

(patient A in right panel) had a higher survival probability during time. Hence, having a

good adherence trend during time reflected a protective role on patients’ survival.
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Figure 2.5. Survival probability plots for two male patients aged 72 years and with two comorbidities

at the index date using joint model M2. The values of continuous time-varying covariate cum months(t)

are reported in the left part of both panels (stars) with their linear predictors ηi(t) (line). In particular,

at t = 12 months cum monthsA(12) = cum monthsB(12) = 5.191, with relative linear predictors ηA(12) =

5.183 and ηB(12) = 5.271 and slopes η′A(12) = 0.029 and η′B(12) = 0.503.
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On the other hand, considering the dichotomous time-varying variable as longitudinal

process y(D)(t) = adherence(t) like in (2.4), we fitted the three different joint models M4,

M5 and M6 introduced in Section 2.3.2. The results of the model parameter estimations

are shown in Table 2.2, together with their deviance information criterion (DIC) values.

Results from the different models were similar, but model M4 presented a lower DIC value

with respect to M5 and M6. Therefore, the selected model for time-varying adherence(t)

was the following:

M4 :

{
log Pr[adherencei(t)=1]

1−Pr[adherencei(t)=1]
= ηi(t) = β0 + bi0 + (β1 + bi1) t+ β2n comi

hi(t) = h0(t) exp{θ1agei + θ2genderi + θ3n comi + α1ηi(t)}

From parameter estimation of model M4 we observe that all the 95% credibility intervals

did not contain 0. From the longitudinal process, we observed that, also in this case,

the number of baseline comorbidities negatively influenced the probability of adherence

to ACE/ARB assumption (β̂2 = −0.2955 < 0 with 2.5%–97.5% CI = [− − 0.4166;− −
0.1753]), probably reflecting a change in drugs mix according to the increased number

of morbidities. In the event process, all the covariates were associated with the risk

of death. In particular, being younger or a female corresponded to a higher survival

probability, whereas having a higher number of initial comorbidities corresponded to a

lower survival probability, as it might be expected. Moreover, the current value of linear

predictor had a protective role: the HR for a 10-units increase in the current value is

exp(α̂1 · 10) = exp(−0.0011 · 10) = 0.989. Hence, a 10-units increase in the value of the

predictor corresponded to a 0.989-fold decrease (2.5–97.5% CI = [0.981; 0.997]) in the

risk of death. Figure 2.6 shows the survival probability plot for two male patients, C

and D, aged 72 with two comorbidities, yC(12) = 1 and yD(12) = 0. From the figure,

we observed that the adherent patient at time t = 12 (patient C in left panel) had a

higher survival probability during time. Patient C was the one with the higher value of

the linear predictor at time t = 12. Indeed, the current values of their linear predictors at

time t = 12 were ηC(12) = 9.64 and ηD(12) = −7.64. Therefore, also in this case, having

a good adherence trend during time reflected a protective role on patients’ survival.

Note that in the selected models, the risk of death depended on the slope of cum months(t)

in M2 but on the current value of adherence(t) in M4. This difference is due to the

different meaning of the two covariates, as explained in Section 2.1.1. On one hand,

cum months(t) is the cumulative months covered by ACE/ARB consumption and its slope

reflects current adherence. On the other hand, the current value of adherence(t) is

directly related to the rate of cumulative months covered by therapy assumption, since it

represents its dichotomization in good and poor continuity using an 80% threshold.

Comparison of the two approaches

We finally compared models M2 and M4. Both models led to similar considerations

concerning adherence to medication. On one hand, they both indicated that patients with

different number of comorbidities are characterized by different mix of drugs, suggesting

that polytherapy, i.e., the use of multiple medications simultaneously, must be taken into
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Figure 2.6. Survival probability plots for two male patients aged 72 years and with two comorbidities at

the index date using joint model M4. The values of dichotomous time-varying covariate adherence(t) are

in the left part of both panels (stars) with sigmoid transformation of their linear predictors, exp(ηi(t))/(1+

exp(ηi(t)) (line). In particular, at t = 12 months adherenceC(12) = 1 and adherenceD(12) = 0, with

relative linear predictors ηC(12) = 9.64 and ηD(12) = −7.64.

account. On the other hand, they allowed us to confirm that non-adherence is commonly

associated with adverse health conditions [102]. However, this was what we expected

and it did not represent the key result of the study. In fact, the added value of our

work consists in performing an ongoing analysis and quantification of adherence effect

on patient’s outcome that allowed to carry out a real-time monitoring and profiling of

patients.

In this sense, we need to assess which of the two models allowed for a better dynamic

monitoring of patient’s status. We observed that DIC value of model M2 was lower than

the one of M4 (61372.08 vs 74869.36), which suggested that joint model M2 outperformed

M4. Then, we performed a 10-fold cross validation to assess the predictive performances

of the models in terms of calibration, i.e., how well the model predicts the observed event

rates [181], and discrimination, i.e., how well can the model discriminate between patients

who had experience the event from patients who did not [152]. In terms of calibration, we

evaluated the accuracy of predictions of survival models through the integrated prediction

error that accounts for censoring, introduced by Schemper and Henderson (2000) [181].

In particular, the integrated predictor at time u giving the longitudinal measurements up

to time t is indicated by IPE(u|t) and it is a weighted average of the expected prediction

errors over interval [t, u], i.e., {PE(s|t), t < s < u}. The index PE(s|t) measures the

predictive accuracies at specific time points s, considering the longitudinal information

up to time t. In particular, using the available longitudinal data up to two different

time points t1 = 3 and t2 = 12 months, we focused on two different time points of

medical relevance for HF: mid-term mortality, u1 = 12 (1 year), and long-term mortality,

u2 = 60 months (5 years). On the other hand, to assess the discriminative capability of

each model we used the dynamic concordance index C∆t
dyn(u) introduced by Rizopoulos
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Table 2.3. Estimated means along with standard deviations (s.d.) of the integrated prediction errors

IPE(u|t) and the dynamic discrimination indexes C∆t
dyn(u) computed through 10-fold cross-validation at

time points u = 12 months (1 year) and u = 60 months (5 years) under the joint modelling analyses M2

and M4.

M2 M4

Calibration Mean (s.d.) Mean (s.d.)

ÎPE(u = 12|t = 3) 0.0095 (0.0052) 0.0095 (0.0052)

ÎPE(u = 60|t = 12) 0.1012 (0.0107) 0.1019 (0.0107)

Discrimination Mean (s.d.) Mean (s.d.)

Ĉ∆t=1
dyn (u = 12) 0.7051 (0.0794) 0.6994 (0.0342)

Ĉ∆t=6
dyn (u = 60) 0.6891 (0.0704) 0.6822 (0.0354)

(2016) [168], which is weighted average of the time-dependent areas under the receiver

operating characteristic curves (AUCs) and takes into account the fact that not all the

time points contribute equally, because at later time points less subjects are still available.

In particular, we focused on the same time points u1 = 12 and u2 = 60 months, using

one-month and six-months intervals ∆t, respectively. For further details on integrated

prediction error, dynamic concordance index and their estimates see Rizopoulos (2016)

[168]. For each fold k with k ∈ {1, . . . , 10}, we computed the integrated prediction error

IPEk(u|t) and the dynamic concordance index C∆t
dyn,k(u), taking advantage of prederrJM()

and dynCJM() functions implemented in the JMbayes package. Table 2.3 reports the means

over the 10 folds along with standard deviations of the two indexes for both models M2

and M4. We observed that the two models had comparable performances in terms of

calibration and discrimination, but model M2 turned out slightly better (lower errors and

higher concordances), confirming our suspects.

Finally, in Figure 2.7 we compared the survival probability plots for the same 72 year-old

male patient E with two comorbidities at the index hospitalization and the pharmacolog-

ical history shown in Figure 2.3. Top panels referred to model M2 and bottom panels to

model M4. We considered three different time points of the time-varying variables, i.e.,

t ∈ {4, 8, 12} months (left, central and right panels, respectively). We observed that the

two approaches led to two different behaviours of the survival probability plots during

time. In particular, we noticed that the variability in survival predictions due to ongoing

consumption was more informative and pronounced in model M2 than in model M4, which

was less able to capture and differently quantify the ongoing effect on patient’s outcome.

Indeed, looking at the ongoing behaviour of patient’s ACE/ARB consumption, we ob-

served that the patient assumed some drugs during the first three months but at time

t = 4 months he presented a non-adherence trend, with the long-term survival predictions

showed in left panels. Then, he started to assume ACE/ARB again in order to improve

his health status, but at time t = 8 months he was still non-adherent to the therapy. That

behaviour had a negligible impact on long-term prediction of model M4 (bottom-central

panel), whereas the one of model M2 improved (top-central panel). He then continued

to take the therapy, resulting adherent at time t = 12 months. Also in that case, his

behaviour had a negligible impact on long-term prediction of model M4 (bottom-right

panel), whereas the one of model M2 further improved (top-right panel), also determining
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a reduction in the credibility intervals (and so in the uncertainty) of the survival predic-

tion. This was probably due to the fact that dichotomous covariate adherence(t) is a

poorer representation that only reflects the patient’s purpose of taking the medication

over time, whereas the continuous covariate cum months(t) is able to capture the dynamic

behaviour and shape of the consumption. Therefore the use of variable cum months(t) in

model M2 was preferable, since it provided a more detailed real-time monitoring of drug

intake and of its effects on patient’s outcome.

2.4. Final remarks

Since in pharmacotherapy practice the way adherence is usually computed discards valu-

able information related to the changes in patient drug utilization behaviour over time,

in this chapter we proposed an innovative method to represent adherence to medication

as time-varying covariate exploiting administrative database. In particular, we explored

time-varying adherence to medication using two different representations: a continuous

time-dependent variable, which indicated the cumulative months covered by drug as-

sumption up to time t, and a dichotomous time-dependent variable, which indicates if

the patient is adherent to the therapy at time t. For the computation, at each time-

point t we took advantage of pharmacological records about drugs purchases collected

in administrative databases, increasingly used for clinical and epidemiological purposes.

These covariates were able to reflect the dynamics and the behaviour of adherence during

the therapy, resulting more realistic and informative with respect to the commonly used

baseline-fixed measures.

Once the covariates were determined, we applied the joint modelling technique in order

to investigate how patients’ time-to-event outcome was influenced by longitudinal data.

We observed that modelling the drug intake process as time-varying covariates in a joint

modelling setting represents an effective interpretative and forecasting approach for ex-

ploring the effects of adherence to medication on patients’ survival, especially through the

continuous time-varying representation. First of all, using both variables we confirmed

that having a good adherence trend during time reflected a protective role on patients’

survival, as we expected. Then, with a dynamic study of adherence, it was possible to real-

time understand its effects on patient’s health status directly monitoring the treatment,

above all thanks to the use of the continuous time-dependent covariate able to satisfactory

capture the dynamic behaviour and shape of drug intake. A real-time monitoring and

profiling of patients could allow to tailor therapeutic interventions and adjustments in

order to prevent disease progression, leading to healthcare improvements, social benefits

and economic utilities. In this sense, studying factors that could influence time-varying

consumption, also through a deeper exploitation of administrative databases and a proper

management of their population based massive records, could lead to interesting analysis

and strong external validity. Furthermore, the use of a time-varying covariates into an

appropriate survival framework, such as joint modells, allowed to avoid the survival bias

due to exclusion of early dying patients in the study cohort.
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2.4. Final remarks

Some limitations of the present chapter have to be noted, mainly due to the use of sec-

ondary databases in the real case-study. First, the use of theoretical Defined Daily Dose

(DDD) instead of Prescribed Daily Doses (PDD) could reflect a bias in the estimated ad-

herence if the underlying PDD/DDD ratio is different from 1 [220, 69, 187], as mentioned

in the previous chapter. It could be interesting to explore, whenever the linkage is possi-

ble, databases with information about dosages prescribed by doctors, in order to obtain

a more realistic analysis of coverage periods. More in general, pharmacoepidemiology

observational studies based on healthcare utilization databases are often characterized by

potential biases, which can be divided in four categories according to [155]: confounding,

selection bias, measurement bias and time-related biases. In particular, this study suffers

from three main biases that usually occur in observational studies of pharmacoepidemio-

logic databases. First of all, HF patients are usually in a polytherapy, i.e., they usually

take multiple drugs at the same time. Other treatments represent possible time-varying

confounding factors, since they also influence the outcome of interest. The second issue

concerned unmeasured confounding: our analysis was based on the information available

in our dataset, and we could not control for other relevant not reported confounding

factors, such as socio-economic or adverse drug reactions data. Finally, we could have

biases related to the misclassification of exposure. Indeed, administrative data allowed

to measure the effective consumption and adherence to medication with a big limitation:

we were not able to assert if the patient was currently consuming the dispensed drug or if

during re-hospitalizations period he/she actually received the treatment. These issues are

related to the nature of administrative data: they address ’operational’ goals, i.e., they

are collected with no clinical question in mind and mainly for managerial and economic

purposes [89], and the validity of using these kind of data is critically dependent on the

reliability of the data [115, 180, 90]. Nevertheless, they are population based, compre-

hensive, capture real health system use, longitudinal and can be linked to other data,

representing a valuable clinical research resource.

Despite the aforementioned limitations, this work opens doors for many further devel-

opments, both in the fields of statistical methods and clinical research. First of all, the

considered models could be further improved (i) adding an autoregressive error in longi-

tudinal submodel (2.3) in order to take into account the strong dependence of the value at

previous time, (ii) exploring a more flexible longitudinal logistic mixed effects submodel

(2.4) in which a nonlinear effect in time could allow for a better predictive ability of the

model, and (iii) considering a nonlinear effect for demographics and comorbidity charac-

teristics in the event submodels in order to allow for a better tailoring of predictions to

different groups of patients. Nevertheless, such improvements present a number of issues

in terms of convergence and patches to be added to the current version of JMbayes package

(where autoregressive errors are not available), which go beyond the scope of the current

work. For these reasons, point (i) was not implemented within this study, whereas points

(ii) and (iii) were not pursued since their application encountered convergence issues.

From a pharmacotherapy point of view, it will be necessary to simultaneously combine all

the disease-modifying drugs for HF mentioned in [139] and [154] (ACE/ARB, Beta Block-

ing agents, Anti Aldosterone agents, Diuretics) since patients are usually in a polytherapy,

as suggested by the decreasing mix of ACE/ARB drugs in case of increasing number of
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comorbidities. This would surely imply many issues related to the representation of the

dynamic evolution of the multivariate time-varying datum and to include simultaneously

all the treatments in a not trivial task. It could also be interesting to concomitantly

analyse adherence to medication and, if available, other subject-specific measurements

registered during follow-up, i.e., biomarkers. These measurements could be of clinical

interest since they represent dynamic patterns that could reflect patient’s disease progres-

sion, incorporating lots of information related to his health status and possibly leading to

further improvements in subject-specific treatment and personalized medicine.

In summary, in this chapter we proposed a novel method to represent adherence to med-

ication as time-varying covariate through administrative databases and we analysed its

dynamic effect on patients’ survival using a joint modelling framework. The developed

approach is very flexible and can be generalized to many different settings. The main

added value is the ongoing analysis and quantification of adherence effects on patient’s

outcome, which may allow researchers to proper modelling individual actual treatment,

and clinicians to better target therapies for their patients. This study confirmed the im-

portance of developing approaches to the representation of drugs consumption using a

time-varying perspective, so that they are more realistic and informative than the com-

monly used time-fixed measures. In this sense, the modelling of time-varying covariates

might be further exploited within the framework of functional data analysis [163, 162]

or recurrent events theory [44]. In the next chapter, we propose an innovative method-

ology combining the exploitation of both as a first attempt to use these methods for an

observational study in the pharmacotherapy field.
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CHAPTER 3

Functional modelling of recurrent

events on time-to-event processes

This chapter has been published in Biometrical Journal, 63(5):948–967, 2021 as M. Spreafico

and F. Ieva “Functional modeling of recurrent events on time-to-event processes” [189].

In clinical practice many situations can be modelled in the framework of recurrent events,

i.e., the repeated occurrence of the same type of events for the same patient over time.

Chronic patients are usually involved in long-term therapies, that are often characterized

by repeated situations like office visits, subsequent drug consumption, hospital admissions

and many others. Examples include recurrences in breast cancer [174], asthma attacks

[52], episodic relapses of follicular lymphoma [174], readmission after colorectal cancer

[64, 36], epileptic seizures [215]. In patients with HF, two main types of events recur dur-

ing treatment: (i) repeated consumption of multiple types of drugs and (ii) hospital read-

missions [104, 21, 173]. Since models capable of simultaneously treating multiple drugs

have not been well developed in pharmacotherapy, it could be interesting to concomitantly

analyse more than one medication at the same time, along with re-hospitalizations events

which usually herald a substantial worsening of patient’s survival prognosis. As discussed

in Chapter 2, the natural and most appropriate way to look at these repeated events is to

treat them as time-varying covariates, since their changing patterns over time could carry

out information that may be related to patient’s health status and disease progression.

In biostatistical, epidemiological and medical literature, several approaches to analyse

recurrent event data have been proposed and compared [202, 103, 44, 95, 106, 11, 149].

Different methods differ in the assumptions and in the interpretation of the results, but

they all take into account the correlation between repeated events regarding the same

individual. The most frequently applied method is the AG model by Andersen and Gill

(1982) [12], which is an extension of the Cox proportional-hazard regression by Cox (1972)

[46]. The AG model for recurrent events introduces the counting process formulation in

terms of increments in the number of events along time. It assumes that the correlation

between event times for an individual can be explained by past events, which share a

common baseline hazard. In this way, the dependence could be captured by appropri-

ate specification of time-varying covariates which are functions of the realisation of past

events, such as the number of previous occurrences. This model is usually indicated for
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analysing data when correlations among events for each individual are induced by mea-

sured covariate and the interest lies in the overall effect on the intensity of the occurrence

of the event [11]. Two alternative approaches are the stratified Cox-type conditional [156]

and marginal [213] models, which can incorporate both overall and event-specific effects

for each covariate. The stratified conditional Prentice-Williams-Peterson (PWP) model

analyses repeated events ordered by stratification, based on the prior number of events

during the follow-up period. However, it can give unreliable estimates for higher order of

events [11]. The stratified marginal Wei-Lin-Weissfeld (WLW) model ignores the order

of occurrence of the events. Therefore, an individual is at risk for every event as long

as he/she is under observation, even if no previous events occurred, leading to a ‘carry-

over effect’ as explained by [103] and [149]. As a further alternative, Cox model can be

also extended using frailty models [85, 202, 175, 176, 44, 106, 60], in which a random

covariate that induces dependence among the event times is introduced. This approach

assumes that recurrent event times are independent conditional on the covariates and the

random effects, and it is used to model individual patients’ heterogeneity in the base-

line hazards. Furthermore, approaches able to connect several event processes (recurrent

and fatal/non-fatal ones) have been proposed. Among others, (copula-based) joint frailty

models [177, 174, 54, 124, 125] allow the prediction of a terminal event time given recur-

rent event times. Alternatively, rate-based models [34, 197, 37, 224, 196] or multi-state

models [13, 44] can be used in case of multiple types of recurrent events. The choice of the

proper approach for the analysis of recurrent event data will therefore be determined by

many factors, including among others, number and types of events, relationship between

subsequent events and biological processes [11].

Aforementioned methods are used to analyse single or several event processes, possibly

connecting them to another event of interest. However, none of these approaches has

been used to extrapolate information from repeated events in the form of dynamic func-

tional covariates, and then study how these covariates affect other specific events, such

as patient’s death. In this framework, Baraldo et al. (2013) [21] proposed a method to

model the realized trajectories of the cumulative hazard functions underlying a recurrent

event process of interest (i.e., hospital readmissions in time). Estimated trajectories were

treated as functional data and included into a generalized linear model to predict a binary

telemonitoring outcome. However, the authors focused only on a counting process formu-

lation for recurrent events, without considering further information about them. Indeed,

many situations and events are characterized by both a location (in time or space) and

a weight or other distinguish attribute, called mark [47]. For example, in HF treatment

a longer period in hospital could reflect the aggravation of patient’s health condition, as

well as a shorter drug coverage period could lead to nonadherence to therapy, commonly

associated with adverse health conditions [102, 187, 188]. The development of models and

methods able to deal with all these peculiar aspects is of statistical interest and of clinical

relevance.

Motivated by the clinical question concerning the effect of re-hospitalizations and subse-

quent consumption of different drugs on survival in HF patients, in this chapter we pro-

posed a new methodology that exploits recurrent events modelling [44], point processes

56



C
H
A
P
T
E
R
3

3.1. Materials and Administrative data

theory [113, 47] and Functional Data Analysis (FDA) [162] to represent time-varying

events in terms of functions, plugging them into a suitable functional Cox model for over-

all survival. In order to take into account many aspects that could influence the events, our

idea was to look at time-varying recurrent events as particular non-stationary stochas-

tic counting processes which can depend on their marks, i.e., marked point processes

[113, 47]. Starting from the idea by [21], we developed a marked point process formulation

for recurrent events to compute the realized trajectories of the cumulative hazard func-

tions (i.e., the compensators) underlying specific counting processes of interest, allowing

the dependence on the marks. In particular, among the aforementioned methods to deal

with recurrent events, we modelled the compensators through AG models [12], ending up

with functional data that represent the dynamic evolution of the events risk. Then, we

applied Functional Principal Component Analysis (FPCA) [162] in order to perform a

dimensionality reduction and summarise information emerging from the functional com-

pensators to a finite set of covariates, while losing a minimum part of the information.

This information was finally included into a functional linear Cox regression model [109],

extended to the case of multiple functional predictors.

The procedure presented in this chapter can hence be divided into two phases:

(i) the representation of time-varying functional compensators,

(ii) the modelling of such covariates in a time-to-event framework.

In doing so, we aimed to enrich the information available for modelling survival with rele-

vant dynamic features, as well as to provide a new setting for quantifying the association

between time-varying processes and patients’ overall survival.

The remaining part of the chapter is organized as follows. In Section 3.1 we describe the

real study design used in this work. In Section 3.2 we present the whole methodology.

First, we focus on the main novelty introduced by the present work, i.e., the marked point

process formulation for recurrent events to represent the compensators (Section 3.2.1).

Then we introduce the functional linear Cox regression model for overall survival in case

of multiple functional predictors (Section 3.2.2). In Section 3.3 we apply the proposed

methodology to HF administrative database provided by Regione Lombardia - Healthcare

Division [164] . Finally, Section 3.4 contains some concluding remarks, discussion of

strengths and limitations of the proposed approach and opportunities for future work.

Statistical analyses were performed in the R software environment [161]. Source code is

available as Supporting Information of [189].

3.1. Materials and Administrative data

3.1.1. Administrative data sources

As in Chaper 2, in this work we focused on a representative sample of the real administra-

tive HFData database [136] provided by Regione Lombardia - Healthcare Division [164]
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related to non-paediatric patients living in Lombardy with their first HF discharge (index

event) between January 2006 to December 2012. As explained in Section 2.2.2, patients’

clinical history of hospitalizations or drug consumption could be reconstructed using sec-

ondary registry data related to (i) patient admission to hospital (i.e., date of discharge

from hospital, length of stay in hospital) and (ii) pharmaceutical purchases (i.e., ATC

code, date of purchase, number of treatment days covered by the prescription). Among

the disease-modifying drugs for HF patients [138, 139, 154], we focused on polyphar-

macy treatment as a combination of Angiotensin-Converting Enzyme (ACE) inhibitors,

Beta-Blocking (BB) agents and Anti-Aldosterone (AA) agents.

3.1.2. Study design and outcome measure

Figure 3.1 shows the study design. A 5-years pre-study period from 2000 to 2005 was

used in order to consider only ”incident” HF patients, i.e., patients with no contacts with

healthcare system in the previous five years due to HF. The study-period started from

the first discharge for HF (time T0 in Figure 3.1) and was divided into the observation

period (365 days from the index date), used for the compensators reconstruction, and the

follow-up period, used for the survival analysis, whose starting time was T ∗0 = T0 + 365.

The modelling of the compensators related to the stochastic processes of interest regarded

the time interval [T0;T ∗0 ] in Figure 3.1. Therefore, only patients alive at the end of the

observation period were selected in the study cohort and followed up to observe survival

outcomes. We underline that this choice, necessary for the reconstruction of compensator

trajectories, could imply a survival bias in case of the exclusion of too many early dying

patients (that is not our case since only 6.8% of patients died during the observation

period).

Study outcome of interest was patient’s death for any cause. Deaths were collected from

the Hospital Discharge Forms Database (for in-hospital deaths) or Vital Statistics Re-

gional Dataset (for out-hospital deaths). Overall survival was measured from the end of

Observation periodPre-study period Follow-up period

1 year (365 days)

Survival analysis“New incident” patients

T*0

Compensator reconstruction

T0 Tend
End of follow-up


31/12/2012
Index HF hospitalization


01/01/2006 – 31/11/2012 

01/01/2000 – 31/12/2005

Figure 3.1. Study design for a HF patient of the study cohort. The pre-study period is used to define

”incident” HF patients. The observation period is used for the selection of patient’s clinical history

and the compensators reconstruction. The follow-up period is used for survival analysis. T0 is the time

instant the patient is discharged by her/his first hospitalization and enrolled into the current study.

T ∗0 = T0 + 365 is the starting time of the follow-up. Tend is the minimum between the death or the

administrative censoring (December 31st, 2012).
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the observation period (T ∗0 in Figure 3.1) to the date of death or to the administrative cen-

soring date (December 31st, 2012). Outcome (Ti, Di) denotes the observed time-to-death

data of patient i ∈ {1, ..., n}, where Ti = min(T ∗i , Ci) is the observed event time, T ∗i is the

true event time, Ci is the censoring time and Di = 1(T ∗i ≤ Ci) is the event indicator, with

I(·) being the indicator function that takes the value 1 when T ∗i ≤ Ci, and 0 otherwise.

Independent censoring between true death and censoring times was assumed.

3.2. Statistical Methodologies

We now introduce the methodology developed and then applied on the case study of

interest in Section 3.3. In Section 3.2.1 we focus on the main novelty introduced by the

present work, i.e., the marked point process formulation for recurrent events. In Section

3.2.2 we introduce the functional linear Cox regression model for overall survival in case

of multiple functional compensators.

3.2.1. Marked point process formulation for recurrent events

A recurrent event process is characterized by an increasing sequence of events times, where

each element denotes the time of the corresponding event [44]. To this sequence of times

could be associated (i) a counting process that at time t records the cumulative number

of events occurred up to t [44] and (ii) other random elements, called marks, containing

further information about the events [113, 47]. Marks can also be thought of as the

size, weight or magnitude related to the jumps of the counting process. Extending the

approach by [21], we now introduce the marked point process formulation for recurrent

events to compute the realized trajectories of the compensators underlying a specific

counting process of interest, allowing the dependence on the marks.

Let us consider a setM of recurrent events for a set of n individuals as stochastic processes.

For each patient i ∈ {1, ..., n}, let
{
t
(m)
i,j , j = 0, 1, ..., n

(m)
i

}
be the increasing sequence of

event times related to recurrent event process m, where n
(m)
i is the total number of events

of type m experienced by the i-th subject, t
(m)
i,j denotes the time of the j-th event and

t
(m)
i,0 = 0∀i,m. Let w

(m)
i be the vector of marks elements, where each jump mark w

(m)
i,j

is the magnitude of the information associated to each jump time t
(m)
i,j . The observations

(possibly censored) may be considered as the realisation of N
(m)
1 , ..., N

(m)
n processes, where

N
(m)
i is the stochastic process which counts the observed events (or jumps) of the process

m in the observation period related to the i-th individual. According to the Doob–

Meyer (D-M) decomposition theorem [142], each counting process N
(m)
i (t), adapted to

the filtration {F (m)
t,i , t ≥ 0} representing the history of realisations of the process itself,

can be seen as:

N
(m)
i (t) = M

(m)
i (t) + Λ

(m)
i (t) = M

(m)
i (t) +

∫ t

0

λ
(m)
i (s)ds (3.1)
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where M
(m)
i (t) is a zero-mean uniformly integrable martingale which represents the resid-

ual of the process, and Λ
(m)
i (t) =

∫ t
0
λ

(m)
i (s)ds is a unique predictable, non-decreasing,

cadlag (right-continuous with left limits) and integrable process, i.e., the compensator (or

cumulative hazard). Process λ
(m)
i (t) is the conditional intensity function, in which we

omitted the conditioning with respect to the history F (m)
t,i for ease of notation, and rep-

resents the infinitesimal risk of occurrence of an event m at time t, given the history, i.e.,

λ
(m)
i (t) = lim∆t→0 E

[
N

(m)
i (t+ ∆t)−N (m)

i (t)|F (m)
t,i

]
/∆t. The compensator Λ

(m)
i (t) may

be thought of as a positive non-decreasing L2-function over the temporal domain and will

be the core of our modelling effort.

A counting process where jumps may have different size can be modelled as a marked point

process, assuming that a given distribution regulates the size of the jumps. A marked

point process is the couple of processes describing the behaviour of jump times and marks

modelled through the conditional intensity function λ
(m)
i

(
t,w

(m)
i

)
, i.e., the infinitesimal

risk of occurrence of event m at time t with marks w
(m)
i given the history:

λ
(m)
i

(
t,w

(m)
i

)
= λ

(m)
ig (t)f

(m)
i

(
w

(m)
i

)
(3.2)

where λ
(m)
ig is the intensity process of the counting process, also called ground intensity,

and f
(m)
i is the multivariate density of the marks w

(m)
i . Using this formulation, condi-

tional independence of jump times and marks is assumed. Note that, if λ
(m)
i

(
t,w

(m)
i

)
is properly modelled, the D-M decomposition in (3.1) is still valid in the marked point

process framework considering Equation (3.2) as conditional intensity process.

To handle recurrent events and allow predictors to change over time, we use the count-

ing process formulation for recurrent events introduced by [12], also called AG model for

recurrent events, assuming a particular distribution for the marks in order to ease compu-

tations. In particular, we assume that the density f
(m)
i depends on some time-dependent

features related to the marks w
(m)
i . Under these hypotheses, for each event m the con-

ditional intensity function λ
(m)
i

(
t,w

(m)
i

)
in Equation (3.2) related to patient i takes the

form:

λ
(m)
i

(
t,w

(m)
i

)
= Y

(m)
i (t)λ

(m)
0 (t) exp

{
β(m)Tx

(m)
i (t)

}
exp

{
γ(m)T z

(m)
i (t)

}
= Y

(m)
i (t)λ

(m)
0 (t) exp

{
β(m)Tx

(m)
i (t) + γ(m)T z

(m)
i (t)

}
= λ

(m)
i (t)

(3.3)

where x
(m)
i (t) and z

(m)
i (t) are the possibly time-dependent vectors of covariates of the i-th

individual, the latter related to the marks w
(m)
i . Parameters β(m) and γ(m) are fixed vec-

tors of coefficients, λ
(m)
0 is the baseline hazard function shared across patients and Y

(m)
i

is a predictable process taking values in {0, 1}. Whenever Y
(m)
i = 1, the i-th individual

is under observations, i.e., Y
(m)
i takes the role of the censoring variable.

Parameters β(m) and γ(m) are estimated maximizing the partial likelihood function con-

structed given the history, using a counting process approach [12]. The baseline cumulative
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hazard Λ
(m)
0 (t) =

∫ t
0
λ

(m)
0 (s)ds can be estimated ∀m ∈M using the Breslow estimator [32]

Λ̂
(m)
0 (t), which returns a step-function. However, since true underlying functions Λ

(m)
0 (t)

are absolutely continuous, we smooth the estimates using the approach adopted in [21],

obtaining regularised version of Λ
(m)
0 (t), namely Λ̃

(m)
0 (t).

Let us now consider the sequence 0 = t
(m)
i,0 < t

(m)
i,1 < ... < t

(m)

i,N
(m)
i (τ)

of realised jump

times related to process N
(m)
i (t), with τ equal to the censoring time (possibly equal for

all individuals or not) and n
(m)
i = N

(m)
i (τ)∀m, i. In our case, τ is the censoring time

of the observation period, i.e., T0 in Figure 3.1. We can express the realisations of each

compensator Λ
(m)
i (t) for the process m of the i-th patient as a function of Λ

(m)
0 (t), β(m)

and γ(m):

Λ
(m)
i (t) =

∫ t

0
λ

(m)
i (s)ds =

∫ t

0
Y

(m)
i (s)λ

(m)
0 (s) exp

{
β(m)Tx

(m)
i (s) + γ(m)T z

(m)
i (s)

}
ds

=

N
(m)
i (t)∑
j=1

∫ min
(
t
(m)
i,j ,t

)
t
(m)
i,j−1

λ0(s) exp
{
β(m)Tx

(m)
i (ti,j−1) + γ(m)T z

(m)
i (ti,j−1)

}
ds

=

N
(m)
i (t)∑
j=1

exp
{
β(m)Tx

(m)
i (ti,j−1) + γ(m)T z

(m)
i (ti,j−1)

}[
Λ

(m)
0

(
min

(
t
(m)
i,j , t

))
− Λ

(m)
0

(
t
(m)
i,j−1

)]
.

(3.4)

An estimate of the compensator in Equation (3.4) can be then obtained as:

Λ̂
(m)
i (t) =

N
(m)
i (t)∑
j=1

exp
{
β̂(m)Tx

(m)
i (ti,j−1) + γ̂(m)T z

(m)
i (ti,j−1)

}[
Λ̃

(m)
0

(
min

(
t
(m)
i,j , t

))
− Λ̃

(m)
0

(
t
(m)
i,j−1

)]
(3.5)

where β̂(m) and γ̂(m) are the estimated vectors of coefficients and Λ̃
(m)
0 (t) is the smoothed

estimate of the cumulative baseline hazard.

To check the fitting of Λ̂
(m)
i (t), we have to verify whether the estimates of martingale

residuals M
(m)
i (t) involved in the D-M decomposition (3.1), i.e., the residuals [203] given

by

M̂
(m)
i (t) = Λ̂

(m)
i (t)−N (m)

i (t), (3.6)

may be effectively considered as realisations of zero-mean processes. In order to do so, we

can plot the residuals evaluated in the whole observation period and check if the average

residual curve M̄ (m)(t) = 1
n

∑n
i=1 M̂i

(m)
(t) is approximately close to 0 over time.

This formulation extends the one proposed in [21], allowing the counting processes to

depend on their marks and setting up a framework for multiple processes to be considered.

In fact, applying this procedure ∀m ∈M, we end up with a multivariate time-dependent

data
{

Λ
(m)
i

}
m∈M

for each patient i, characterizing her/his recurrent events dynamics

during the observation period [T0;T ∗0 ]. These compensator trajectories may be thought

of as patient-specific time-varying covariates and, mathematically speaking, as positive

non-decreasing L2-functions over the temporal domain [T0;T ∗0 ].
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3.2.2. Functional linear Cox regression model with multiple

functional compensators

To include the functional compensators into a survival model, the functional linear Cox

regression model introduced by Kong et al. (2018) [109] can be extended to the case of

multiple functional predictors, i.e., Multivariate Functional Linear Cox Regression Model

(MFLCRM). For each patient i, let
{

Λ
(m)
i

}
m∈M

be the realizations of the |M|-variate

compensators related to a set M of recurrent events. The functional compensators are

included in the hazard function of Cox model [46] as:

hi

(
t|ωi,

{
Λ

(m)
i

}
m∈M

)
= h0(t) exp

{
θTωi +

∑
m∈M

∫
Sm

Λ
(m)
i (s)α(m)(s)ds

}
(3.7)

where h0(t) is the baseline hazard function, ωi is the vector of scalar (non functional)

covariates with regression parameters θ. The realizations
{

Λ
(m)
i

}
m∈M

are defined over the

temporal domains Sm = [T0;T ∗0 ] ∀m. Parameters α(m)(s) denote the functional regression

coefficients.

By applying Functional Principal Component Analysis (FPCA) [162], each functional

compensator Λ
(m)
i (s) can be approximated with a finite sum of Km orthonormal basis{

ξ
(m)
1 , ..., ξ

(m)
Km

}
:

Λ
(m)
i (s) ≈ µ(m)(s) +

Km∑
k=1

f
(m)
ik ξ

(m)
k (s) (3.8)

where µ(m)(s) is the functional compensator mean and f
(m)
ik is the FPC score of individual

i related to the k-th orthonormal base ξ
(m)
k and Km is the truncation parameter, repre-

senting the number of FPCs to be considered. In particular, the score f
(m)
ik represents

the projection of the i-th functional observation Λ
(m)
i (t) related to event m along the

direction of the k-th principal component ξ
(m)
k (t). From (3.8) the integrals in (3.7) can be

approximated considering:∫
Sm

[
Λ

(m)
i (s)− µ(m)(s)

]
α(m)(s)ds ≈

∫
Sm

Km∑
k=1

f
(m)
ik ξ

(m)
k (s)α(m)(s)ds

=
Km∑
k=1

f
(m)
ik

∫
Sm

ξ
(m)
k (s)α(m)(s)ds =

Km∑
k=1

f
(m)
ik α

(m)
k

(3.9)

where α
(m)
k is the scalar representing the quantity

∫
Sm
ξ

(m)
k (s)α(m)(s)ds. Introducing ap-

proximation (3.9) in Equation (3.7), the hazard function becomes:

hi

(
t|ωi,

{
Λ

(m)
i

}
m∈M

)
= h0(t) exp

{
θTωi +

∑
m∈M

[∫
Sm

µ(m)(s)α(m)(s)ds+
Km∑
k=1

f
(m)
ik α

(m)
k

]}

= h∗0(t) exp

{
θTωi +

∑
m∈M

Km∑
k=1

f
(m)
ik α

(m)
k

}
(3.10)
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where h∗0(t) = h0(t) exp
{∑

m∈M
∫
Sm
µ(m)(s)α(m)(s)ds

}
is the baseline hazard function

and α
(m)
k =

∫
Sm
ξ

(m)
k (s)α(m)(s)ds is the regression parameter related to the k-th FPC score

of the functional compensator of event m. Therefore, defining the following quantities:

θ̃ =
[
θT ,

{(
α

(m)
1 , ..., α

(m)
Km

)}
m∈M

]T
ω̃i =

[
ωTi ,

{(
f

(m)
i1 , ..., f

(m)
iKm

)}
m∈M

]T
and substituting them in Equation (3.10), through FPCA the MFLCRM can be expressed

as Cox model with hazard function

hi(t|ω̃i) = h0(t) exp
{
θ̃
T
ω̃i

}
.

All the properties of the Cox model still hold in this framework and the vector of coeffi-

cients θ̃ can be estimated by maximising the partial likelihood function [46]. In R software

[161] the MFLCRM can be fitted through coxph function of package survival by [201].

In this analysis, the truncation parameters Km, representing the number of FPCs to be

considered for each event m, are chosen through a 10-fold cross validation procedure to

select the best set of covariates among patients’ baseline characteristics ωi and scores

f
(m)
ik , according to the highest Concordance Index [151].

The entire procedure may be resumed in four steps, as shown in Figure 3.2:

• Steps 1 and 2 are devoted to reconstruct the compensators of suitable marked point

processes as time-varying (functional) covariates;

• Steps 3 and 4 set up a suitable framework for including such time-varying covariates

in a time-to-event model.

Step 1 Step 2 Step 3 Step 4

Select the cohort
of patients

Identify the events of 
interest happened during 
the observation period

Data preprocessing and 
clinical history

Modelling compensators 
of marked point 

processes

Andersen-Gill
(AG) models: features 

selection and coefficients 
estimation 

Fit and smooth 
cumulative baseline 

hazard

Reconstruct functional 
compensators

Summarise information 
emerging from 

compensators through 
Functional Principal 
Component Analysis

(FPCA) 

Summarize 
compensators through 

FPCA

Cross-validation to select 
the best set of covariates

Fit the Multivariate 
Functional Linear Cox 

Regression Model 
(MFLCRM)

on the whole data

Predictive functional Cox 
model for overall survival

Figure 3.2. Summary of the entire methodological procedure presented in Section 3.2.
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3.3. Data application

We now proceed with the application of the methodology described in Section 3.2/Fig-

ure 3.2 to the administrative database of Lombardy Region, in order to study how re-

hospitalizations and multiple drugs consumption processes affect overall survival in HF

patients. R source code is available as Supporting Information of [189].

3.3.1. Step 1: Data preprocessing & clinical history

We focused on a representative sample of the administrative database of Lombardy Region

related to 4,872 patients with their first HF discharge between January 2006 to December

2012. Excluding patients who died during the observation period, a final cohort of n =

4, 541 (93.2%) patients was selected. Overall, at index hospitalization, mean age of the

study cohort was 73.98 years (s.d. = 11.37) with a percentage of male patients equal to

54.4% (2,466 patients). The median value of overall survival was 37.32 (IQR = [20.53;

54.93]) months. At administrative censoring date 1,200 patients (26.4%) were dead and

3,341 (73.6%) were censored.

We identified four stochastic processes of interest: hospitalizations due to HF, purchases

of ACE, BB and AA drugs, identified by their ATC codes. Hence, the set of recurrent

events of interest was M = {m : ACE,BB,AA,HF hosp}. In particular, we selected

only events within the 1-year observation period (censoring time τ = T ∗0 ). For each patient

i ∈ {1, . . . , n = 4, 541}, repeated events of process m were modelled as a marked point

process N
(m)
i (t), with jump times t

(m)
i,j equal to event times (i.e., date of j-th admission in

hospital or date of j-th drug purchase) and jump marks w
(m)
i,j equal to the length of stay

in hospital or the duration of drug coverage respectively, where j ∈
{

0, 1, . . . , N
(m)
i (τ)

}
.

Figure 3.3 shows the counting processes N
(m)
i (t) describing ACE purchase (top-left panel),

BB purchase (top-right panel), AA purchase (bottom-left panel) and HF hospitalization

(bottom-right panel) for a sample of 500 HF patients belonging to the administrative

database. Overall, at the end of the observation period (time t = τ = T ∗0 ), the most

frequent events were ACE and BB purchases: 2,916 patients (64.2%) purchased ACE

at least once with a median of 4 purchases (IQR = [0;8]), and 2,890 patients (63.6%)

purchased BB at least once with a median of 4 purchases (IQR = [0;7]), where the median

number of events m at time τ is given by mediani∈{1,...,n}N
(m)
i (τ). Purchase of AA and

hospitalization due to HF were less frequent: 2,007 patients (44.2%) purchased AA at

least once with a median of no purchases (IQR = [0;4]) and 2,699 patient (59.4%) were

re-hospitalized due to HF, with a median of 1 HF hospitalization (IQR = [0;2]).

In order to proceed with the analyses, we reformatted the administrative data as explained

in Appendix A.1.
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Figure 3.3. Representation of counting processes N
(m)
i (t) related to purchases of ACE inhibitors (top-

left panel), BB agents (top-right panel), AA (bottom-left panel) and of HF hospitalizations (bottom-right

panel) during the observation period for a sample of 500 HF patients belonging to the administrative

database. Each non-decreasing step function is related to a different patient.

3.3.2. Step 2: Modelling compensators of marked point processes

We can now reconstruct the compensators of the marked point processes for recurrent

events, as explained in Section 3.2.1. For each process m ∈ {ACE,BB,AA,HF hosp},
we first select the best set of features for the AG model for recurrent events in Equation

(3.3) using 10-fold cross validation and we estimate the selected coefficients on the whole

dataset. Then, we fit and smooth cumulative baseline hazard using the constrained B-

spline smoothing algorithm introduced by [73]. Finally, we reconstruct the compensator

trajectories as functions of the estimated coefficients and of the smoothed estimate of the

cumulative baseline hazard through Equation (3.5).

Features selection and coefficients estimation

For each process m ∈ {ACE,BB,AA,HF hosp}, we used as covariates z
(m)
i (t) of patient

i: the time-dependent variable enum which indicates the number of events related to

process m occurred in the past and the time-dependent variable marks representing the

sum of the corresponding marks. Also the logarithmic transformations (shifted away from

0) of the same variables, i.e., log(enum+1) and log(marks+1), and respective interactions,

were considered. Adjustments for age and gender at baseline were performed. The vector

of all the covariates considered for the model is indicated by x
(m)
i (t). In particular, for each

process m we performed a 10-fold cross-validation to determine the best sets of features

according to the lowest Mean Absolute Martingale Residual (MAMR) (see Appendix A.2

for details). Once covariates were selected, we fitted four AG models in Equation (3.3),
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one for each process m, using the selected features on the entire dataset to estimate

coefficients β̂(m) and γ̂(m).

In Table 3.1 selected features, hazard ratios and corresponding 95% CI are reported.

Among all the models tested through the cross-validation procedure, features related

to enum, marks and their interaction were selected and their coefficients were always

significantly different from 0. In particular, the procedure selected the original features

for HF hospitalization process (m = HF hosp) and their logarithmic transformations

for drug purchases (m ∈ {ACE,BB,AA}). This was probably due to the fact that

hospitalizations were rarer than drug purchases, so they might have a greater effect in

increasing the risk of experiencing a new event. The signs of the fitted coefficients relative

to these three types of features were consistent throughout the four processes, allowing

us to give similar interpretations. HRs related to the number of past events enum and

to the sum of the past marks marks were greater than 1. This could be interpreted as

a “self-exciting” behaviour: many events (drug purchases or hospitalizations) in the past

and higher marks (the purchase of big quantities of drug or having spent longer periods in

hospital) both increase the risk of a new event. HR related to the interaction terms were

lower than 1, meaning that (i) in case of the same number of events, the increase in the

risk of experiencing a new event is softened by higher marks, or (ii) in case of the same

cumulative marks, it is softened by an higher number of events enum. Furthermore, males

[HR > 1] were more likely to buy medications or being re-hospitalized than females, except

for AA purchases [HR < 1], and elder patients were more likely to be re-hospitalized than

younger ones [HR > 1].

Table 3.1. Selected features, Hazard Ratios (HRs) and corresponding 95% Confidence Intervals (CIs) of

the AG models for recurrent events for the stochastic processes describing the purchase of ACE inhibitors,

BB agents, AA agents and the HF hospitalizations.

Process m Selected features HR [2.5; 97.5]% CI

ACE gender (Male) 1.0586 [1.0309; 1.0871]

log(enum+ 1) 4.5271 [4.1674; 4.9178]

log(marks+ 1) 1.1026 [1.0862; 1.1192]

log(enum+ 1)× log(marks+ 1) 0.9148 [0.9033; 0.9265]

BB gender (Male) 1.0612 [1.0333; 1.0898]

log(enum+ 1) 5.4270 [5.1195; 5.7529]

log(marks+ 1) 1.1404 [1.1206; 1.1606]

log(enum+ 1)× log(marks+ 1) 0.8332 [0.8213; 0.8454]

AA gender (Male) 0.9435 [0.9073; 0.9811]

log(enum+ 1) 9.8781 [8.6116; 11.3310]

log(marks+ 1) 1.2023 [1.1722; 1.2332]

log(enum+ 1)× log(marks+ 1) 0.7780 [0.7561; 0.8005]

HF hosp age 0.9957 [0.9934; 0.9979]

gender (Male) 1.1510 [1.0854; 1.2207]

enum 1.4319 [1.3809; 1.4848]

marks 1.0083 [1.0051; 1.0116]

enum×marks 0.9976 [0.9968; 0.9985]
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Fit and smooth cumulative baseline hazard

Once we estimated the coefficients β̂(m) and γ̂(m) of each AG model for recurrent events

of type m, we computed the estimated cumulative baseline hazards Λ̂
(m)
0 (t) using the

Breslow estimator. We smoothed them through the use of constrained B-splines [73] with

increasing monotone constraints and no roughness penalties. In particular, we used 20

knots for the B-spline basis and we assumed that they took value 0 at time t = 0.

Figure 3.4 shows both the estimates obtained with the Breslow estimator Λ̂
(m)
0 (t) (dashed

blue lines) and the corresponding smoothed estimates Λ̃
(m)
0 (t) (solid red lines) for the four

stochastic processes describing ACE purchase (top-left panel), BB purchase (top-right

panel), AA purchase (bottom-left panel) and HF hospitalization (bottom-right panel).

We observed that ∀m ∈M we obtained monotonically increasing estimates Λ̃
(m)
0 (t) of the

cumulative baseline hazards with Λ̃
(m)
0 (0) = 0.

Reconstruct compensators

At this point, we could reconstruct the trajectories of the compensators Λ̂
(m)
i (t) of the

four considered stochastic processes for all the patients, exploiting Equation (3.5). The

trajectories of compensators Λ̂
(m)
i (t) constitute our functional data. Figure 3.5 shows

the compensators of the stochastic processes describing ACE purchase (top-left panel),

BB purchase (top-right panel), AA purchase (bottom-left panel) and HF hospitalization

(bottom-right panel) of the same sample of 500 HF patients mentioned above. We ob-

served that the trajectories Λ̂
(m)
i (t) are monotonically non-decreasing and take value 0 at

time t = 0, as did the smoothed baseline cumulative hazards Λ̃
(m)
0 (t). For each patient
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Figure 3.4. Cumulative baseline hazards of the Cox models for recurrent events describing the stochastic

processes of purchases of ACE inhibitors (top-left panel), BB agents (top-right panel), AA (bottom-left

panel) and of HF hospitalizations (bottom-right panel), fitted with the Breslow estimator Λ̂
(m)
0 (t) (dashed

blue lines) and smoothed Λ̃
(m)
0 (t) according to the procedure described in [21] (solid red lines).
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Figure 3.5. Compensators Λ̂
(m)
i (t) of the marked counting processes of purchases of ACE inhibitors

(top-left panel), BB agents (top-right panel), AA (bottom-left panel) and of HF hospitalizations (bottom-

right panel) fitted using Equation (3.5) for a sample of 500 HF patients belonging to the administrative

database. Each line is related to a different patient. Note that in HF hospitalizations the ordinate axis

range is smaller than the other ones due to less number of hospitalization events with respect to drugs

purchases.

i, the compensator curve Λ̂
(m)
i (t) represents the expected number of events by time t

given the covariates, i.e., the dynamic evolution of the events risk. This means that for

a patient with a higher curve the cumulative risk of a new event (i.e., drug purchases

or re-hospitalizations) is higher over time compared to a patient with a less steep curve.

The large variability of the compensators across different patients reflects the variability

of the realizations of their recurrent events times and marks.

Finally, we had to check for adequate fitting of the procedure. In order to do so, for each

process of interest, we plotted the residuals evaluated in the whole observation period and

we checked graphically that their means M̄ (m)(t) were approximately equal to 0. Figure

3.6 show the fitted residuals M̂
(m)
i (t) for each process for the sample of the 500 patients

mentioned above (ACE : top-left; BB : top-right; AA: bottom-left; HF hosp: bottom-

right). The black line in each panel corresponds to the temporal average residual curve

M̄ (m)(t), computed using all the n = 4, 541 patients. From the figure we observed that the

time-varying means were approximately constant lines equal to zero for all the considered

processes. Hence, we might conclude that we succeeded in fitting the compensators of the

stochastic processes.

For each patient i ∈ {1, . . . , 4, 541}, we ended up with a four-variate time-varying data

given by the compensator trajectories
{

Λ̂
(m)
i (t)

}
h∈M

withM = {ACE,BB,AA,HF hosp},
which could be though of as positive non-decreasing L2-functions over the temporal do-

main [T0;T ∗0 ].
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Figure 3.6. Residuals M̂
(m)
i (t) of the compensators of the stochastic process describing the purchase

of ACE inhibitors (top-left panel), BB agents (top-right panel), AA (bottom-left panel) and of HF

hospitalizations (bottom-right panel) for a sample of 500 HF patients belonging to the administrative

database, computed according to Equation (3.6). Each line is related to a different patient. Solid black

lines represent the temporal average residual curve M̄ (m)(t) computed using all the n = 4, 541 patients.

3.3.3. Step 3: Summarize compensators through Functional

Principal Component Analysis

Once we computed the functional trajectories of the compensators Λ̂
(m)
i (t), we performed

Functional Principal Component Analysis (FPCA) [162] in order to summarise infor-

mation emerging from the time-varying compensators to a finite set of covariates while

losing a minimum part of the information. Although it was no longer guaranteed that

the functions reconstructed through FPCA were positive and non-decreasing, for each

process m we observed that two Principal Components (PCs) were enough to have a

L2-reconstruction error lower than 1%.

Figure 3.7 and Figure 3.8 show results of FPCA on functional compensators and are re-

lated to first and second PCs, respectively. In both figures, each column is related to a

different type of process (ACE : first column; BB : second column; AA: third column; HF

hosp: fourth column). Top panels show that first and second PCs, i.e., ξ
(m)
1 (t) and ξ

(m)
2 (t),

across the four processes types m ∈ {ACE,BB,AA,HF hosp} have similar shapes. Bot-

tom panels report the plots of compensators as perturbation of the mean [162]. In partic-

ular, the black lines constitute the average compensators curves µ(m)(t) = 1
n

∑n
i=1 Λ̂

(m)
i (t),

also denoting subjects with null FPC scores. Red plus and blue minus curves represent

the perturbations µ(m)(t)±ck
√
ν

(m)
k ξ

(m)
k (t) (red ’+’ and blue ’−’ respectively), where ν

(m)
k

is the eigenvalues related to the k-th component and ck are constants chosen in order to

let the values lie within one (ck = 1) or three (ck = 3) standard deviations (i.e., square

roots of ν
(m)
k ).
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Figure 3.7. First functional Principal Components (PCs) of the compensators of the stochas-

tic processes describing the purchase of ACE (first column), BB (second column), AA (third col-

umn) and HF hospitalization (fourth column). Upper panels show the first PCs ξ
(m)
1 (t) with m ∈

M = {ACE,BB,AA,HFhosp}. Lower panels report the average compensators curves µ(m)(t) =

1
n

∑n
i=1 Λ̂

(m)
i (t) (black lines) and µ(m)(t)±

√
ν

(m)
1 ξ

(m)
1 (t) (red ’+’ and blue ’−’ respectively) where ν

(m)
1

are the eigenvalues related to the first components. Note that in HF hospitalizations the ordinate axis

range is smaller than the other ones due to less number of hospitalization events with respect to drugs

purchases.
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Figure 3.8. Second functional Principal Components (PCs) of the compensators of the stochas-

tic processes describing the purchase of ACE (first column), BB (second column), AA (third col-

umn) and HF hospitalization (fourth column). Upper panels show the second PCs ξ
(m)
2 (t) with

m ∈ M = {ACE,BB,AA,HFhosp}. Lower panels report the average compensators curves µ(m)(t) =

1
n

∑n
i=1 Λ̂

(m)
i (t) (black lines) and µ(m)(t)± 3

√
ν

(m)
2 ξ

(m)
2 (t) (red ’+’ and blue ’−’ respectively) where ν

(m)
2

are the eigenvalues related to the second components. Note that in HF hospitalizations the ordinate axis

range is smaller than the other ones due to less number of hospitalization events with respect to drugs

purchases.
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In Figure 3.7 we observe that the first components ξ
(m)
1 (t) distinguish patients with dif-

ferent events risks. In particular, positive scores related to the first PC (red plus curve)

reflect higher curves with respect to negative ones (blue minus curve), indicating that a

patient with a high score on the first component is likely to experience more events than a

patient with a low score. Figure 3.8 shows that the second components ξ
(m)
2 (t) distinguish

patients with different time distribution of the events. In particular, a patient with a high

score (red plus curve) on the second PC is likely to experience more events in the first

months of the observation period and less events in the last months than a patient with

a low score (blue minus curve), indicating different events timing.

3.3.4. Step 4: Predictive functional Cox model for overall survival

At this point we wanted to quantify the association between time-varying processes and

patients’ overall survival through a Multivariate Functional Linear Cox Regression Model

(MFLCRM) in Equation (3.10). First, we applied 10-fold cross validation to select the

best set of covariates among possible combinations of patients’ baseline characteristics age,

gender and truncation parameters Km of FPCA with m ∈ {ACE,BB,AA,HF hosp},
according to the highest median Concordance Index [151]. The selected MFLCRM, given

by

hi

(
t|ωi,

{
Λ

(m)
i

}
m∈M

)
= h∗0(t) exp

{
θ1agei + θ2genderi+

α
(ACE)
1 f

(ACE)
i1 + α

(BB)
1 f

(BB)
i1 + α

(AA)
1 f

(AA)
i1 +

α
(HF hosp)
1 f

(HF hosp)
i1 + α

(HF hosp)
2 f

(HF hosp)
i2

}
,

(3.11)

was then fitted on the whole data to quantify the association between functional compen-

sators and overall survival.

Table 3.2 reports the summary of fitted model (3.11). All the covariates resulted statisti-

cally significant at confidence level 5%, except for f
(AA)
1 . Elder patients coherently have

a higher risk of dying [HR = 1.067] and being a male corresponds to 1.25-times faster

experience of the event. The HR relative to the scores of the first PCs for ACE and BB

processes, i.e., f
(ACE)
1 and f

(BB)
1 , are lower than 1, indicating that a proper ACE/BB

drug intake is correlated to longer life expectancy. On the contrary, the HR related to

f
(HF hosp)
1 is greater than 1, standing as a proxy of patients’ critical conditions: patients

experiencing many hospitalizations in the past present a higher risk of dying. Interest-

ingly, even if the second PC of compensators related to HF hosp process concerned only

the 2% of the total explained variance of the original data, f
(HF hosp)
2 is strongly significant

with HR = 0.773 < 1 (95% CI = [0.725; 0.825]). This means that patients with many

hospitalizations at the beginning of the observation period and few hospitalizations in the

end have higher survival probability, since they probably correspond to the ones who had

already experienced a critical phase of the disease and survived from it.
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Table 3.2. Hazard ratios (HRs) along with 95% Confidence Intervals (CIs) of the final multivariate

functional linear Cox regression model (MFLCRM) for overall survival fitted on the whole cohort using

the covariates selected through 10-fold cross-validation.

Covariates HR [2.5; 97.5]% CI p-value

gender (Male) 1.2540 [1.1080; 1.4194] < 0.001

age 1.0670 [1.0592; 1.0748] < 0.001

f
(ACE)
1 0.9977 [0.9963; 0.9992] 0.003

f
(BB)
1 0.9964 [0.9945; 0.9982] < 0.001

f
(AA)
1 1.0006 [0.9986; 1.0026] 0.550

f
(HF hosp)
1 1.0157 [1.0049; 1.0266] 0.004

f
(HF hosp)
2 0.7733 [0.7251; 0.8247] < 0.001

3.4. Final remarks

In this chapter, a novel approach to reconstruct the compensators of suitable marked point

processes of interest as time-varying covariates has been proposed. This approach was

exploited to enrich information to be included into a survival model. The development of

this procedure is due to the need of effectively describing and resuming information from

dynamic processes affecting an outcome of interest, with the purpose of obtaining deeper

insight on the patient’s health status using administrative databases. This methodology

extends the one proposed in [21], allowing the counting processes to depend on their marks

and moving towards the multivariate setting.

From the study on the administrative database of Regione Lombardia, we observed that

modelling patient’s clinical history in terms of compensators of suitable stochastic pro-

cesses as time-varying covariates and plug them into a survival model represents an effec-

tive, interpretative and forecasting approach for exploring the effects of these processes on

patients’ survival. The marked point process formulation is a natural way of representing

the occurrence of hospitalizations or drugs purchases over time. The use of FPCA allowed

to extract additional information contained in the functions, representing a powerful ex-

ploratory and modelling technique for highlighting trends and variations in the shape of

the processes over time. The introduction of this novel way to account for time-varying

variables by means of compensators allowed for modelling self-exciting behaviours, for

which the occurrence of events in the past increases the probability of a new event. This

enabled us to include a large piece of information contained in the administrative data to

describe the patient’s clinical history. Furthermore, our approach was able to take into

account the fact that HF patients usually consume different types of drugs at the same

time, representing a novelty for clinical and pharmacological research in the direction of

properly treating multimorbidity patients and polypharmacy. To the best of our knowl-

edge, our approach represents the first attempt in literature of merging potential of FDA,

recurrent events theory and survival analysis.

Thanks to its flexibility, the proposed methodology could be extended and generalized

to many different settings, adapting the procedure to the different biological and clinical

aspects of the specific application. In particular, alternative ways to get the trajectories
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related to the L2 functional compensators could be considered. The AG model for recur-

rent events in Equation (3.3) represents only one of the possible approaches to express the

conditional intensity function. Alternative methods or distributions for the marks could

be considered according to many factors, among others number of events, relationship be-

tween subsequent events and intrinsic characteristics of the processes. For example, our

case study was also analysed considering a shared gamma-frailty model [175], in which

the intensity function in Equation (3.3) was assumed to partly depend on an unobservable

random variable that acted multiplicatively on it. In that case, the compensator trajec-

tories were expressed as functions of estimated coefficients, smoothed cumulative baseline

hazard and estimated frailties. Obtained results were comparable to the ones shown in the

paper in terms of both estimated effects on patients’ overall survival and clinical implica-

tions. In case of a limited number of events, stratified Cox models for recurrent events,

such as the Prentice-Williams-Peterson [156] or the Wei-Lin-Weissfeld [213] model, could

be used modifying Equation (3.4) in order to consider the proper strata of the cumulative

baseline hazards. As a further alternative, in case of multiple events with cyclical occur-

rence, the best choice would be to account for seasonality in the model through cyclic

functions, such as in the rate model with multiple event types by [196]. In that case, the

L2 functions could be obtained by smoothing the cumulative rate functions. Therefore,

thanks to its adaptability, the presented methodology can be generalized and applied to

the study of many different pathologies characterized by complex data sources.

Some limitations of the present study have to be mentioned. Firstly, the use of a pre-

defined observation period could lead to survival bias due to cohort selection. Indeed, it

is necessary that patients survived for a period at least equal to the length of the period

used to compute the functional compensators trajectories. This could imply a survival

bias in case of the exclusion of too many early dying patients. This is softened if low-rate

short-term mortality diseases are considered. In the present work, the final choice for a

pre-defined observation period of 1 year after the index hospitalization was made under

clinical indication, once performed a sensitivity analysis to evaluate the robustness of our

method using two different clinically acceptable periods of 6 months and 1 year whose

results led to common conclusions. From a modelling point of view, the assumption of in-

dependence between jump times and marks in Equation (3.2) could in general be relaxed,

but this could lead to several issues [132]. In fact, considering re-hospitalization process,

it is difficult to conjecture a mathematical relation of length of stay in hospital with time

of hospitalization. The same is valid for drug purchases. Moreover, there could be com-

putational limitations in terms of modelling a temporary dependence. Since dependence

is harder to be dealt with due both to computational and modelling issues, we limited our

analysis to the independence case, which was considered a clinically acceptable assump-

tion. The development of proper statistical tools to test this hypothesis can be of great

help for our topic, since existing techniques for testing independence are rather complex

to apply and customize to the current context. Furthermore, FPCA was performed in

L2 [T0;T ∗0 ] and not in the subspace of positive non-decreasing L2-functions. In this way,

we obtained a good reconstruction of compensators approximated using PCs but it was

no longer guaranteed that these functions were positive and non-decreasing.
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Other limitations are mainly due to the use of secondary databases in the real case-

study, as in the previous chapters. First, not being able to ascertain whether the patient

was currently consuming the dispensed drug remains the major limitation of using drug

purchases as a proxy for drug intake, which is the only possible way through administrative

data. Second, the use of theoretical Defined Daily Dose (DDD) instead of Prescribed Daily

Doses (PDD) could reflect a bias in the computation of coverage days, i.e., of jump marks,

if the underlying PDD/DDD ratio is different from 1 [187, 220]. In future analysis, it could

be interesting to explore, whenever the linkage is possible, databases with information

about dosages prescribed by doctors, in order to obtain a more realistic analysis of coverage

periods. Since administrative data are collected with no clinical question in mind and

mainly for managerial and economic purposes [89], the validity of using these kind of data

is critically dependent on the reliability of the data [115, 180, 90]. Nevertheless, in the last

decade significant improvements have been gained through administrative data sources,

and their use in clinical biostatistics has become an accepted practice, representing a great

challenge for statistics and related modelling [90].

Despite the aforementioned limitations, our approach opens doors for many further de-

velopments, both in the fields of statistical methods and clinical research. The proposed

predictive models could be enriched by considering other relevant clinical information as

covariates, and enlarging the cohort of patients. For example, it could be of clinical inter-

est to further extend the study of polypharmacy by considering also drug-drug interaction

terms, which could be included in the model through compensator-compensator interac-

tion terms. However, a compensator-compensator interaction term involves the modelling

of bivariate (or more in general multivariate) marked point processes, which represents a

non-trivial task beyond the scope of the present work.

In summary, the presented methodology, involving database integration, marked point

process modelling of critical events and FDA techniques, enabled a manageable and rela-

tively simple analysis of the results, describing complex dynamics in an easily interpretable

form. Both parts of the procedure represent flexible approaches that can be used to quan-

tify personal behaviours and to investigate their effect of on survival. On one hand, the

developed marked point processes formulation could be applied in many different clinical

contexts characterized by recurrent occasions. On the other, the use of FPCA to extract

additional information contained in the functions and to include them into a MFCLRM

can be easily applied to all settings where the time-varying characteristics of interest are

adequately reconstructed by FDA, as we will see in Chapter 4 for the case of biomarkers

and chemotherapy dose in osteosarcoma patients. Its possible generalization to many

different contexts, combined with cooperation with medical staff, could therefore lead to

improvements in the definition of useful tools for health care assessment and treatment

planning.
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A. Appendix to Chapter 3

A.1. Data Preparation

Once selected the cohort of patients being part of the analysis and identified the events

related to each patient’s clinical history (Section 3.3 – Step 1 of the procedure), we had

to reformat the administrative data building four different datasets, one for each process

m ∈ M = {m : ACE,BB,AA,HF hosp}, in the form required by coxph function for

recurrent events of survival R package by [201]. Table 3.3 shows an example of reformatted

dataset related to ACE purchases process for a hypothetical patient with four ACE events

during the observation period. In the Table, start indicates the time of the patient’s

previous event (equal to 0 for the index date), stop is the time of the current event

(equal to 365.5 if it is the censoring event), status is the event indicator (0 if censored,

1 otherwise), enum is the number of events related to process m occurred in the past

and marks is the sum of the corresponding marks. In particular, the choice to consider

the time limit at 365.5 was made in order to not have events at censoring time t = 365.

Moreover, it could also happen that a patient i experienced the first event of type m

during the index day. In that specific case, we considered jump time equal to 0.5, i.e.,

t
(m)
i,1 = 0.5, in order to not have events at time t = 0. Hence, for each process m we ended

up with a long-format dataset with multiple rows for each patient (specifically the number

of patient’s events of type m during the observation period plus one). In particular, in

the first row of each patient enum and marks are always 0 and in the last one status is

always equal to 0.

Table 3.3. Example of reformatted dataset related to ACE purchases process for a hypothetical patient

with four ACE events during the 1-year observation period.

ID start stop status gender age enum marks

id 0 0.5 1 Female 87 0 0

id 0.5 83 1 Female 87 1 56

id 83 91 1 Female 87 2 70

id 91 215 1 Female 87 3 98

id 215 365.5 0 Female 87 4 112

A.2. Mean Absolute Martingale Residual

Given two or more Andersen-Gill (AG) models for recurrent events in Equation (3.3)

fitted using different sets of covariates, we need a metric to evaluate the goodness of fit

of each model and select the best set of features. Since we are dealing with stochastic

processes and recurrent events, we cannot rely on standard regression metrics, like mean

squared error. A possible way is given by functions of the residuals in Equation (3.6):

smaller residuals correspond to a greater predictive power of the model. Therefore, to

compare models fitted with different features, for each process m we would like to use the
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Mean Absolute Martingale Residual (MAMR):

MAMR(m) =
n∑
i=1

∫ T
0
|M̂ (m)

i (s)|ds
T

(3.12)

where T represents the length of the observation period. Using this indicator, the smaller

the MAMR the better the model.

To correctly compute the MAMR, we should first compute the compensators using Equa-

tion (3.5) and then evaluate the residuals on a grid of points. Since we want to use

this quantity only to rank models fitted with different sets of predictors, to avoid high

computational costs we decided to rely on the following estimate:

M̂AMR
(m)

=
1∑n

i=1 n
(m)
i

n∑
i=1

n
(m)
i∑
j=1

| ˆ̂
M

(m)
i (t

(m)
i,j )| (3.13)

where i and m are respectively the patient and event indices,
ˆ̂
M

(m)
i (t) is the residual

obtained by fitting the compensator without smoothing the baseline hazard, i.e., using

Λ̂
(m)
0 (t) instead of Λ̃

(m)
0 (t) in Equation (3.5), n

(m)
i is the total number of events of type m

experienced by the i-th patient and t
(m)
i,j is the time instant in which patient i experienced

the j-th event of type m.

This estimate is not accurate since the residuals are evaluated only when events hap-

pen (rather than on the continuous interval corresponding to the one year observation

period) and because the estimate is done by reconstructing the compensators without

the smoothing of the baseline hazard. However, it allows to rank models while limiting

computational needs.
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CHAPTER 4

Modelling time-varying covariates effect

on survival via Functional Data Analysis

This chapter has been published in Statistical Methods & Applications 2022 as M. Spreafico, F.

Ieva and M. Fiocco “Modelling time-varying covariates effect on survival via Functional Data

Analysis: application to the MRC BO06 trial in osteosarcoma” [192].

Osteosarcoma is a malignant bone tumour mainly affecting children and young adults

with an annual incidence of 3-4 patients per million [185]. Multidisciplinary management

including neoadjuvant and adjuvant chemotherapy with aggressive surgical resection [166]

or intensified chemotherapy has improved clinical outcomes although the overall 5-year

survival rate has remained unchanged in the last 40 years at 60-70% [15]. Therefore, it is

extremely important to provide an effective tool to evaluate the prognosis for osteosarcoma

and to guide the diagnosis.

Time-varying (or time-dependent) covariates are often of interest in clinical and epidemio-

logical research: patients are followed during the study and subject-specific measurements

are recorded at each visit. Well-known examples include biomarkers which change during

follow-up or cumulative exposure to medications [18], such as chemotherapy. Depending

on patients’ treatment history or development of toxicity, biomarkers values change and

chemotherapy treatment is modified by delaying a course or reducing the dose intensity.

To study the association between time-varying responses with time-to-event outcome

(e.g., death) is a challenging task which could offer new insights into the direction of

personalised treatment.

In osteosarcoma treatment, patients usually undergo assessment of haematologic and

serum biochemical parameters [119], such as white blood cell (WBC) counts and alkaline

phosphatase (ALP). The role of ALP as tumour marker for osteosarcoma has not been

established, although several studies suggested that high ALP level is associated with poor

overall or event-free survival and presence of metastasis [165, 71]. Chemotherapy is usually

modelled by different allocated regimens, i.e., by Intention-To-Treat (ITT) analysis [70].

ITT ignores anything that happens after randomization, such as protocol deviations or

changes in drug intake over time, i.e., delays or dose reduction [110]. Lancia et al. (2019)

[111] showed that there is mismatch between target and achieved dose of chemotherapy

and the impact of dosis on patients’ survival is still unclear. For these reasons, in this
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chapter a novel method to study received chemotherapy dose and biomarkers as time-

varying variables is proposed. This approach has never been applied to osteosarcoma

treatment and provides new insight in understanding the effect of chemotherapy dosis

intensity on sarcoma in childhood cancer. Moreover, as will be clear in the following, the

application is inspiring from a statistical modelling perspective.

Models for time-to-event data which are able to deal with the dynamic nature of time-

varying responses during follow-up are not well developed. One approach for using time-

varying covariate data is the Time-Varying covariate Cox Model (TVCM) [202, 97], that

is an extension of the Cox proportional hazard model [46] accounting for covariates that

can change value during follow-up. Since time-dependent observations are only available

at the time of measurements, TVCM uses the last-observation-carried-forward (LOCF)

approach [206], which leads to the pitfall of introducing bias due to the continuous nature

of the process underlying the data, and fails to account for possible measurement errors

[16]. Joint models address these issues by modelling simultaneously longitudinal and

time-to-event data using shared random effects [76, 206, 38, 49, 167, 168, 65, 157, 81, 82].

As seen in Chapter 2, they are parametric models that allow for the inference on the

association between the hazards characterizing the event outcome and the longitudinal

processes. However, they require additional strong assumptions over TVCM that need

to be carefully validated to avoid biased estimates [16]. Their benefits are hence strictly

linked to the correct specification of longitudinal trajectories and baseline hazard function.

In addition, inference computations could become prohibitive, especially for approaches

developed in a Bayesian framework.

During the past two decades, Functional Data Analysis (FDA) has been increasingly used

to analyse, model and predict dynamic processes [163, 162, 144, 223, 56, 128, 207, 92, 91,

134, 189]. The idea behind FDA and functional models is to express discrete observa-

tions arising from time series, i.e., longitudinal time-varying observations, in the form of

functions [163, 162]. Functional representation incorporates trends and variations in the

evolution of the process over time [207]. Since functional data are infinite-dimensional

covariates, some dimensionality reduction methods are needed to summarize and select

a finite dimensional set of elements representing the most important features of each co-

variate. This information can then be included into time-to-event models. To model the

relationship between survival outcomes and a set of finite and infinite dimensional pre-

dictors Functional Linear Cox Regression Models (FLCRM) have been recently proposed

[62, 116, 159, 109, 121]. In case of an infinite dimensional process, Kong et al. (2018) [109]

characterized the joint effects of both functional and scalar predictors on time-to-event

outcome employing Functional Principal Component Analysis (FPCA). FPCA is one of

the most popular dimensionality reduction method in FDA and it is used to summarise

each function to a finite set of covariates through FPC scores, while losing a minimum part

of the information. An extended version of the FLCRM by [109] to the case of multiple

functional predictors – named Multivariate FLCRM (MFLCRM) – was introduced in the

previous chapter to model recurrent events effect on long-term survival [189]. However,

since the main focus of Chapter 3 was to develop a methodology for effectively mod-

elling time-varying recurrent events in terms of the functional compensators underlying
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the processes of interest, we have neither compared MFLCRM with other survival mod-

els, nor considered its predictive performances over time. In case of multiple longitudinal

processes, Li and Lou (2019) [121] exploited the multivariate FPCA approach by [72] to

extract the FPC scores from the multiple longitudinal trajectories in order to make per-

sonalized dynamic predictions. However, the authors did not focus on the smoothing and

functional representation aspects of the processes realized by the observed longitudinal

data, on the clinical interpretation of the FPC scores and on their association with over-

all survival. Since it is often the changing patterns of the functional trajectories rather

than the actual values that affects patients’ survival, FDA provides a novel modelling and

prediction approach, with a great potential for many applications in public health and

biomedicine [207].

Motivated by a clinical question concerning the effect of biomarkers and dose variations

during treatment on survival for osteosarcoma patients, in this chapter a FDA-based ap-

proach, named Functional covariate Cox Model (FunCM), is proposed and compared to a

standard TVCM. In FunCM, FDA techniques are first exploited to represent time-varying

processes and their derivatives over time in terms of functional data. Unlike joint models,

FDA approach does not make assumptions on the distributions of longitudinal processes

being computationally advantageous [121]. Then, additional information contained into

the evolution of the functions over time are included into MFLCRMs for overall sur-

vival through FPCA. A cross-validation method is implemented to compare MFLCRMs

and standard TVCM in terms of their predictive performances at different time horizons.

Three novelties of this work are listed here: (i) application of advanced statistical tech-

niques to deal with time-varying covariates in the field of osteosarcoma treatment; (ii)

reconstruction of the functional representations for biomarkers and chemotherapy dose

values, and their rates of change, to retrieve information on the progression of processes

over time; (iii) comparison between TVCM and FunCM in terms of both clinical inter-

pretability and time-dependent predictive performances. This novel approach provides

more information about the effect of individualized treatment adaption on survival for

osteosarcoma patients.

The rest of this chapter is organized as follows. In Section 4.1 TVCM and FunCM to

represent time-varying covariates by means of FDA and to include them into survival

models are discussed. MRC BO06/EORTC 80931 Randomized Controlled Trial [119]

and longitudinal representations of time-varying covariates are described in Section 4.2.

Results are presented in Section 4.3. Section 4.4 ends with a discussion of strengths and

limitations of the current approach, identifying some developments for future research.

4.1. Statistical Methodologies

4.1.1. Time-varying covariates and survival frameworks

A time-varying (or time-dependent) process is a covariate whose value can change over

the duration of follow-up (e.g., time-varying biomarkers, current use of medication, and
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Follow-up

𝑇0 𝑇0
∗

Randomization

Overall Survival
Functional
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Time-varying
Cox model

Time-varying LOCF covariates and Overall Survival

Chemotherapy 
treatment period

𝑇𝑖 , 𝛿𝑖
∗

Post-treatment follow-up period

Figure 4.1. Follow-up periods. Time-varying (LOCF/functional) representation and Overall Survival

(OS) for Time-Varying covariate Cox Model (TVCM) and Functional covariate Cox Model (FunCM). T0

is the time of randomization. T ∗0 = T0 + 180 days is the end of the 6-months chemotherapy treatment

period. LOCF = last-observation-carried-forward.

cumulative dose of drugs). In this study, the main interest is in analysing the asso-

ciation between patient’s survival and variations during treatment of his/her multiple

time-varying characteristics. The focus is hence on patients who had completed the en-

tire chemotherapy treatment protocol in a pre-defined and clinically acceptable timing

period.

Follow-up starts from date of randomization T0 and is divided into a pre-defined 6-months

chemotherapy treatment period [T0;T ∗0 ] – also called observation period – considered for

chemotherapy treatment completion, and a post-treatment follow-up period from T ∗0 on-

wards (see Figure 4.1).

Under the TVCM framework, the Overall Survival (OS) is measured from randomiza-

tion (T0) to the date of death or last follow-up date, and the time-varying covariates can

be defined over the entire follow-up period. Let M be a set of time-varying processes.

Let z
(m)
i =

{
z

(m)
il = z

(m)
i (til), l = 1, ..., n

(m)
i

}
be the vector of longitudinal values related

time-varying process m ∈M for each patient i, where til is the time of the l-th measure-

ment, z
(m)
i (til) is the value of the process at time til and n

(m)
i is the number of different

measurements.

Under the FunCM framework, the observation period [T0;T ∗0 ] is used to reconstruct the

functional representations of time-varying covariates. OS is then measured from the

end of the observation period (T ∗0 ) to the date of death or last follow-up date. Only

patients still alive at T ∗0 are included in the study cohort. To reconstruct the functional

covariates, only measurements registered during the observation period (i.e., up to T ∗0 )

are considered, namely vector z̄
(m)
i =

{
z

(m)
il = z

(m)
i (til), l = 1, ..., n̄

(m)
i

}
⊆ z(m)

i , where n̄
(m)
i

denotes the index of last measurement of type m for patient i in [T0;T ∗0 ], with n̄
(m)
i ≤ n

(m)
i

and t
in̄

(m)
i
≤ T ∗0 < t

in̄
(m)
i +1

.

In both cases, the observed time-to-death outcome for patient i ∈ {1, ..., N} can be

denoted as (Ti, Di), where Ti = min(T ∗i , Ci) is the observed event time (measured from

T0 or T ∗0 according to the framework), T ∗i is the true event time, Ci is the censoring time
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and Di = 1(T ∗i ≤ Ci) is the event indicator, with 1(·) being the indicator function that

takes the value 1 when T ∗i ≤ Ci, and 0 otherwise.

4.1.2. Time-Varying covariate Cox Model

Starting from vector of longitudinal values z
(m)
i , a time-varying covariate z

(m)
i (t) can be

defined over the entire follow-up period, according to the LOCF approach [206]:

• when z
(m)
i (t) is not observed at time t ∈

[
T0; t

in
(m)
i

]
, the most updated value is used:

z
(m)
il = z

(m)
i (til) with til ≤ t < til+1;

• from t
in

(m)
i

onwards, the last available measurement z
(m)
i (t

in
(m)
i

) is considered.

The TVCM is an extension of the proportional hazard model by [46] accounting for co-

variates that can change value during follow-up [202, 97]. Under TVCM, the proportional

hazards model for patient i has the form

hi (t|ωi, zi(t)) = h0(t) exp
{
θTωi +αTzi(t)

}
(4.1)

where h0(t) is the baseline hazard function, ωi and zi(t) =
(
z

(1)
i (t), ..., z

(M)
i (t)

)
are the

vectors of baseline and time-varying covariates with regression parameters θ and α, re-

spectively. Inference for coefficients (θ,α) is based on maximizing the partial likelihood

[97].

TVCM can also be stratified to allow for control by ”stratification” of a predictor that does

not satisfy the proportional hazard assumption [97]. Under stratified TVCM, the hazard

function hig (t|ωi, zi(t)) contains also a subscript g that indicates the g-th stratum, as well

as the baseline hazards h0g(t), where the strata are different categories of the stratification

variable. Notice that the baseline hazard functions are different in each stratum.

4.1.3. Functional covariate Cox Model

The FunCM approach consists of four parts: Steps 1 and 2 are devoted to the reconstruc-

tion of functional trajectories; Steps 3 and 4 provide a suitable framework for including

these time-varying covariates in a time-to-event model. Specifically, once the data have

been pre-processed and longitudinal time-varying characteristics during the observation

period have been identified (Step 1), the corresponding functional trajectories and their

derivatives are reconstructed by applying FDA techniques (Step 2). FPCA is then applied

to perform dimensionality reduction and summarise the information from the functional

predictors into a finite set of FPC scores (Step 3). Finally, once the best set of covari-

ates and number of principal components have been selected through cross-validation,

the MFLCRM is estimated to quantify the association between functional processes and

patients’ overall survival (Step 4).
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From longitudinal to functional representation

To model the continuous longitudinal vectors z̄
(m)
i defined over [T0;T ∗0 ] as functions

x̃
(m)
i (t), FDA techniques can be exploited, as discussed by [163, 162]. The observed

data z
(m)
il are assumed as noisy measurements of the latent processes X̃

(m)
i (t), where time

t ∈ [T0;T ∗0 ] and i is the patient’s index.

For each process m, first the time-scale t ∈ Sm ⊆ [T0;T ∗0 ] is chosen. There are no

restrictions on the choice of unit of measurement for t, though the specific choice can

simplify the computational process. According to the type of observed data (i.e., periodic

or open-ended data) and the number of measurements n̄
(m)
i , the basis function system

φ
(m)
i (t) (e.g., polynomials, B-spline, Fourier, wavelets) is selected, with a number of basis

less or equal to n̄
(m)
i . Functional data objects are usually expressed by a general functional

form as linear combination of the basis functions W
(m)
i (t) = φ

(m)
i (t)Tc

(m)
i , where c

(m)
i

is the vector of coefficients for patient i. Other functional forms can be used to take

into account the nature of the process itself (e.g., positive, increasing, decreasing). For

example, for an increasing process, the functional data object can be defined using the

monotone functional form W
(m)
i (t) = β0i+β1i

∫ t
t0

exp[φ
(m)
i (u)Tc

(m)
i ]du [162]. Once selected

the type of basis functions and the functional form, data can be smoothed by regression

analysis minimizing the (penalized) sum of squared errors, obtaining functions x̃
(m)
i (t) =

Ŵ
(m)
i (t).

In the presence of constrain due to the specific application, data can be alternatively

smoothed by regression analysis using the transformation g(x) = log x−Lm
Um−x , where Lm and

Um denote the lower and upper bounds respectively. For each patient i the customized

functional predictor m is defined as:

x̃
(m)
i (t) =

Lm + Um · exp [Ŵ
(m)
i (t)]

1 + exp [Ŵ
(m)
i (t)]

. (4.2)

Starting from the customized functional datum, the FDA approach also allows to recon-

struct its derivative dx̃
(m)
i (t) as function of the derivatives of the basis functions dφ

(m)
i (t).

The derivative of the functional process, indicated as x̃
(dm)
i (t), represents the rate of change

of process values over time. Both functional data x̃
(m)
i (t) and derivatives x̃

(dm)
i (t) can be

incorporated as functional predictors into a functional Cox regression model for overall

survival by taking into account that they are correlated.

Multivariate functional linear Cox regression model

As shown in Chapter 3, MFLCRM extends the functional Cox regression model by [109] to

the case of multiple functional predictors [189]. Let
{
x̃

(m)
i

}
m∈M

be the set of realizations

of the |M|-variate functional predictors for individual i. MFLCRM includes the multiple

functional predictors in the classical Cox model [46] as:

hi

(
t|ωi,

{
x̃

(m)
i

}
m∈M

)
= h0(t) exp

{
θTωi +

∑
m∈M

∫
Sm

x̃
(m)
i (s)α(m)(s)ds

}
(4.3)
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where h0(t) is the baseline hazard function, ωi is the vector of scalar (non functional)

covariates with regression parameters θ. α(m)(s) are the functional regression parameters.

Sets Sm ⊆ [T0;T ∗0 ] are compact sets in R and can be different (both in period length and

time scale) among between different types m of functional predictors.

As shown in Section 3.2.2, by applying FPCA, each functional trajectory x̃
(m)
i (s) can

be approximated with a finite sum of Km orthonormal basis
{
ξ

(m)
1 , ..., ξ

(m)
Km

}
, i.e., the

principal components, and the hazard function in Equation (4.3) becomes:

hi

(
t|ωi,

{
x̃

(m)
i

}
m∈M

)
= h∗0(t) exp

{
θTωi +

∑
m∈M

Km∑
k=1

f
(m)
ik α

(m)
k

}
(4.4)

where h∗0(t) = h0(t) exp
{∑

m∈M
∫
Sm
µ(m)(s)α(m)(s)ds

}
is the baseline hazard function

with functional means µ(m)(s). The FPC score of individual i related to the k-th orthonor-

mal base ξ
(m)
k , representing the projection of the i-th functional compensator related to

process m along the direction of the k-th principal component, is denoted by f
(m)
ik . Pa-

rameters Km and α
(m)
k are the truncation and the k-th score regression parameters related

to process m, respectively, with α
(m)
k =

∫
Sm
ξ

(m)
k (s)α(m)(s)ds.

Therefore, through FPCA, MFLCRM can be expressed as Cox model with vector of

regression coefficients θ̃ =
[
θT ,

{(
α

(m)
1 , ..., α

(m)
Km

)}
m∈M

]T
that can be estimated by max-

imising the partial likelihood function [46]. For details related to MFLCRM formulation

see Section 3.2.2.

To select the truncation parameters Km, representing the number of FPCs to be consid-

ered, in Chapter 3 we chose the model with the highest Concordance index [151], that

is an overall measure of discrimination in survival analysis. In this work, the truncation

parameters Km are selected in terms of predictive discrimination and calibration perfor-

mances at different time horizons through the cross-validation procedure introduced in

the next Section.

Selection of truncations parameters

The truncation parameters Km in Equation (4.4) can be chosen in different ways: (i)

the Proportion of Variance Explained (PVE) [162], (ii) Akaike Information Criterion

(AIC) or Bayesian Information Criterion (BIC) or (iii) data-adaptive methods, such as

cross-validation [223]. In this analysis, a combination of these three methods is used.

Let the sets of baseline and functional predictors be fixed. First, different combina-

tions of increasing values of the truncation parameters Km for different time-varying

processes m are considered and the best models according to both AIC and BIC criteria

are selected. Then, models according to five different thresholds for PVE (Km such that

PVE≥ 80, 85, 90, 95, 99%) are identified. Finally all the selected models are compared in

terms of their predictive performances at different time horizons through cross-validation

to identify the best one.
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The predictive performance of the models is assessed in terms of discrimination and

calibration. Discrimination is assessed through the time-dependent area under the curve

(AUC), estimated through the nonparametric method by [122]. Calibration is assessed

by the weighted version of the Brier score under the assumption of independent censoring

[66]. Higher AUC and lower Brier score indicate better discrimination and calibration,

respectively.

4.2. MRC BO06 randomized clinical trial data

MRC BO06/EORTC 80931 randomized controlled trial (International Standard Ran-

domised Controlled Trial Number : https://www.isrctn.com/ISRCTN86294690, ISRCTR

86294690) was funded by the Medical Research Council (MRC) (https://www.ukri.org/

councils/mrc/) and the European Organisation for Research and Treatment of Cancer

(EORTC) (https://www.eortc.org). BO06 Randomized Controlled Trial (RCT) com-

pared the effectiveness combination chemotherapy and surgery in operable osteosarcoma

using the conventional European Osteosarcoma Intergroup (EOI) treatment of doxoru-

bicin (DOX) and cisplatin (CDDP) versus a dose-intensified regimen of DOX and CDDP

supported by granulocyte colony-stimulating factor (G-CSF). Results of the primary anal-

yses can be found in Lewis et al. (2007) [119].

4.2.1. Trial protocol

Newly diagnosed patients with non-metastatic high-grade operable osteosarcoma were re-

cruited between 1993 and 2002. BO06 RCT randomised patients between conventional

treatment with DOX and CDDP given every 3 weeks (Reg-C ) versus a dose-intense

regimen of the same two drugs given every 2 weeks supported by G-CSF (Reg-DI ).

Chemotherapy was administered for six cycles (a cycle is a period of either 2 or 3 weeks

depending on the allocated regimen), before and after surgical removal of the primary

osteosarcoma. Surgery to remove the primary tumour was scheduled at week 6 after

starting treatment in both arms, i.e., after 2 cycles (2 × [DOX+CDDP]) in Reg-C and

after 3 cycles (3 × [DOX+CDDP]) in Reg-DI. Postoperative chemotherapy was intended

to resume 2 weeks after surgery in both arms. Planned total cumulative dose was 1,050

mg/m2 in both regimens, i.e., 25 mg/m2/day for 3 days of DOX plus 100 mg/m2 of

CDDP as a continuous 24-h infusion on cycle-day 1 were given at each cycle. Planned

treatment time from beginning first cycle was 122 and 87 days for Reg-C (5 cycles · 3

weeks/cycle · 7 days/week + 14 days of surgery period + 3 days of last cycle) and Reg-DI

(5 cycles · 2 weeks/cycle · 7 days/week + 14 days of surgery period + 3 days of last cycle),

respectively. Figure 4.2 shows the trial design.

Patients baseline characteristics (age, sex, allocated chemotherapy regimen, site and loca-

tion of the tumour) were registered at randomization. Treatment-related factors (admin-

istered dose of chemotherapy, cycles delays, haematological and biochemical parameters,
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Regimen-DI:  6 cycles of DOX+CDDP every 2 weeks (DOX: 75 mg/m2/cycle;  CDDP: 100 mg/m2/cycle) 

Regimen-C:   6 cycles of DOX+CDDP every 3 weeks (DOX: 75 mg/m2/cycle;  CDDP: 100 mg/m2/cycle) 


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C1 C2 Surgery
 C3 C4 C5 C6

 Week

122 days 

1 2 3 4 5 6 7 8 9 10 11 12 13

C1 C2 C3 Surgery C4 C5 C6

 Week

87 days 

Figure 4.2. Patients are randomized at baseline to one of the two regimens, with the same anticipated

cumulative dose (DOX: 25 mg/m2/d for 3 days + CDDP: 100 mg/m2 as a continuous 24-h infusion on

day 1) but different duration (3-weekly vs 2-weekly cycles, i.e., 122 vs 87 days).

chemotherapy-induced toxicity) were collected prospectively at each cycle of chemother-

apy [119]. The resected specimen was examined histologically to assess response to pre-

operative chemotherapy. Haematological and biochemical laboratory tests were usually

performed before each cycle of chemotherapy (for blood count also at the expected nadir

of the course, that is day 10 of the cycle in Reg-C or day 8 in Reg-DI ) in order to

monitor patient’s health status and the development of toxicities or adverse events. De-

lays or chemotherapy dose reductions during treatment were possible in case of toxicity.

Non-haematological chemotherapy-induced toxicity for nausea/vomiting, mucositis, neu-

rological toxicity, cardiac toxicity, ototoxicity and infection were graded according to the

Common Terminology Criteria for Adverse Events Version 3 [208] (see next chapters).

Additional details related to the trial protocol can be found in [119].

4.2.2. Sample cohort selection and baseline characteristics

BO06 trial dataset included 497 eligible patients; 19 patients who did not start chemother-

apy (13) or reported an abnormal dosage of one or both agents (6) were excluded. Moti-

vated by the clinical research question concerning the effect of doses intensity on survival,

only patients who completed all six cycles within 180 days (i.e., T ∗0 of the observation

period) were included in the analyses. The final cohort of 377 patients (75.9% of the

initial sample) is shown in Figure 4.3. Among them, one subject presented Ti < T ∗0 and

was excluded from the FunCM cohort (376 patients – 75.7% of the initial sample).

Follow-up starts from date of randomization (T0) and the observation period [T0;T ∗0 ] is

given by the first 180 days after randomization (i.e., the 6-months chemotherapy treatment

period). Patients’ characteristics at baseline are provided in Table 4.1. Three age groups

were defined according to [43]: child (male: 0-12 years; female: 0-11 years), adolescent

(male: 13-17 years; female: 12-16 years) and adult (male: 18 or older; female: age 17

years or older). Among 377 patients, 229 (60.7%) were males and Reg-DI was allocated

in 52.3% of the patients (197). Median age was 15 years (IQR = [11; 18]) with 40.9% of

adolescents (154) and 30.2% of adults (114). Median follow-up time, computed using the
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Initial sample size

n = 497

Patients who started the therapy

n = 484

Patients with normal dosages

n = 478

Final sample size for FunCM analysis

n = 376

Patients who did not start the 
therapy: 13

Patient who did not complete all 
six cycles within 180 days: 8

Patient who did not complete

all six cycles: 93

Patients with abnormal 
dosages: 6

Patients who completed the chemotherapy

n = 385

Patients with : 1𝑇𝑖 < 𝑇 ∗0

Final sample size

n = 377

Figure 4.3. Flowchart of cohorts selection.

reverse Kaplan-Meier method by [182], was 62.19 months (IQR = [38.93; 87.46]) and 245

patients (65%) were alive at the last follow-up visit.

4.3. Results

Since the role of received chemotherapy dose, ALP and WBC biomarkers on patient’s

survival is still unclear for osteosarcoma [165, 71, 111], a new time-varying/functional

perspective may help in understanding their relationship, providing new insights for child-

hood cancer. In this regard, the methodologies proposed in Section 4.1 were applied to

the BO06 trial. Statistical analyses were performed in the R-software environment [161].

R code is provided here: https://github.com/mspreafico/BO06-FunCM.

4.3.1. Time-varying characteristics

Due to the skewed nature of the longitudinal trajectories of both ALP and WBC biomark-

ers, their logarithmic transformations shifted by one were considered. The vectors of

longitudinal values of ALP and WBC measurements for patient i are given as

z
(ALP )
i =

{
z

(ALP )
i (til), l = 1, ..., n

(ALP )
i

}
(4.5)

z
(WBC)
i =

{
z

(WBC)
i (til), l = 1, ..., n

(WBC)
i

}
(4.6)
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Table 4.1. Patients’ characteristics at randomization and histological responses.

Baseline characteristic

Patients 377

Age* [years]

Median (IQR) 15 (11; 18)

Minimum/maximum 3/40

Child* 109 (28.9%)

Adolescent* 154 (40.9%)

Adult* 114 (30.2%)

Sex

Female 148 (39.3%)

Male 229 (60.7%)

Allocated treatment

Regimen-C 180 (47.7%)

Regimen-DI 197 (52.3%)

Site of tumour

Femur 227 (60.2%)

Fibula 22 (5.8%)

Humerus 37 (9.8%)

Radius 3 (0.8%)

Tibia 87 (23.1%)

Ulna 1 (0.3%)

Location of tumour

Distal 217 (57.6%)

Mid-shaft 11 (2.9%)

Proximal 148 (39.2%)

Missing (NA) 1 (0.3%)

Histological Response**

Poor 186 (49.3%)

Good 144 (38.2%)

Missing (NA) 47 (12.5%)

White Blood Count‡ [×109/L]

Median (IQR) 7.65 (6.30; 9.13)

Minimum/maximum 3.60/16.20

Alkaline Phospathase‡ [IU/L]

Median (IQR) 311.5 (190.0; 551.5)

Minimum/maximum 49.0/3680.0

* Age groups were defined according to Collins et al. (2013) [43]: child (male: 0-12 years; female: 0-11 years),

adolescent (male: 13-17 years; female: 12-16 years) and adult (male: 18 or older; female: age 17 years or older).

** The resected specimen was examined histologically to assess response to pre-operative chemotherapy [119]. Good

histological response was defined as ≥ 90% necrosis in the tumour resected; 10% or more viable tumour after pre-

operative chemotherapy was defined poor [119].

‡ Baseline White Blood Count (WBC) and Alkaline Phospathase (ALP) levels refer to the measure performed before

the beginning of cycle 1, i.e., at randomization.
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where til is the time of the l-th laboratory ALP or WBC test, z
(ALP )
i (til) = log(ALPil+1)

and z
(WBC)
i (til) = log(WBCil + 1) are the logarithmic values of ALP and WBC mea-

surements at time til, n
(ALP )
i and n

(WBC)
i are the number of different ALP and WBC

laboratory tests, respectively. Left and central panels of Figure 4.4 show the longitudi-

nal trajectories over time of z
(ALP )
i and z

(WBC)
i respectively. Each line represents the

time-varying logarithmic biomarker values for a specific patient coloured by event status

(black: Censored, red: Dead). Observed longitudinal data can be sparse and irregularly

measured among patients and different biomarkers. ALP point-measurements z
(ALP )
i (til)

observed among all patients over time ranged from a minimum of 2.708 to a maximum

of 8.211 (corresponding to ALP values of 14 and 3680 IU/L, respectively). WBC point-

measurements z
(WBC)
i (til) observed among all patients over time ranged from a minimum

of 0.095 to a maximum of 4.771 (corresponding to WBC values of 0.1 and 117.0 ×109/L,

respectively). The presence in both biomarkers of extremely high/low levels compared

to normal ranges is due to the presence of conditions usually experienced by patients in

childhood cancer therapies, such as bone growth, tumour necrosis, inflammatory states,

infections or toxicity (see [218].

The time-varying standardized cumulative dose of chemotherapy is now introduced. Let

l ∈ {1, ..., 6} be the cycle index and til the time of the l-th cycle for the i-th patient.

The standardized cumulative dose of chemotherapy (DOX+CDDP) for the i-th patient

at time til is defined as:

z
(δ)
i (til) =

Cumulative dose of DOX+CDDP until cycle l [mg/m2]

Total target dose at the end of six cycles [mg/m2]

=
1

175 [mg/m2] · 6
·

l∑
c=1

DOXic + CDDPic
surface areaic

[mg
m2

]
.

(4.7)

This can be interpreted as the regulated Received Dose Intensity (rRDI) introduced by

Lancia et al. (2019) [110] evaluated over real time and not over cumulative time on treat-

ment. For each patient i, the vector of longitudinal values of standardized cumulative

dose of chemotherapy over time is defined as z
(δ)
i = {z(δ)

i (til), l = 1, ..., 6}. The right

panel of Figure 4.4 shows the longitudinal trajectories z
(δ)
i over time. Each line represents

the individual time-varying standardized cumulative chemotherapy dose coloured by allo-

cated regimen (pink: Reg-DI, purple: Reg-C ). Patients – also within the same regimen –

reported different values of standardized cumulative dose during time, depending on the

delays and dose reductions required during chemotherapy due to toxicity. In particular,

the lines form a tight bundle in the early phase of the treatment, but later they open up

in a hand-fan shape because treatment adjustments are generally more frequent towards

the end of the protocol. Median value of total standardized cumulative dose z
(δ)
i (ti6) was

0.998 (IQR = [0.901; 1.000]), with minimum and maximum final values equal to 0.613

and 1.056, respectively. Median value of time from randomization to last cycle ti6 was

127 days (IQR = [114; 179]), with minimum and maximum periods of 85 and 179 days,

respectively.
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Figure 4.4. Time-varying covariates for each patient. Left panel: longitudinal logarithmic values of ALP

biomarker over time coloured by event status (black: Censored, red: Dead). Central panel: longitudinal

logarithmic values of WBC biomarker over time coloured by event status (black: Censored, red: Dead).

Right panel: longitudinal values of standardized cumulative dose of chemotherapy coloured by allocated

regimen (pink: Reg-DI, purple: Reg-C )

4.3.2. Time-Varying covariate Cox Model

To study the effect of time-varying biomarkers and doses on survival, a TVCM was fitted

on the final cohort of 377 patients (see Figure 4.3). In particular, the hazard function in

Equation (4.1) was adjusted for gender at randomization (ωi) and stratified by age group

g ∈ {child, adolescent, adult}, as follows:

hig (t|ωi, zi(t)) = h0g(t) exp

{
θ1 · genderi + α1 · z(ALP )

i (t)+

α2 · z(WBC)
i (t) + α3 · 100z

(δ)
i (t)

} (4.8)

where h0g(t) is the baseline hazard function for the g-th age stratum, z
(ALP )
i (t), z

(WBC)
i (t)

and z
(δ)
i (t) are the time-varying covariates of ALP and WBC biomarkers and standardized

cumulative dose (multiplied by 100 due to its different values scale), obtained applying

LOCF method to longitudinal vectors z
(ALP )
i , z

(WBC)
i and z

(δ)
i respectively.

In Table 4.2 hazard ratios along with their 95% confidence intervals are shown. Gender at

randomization and time-varying WBC were associated to survival, whereas time-varying

ALP biomarker and chemotherapy dose showed no effects on survival. Being a male was

associated to a 1.5-times faster experience of the event. The higher the value of WBC

at time t, the higher the risk of death. This model ignored the continuous nature of the

processes underlying the data.
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4. Modelling time-varying covariates effect on survival via Functional Data Analysis

Table 4.2. Estimated hazard ratios (HR) along with 95% confidence intervals (CI) from the stratified

time-varying covariate Cox model (TVCM) in Equation (4.8).

Covariates HR 95% CI

gender (male) 1.539 [1.046; 2.263]

z
(ALP )
i (t) 0.991 [0.711; 1.383]

z
(WBC)
i (t) 0.647 [0.477; 0.877]

z
(δ)
i (t) · 100 1.005 [0.984; 1.027]

4.3.3. Functional covariate Cox Model

Functional representation of time-varying biomarkers and chemotherapy dose

To convert the longitudinal values of ALP and WBC biomarkers registered during the

observation period, z̄
(ALP )
i and z̄

(WBC)
i , into the functions x̃

(ALP )
i (t) and x̃

(WBC)
i (t), mea-

surements by cycles were used. This implies that all time-varying values were on the

same temporal domain, i.e., t ∈ SALP = SWBC = [1, 6] cycles. For both ALP and WBC

biomarkers (m = {ALP,WBC}), B-spline basis functions φ
(m)
i (t) (ALP : 2 or 3 basis of

order 2 or 3; WBC : 6 or 7 basis of order 5, according to each patient i) and a general

functional form were used. Clinical bounds [Lm;Um] (ALP : [0;9]; WBC : [0;5]) were em-

ployed in order to include the extremely high/low levels experienced by patients during

treatment. Lower bounds equal to 0 were chosen to ensure the non-negativity of the

functional values. A data driven approach was used to select the upper bounds defined

as Um =
⌈
maxi,l z

(m)
i (til)

⌉
. For each patient i the following functional ALP and WBC

predictors were provided:

x̃
(ALP )
i (t) =

9 · exp
[
φ

(ALP )
i (t)T ĉ

(ALP )
i

]
1 + exp

[
φ

(ALP )
i (t)T ĉ

(ALP )
i

] , (4.9)

x̃
(WBC)
i (t) =

5 · exp
[
φ

(WBC)
i (t)T ĉ

(WBC)
i

]
1 + exp

[
φ

(WBC)
i (t)T ĉ

(WBC)
i

] (4.10)

where ĉ
(m)
i (m = {ALP,WBC}) are the vectors of coefficients estimated by regression

analysis using the transformation g(x) = log x−Lm
Um−x . Starting from the customized func-

tional data in Equations (4.9) and (4.10), the derivatives x̃
(dm)
i (t) (m = {ALP,WBC}),

which represents the rate of change in the biomarkers values over time, were reconstructed.

A graphical representation of functional biomarkers curves and their derivatives are shown

in Figure 4.5 and 4.6, respectively (left panels: ALP biomarker; central panels: WBC

biomarker). Each line represents the functional predictor for patient i coloured according

to the death-event status.

To convert the longitudinal values of standardized cumulative chemotherapy dose z
(δ)
i into

the functional form x̃
(δ)
i (t), measurements in days were considered since different duration

in treatment is a key-point in the chemotherapy protocol. Based on clinical motivations,
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4.3. Results
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Figure 4.5. Left panel: functional representations of ALP biomarker over cycles coloured by status

(black: Censored, red: Dead). Central panel: functional representations of WBC biomarker over cycles

coloured by status (black: Censored, red: Dead). Right panel: functional representations of standardized

cumulative dose of chemotherapy over time coloured by allocated regimen (pink: Reg-DI, purple: Reg-C ).

Each line is the graphical representation of the functional predictor of a patient.
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Figure 4.6. Left panel: functional representations of the rate of change of ALP biomarker over cycles

coloured by status (black: Censored, red: Dead). Central panel: functional representations of the rate

of change of WBC biomarker over cycles coloured by status (black: Censored, red: Dead). Right panel:

functional representations of the rate of change of standardized cumulative dose of chemotherapy over time

coloured by allocated regimen (pink: Reg-DI, purple: Reg-C ). Each line is the graphical representation

of the functional predictor of a patient.
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4. Modelling time-varying covariates effect on survival via Functional Data Analysis

the interval Sδ = [0, 180] days was selected, since all the patients completed the therapy

within 180 days from randomization. B-spline basis functions φ
(δ)
i (t) (5 basis of order 5),

a monotone functional form and clinical bounds Lδ = 0 and Uδ = 1.1 were used. For

each patient i a functional predictor of standardized cumulative dose of chemotherapy

was obtained:

x̃
(δ)
i (t) =

1.1 · exp
(
β̂0i + β̂1i

∫ t
0

exp
[
φ

(δ)
i (u)T ĉ

(δ)
i

]
du
)

1 + exp
(
β̂0i + β̂1i

∫ t
0

exp
[
φ

(δ)
i (u)T ĉ

(δ)
i

]
du
) (4.11)

where ĉ
(δ)
i is the vector of coefficients estimated by penalized regression analysis using

the transformation g(x) = log x−Lδ
Uδ−x

. Finally, starting from the customized functional

data in Equation (4.11), the derivatives x̃
(dδ)
i (t), which represents the rate of change of

chemotherapy dose over time, were reconstructed. A graphical representation of func-

tional standardized cumulative dose curves x̃
(δ)
i (t) and their derivatives x̃

(dδ)
i (t) are shown

in right panels of Figure 4.5 and 4.6, respectively. Each line represents the functional

predictor for patient i coloured according to the allocated regimen. Functional standard-

ised cumulative dose curves x̃
(δ)
i (t) (right panel in Figure 4.5) also provide information on

treatment adjustments. Dose reductions are represented by final standardised cumulative

dose smaller than 1. For patients with a similar final dose, the slope displays information

on the duration of treatment: the lower the slope, the longer the duration of treatment,

reflecting delays compared to protocol.

Figure 4.5 and 4.6 show that, taking into account the continuous nature of the processes

underlying the data, a customized functional representation of the time-varying covariates

and their derivatives highlights trends and variations in the shape of the processes over

time.

Functional principal component analysis for time-varying biomarkers and

chemotherapy

The functional trajectories provided in Equations (4.9), (4.10) and (4.11) and their deriva-

tives were summarised into a finite set of covariates by applying Functional Principal

Component Analyses (FPCAs). Only results of FPCA on functional predictors x̃
(ALP )
i (t)

and x̃
(δ)
i (t) are presented. In both cases, two principal components were enough to account

for at least 95% of the observed variability.

Results of FPCA on functional ALP predictors x̃
(ALP )
i (t) are provided in Figure 4.7. Left

panel reports the FPC scores plot
(
f

(ALP )
i1 , f

(ALP )
i2

)
with relative boxplots, which show

the distributions of the estimated FPC score values among censored and dead patients.

Each point represents a patient coloured by status (black: Censored, red: Dead). Central

and right panels displays how to interpret the first two Principal Components ξ
(ALP )
k ,

showing the average ALP curve µ(ALP )(t) ± c

√
ν

(ALP )
k · ξ(ALP )

k (t) where ν
(ALP )
k is the is

eigenvalue related to the k-th component and c are constants chosen in order to let the

scores values lie within one, two or three (±c = ±1,±2,±3) standard deviations (i.e.,
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Figure 4.7. FPCA for functional Alkaline Phosphatase x̃
(ALP )
i (t).

Left panel: Functional PC scores plot
(
f

(ALP )
i1 , f

(ALP )
i2

)
with boxplots (black: Censored, red: Dead).

Central panel: Interpretation of first FPC ξ
(ALP )
1 – average standardized cumulative dose µ(ALP )(t) ±

c

√
ν

(ALP )
1 · ξ(ALP )

1 (t), with

√
ν

(ALP )
1 = 1.48 and ±c = ±1,±2,±3.

Right panel: Interpretation of second FPC ξ
(ALP )
2 – average standardized cumulative dose µ(ALP )(t) ±

c

√
ν

(ALP )
2 · ξ(ALP )

2 (t), with

√
ν

(ALP )
2 = 0.23 and ±c = ±1,±2,±3.
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Figure 4.8. FPCA for functional standardized cumulative dose x̃
(δ)
i (t).

Left panel: Functional PC scores plot
(
f

(δ)
i1 , f

(δ)
i2

)
with boxplots (pink: Reg-DI, purple: Reg-C ).

Central panel: Interpretation of first FPC ξ
(δ)
1 – average standardized cumulative dose µ(δ)(t)± c

√
ν

(δ)
1 ·

ξ
(δ)
1 (t), with

√
ν

(δ)
1 = 1.31 and ±c = ±1,±2,±3.

Right panel: Interpretation of second FPC ξ
(δ)
2 – average standardized cumulative dose µ(δ)(t)± c

√
ν

(δ)
2 ·

ξ
(δ)
2 (t), with

√
ν

(δ)
1 = 0.15 and ±c = ±1,±2,±3.
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4. Modelling time-varying covariates effect on survival via Functional Data Analysis

square roots of ν
(ALP )
k ). The first component ξ

(ALP )
1 explained 83.8% of the variability

and a positive (negative) score reflected higher (lower) values of ALP trajectories during

treatment compared to the mean (left panel). The second component ξ
(ALP )
2 explained

13.1% of the variability and positive scores reflected “flat” curves, whereas negative score

reflected curves with highly negative slopes in the first cycles (right panel). The lower the

score, the higher the ALP levels during the first two cycles of the treatment. FPC scores

thus summarize the different patterns of the functional biomarker trajectories between

patients during treatment, being a more informative representation than the baseline

value or the last available measure used through LOCF.

Results of FPCA on functional standardized cumulative dose x̃
(δ)
i (t) are shown in Figure

4.8. Left panel reports the FPC scores plot
(
f

(δ)
i1 , f

(δ)
i2

)
with relative boxplots, which

show the distributions of the estimated FPC score values among the two regimens. Each

point corresponds to a patient. Different colours represent the two regimens. Central and

right panels displays how to interpret the first two Principal Components ξ
(δ)
k , showing

the average curve µ(δ)(t) ± c

√
ν

(δ)
k · ξ

(δ)
k (t) where ν

(δ)
k is the is eigenvalue related to the

k-th component and c are constants chosen in order to let the scores values lie within

one, two or three (±c = ±1,±2,±3) standard deviations (i.e., square roots of ν
(δ)
k ).

The first component ξ
(δ)
1 explained 86.9% of the variability and reflects information on

treatment administration and adjustments with respect to protocol. Positive scores (i.e.,

curves above the average µ(δ)(t) in the left panel) indicate patients without dose-reduction

(i.e., their final standardized cumulative dose is greater or equal to 1) and with possible

delays in treatment: the lower the positive score, the higher the time needed to end

the treatment. Negative scores (i.e., curves below the average µ(δ)(t)) represent patients

with both time-delays and dose-reduction: the lower the negative score, the higher the

total dose-reduction. The second component ξ
(δ)
2 explained 9.8% of the variability and

a positive score indicated a faster growth in the chemotherapy assumption in the first

period compared to the second one, with respect to the mean (right panel). Every two

patients reported different values of FPC scores, reflecting delays or dose reductions during

chemotherapy. This representation illustrates different treatment dynamics, also among

patients allocated to the same regimen. Summarizing differences in both trends and

variations related to the shape of chemotherapy doses consumption processes over time,

the use of FPC scores is more informative than an IIT analysis by different allocated

regimens or a LOCF approach that considers only the last available value.

Multivariate functional linear Cox regression model

To study the effect of risk factors on survival, several MFLCRMs based on different sets

of baseline and functional predictors (see Table 4.3) were estimated. Since functional

trajectories and their relative derivatives are correlated, in each MFLCRM only one type

was considered. Each model was adjusted for gender and stratified by age group at

randomization g ∈ {child, adolescent, adult}. When functional rate of changes of ALP

or WBC biomarkers were included in the models, the values of logarithmic ALP or WBC
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4.3. Results

Table 4.3. Selected truncation parameters Km and integrated AUC (iAUC) for different sets of baseline

and functional predictors. iAUC for stratified time-varying covariate Cox model (TVCM) in Equation

(4.8).

Model Baseline Truncation parameters Km iAUC

ωi ALP dALP WBC dWBC δ dδ

1 (genderi) 2 - 7 - 1 - 0.650

2 (genderi) 2 - 7 - - 1 0.635

3 (genderi, wbci) 2 - - 4 2 - 0.666

4 (genderi, wbci) 2 - - 4 - 3 0.664

5 (genderi, alpi, wbci) - 2 - 4 2 - 0.650

6 (genderi, alpi, wbci) - 2 - 4 - 3 0.647

7 (genderi, alpi) - 1 7 - 1 - 0.645

8 (genderi, alpi) - 1 7 - - 1 0.641

TVCM 0.592

levels at randomization were also considered as adjusting baseline covariates. Cross-

validation with five folds was employed to select the truncation parameters Km for each

set of covariates (see Table 4.3). Time-dependent AUCs and Brier scores were estimated

with R packages tdROC (function tdROC) by [123] and ipred (function sbrier) by [153],

respectively. Figure 4.9 shows the cross-validated mean values of time-dependent AUC

and Brier score over different time horizons for all estimated models (solid lines) and for

TVCM in Equation (4.8) (dashed black lines). All functional models outperformed TVCM

and showed similar Brier score measures over time, therefore time-dependent AUC was

used to select the final model. Weighted averages of the several time-dependent AUCs

over time, estimated through the integrated AUCs (iAUC) by [74], are reported in Table

4.3.
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Figure 4.9. Left panel: time-dependent AUC over different time horizons (from 1 to 7 years after

randomization) for Models 1-8 of Table 4.3 (solid coloured lines) and TVCM in Equation (4.8) (dashed

black line). Right panel: Brier score over different time horizons.
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4. Modelling time-varying covariates effect on survival via Functional Data Analysis

According to the highest iAUC, the best MFLCRM was Model 3, defined as follows:

hig

(
t|ωi, x̃(ALP )

i (t), x̃
(dWBC)
i (t), x̃

(δ)
i (t)

)
=

= h0g(t) exp

{
θ1 genderi + θ2wbci +

2∑
k=1

f
(ALP )
ik α

(ALP )
k +

4∑
k=1

f
(dWBC)
ik α

(dWBC)
k +

2∑
k=1

f
(δ)
ik α

(δ)
k

} (4.12)

where h0g(t) is the baseline hazard function for the g-th age stratum, ωi = (genderi, wbci)

is the vector of baseline covariates; x̃
(ALP )
i (t), x̃

(dWBC)
i (t) and x̃

(δ)
i (t) are the functional pre-

dictors of ALP biomarker, rate of change of WBC and standardized cumulative dose, re-

spectively, with relative FPC scores f
(m)
ik (k = 1, ..., Km; m ∈ {ALP, dWBC, δ};KALP =

2;KdWBC = 4;Kδ = 2).

To estimate the effect of the selected functional predictors on survival, MFLCRM (4.12)

was fitted on the FunCM cohort of 376 patients (see Figure 4.3). In Table 4.4 hazard ratios

along with their 95% confidence interval are shown. Level of WBC at randomization and

the FPC scores related to alkaline phosphatase f
(ALP )
i1 , f

(ALP )
i2 were associate to survival.

The higher the value of WBC at randomization the higher the risk of death, whereas no

effects were observed due to the rate of change in WBC during the protocol observation

period. Patients with high ALP trajectories had poor survival, especially in case of curves

with highly negative slopes during the first cycles of chemotherapy protocol. FPC scores

related to functional chemotherapy dose showed no effects on survival. Estimated survival

probabilities are shown in Figure 4.10. High values of baseline WBC corresponded to poor

survival (top-left panel). The score f
(δ)
i1 related to the first PC of functional chemotherapy

indicated that there was no improvement on survival due to dose-intense profiles (top-right

panel). The effect of functional ALP biomarker suggested that patients with high ALP

trajectories over time (i.e., high value of f
(ALP )
i1 – bottom-left panel), especially during the

first cycles of the chemotherapy protocol (i.e., low value of f
(ALP )
i2 - bottom-right panel),

had poor survival.

4.4. Final remarks

In this chapter, a novel approach based on FDA techniques to investigate the dynamics

of time-varying processes over time and to include additional information that may be

related to the survival into the time-to-event model was presented. Data from the MRC

BO06/EORTC 80931 randomized clinical trial for osteosarcoma treatment were anal-

ysed. Biomarkers and chemotherapy dose were incorporated as time-varying covariates

into time-to-event models using both a TVCM and a FunCM approach. The standard

TVCM with LOCF approach ignored the continuous nature of the processes underly-

ing the data. To overcome this issue, FunCM exploited FDA techniques to represent

time-varying characteristics in terms of functions, enriching the information available for
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4.4. Final remarks

Table 4.4. Estimated hazard ratios (HR) along with 95% confidence intervals (CI) from the multivariate

functional linear Cox regression model.

Covariates HR 95% CI

gender (male) 1.431 [0.964; 2.123]

wbc 3.169 [1.525; 6.585]

f
(ALP )
1 1.210 [1.018; 1.437]

f
(ALP )
2 0.554 [0.399; 0.768]

f
(δ)
1 0.869 [0.719; 1.051]

f
(δ)
2 0.885 [0.547; 1.432]

f
(dWBC)
1 0.990 [0.889; 1.102]

f
(dWBC)
2 0.916 [0.789; 1.062]

f
(dWBC)
3 1.161 [0.892; 1.512]

f
(dWBC)
4 1.219 [0.898; 1.655]
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Figure 4.10. Estimated survival probability based on the multivariate functional linear Cox regression

model (4.12). Time t0 = 0 corresponds to T ∗0 in Fig. 4.1. Top-left panel: patients with different values

of WBC [× 109/L] at randomization (green: WBC = 4; blue: WBC = 8; red: WBC = 12). Top-

right panel: patients with different values of the first PC score for functional chemotherapy (purple:

f
(δ)
1 = −0.8; pink: f

(δ)
1 = 0.8). Bottom-left panel: patients with different values of the first PC score

for functional ALP biomarker (red: f
(ALP )
1 = 1; blue: f

(ALP )
1 = −1). Bottom-right panel: patients with

different values of the second PC score for functional ALP biomarker (red: f
(ALP )
2 = 0.5; blue: f

(ALP )
2 =

−0.5). When not specified, the other risk factors are fixed to the most frequent class for categorical

covariates, i.e., adolescent males, and to the median value for continuous ones, i.e., WBC = 7.65×109/L

at randomization, f
(δ)
1 = 0.08, f

(δ)
2 = −0.03, f

(ALP )
1 = −0.10, f

(ALP )
2 = 0.07, f

(dWBC)
1 = −0.12,

f
(dWBC)
2 = −0.02, f

(dWBC)
3 = −0.07 and f

(dWBC)
4 = −0.08.
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4. Modelling time-varying covariates effect on survival via Functional Data Analysis

modelling survival with relevant time-varying features related to the evolution of the pro-

cesses over time. These features were included into MFLCRMs by FPCA to study the

effects of functional risk factors on patients’ overall survival.

Differences in results for TVCM and MFLCRM were due to the different nature of the

information incorporated in the two models. As a piecewise-constant approach, TVCM

considered as constants the last biomarkers/dose levels over different time points (ex-

pressed in days). In practice, among the measurements recorded during the observation

period, only the last value had any real impact on overall survival, as only one patient

presented with a time-to-event of less than 180 days. This discarded both information

about the continuous nature of the processes and the history of the actual levels measured.

MFLCRM included information related to different levels variations and timing during the

entire observation period, and functional biomarkers were defined over cycles. Thanks to

the introduction of relevant dynamic features related to the continuous functional nature

of the processes, MFLCRM resulted more informative than TVCM, outperforming it both

in terms of calibration and discrimination over time. MFLCRM results suggested that

osteosarcoma patients with high ALP trajectories during treatment, especially during the

first cycles of the chemotherapy protocol, have poor overall survival. Dose-intense profiles

were not associated with survival, even if functional chemotherapy representations were

able to capture individual realisations of the intended treatment, detecting differences

between patients randomised to the same regimen. This suggested that considering only

the assumed dose as treatment proxy is not enough. Chemotherapy presents some par-

ticular aspects, such as latent accumulation of toxicity, which must be taken into account

[112].

The proposed FunCM focused on the representation and the reconstruction of the func-

tional trajectories related to the time-varying processes of interest. Such data are usually

considered in a very simplistic way in cancer prediction models, where they act as fixed

baseline or as time-dependent LOCF covariates. In this way the amount of information

they may provide is not considered, as it is often the changing patterns of the func-

tional trajectories rather than the baseline/last value that affects patients’ survival. The

strength and innovation of FunCM was the ability to capture the individual realisations

of the process over time through a customized functional reconstruction. The developed

techniques allowed (i) to account for the continuous time-varying nature of the processes

underlying the data and their properties, such as nonlinearity, positivity, constraints,

monotonicity, (ii) to move from sparse and irregular longitudinal data to functions de-

fined over a common continuous domain, overcoming the issues of values missingness and

different temporal grids, and (iii) to reconstruct and provide derivatives information in

a tailored way. The use of derivatives is important both in extending the range of sim-

ple graphical exploratory methods and in the development of more detailed methodology

[162]. In fact, interesting patterns are often much more apparent in derivatives than in

the original curves. Furthermore, through a proper dimensionality reduction technique,

this methodology allowed to extract additional information contained in the functions.

This result is an effective exploratory and modelling technique to highlight trends and

variations in the evolution of the processes over time.
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4.4. Final remarks

In contrast to a TVCM approach, the use of FunCM requires that patients survived

for a period at least equal to the length of the observation period used to compute the

functional predictors. This might imply a loss of information in situations with high rate

of mortality during the observation period (that is not the case under study as only one of

the cohort patients who had completed the chemotherapy treatment protocol died during

the first 6-months after randomization – see Figure 4.3). In those cases, a joint modelling

approach can be used to overcome both LOCF and selection bias issues, since its allows

the simultaneous modelling of longitudinal and time-to-event outcomes. However, joint

models are computational expensive in case of multiple longitudinal outcomes and require

assumptions on the distributions of the processes that need to be carefully validated to

avoid biased estimates.

This work opens doors to many further developments, both in the field of statistical

methods and in cancer research. The dimensionality reduction via FPCA is just one way

to work with these data in order to use them within inferential contexts. In fact, the

reconstruction via FDA allows to properly use the functional data to address relevant

clinical research questions, according to the needs of the analysis and the outcomes of

interest. From a clinical point of view, it will be necessary to simultaneously consider

chemotherapy modifications and the occurrence of adverse events. This aspect need to

be taken into account into the representation of the dynamic evolution of these processes.

To model them simultaneously is not straightforward, as we will see in Chapter 7.

In conclusion, this study showed that working in this direction is a difficult but profitable

approach, which could lead to new improvements for subject-specific survival predictions

and personalised treatment. The complexity of the phenomenon asks for the developments

of new methodologies able to deal with the peculiar aspects of chemotherapy treatment,

such as the presence of multiple types of toxic side effects during chemotherapy cycles.

In this sense, Chapters 5 and 6 will be devoted to the development of new methods, still

lacking in the medical literature, capable of appropriately representing the overall toxicity

burden experienced by patients during treatment.
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CHAPTER 5

A novel longitudinal method for

quantifying multiple overall toxicity

This chapter has been published in BMJ Open, 11:e053456, 2021 as M. Spreafico, F. Ieva, F.

Arlati, et al. “Novel longitudinal Multiple Overall Toxicity (MOTox) score to quantify adverse

events experienced by patients during chemotherapy treatment: a retrospective analysis of the

MRC BO06 trial in osteosarcoma” [190].

In cancer trials the relationship between chemotherapy dose and clinical efficacy outcomes

is problematic to analyse due to the presence of negative feedback between exposure to

cytotoxic drugs and other aspects, such as latent accumulation of chemotherapy-induced

toxicity. Toxic Adverse Events (AEs), developed by patients through a chemotherapy

cycle, affect subsequent exposure by delaying the next cycle or reducing its dosage, repre-

senting one of the principal reasons for treatment discontinuation [186]. The introduction

of the Common Terminology Criteria for Adverse Events (CTCAE) [208] multimodality

grading system greatly facilitated the standardized reporting of AEs and the comparison

of outcomes between trials and institutions [204, 226]. According to CTCAE, AEs range

in severity from minor, asymptomatic changes to life-threatening injuries or death [204].

Characterisation of toxicity is of interest to patients and clinicians engaged in shared

decision making about a treatment strategy [198]. Toxicities are at the same time risk

factors for mortality and predictors of future exposure levels, representing time-dependent

confounders for the effect of chemotherapy on patient’s status [112]. Incorporating time

into analysis of toxicity is important for the comparison between different chemotherapy

regimens or even multiple toxicities from the same regimen [199]. Therefore, it is crucial

to provide an effective tool to assess the evolution of overall toxicity over chemotherapy

treatment and to guide the therapy strategy.

Since patients might have different types and number of AEs, to summarize toxicity

during treatment and investigate the true extent of toxic burden represent challenging

problems in cancer research. Due to the complexity of longitudinal chemotherapy data,

no standard method is available for summarising AEs data into a concise score of overall

risk. Toxicity data are usually analysed in cancer prediction models by looking at the

maximum toxicity over time (max-time) or maximum grade among events (max-grade)

[204, 226, 199, 184, 140, 205]. Although both methods can summarise data over time,

a lot of information are not used. The max-time method summarises longitudinal data
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5. A novel longitudinal method for quantifying multiple overall toxicity

into a single AE profile by using the worst (maximum-severity) grade over treatment for

each toxic event, without distinguish between isolated and repeated episodes. The max-

grade method summarises all the toxic AEs through the maximum grade among all types

of events, without discerning between single or multiple episodes. Other methods, i.e.,

weighted sums of individual toxic effects [205, 28, 172, 117, 35], have also been proposed to

consider longer-lasting lower-grade chronic toxicities, which may have impact on patient’s

quality of life. However, these approaches do not provide information about AEs timing

or severity at a given cycle during treatment. The inclusion of time-related information

could provide intuitions on AEs and their evolution over time [198], giving new insights

in cancer treatment.

In this framework, alternative methods of longitudinal toxic event evaluation have been

proposed [198, 205, 114, 84, 200] but none of them is focused on analysing the evolution

of high overall toxicity over treatment using a cycle-by-cycle approach. To quantify risk

for each patient including a time-dimension, in this chapter a new longitudinal Multi-

ple Overall Toxicity (MOTox) score is proposed. At each cycle, this score summarises

multiple CTCAE-graded AEs, and describe the overall toxic status along with the most

severe risk event. The evolution of high MOTox scores over cycles is then studied using

logistic regression models to predict high overall toxicity at the end of the cycle using

personalized characteristics, achieved chemotherapy dose, previous toxicities, biochemical

and haematological factors over time. To illustrate the use of the longitudinal MOTox

procedure to quantify how chemotherapy-induced toxicities may evolve in cancer patients,

a retrospective analysis was conducted on MRC BO06/EORTC 80931 Randomized Con-

trolled Trial (RCT) for the treatment of osteosarcoma [119]. As mentioned in Chapter

4, patients were treated with cisplatin (CDDP) and doxorubicin (DOX), two cytotoxic

drugs commonly used in the treatment of various types of human cancers. Both DOX

and CDDP are characterized by various toxic AEs: apart from nausea, specific renal and

neurotoxicity [68, 9] for CDDP or cardiotoxicity [228, 227] for DOX. Longitudinal MOTox

scores over therapy were computed considering non-haematological toxicity. Demograph-

ics, treatment-related and biochemical characteristics were used to examine high overall

toxicity over cycles. Provided that longitudinal CTCAE-graded toxicity data are avail-

able, the novel MOTox scores can be applied to analyse data from any cancer treatment.

The rest of this chapter is organized as follows. In Section 5.1 non-haematological toxicity

data in BO06 trial are described. Longitudinal MOTox scores and statistical methodolo-

gies are introduced in Section 5.2. Results are presented in Section 5.3. Section 5.4 ends

with a discussion of strengths and limitations of the current approach, identifying some

developments for future research.

5.1. BO06 data

Data from the MRC BO06/EORTC 80931 RCT for the treatment of osteosarcoma [119]

were analysed. Specifically, we focused on the final cohort of 377 patients who completed

all six cycles of chemotherapy within 180 days after randomization without abnormal
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dosages (i.e., +25% higher than planned). This cohort is the same as the one analysed in

Chapter 4, under TVCM analysis (see Figure 4.3 in Chapter 4). Patient characteristics

at randomization have been reported in Table 4.1 in Chapter 4.

5.1.1. Treatment-related factors

As reported in Section 4.2.1 in Chapter 4, BO06 RCT protocol established that treatment-

related factors (administered dose of chemotherapy, cycles delays, haematological and

biochemical parameters, chemotherapy-induced toxicity and histological response to pre-

operative chemotherapy) were collected prospectively at each cycle of chemotherapy [119].

Laboratory tests were performed over cycles in order to monitor patient’s health status and

the development of toxicities or adverse events. Specifically, levels of alkaline phosphatase,

renal clearance, lactate dehydrogenase, calcium and magnesium were measured at the

beginning of each cycle (i.e., before the drugs administration) according to local practice.

Blood counts (white blood cells, neutrophils, platelets) were obtained before each cycle

and at the expected nadir of the course (day 10 of the cycle in Reg-C, day 8 in Reg-DI ). A

summary of the biochemical and haematological values measured for the selected cohort

over the entire dataset is shown in Table 5.1.

Delays or chemotherapy dose reductions during treatment were possible in case of tox-

icity. Specifically, non-haematological chemotherapy-induced toxicity related to nau-

sea/vomiting (naus), infection (inf), oral mucositis (oral, i.e., inflammation of the mu-

cosae of the gastrointestinal tract, especially the oral ones), cardiac toxicity (car, i.e.,

heart dysfunctions), ototoxicity (oto, i.e., hearing loss) and neurological toxicity (neur)

were registered at each cycle and graded according to the Common Terminology Criteria

for Adverse Events Version 3 (CTCAE v3.0) [208], with grades ranging from 0 (none) to

4 (life-threatening) (see Table 5.2). Grades of chemotherapy-induced non-haematological

toxicity over cycles recorded for the selected cohort are reported in Figure 5.1. Nau-

sea/vomiting was reported at least once over cycles in 97.3% of patients (367/377), with

a percentage that decreased over cycles from 84.9% in cycle 1 to 52.5% in cycle 6. The per-

centages of patients who reported oral mucositis or infections were more stable over cycles:

Table 5.1. Descriptive of biochemical and haematological values over the entire dataset.

Biomarkers* Mean (s.d.) Median (IQR) Min/Max

White Blood Count [×109/L] 7.36 (8.25) 5.00 (3.10; 8.20) 0.10/117

Neutrophils [×109/L] 4.74 (6.93) 2.60 (1.12; 5.30) 0/83.38

Platelets [×109/L] 219.8 (157.5) 190 (99; 311) 2/999

Renal Clearance [ml/min/1.73m2] 112.3 (34.9) 110 (90; 132) 8/396

Alkaline Phosphatase [IU/L] 238.5 (279.1) 162.5 (98.0; 267.2) 14/3680

Lactate Dehydrogenase [IU/L] 447.0 (264.2) 394.0 (298.8; 531.0) 4/4310

Calcium [mmol/l] 2.34 (0.36) 2.35 (2.25; 2.45) 0.21/9.70

Magnesium [mmol/l] 0.71 (0.24) 0.69 (0.57; 0.80) 0.07/3.06

* Haematological and biochemical laboratory tests were usually performed before each cycle of chemotherapy; for blood

count also at the expected nadir of the course, that is day 10 of the cycle in Reg-C or day 8 in Reg-DI.
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30.5%–43.3% for mucositis, with 78% (294/377) reporting mucositis at least once, and

23.8%–31.3% for infection, with 69% (260/377) reporting an infection at least once. Oto-

toxicity was reported at least once in 21.5% (81/377), cardiac toxicity in 14.1% (53/377)

and neurological toxicity in 11.7% (44/377).
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Figure 5.1. Bar-plots of chemotherapy-induced toxicity CTCAE grades over cycles (wheat: 0; light-

orange: 1; orange: 2; red: 3; dark-red: 4). Each panel refers to a different type of toxicity: nau-

sea/vomiting [top-left], mucositis [top-centre], infection [top-right], cardiac toxicity [bottom-left], ototox-

icity [bottom-centre] and neurological toxicity [bottom-right].

Table 5.2. Toxicity coding based on Common Terminology Criteria for Adverse Events (CTCAE) v3.0

by [208] for non-haematological chemotherapy-induced toxicity related to nausea/vomiting, infection, oral

mucositis, cardiac toxicity, ototoxicity and neurological toxicity.

Toxicity Grade 0 Grade 1 Grade 2 Grade 3 Grade 4

Nausea or None Nausea Transient Continuative Intractable

Vomiting vomiting vomiting vomiting

Infection None Minor Moderate Major Major infection

infection infection infection with hypotension

Oral No Soreness or Ulcers: can Ulcers: liquid Alimentation not

Mucositis change erythema eat solid diet only possible

Cardiac No Sinus Unifocal PVC Multifocal Ventricular

toxicity change tachycardia arrhythmia PVC tachycardia

Ototoxicity No Slight Moderate Major Complete

change hearing loss hearing loss hearing loss hearing loss

Neurological None Paraesthesia Severe Intolerable Paralysis

toxicity paraesthesia paraesthesia

PVC = premature ventricular contraction
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5.2. Statistical Methodologies

5.2.1. Longitudinal Multiple Overall Toxicity (MOTox) scores and

outcomes

The longitudinal chemotherapy-induced Multiple Overall Toxicity (MOTox) score is in-

troduced. Let T be the set of different toxicity categories. Let k be the cycle index (which

takes value k ∈ {1, ..., 6}) and toxij,k be the j-th toxicity level for the i-th patient at the

k-th cycle with value from 0 to 4. The chemotherapy-induced MOTox score for the i-th

patient at cycle k is defined as:

MOToxi,k = average toxic leveli,k + worst gradei,k

=
1

|T |
∑
j∈T

toxij,k + max
j∈T

(toxij,k) ∈ [0, 8]
(5.1)

where the average toxic level is hence the arithmetic mean of the grades related to all

the toxic AEs registered for the patient at cycle k, and the worst grade is the maximum

CTCAE-grade among all the toxic AEs experienced by the patient at the cycle under

analysis.

The MOTox score is a cycle-dependent longitudinal mean-max index that quantifies the

multiple types of Adverse Events (AEs) experienced by patient i during cycle k. This

choice was made to include the cycle-time component in the analysis and to take into

account that (i) multiple lower-grade chronic toxicities may have impact on patient’s

quality of life and (ii) huge level in one specific toxicity can cause severe effects and

permanent consequences for the patient. MOTox score can detect differences in health

status among patients, providing more information with respect to traditional methods.

This novel score only requires that the different types of toxicity necessary for the compu-

tation, are recorded according to the CTCAE grading system. In this way, this definition

can be applied to different groups of CTCAE-graded toxicities and applied to any cancer

treatment.

The median value of MOTox scores over all the patients in all the cycles, computed as

τ = median
i,k

(MOToxi,k),

is defined as global median MOTox value. It is used as a threshold to define a longitudinal

binary score for high (or low) overall toxicity, named longitudinal high-MOTox score :

high-MOToxi,k =

{
1 if MOToxi,k > τ

0 otherwise.
(5.2)

that indicates if patient experienced high MOTox with respect to the global median

MOTox value τ at cycle k (high-MOToxi,k = 1) or not (high-MOToxi,k = 0).

MOTox and high-MOTox scores represent new indices to measure patients’ overall toxicity

related to multiple types of AEs. Binary high-MOTox scores over cycles represent the

clinical endpoints used as outcome measures for high overall toxicity over treatment.
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Interpretation of longitudinal MOTox scores

As a mean-max index of CTCAE-graded toxicity levels ranging from 0 to 4 each, the

MOTox score MOToxi,k in Equation (5.1) – as well as the global median MOTox value τ

– ranges from 0 to 8. A MOTox score equal to 0 reflects a patient i who did not experience

any kind of toxicity for the cycle k under analysis, i.e., a patient with all the toxicities

equal to CTCAE-grade 0 at cycle k. Conversely, a MOTox score equal to 8 represents a

subject i who experienced the highest level of toxicity burden for each type of toxic AE

for the cycle k under analysis, i.e., a subject i with all toxicities equal to CTCAE-grade

4 at cycle k.

The global median MOTox τ represents the median value of MOTox scores computed

over all the patients in all the cycles, i.e., the median overall toxicity related to multiple

AEs experienced by all the patients over the entire chemotherapy treatment. If required

by the needs of the study, different median MOTox values breakdown by arms/regimens

represent an easily-applicable alternative to a global τ in order to study other treatment

regimen/cancer types where different arms/regimens are characterized by significantly

different overall toxicity burden.

Binary variable high−MOToxi,k in Equation (5.2) indicates if patient i experienced high

MOTox with respect to the global median MOTox value τ at cycle k, i.e., it distinguishes

patients with low (high-MOToxi,k = 0) or high (high-MOToxi,k = 1) overall toxicity

burden over treatment.

5.2.2. Statistical analysis

A retrospective analysis to examine prognostic factors for binary high-MOTox scores over

cycles was conducted. Baseline and treatment-related characteristics were examined. In

particular, chemotherapy dose given at cycle k was analysed as percentage of achieved

chemotherapy dose up to cycle k for each patient i, defined as the percentage of the

cumulative drugs administrated up to cycle k divided by the cumulative drugs planned

up to k:

pδi,k =
cumulative drugs administrative up to cycle k

cumulative drugs planned up to cycle k
· 100%

=

∑k
c=1 (DOXi,c + CDDpi,c) /sai,c [mg/m2]

175 [mg/m2] · k
· 100%

(5.3)

where k ∈ {1, ..., 6} is the cycle index, sa is patient’s surface area in m2, DOX and

CDDP are the administrated mg of doxorubicin and cisplatin, respectively. A two-sided

significance level of 5% was adopted. R software [161] was used for the analyses.

Data on non-haematological toxicity were not available for 1.25% of measurements, which

were considered as CTCAE 0-grade according to clinical indication. For treatment-related

missing values (i.e., histologic response, biochemical and haematological markers), missing

values were imputed using multiple imputations by chained equations algorithm [209].
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5.3. Results

At each cycle, the impact of factors on high overall toxicity (binary high-MOTox ) was

examined using multivariable logistic regression models and expressed by odds ratios (OR)

[137]. An OR > 1.0 indicates a greater risk of achieving a high overall toxicity in case

of a 1-unit increase for numerical characteristics or compared to the baseline category for

categorical ones. Covariates with more than 15% of missing values in the original data

were not included in the multivariable models. A stepwise backward selection procedure

was applied to select the best set of covariates at each cycle based on Akaike Information

Criterion (AIC). Variance Inflation Factor (VIF) was also used to remove non-significant

and highly collinear covariates. Predictive capacities of models were assessed by sensitivity

and specificity metrics and Area Under the receiver operating characteristic Curve (AUC)

[55].

5.3. Results

5.3.1. Non-haematological longitudinal Overall Toxicity scores

For each patient, non-haematological chemotherapy-induced toxicity related to nausea,

mucositis, infection, neurological toxicity, cardiac toxicity, and ototoxicity, i.e., set T =

{naus, oral, inf, car, oto, neur}, were considered to compute the longitudinal MOTox

scores over cyclesfor each patient, according to Equation (5.1) and Equation (5.2). MOTox

scores (Figure 5.2 – left panel) ranged between 0 and 6 and the mean values (blue points)

decreased over cycles from 2.626 (cycle 1) to 1.953 (cycle 6). The global median MOTox

value τ , i.e., the median value of overall toxicity over all the patients in all the cycles, was

2.333 (dashed red line). An example of longitudinal MOTox scores over cycles for five

random patients from the study cohort is shown in Figure 5.3. The global mean MOTox

value τ is reported as solid black line. Different evolution patterns of longitudinal MOTox

score over cycles are presented: increasing pattern (orange: patient A), decreasing pattern

(light blue: patient B), isolated severe status (violet: patient C), low-values (blue: patient

D) and high-values (red: patient E) over cycles.

To evaluate which regimens is characterized by high toxicity over cycles, Table 5.3 reports

the means of MOTox scores at each cycle for patients allocated in Reg-DI and Reg-C, and

respectively. In cycles 2-3, mean overall toxicity for patients in Reg-DI was higher than

for those in Reg-C (p<0.05), whereas from cycle 4 the difference was not statistically

significant. Figure 5.4 shows the mean values of each non-haematological toxicity along

with 95% Bonferroni’s confidence intervals over cycles, stratified by regimens. Each panel

refers to a different type of toxicity: nausea/vomiting, mucositis, infection, cardiac tox-

icity, ototoxicity and neurological toxicity. The biggest contribution to the difference in

the mean MOTox scores by regimes was given by mucositis, significantly higher in Reg-DI

than in Reg-C at cycles 2 and 3.

Median MOTox values by arms (Reg-DI or Reg-C ) τDI and τC were both equal to 2.333.

Therefore, the global MOTox median value τ = 2.333 was then used to compute the

longitudinal dichotomous high-MOTox scores over cycles. Right panel in Figure 5.2 shows
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the percentages of patients with high-MOTox, which decrease from 57.8% (218/377) at

cycle 1 to 36.6% (138/377) at cycle 6. Association between chemotherapy regimens and

high overall toxicity at cycles 2–3 (p<0.05) was found, supporting results shown in Table

5.3. At each cycle, high overall toxicity was strongly associated with low/high MOTox at

previous cycles.
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Figure 5.2. Left panel: Boxplots of longitudinal MOTox scores over cycles. Blue points refers to the

mean MOTox values per cycle. Dashed red line refers to the global median MOTox value =2.333. Right

panel: Bar-plots of longitudinal high-MOTox scores over cycles (grey: 0 or low; magenta: 1 or high).

●

● ●

●

●

●

●

● ●

●

● ●●

● ● ● ●

●

●

●

● ●

● ●

●

●

●

●

●

●

ττττττττττττττττττττττττττττττ

0

1

2

3

4

5

1 2 3 4 5 6
Cycle

M
ul

tip
le

 O
ve

ra
ll 

To
xi

ci
ty

 (
M

O
To

x)
 s

co
re

Patient

●

●

●

●

●

A
B
C
D
E

Longitudinal MOTox score over cycles

Figure 5.3. Example of evolution of longitudinal Multiple Overall Toxicity (MOTox) scores over cycles

for five patients from the study cohort. Solid black line refers to the global median MOTox value τ = 2.333.

Table 5.3. Overall toxicity differences between Dose-Intense (DI) and Conventional (C) regimens.

MOTox
k

DI and MOTox
k

C are the means of MOTox scores at cycle k for patients allocated in Reg-DI and

Reg-C, respectively.

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6

MOTox
k

DI 2.552 2.653 2.488 2.240 2.261 1.920

MOTox
k

C 2.782 2.229 2.150 2.359 2.309 1.989

p-value of test 0.045 0.003 0.018 0.437 0.737 0.657
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Figure 5.4. Mean value of chemotherapy-induced toxicity during cycles along with 95% Bonferroni

confidence intervals, stratified by the regimens (purple: Reg-C ; pink: Reg-C ). Each panel refers to a

different type of toxicity: nausea/vomiting [top-left], mucositis [top-centre], infection [top-right], cardiac

toxicity [bottom-left], ototoxicity [bottom-centre] and neurological toxicity [bottom-right].

5.3.2. Multivariable logistic regression models for high overall

toxicity over cycles

The evolution of longitudinal binary high-MOTox score over cycles defined was analysed

through multivariable logistic regression models, using a cycle-by-cycle approach. Starting

from the second cycle, each logistic regression modelled the binary dependent variable

high-MOTox at the of the cycle in terms of patient’s characteristics and previous toxicity

levels. Baseline and treatment-related information with less than 15% of missing values

in the original dataset were considered as possible prognostic factors for toxicity. In

particular, among haematological and biochemical factors, measurements of white blood

count (WBC), neutrophils (N), platelets (PLT), alkaline phosphatase (ALP) and calcium

(Ca) were considered before the beginning of each cycle (i.e., the administration of the

course). Only WBC values were considered at the planned nadir of each cycle, due to

the high percentage of missing values (>15%) for other blood counts. Due to the skewed

nature of biomarkers distributions, haematological and biochemical factors were included

in the models as difference between the logarithmic measure and the logarithmic value

measured at randomization. Neutrophils–Platelets Score (NPS), a three-level systemic

inflammation-based score (good : N≤ 7.5 × 109/L and PLT≤ 400 × 109/L; intermediate:

N> 7.5×109/L or PLT> 400×109/L; poor : N> 7.5×109/L and PLT> 400×109/L) [127],

and Neutrophils-White blood count Ratio (NWR, i.e., the neutrophils count dived by the

white blood cell count) were also considered. For each model, multicollinear variables with

VIF greater than 5 were removed. Then, stepwise backward procedures were used to select

covariates according to AIC. The selected models were fitted on the whole dataset.

Table 5.4 shows estimated Odds Ratios (ORs) along with 95% Confidence Intervals (CIs)
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and overall performances (i.e., specificity, sensitivity and AUC) of each logistic regression

model. All the models have similar overall performances: sensitivity and specificity values

ranged between 0.66 and 0.77; AUCs were between 0.72 and 0.79. No sex effect was found.

In cycle 2 and 3, higher percentage of achieved chemotherapy dose is associated to the

risk of high toxicity, especially for patient in Reg-DI (cycle 2). Haematological factors

were selected in each model. Both PLT before the administration of the course and WBC

at nadir had a protective role on the risk of having high overall toxicity (OR < 1). In

particular, an increase in the dynamic difference between the logarithmic levels decreased

the risk of high toxicity. Patients with previous high-MOTox had higher risk to experience

again high overall toxicity with respect to patients with previous high-MOTox (OR > 1),

showing that high-MOTox conditions during previous cycles were risk factors for the

occurrence of high-MOTox at the current cycle. In particular, toxicity information related

to different previous cycles were selected and statistically significant in the final models,

meaning that patient’s global history – and not only the last condition – had impact on

his/her current low/high overall toxicity burden.

The performed analyses were finally used to develop a demo webapp availbale at http:

//osteowebapp.prod.s3-website.eu-central-1.amazonaws.com/. The demo shows

how the multivariable models developed to predict high overall toxicity index at each cycle

could be used as a support tool for clinical decision making. The webapp is presented in

Appendix B.1.

5.4. Final remarks

Due to the presence of multiple types of Adverse Events (AEs) with different levels of

toxicity burden, to study the overall toxicity progression during chemotherapy is a difficult

problem in cancer research. The development of statistical methods able to deal with the

complexity of longitudinal chemotherapy data and to provide a methodology to use the

information of AEs data into a score of overall risk is necessary and of clinical relevance.

This chapter explored the evolution of chemotherapy-induced toxicity over treatment in

patients with osteosarcoma. First, a novel approach to analyse longitudinal chemotherapy

data was discussed, the cycle-dependent longitudinal mean-max Multiple Overall Toxi-

city (MOTox) score over therapy. Starting from recorded CTCAE grades, the MOTox

score summarised the occurrence of repeated AEs allowing to (i) describe the overall

toxicity burden, (ii) consider the most severe collateral effect, and (iii) incorporate the

time-component of treatment cycles. Results showed that the inclusion of worst-graded

events, multiple lower-grade chronic toxicities, and time-dimension related to chemother-

apy cycles allowed to consider different evolutions of overall toxic levels over treatment.

This approach investigates in more details the effect of AEs on patients’ life compared to

traditional methods (i.e., max-grade or max-time). The cycle-by-cycle longitudinal evo-

lution of high overall toxicity was analysed using multivariable logistic regression models

to predict binary high-MOTox at the end of the cycle in terms of previous toxicity levels
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and patient’s characteristics. At each cycle, previous toxicity levels were selected: high-

MOTox during previous cycles were risk factors for the occurrence of high-MOTox at the

next cycle. The highest impact on the risk was observed for the last available toxic con-

dition. Patient’s history of toxicity played a fundamental role in the risk of high overall

toxicity burden during cycles and, consequently, on patient’s health status during the

therapy. This analysis also suggested that the Conventional Regimen might be preferred

to the Dose-Intense in terms of life conditions during the first half of the therapy (i.e., up

to the third cycle): mean MOTox values in Reg-DI were statistically higher than in Reg-C

during cycles 2-3 and Reg-DI was a risk factor for the occurrence of high-MOTox at the

end of the second cycle. However, in terms of survival, a beneficial effect of low level

(grade 1-2) platelet and nausea/vomiting toxicity and more severe (grade 3-4) mucositis

on survival in osteosarcomas was previously shown [172]. Appraisal of the experienced

toxicity against survival encourages the genetic exploration of the individual sensitivity

to both adverse effects as well as the sensitivity of the tumour to chemotherapy.

Different statistical and machine learning methods for high/low binary classification were

considered, among others support vector machines or ensemble methods (e.g., random

forests or XGBoost). More complex methods showed no significant improvements in

terms of predictive performances with respect to logistic regression models. Therefore,

the choice was driven by the clinical interpretability offered by the cycle-by-cycle logistic

regression approach.

The presented MOTox and binary high-MOTox scores can be used to (i) describe pa-

tient’s response to therapy over cycles, (ii) predict the upcoming overall toxicity level

given patient’s history and (iii) support clinical decisions, trying to reduce the impact of

therapies in terms of toxic AEs. Provided that longitudinal CTCAE-graded toxicity data

are available from drug administrations, the new approach is a flexible procedure that

can be adapted and applied to other cancer studies. The possible generalization to many

different settings, added to a cooperation with medical staff, could lead to improvements

in the definition of useful tools for health care assessment and treatment planning. As

shown in the demo webapp presented in Appendix B.1, once validated, the multivariable

models could be used to set up a support tool to predict high overall toxicity at the end

of each cycle. This would allow to monitor patient’s toxic burden during treatment and

to inform dose reductions or dose delays to make treatment more tolerable.

This retrospective exploratory analysis comes with some challenges and limitations. Al-

though the toxicity data were recorded using the standardised CTCAE grading sys-

tem, heterogeneity in assessing non-haematological toxicity is present in the data, espe-

cially considering that MRC BO06 RCT is limited to a young population with a rare

tumour. The analysis was performed on a single RCT in osteosarcoma, where only

non-haematological toxicities were recorded according to CTCAE. Other factors such

as nephrotoxicity, lymphocytes count, tumour size, CTCAE-graded haematological toxi-

cities or quality-of-life were not collected. Although over the last twenty years the main

chemotherapy protocol has been used, some aspects of osteosarcoma treatment and sup-

portive care have changed from current measures [140], such as the prophylaxis of nausea

and vomiting. Such changes are not always easily identifiable and are difficult to account
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for in retrospective analyses [140]. Finally, this work focused on the quantification and

evolution of overall toxicity in patients who completed all 6 cycles of chemotherapy treat-

ment. This choice was due to a specific research question. However, this may lead to bias

selection due to the exclusion of patients who may have had high toxicity levels as the

reason for treatment discontinuation. Since the definition of the MOTox score is general,

it can be computed also for those excluded patients, but alternative statistical methods

to multivariable logistic models must be developed to also take into account therapy dis-

continuation. In fact, subsequent analyses should include patients who have discontinued

treatment to better understand if MOTox is a potential measure of treatment tolerability

and if may be associated with treatment discontinuation.

External validation is needed to evaluate the application of the novel score in order to guide

prospective treatment decisions in clinical practice, both for osteosarcoma and for other

types of cancer. On one hand, integration with data from other osteosarcoma studies could

help in further investigating the performance of the models and in examining whether

the analysis should be integrated with more information on toxicity or other potential

predictors. On the other hand, to apply the developed procedure to the clinical decision-

making process in different treatment regimen/cancer types, the multivariate methods

need to be tailored according to each specific study.

This work opens doors to many further developments, both in the field of statistical

methodology and in cancer research. From a clinical point of view, the interest may lie

in identifying patients with extremely high or extremely low overall toxicity with respect

to intermediate toxic conditions. As consequences multiple MOTox categories related to

different levels of overall toxicity (e.g., extremely-high/high/intermediate/low/extremely-

low MOTox) are defined. Thresholds to establish the MOTox ranges for the different

categories needs to be created. This is not a trivial task which requires a proper external

validation. Furthermore, the comparison between the MOTox score and Quality-Of-Life

(QOL) represents a challenging area of investigation in clinical research. MRC BO06 trial

did not collect QOL data, but it would be of interest to evaluate MOTox in the con-

text of rigorously collected Heath-related QOL (HrQOL) or Patient-Reported Outcome

(PRO) data to investigate the role of the developed tool in better understanding treat-

ment tolerability. Therefore, future analyses must focus on data where QOL is properly

measured and reported. From a statistical point of view, (i) the CTCAE-grades of tox-

icity could be analysed in greater depth through an appropriate longitudinal approach

to categorical data, and (ii) an adequate modelling of the intricate mechanism between

toxicity, chemotherapy dose and survival, which is still lacking in the medical literature,

represents a major challenge of clinical relevance. Due to the complexity of the problem,

both aspects are not straightforward and ask for the developments of new methodologies,

as we will see in Chapters 6 and Chapter 7, respectively.

In summary, this chapter introduced a novel longitudinal method to explore and quan-

tify AEs experienced by patients during cancer treatment. Preliminary results from the

retrospective analysis of MRC BO06 RCT showed that longitudinal methods should be

considered in future analyses of cancer trials, since they could lead to new insights into

chemotherapy-induced toxicity compared to traditional approaches. For this reason, in
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the next chapter we develop a new taxonomy based on latent Markov models [22] and

compositional data [6] to model the evolution of latent overall toxicity burden on the basis

of nominal CTCAE-grades observed over cycles.
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Appendix B

B. Appendix to Chapter 5

B.1. Demo OsteoWebApp

The demo OsteoWebApp displays how the novel MOTox approach can become a useful

tool for health care assessment and cancer treatment planning. In particular, it shows how

the multivariable models to predict high overall toxicity at the end of each cycle developed

in Chapter 5 could be used as a support tool for clinical decision making. It is available

at: http://osteowebapp.prod.s3-website.eu-central-1.amazonaws.com/.

The application is implemented through Amazon Web Services (https://aws.amazon.

com/it/) tools and executes the R [161] code related to the models in Table 5.4. Thanks

to the intuitive interface, the webapp is easy to use and complete in the information it

provides.

An example of the user interface, showing the inputs and results for model related to

cycle 2, is reported in Figure 5.5. The top bar shows the cycle of chemotherapy of

interest. The main form asks a series of information, depending on the variables selected

for each cycle. The “Predict Toxicity Index” button in blue allows to get the results of the

prediction, which are provided in terms of probability of develop a high overall toxicity

level. Sensitivity and specificity of each model are also reported. Example in Figure 5.5

shows that a patient in Reg-DI with high-MOTox at cycle 1, a cumulative administrated

dose of 350 mg/m2 (which corresponds to a 100% of achieved dose), WBC values of 7.65

[×109/L] at randomization and of 3.9 [×109/L] at nadir has 73.5% probability to be in

high-MOTox status at the end of cycle 2.

Figure 5.5. Example of user interface for OsteoWebApp.
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CHAPTER 6

Modelling longitudinal profiles of latent

probability and relative risk via latent

Markov models and compositional data

This chapter has been extracted and extended from M. Spreafico, F. Ieva and M. Fiocco “Lon-

gitudinal Latent Overall Toxicity (LOTox) profiles in osteosarcoma: a new taxonomy based on

latent Markov models” in arXiv, 2107.12863, 2021 [191]. [Submitted]

Since patients may have multiple toxic Adverse Events (AEs) with different levels of

severity, identifying the actual extent of toxic burden and investigating the evolution of

patient’s overall toxicity status during treatment represent challenging problems in can-

cer research, as explained in Chapter 5. No standard method is available for analysing

AEs due to the complexity of longitudinal chemotherapy data. Toxicity data are usually

recorded as nominal grades of AEs severity [204] according to the Common Terminology

Criteria for Adverse Events (CTCAE) [208], and analysed as summary indexes over the

whole treatment period [28, 172, 205, 117, 140, 184, 199, 198, 226, 35], discarding substan-

tial amount of information. As neglecting the time component may give an inaccurate

depiction of toxicity, alternative methods for a longitudinal analysis of AEs have been

proposed [205, 198, 200, 84, 190], such as the longitudinal MOTox procedure introduced

in Chapter 5. These approaches are not suitable for the nominal CTCAE grades still

they provide more insights into treatment-related toxicity, suggesting that longitudinal

methods should become routine in future analyses of cancer trials. Models to deal with

both longitudinal and categorical aspects of toxicity levels progression are then necessary,

still not well developed.

Longitudinal data are often of interest in a wide range of research fields, such as social,

economic and behavioural sciences, education or public health. In many applications

involving longitudinal data, the interest lies in analysing the evolution of a latent char-

acteristic of a group of individuals over time, rather than in studying their observed

attributes [23]. The phenomenon which affects the distribution of the response variables

that are relevant for the problem under consideration may not be directly observable. In

a clinical context, this latent characteristic may reflect patients’ quality-of-life and could

contain valuable information related to patient’s health status and disease progression.
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In the statistical literature many models have been proposed for the analysis of longi-

tudinal data; for a concise review see [57]. For longitudinal categorical data, where the

interest is in describing individual changes with respect to a latent status, Latent Markov

(LM) models can be used [216, 22]. These models study the evolution of an individual

characteristic of interest, when it is not directly observable. The idea behind a LM model

is that the latent process fully explains the observable behaviour of a subject, assuming

that the response variables are conditionally independent given the latent process. The

latent process follows a Markov chain with a finite number of states, which represent

different conditions of the latent characteristic of interest. LM models can also account

for the effect of observable covariates, serial dependence between observations, measure-

ment errors, or unobservable heterogeneity. For a detailed overview on LM models see

[22, 23].

Motivated by the need to improve methods for summarising and quantifying the overall

toxicity level and its evolution during treatment, in this chapter a novel procedure based

on LM models for longitudinal toxicity data is proposed. The latent status of interest is

the Latent Overall Toxicity (LOTox) condition of a patient, which affects the distribution

of the observed categorical toxic grades measured over treatment. The proposed approach

aims at identifying different latent states of overall toxicity burden (LOTox states) and

investigating how patients move between states during chemotherapy treatment.

A LM model for longitudinal toxicity data assumes that at each time occasion for each

patient a vector of probabilities of being in the various LOTox states is given. Since the

probability elements of each vector are non-negative coordinates whose sum is one, these

vectors are naturally confined to a suitably dimensioned simplex, thus being Compositional

Data (CoDa) or compositions. In statistics, CoDa are quantitative descriptions of the

parts of some whole, carrying relative information. In this context, Aitchison (1986) [6]

developed a methodology based on log-ratio transformations of CoDa, which nowadays

represent the mainstream approach in the analysis of compositions formed by probabilities

or percentages. Among the developed transformations, the additive log-ratios consider a

specific reference part in contrast with all the others. In this chapter, this approach is

exploited to compare over time a reference “good” overall toxicity condition (i.e., the

LOTox state characterized by the lowest toxicity burden) in contrast with all the other

LOTox states, characterized by worsening overall toxicity. In this way, the dynamic risk

of experiencing “worse” overall toxicity statuses relative to a “good” toxic condition over

time is investigated.

Three are the main novelties presented in this work: (i) the introduction of a new method

based on LM models to summarize and quantify multiple AEs and their evolution during

treatment, where both longitudinal and categorical aspects of the observed toxic levels

are included in the model; (ii) the identification of groups of patients with a common

distribution for the observed toxic categories, and thus a similar overall toxicity burden;

(iii) the reconstruction of personalized longitudinal LOTox profiles, which represent the

probability over time of being in a specific LOTox state or the relative risk with respect to a

reference “good” toxic condition, to study the individual overall toxic risk evolution during

treatment for each subject. The proposed approach is applied to osteosarcoma treatment
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to provide novel techniques which could support clinicians in planning new protocols

and guidelines for childhood cancer therapy. Provided that longitudinal CTCAE-graded

toxicity data are available, the developed procedure is a flexible approach that can be

adapted and applied to other cancer studies.

The rest of the chapter is organized as follows. Statistical methods are introduced in

Section 6.1. Results for MRC BO06/EORTC 80931 Randomized Controlled Trialdata are

presented in Section 6.2. Section 6.3 ends with a discussion of strengths and limitations

of the proposed approach, identifying some possible developments for future research.

6.1. Statistical Methods

Motivations for a latent Markov approach for treating the longitudinal toxicity data are

discussed in Section 6.1.1. Mathematical details are provided in Section 6.1.2. Model

selection procedure and longitudinal profiles are presented in Sections 6.1.3 and 6.1.4,

respectively.

6.1.1. Motivations for latent Markov models for longitudinal toxicity

data

LM models are statistical methods employed for the analysis of longitudinal (categorical)

data specifically designed to study the evolution of an individual characteristic of interest,

when it is not directly observable [216, 22]. A LM approach for longitudinal toxicity data

assumes the existence of a latent process representing the “true” LOTox status, which

affects the distribution of the response variables, in our case the observed toxicities. Two

main motivations justify the use of LM models to quantify the toxic risk in cancer studies:

(i) account for measurement errors in the observed toxicity variables, and (ii) identify

different LOTox sub-populations (i.e., the latent states) in the global population (i.e., the

patients’ cohort) and their changes over time.

Since therapy protocol is adapted at each cycle depending on patient’s reaction to treat-

ment, it is reasonable to assume that the latent variables follow a first-order Markov

chain, so that the “true” level of overall toxicity at a given cycle is influenced only by the

previous level. Non-haematological toxicities (see Section 5.1.1) do not depend directly

on each other as they relate to different systems and functions of the human body (i.e.,

nausea/vomiting is part of the stomach-gastrointestinal system, infections of the immune

system, oral mucositis of the mouth-gastrointestinal system, cardiotoxicity of the car-

diovascular system, ototoxicity of the auditory-sensory system and neurotoxicity of the

nervous system). Therefore, the response toxicity variables can be assumed conditionally

independent, as each observed response is expected to depend only on the corresponding

“true” LOTox level.
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In this context, a LM model may be seen as an extension of the latent class model [42],

where patients are allowed to move between latent states during the observation period.

LM models for longitudinal toxicity data are characterized by several parameters: the

initial probability of each LOTox state, the transition probabilities among different states

over chemotherapy cycles, and the conditional response probabilities given the latent

variable. Individual covariates (if available) can be included in the latent model and may

affect the initial and transition probabilities of the Markov chain [24], as explained in

Section 6.1.2.

A LM approach is appropriate to both identify the actual overall toxicity burden and

investigate its evolution during treatment for each patient. On one hand, patients that at

a specific time result in the same sub-population are characterized by a common distri-

bution for the observed toxic categories, and by a similar overall toxicity burden. On the

other hand, individual dynamic changes among latent states allow to evaluate the LOTox

evolution during treatment for each subject.

6.1.2. Latent Markov model with covariates

Let J be the set of J = |J | categorical response variables measured at each time t =

1, . . . , T . Denote by Y
(t)
ij the response variable j ∈ {1, . . . , J} for subject i ∈ {1, ..., n} at

time t, with set of categories Cj coded from 0 to cj − 1. Let Y
(t)
i =

(
Y

(t)
i1 , ..., Y

(t)
iJ

)
denote

the observed multivariate response vector at time t for patient i and Ỹi =
(
Y

(1)
i , . . . ,Y

(T )
i

)
be the corresponding complete response vector. Denote by X̃i =

(
X

(1)
i , . . . ,X

(T )
i

)
the

complete vector of individual covariates, where elements X
(t)
i =

(
Si,Z

(t)
i

)
are the vectors

of time-fixed Si and time-varying Z
(t)
i covariates for subject i at occasion t. The general

LM model assumes the existence of a latent process Ui =
(
U

(1)
i , . . . , U

(T )
i

)
which affects

the distribution of the response variables Ỹi. The latent process follows a first-order

Markov chain with state space {1, . . . , k}, where k is the total number of latent states.

LM models usually assume that the response vectors Y
(1)
i , . . . ,Y

(T )
i are conditionally

independent given the latent process Ui (local independence of the response vectors) and

that the elements Y
(t)
ij are conditionally independent given U

(t)
i (conditional independence

of elements). The motivation of these assumptions is that the latent process fully explains

the observable behaviour of a subject, as explained in Section 6.1.1.

LM models are made by two components: the measurement model concerns the condi-

tional distribution of the response variables given the latent process, and the latent model

is related to the distribution of the latent process (i.e., initial and transition probabilities).

The latent process represents an individual characteristic of interest that is not directly

observable that may evolve over time, also depending on observable covariates. The main

research interest hence lies in modelling the latent process and the effect of covariates

on its dynamic. LM models where both the initial and the transition probabilities of the
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latent process may depend on covariates is considered. Three different sets of probabilities

(i.e., parameters) can be defined.

• Conditional response probability (or item-response probability) φ
(t)
jy|u is the proba-

bility of observing a response y for variable j at time t, given the latent status

u ∈ {1, ..., k}:

P
(
Y

(t)
ij = y

∣∣U (t)
i = u

)
= φ

(t)
jy|u j = 1, . . . , J y = 0, ..., cj − 1.

To ensure that the interpretation of the latent states remains constant over time,

conditional response probabilities are assumed time-homogeneous, i.e., φ
(t)
jy|u = φjy|u

∀t = 1, . . . , T . Given the estimated φ̂jy|u, the latent states can be characterized in

terms of observed response categories.

• Initial latent states prevalence δ
u|x(1)

i
is the probability of membership in latent state

u ∈ {1, . . . , k} at time t = 1, given the vector of covariates x
(1)
i for individual i:

P
(
U

(1)
i = u|X(1)

i = x
(1)
i

)
= δ

u|x(1)
i
.

The estimated δ̂
u|x(1)

i
may be interpreted as quantities proportional to the size of

each latent state at the first time-occasion, given the covariates. A natural way to

allow the initial probabilities of the LM chain to depend on individual covariates is

a multinomial logit parametrization:

log
P
(
U

(1)
i = u |X(1)

i = x
(1)
i

)
P
(
U (1) = 1 |X(1)

i = x
(1)
i

) = log
δ
u|x(1)

i

δ
1|x(1)

i

= β0u + x
(1)>
i β1u (6.1)

where u = 2, ..., k and βu =
(
β0u,β

>
1u

)>
are the parameters vectors to be estimated.

• Transition probability τ
(t)

u|ūx(t)
i

is the probability of a transition to latent state u at

time t, conditional on membership in latent state ū at time t−1, given the individual

vector of covariates x
(t)
i (if available):

P
(
U

(t)
i = u | U (t−1)

i = ū,X
(t)
i = x

(t)
i

)
= τ

(t)

u|ūx(t)
i

where t = 2, . . . , T and u, ū = 1, . . . , k. The estimated τ̂
(t)

u|ūx(t)
i

reflect changes or

persistence in the various states over time, given the individual covariates whose

effects can be modelled through a multinomial logit parametrization:

log
P
(
U

(t)
i = u | U (t−1)

i = ū,X
(t)
i = x

(t)
i

)
P
(
U

(t)
i = ū | U (t−1)

i = ū,X
(t)
i = x

(t)
i

) = log
τ

(t)

u|ūx(t)
i

τ
(t)

ū|ūx(t)
i

= γ0ūu + x
(t)>
i γ1ūu (6.2)

for t = 2, ..., T and ū, u = 1, ..., k with ū 6= u. γūu =
(
γ0ūu,γ

>
1ūu

)>
are the parameters

vectors to be estimated.
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Under the assumptions of local and conditional independence, the manifest distribution

of the response variables (i.e., the conditional distribution of Ỹi given X̃i) is given by:

P(ỹi | x̃i) = P
(
Ỹi = ỹi | X̃i = x̃i

)
=

=
∑
u

P
(
Ỹi = ỹi | X̃i = x̃i,Ui = u

)
× P

(
Ui = u | X̃i = x̃i

)
=

=
∑
u

P
(
Ui = u | X̃i = x̃i

)
× P

(
Ỹi = ỹi | Ui = u

)
=

=
∑
u

δ
u(1)|x(1)

i

T∏
t=2

τ
(t)

u(t)|u(t−1)x
(t)
i

×
T∏
t=1

J∏
j=1

φ
jy

(t)
ij |u(t)

(6.3)

where u = (u(1), . . . , u(T )). The vector ỹi =
(
y

(1)
i , . . . ,y

(T )
i

)
is a realization of Ỹi, where

y
(t)
i is an observation of Y

(t)
i with elements y

(t)
ij . The vector x̃i =

(
x

(1)
i , . . . ,x

(T )
i

)
is a

realization of X̃i, where x
(t)
i =

(
si, z

(t)
i

)
is an observation of X

(t)
i =

(
Si,Z

(t)
i

)
.

Parameters estimation is performed maximizing the log-likelihood for a sample of n in-

dependent units, i.e., `(θ) =
∑n

i=1 logP (ỹi | x̃i), using an Expectation-Maximization

algorithm ([22, 23, 25]). Deterministic and random initializations are implemented to

reach the global maximum of `(θ) and prevent identifiability issue related to the multi-

modality of the likelihood function.

6.1.3. Model selection

The choice of the final LM model for the application consists of two steps: (i) identification

of the number of latent states k, and (ii) selection of the covariates to be included in the

final model. When the number of latent states k can not be a priori defined based on

clinical indications, it can be selected according different measures. Akaike information

criterion (AIC) by [7] or the Bayesian information criterion (BIC) by [183], defined as

AIC = −2ˆ̀+ 2g and BIC = −2ˆ̀+ log(n)g,

where ˆ̀ is the maximum of the log-likelihood of the model of interest and g denotes the

number of free parameters, are used. In particular, the smaller the values of the above

criteria, the better the model represents the optimum compromise between goodness-of-fit

and complexity. If the two criteria lead to selecting a different number of states, BIC is

usually preferred [20, 26].

Basic LM models (i.e., LM models with time-heterogeneous transitions and no covariates

–named M1) were fitted increasing the value of k from 1 to 10, and the number of latent

states k was selected according to the minimum BIC. Once k was determined, a forward

strategy was adopted to identify the covariates to be included in the final model. In partic-

ular, the smallest basic LM model with k latent states and time-homogeneous transitions

(i.e., the LM model restricted to the case in which initial and transition probabilities are
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parametrized by multinomial logit without covariates – named M2) was initially fitted

and then the effect of each covariate on initial and/or transition probabilities (models

M3-M12) was added. Only the covariates whose effect reduces the value of the BIC index

were included in the final LM model.

6.1.4. Longitudinal profiles: latent probability and relative risk

In LM models literature, once the model has been estimated, a decoding procedure is usu-

ally implemented to obtain a path prediction for each subject, i.e., finding the most likely

sequence of latent states on the basis patient-specific observed data [22, 23]. However,

this sequence represents a summary of how the entire latent process evolves over time, as

it only provides information about the most-likely condition without giving details about

other states (see Appendix C.1). To obtain more insights into the entire latent process and

its evolution, longitudinal information related to each latent state can be reconstructed

for each subject.

For each patient-specific observed data (x̃i, ỹi), the Expectation-Maximization algorithm

provides the posterior probabilities of variables U
(t)
i

p
(t)
iu = P

(
U

(t)
i = u

∣∣Ỹi = ỹi, X̃i = x̃i

)
t = 1, . . . , T u ∈ {1, ..., k}, (6.4)

which can be estimated using recursions and involving the manifest distribution in Equa-

tion (6.3). For each latent state u ∈ {1, . . . , k}, probabilities in (6.4) can be used to

reconstruct the longitudinal latent probability profile of the i-th subject, as follows:

piu =
{
p

(t)
iu = P

(
U

(t)
i = u

∣∣Ỹi = ỹi, X̃i = x̃i

)
, t = 1, . . . , T

}
. (6.5)

Each profile piu represents the probability over time t of being in latent state u for

individual i, given the observed complete response ỹi and covariates x̃i (if available).

Applying this procedure, k longitudinal latent probability profiles (one for each latent

state) are obtained for each subject i, which can be expressed as a k × T matrix

Pi =


pi1
. . .

. . .

pik

 =


p

(1)
i1 p

(2)
i1 . . . p

(T )
i1

. . . . . .

. . . . . .

p
(1)
ik p

(2)
ik . . . p

(T )
ik

 =
[
p

(1)
i p

(2)
i . . . p

(T )
i

]

with longitudinal latent probability profiles piu as row-components. Columns of Pi rep-

resent the vectors p
(t)
i of posterior probabilities over time t = 1, . . . , T and can be seen

as Compositional Data (CoDa) vectors belonging to the k-part Aitchison-Simplex Sk [6],

i.e.,

p
(t)
i ∈ Sk =

{
p = [p1, ..., pk] ∈ Rk

∣∣∣pu > 0, u = 1, . . . , k;
k∑

u=1

pu = 1

}
. (6.6)

Due to the sum constraint in Equation (6.6), elements p
(t)
iu of the composition p

(t)
i are mu-

tually dependent features which only carry relative information. In this context, Aitchison
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(1986) [6] introduced a methodology based on log-ratio transformations of CoDa, which

are required to remove constraints and eventually to map the composition to a real space,

allowing standard statistical techniques to be applied to the transformed data. In most

practical settings, the choice of transformation will depend on the preferred interpreta-

tion.

In the current framework, rather than considering the absolute individual elements p
(t)
iu ,

it is interesting to study the relative risk over time of being in a reference latent state

u = R compared to all the other latent states. Among the transformations introduced

by Aitchison (1986) [6], this can be done considering the additive log-ratios of each CoDa

vector p
(t)
i , as follows:

alr
(
p

(t)
i

)
=

[
log

p
(t)
i1

p
(t)
iR

. . . log
p

(t)
iR−1

p
(t)
iR

log
p

(t)
iR+1

p
(t)
iR

. . . log
p

(t)
ik

p
(t)
iR

]T
=
[
r

(t)
i1 . . . r

(t)
iR−1 r

(t)
iR+1 . . . r

(t)
ik

]T
= r

(t)
i ∈ Rk−1

(6.7)

where R is the reference latent state which can be chosen arbitrary among {1, . . . , k}. Note

that this transformation maps each bounded sample into a real space
(
alr: Sk → Rk−1

)
and if one of the p

(t)
iu elements is exactly zero, a zero-handling procedure is needed before

applying the transformation. In that case, an easily applicable possibility would be to

replace each zero with a small appropriate value, modifying the non-zero values of the

relative composition in a multiplicative way in order to satisfy the sum constraint require-

ment. For further details see [135]. Applying this procedure to each compositions, k − 1

longitudinal relative risk profiles (one for each non-reference state) are obtained for each

subject i, given as a (k − 1)× T matrix

Ri =
[
r

(1)
i r

(2)
i . . . r

(T )
i

]
=



ri1
. . .

riR−1

riR+1

. . .

rik


where column-element r

(t)
i are given by Equation (6.7) and row-element riu with u 6= R

are the longitudinal relative risk profile of state u for subject i

riu =

{
r

(t)
iu = log

p
(t)
iu

p
(t)
iR

, u 6= R, t = 1, . . . , T

}
. (6.8)

Each profile riu represents the relative risk (in logarithmic scale) over time t of being

in latent state u 6= R with respect to the reference state R for individual i. Since this

procedure is a transformation-based analysis, transformed elements r
(t)
iu must then be

interpreted with respect to the chosen reference. A positive (negative) value r
(t)
iu at time t

means that the risk for subject i of being in latent state u 6= R is exp
{
r

(t)
iu

}
times higher

(lower) than being in reference state R.
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For the application discussed in this work, the LOTox states summarize different levels

of overall toxicity burden, representing a proxy for patient’s quality of life. Therefore,

for each patient i, longitudinal latent probability profile (6.5) represents the probability

over time of being in the LOTox state u (i.e., the probability over time of developing

an overall toxic burden quantified by state u) given patient’s history: observed toxicity

categories ỹi and personal characteristics x̃i over treatment. Once the LOTox states have

been identified, it is reasonable to analyse and interpret the different results in relation to

the state characterized by the lowest overall toxicity burden (i.e., “good” toxic condition),

which is chosen as the reference R. In this way, the longitudinal relative risk profile (6.8)

represents the risk of being in LOTox condition u 6= R compared to the lowest toxic

status.

By reconstructing the longitudinal LOTox profiles, it is possible to (i) describe patient’s re-

sponse to therapy over cycles, (ii) quantify the overall toxicity burden evolution over treat-

ment cycles given patient’s history and (iii) investigate the individual dynamic changes

among latent states, detecting differences in health status and quality of life among pa-

tients.

6.2. Data application

In childhood cancer research, the development of new evidence-based guidelines to sup-

port clinical decisions in tailored interventions for an effective management of adverse

symptoms and treatments is still a key issue. In this section, the results obtained from

the application of the proposed LM model to the MRC BO06/EORTC 80931 random-

ized clinical trial are reported. Analysing the evolution of toxicities in patients who have

completed the treatment could lead to new insights into the progression and tolerance of

toxic AEs during therapy. For these reasons, we focused on the same cohort analysed in

Chapters 4 and 5 concerning the 377 patients who completed the entire chemotherapy

protocol, finishing the sixth cycle within 180 days after randomisation without abnormal

dosages (see Figure 4.3 in Chapter 4). Patient characteristics at randomization are shown

in Table 4.1 in Chapter 4. Statistical analyses were performed in the R-software envi-

ronment [161], using LMest package by [26]. R code for the current study is available at

https://github.com/mspreafico/BO06-LOTox.

6.2.1. Longitudinal toxicity data: item-response categories

During the trial treatment, case report forms were used to document across cycles all the

information required by the MRC BO06/EORTC 80931 trial protocol for each patient

(see Section 4.2.1 in Chapter 4). Non-haematological chemotherapy-induced toxicity for

nausea/vomiting (naus), infection (inf), oral mucositis (oral), cardiac toxicity (car),

ototoxicity (oto) and neurological toxicity (neur) were graded according to the CTCAE

v3.0 [208], with grades ranging from 0 (none) to 4 (life-threatening) (see Table 5.2 in

Chapter 5). Nausea/vomiting, infection and oral mucositis were classified as generic
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toxicities since they represent common adverse events for chemotherapeutic treatments

in general. Cardiac toxicity, ototoxicity and neurological toxicity, which could also cause

irreversible conditions, were classified as drug-specific toxicities since they are related to

the use of cisplatin or doxorubicin [8, 51].

Grades of chemotherapy-induced non-haematological toxicity over cycles recorded for the

selected cohort have been reported in Figure 5.1 in Chapter 5. At each cycle, CTCAE-

grade 4 for generic toxicities and CTCAE-grades ≥ 2 for drug-specific toxicities were

reported in less than 5% of patients. Low-frequency classes were merged and toxic cate-

gories were represented according to the degree of severity or as present or not, depending

on the type of toxicity as follows:

• the severity of the toxic event for generic toxicities: none (CTCAE-grade 0), mild

(CTCAE-grade 1), moderate (CTCAE-grade 2), severe (CTCAE-grades 3 or 4);

• the absence or the presence of toxic event for drug-specific toxicities: no (CTACE-

grade 0) and yes (CTACE-grades ≥ 1).

These categories identified for each toxicity constitute the item-response elements selected

to model the latent process representing the “true” overall toxic status. Table 6.1 shows

the observed frequencies (and percentages) of the selected categories for each toxicity over

cycles for the final cohort. The observed responses for each patient are then given by the

longitudinal toxic categories measured along the cycles, which are then used to evaluate

the LOTox condition during treatment.

6.2.2. Latent Markov model for longitudinal toxicity data

For each cycle t = 1, . . . , 6, let J = {naus, inf, oral, car, oto, neur} be the set of non-

haematological toxicities, representing response variables Y
(t)
ij . The relative sets of re-

sponse categories identified in the previous section were coded from 0 to cj − 1, as fol-

lows:

Cj = {0 : none, 1 : mild, 2 : moderate, 3 : severe} for generic toxicities (j = 1, 2, 3),

Cj = {0 : no, 1 : yes} for drug-specific toxicities (j = 4, 5, 6).

The procedure described in Section 6.1.3 was applied to first identify the number of

latent states k and then select the covariates to be included in the final model. Age,

gender and allocated regimen at randomization were considered as time-fixed covariates,

while percentage of achieved chemotherapy dose up to cycle t (see Equation 5.3), white

blood cell, neutrophils and platelets counts measured at each cycle were considered as

time-varying ones. Results are shown in Table 6.2. The unrestricted LM model without

covariates (M1) with the minimum BIC (16728.90) was obtained for k = 4, identifying

a latent process with four LOTox states. Moreover, the basic model M2 with initial

and transition probabilities parametrized by multinomial logit was preferable (BIC =

16512.16) to the unrestricted model M1 with the same number of latent states. Several
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Table 6.1. Frequencies of toxic categories over the six cycles. For nausea, infection and mucositis

(j = 1, 2, 3), the set of toxic categories indicating the severity of the toxic event is defined as Cj =

{none; mild; moderate; severe}. For cardiotoxicity, otoxocity and neurological toxicity (j = 4, 5, 6), the

set of toxic categories indicating the presence or the absence of the toxic event is defined as Cj = {no; yes}.
Toxicity Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6

Nausea

none 57 (15.1%) 88 (23.3%) 115 (30.5%) 126 (33.4%) 146 (38.7%) 179 (47.5%)

mild 74 (19.6%) 87 (23.1%) 76 (20.2%) 72 (19.1%) 86 (22.8%) 74 (19.6%)

moderate 117 (31.1%) 117 (31.1%) 114 (30.2%) 113 (30.0%) 96 (25.5%) 87 (23.1%)

severe 129 (34.2%) 85 (22.5%) 72 (19.1%) 66 (17.5%) 49 (13.0%) 37 (9.8%)

Infection

none 259 (68.7%) 287 (76.1%) 268 (71.1%) 265 (70.3%) 268 (71.1%) 286 (75.9%)

mild 30 (7.9%) 24 (6.4%) 26 (6.9%) 31 (8.2%) 23 (6.1%) 16 (4.3%)

moderate 64 (17.0%) 45 (11.9%) 61 (16.2%) 54 (14.3%) 52 (13.8%) 45 (11.9%)

severe 24 (6.4%) 21 (5.6%) 22 (5.8%) 27 (7.2%) 34 (9.0%) 30 (8.0%)

Mucositis

none 265 (70.3%) 228 (60.5%) 234 (62.1%) 237 (62.9%) 214 (56.8%) 262 (69.5%)

mild 54 (14.3%) 46 (12.2%) 59 (15.6%) 52 (13.8%) 62 (16.4%) 44 (11.7%)

moderate 44 (11.7%) 54 (14.3%) 43 (11.4%) 55 (14.6%) 63 (16.7%) 50 (13.2%)

severe 14 (3.7%) 49 (13.0%) 41 (10.9%) 33 (8.7%) 38 (10.1%) 21 (5.6%)

Cardiotoxicity

no 374 (99.2%) 361 (95.8%) 362 (96.0%) 359 (95.2%) 357 (94.7%) 355 (94.2%)

yes 3 (0.8%) 16 (4.2%) 15 (4.0%) 18 (4.8%) 20 (5.3%) 22 (5.8%)

Ototoxicity

no 357 (94.7%) 361 (95.8%) 350 (92.8%) 342 (90.7%) 346 (91.8%) 326 (86.5%)

yes 20 (5.3%) 16 (4.2%) 27 (7.2%) 35 (9.3%) 31 (8.2%) 51 (13.5%)

Neurological toxicity

no 371 (98.4%) 367 (97.3%) 362 (96.0%) 367 (97.3%) 356 (94.4%) 363 (96.3%)

yes 6 (1.6%) 10 (2.7%) 15 (4.0%) 10 (2.7%) 21 (5.6%) 14 (3.7%)

models (M3-M12) with four latent states, obtained from M2 adding covariates effect to

initial and/or transition probabilities, were fitted. By comparing models M3-M12 with

M2, age (centred with respect to the mean) at randomization was the only covariate

leading to a significant improvement in terms of both BIC and AIC (M5). Model M5,

whose path diagram for a given subject i is shown in Figure 6.1, was then selected as final

model:

• initial probabilities were associated with patient’s age at randomization and Equa-

tions (6.1) for a patient i became

log
δu|agei
δ1|agei

= β0u + β1u · (agei − 15) u = 2, 3, 4; (6.9)

• transition probabilities were assumed time-homogeneous and Equations (6.2) be-

came

log
τu|ū
τū|ū

= γ0ūu ū, u = 1, 2, 3, 4 with ū 6= u. (6.10)

Figure 6.2 shows the estimated conditional response probabilities φ̂jy|u for each type of

non-haematological toxicity under the selected model M5, which can be used for inter-

preting the latent states. In each toxicity-panel, each column refers to a different latent
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Table 6.2. Results for Latent Markov (LM) model selection for longitudinal toxicity data with different

values of latent states k and different restrictions. The maximum log-likelihood of each model is denoted

by ˆ̀ and g is the number of free parameters. WBC, PLT and NEUT in models M10-12 refers to white

blood cell, platelets and neutrophils counts, respectively.

Latent Markov (LM) model k g ˆ̀ AIC BIC

M1: Unrestricted LM model without covariates 1 18 -8794.91 17625.81 17696.59

2 35 -8420.19 16910.38 17048.01

3 68 -8216.99 16569.98 16837.37

4 111 -8035.21 16292.42 16728.90

5 164 -7902.59 16133.18 16778.07

6 227 -7793.14 16040.29 16932.91

7 300 -7688.12 15976.24 17155.91

8 383 -7603.30 15972.61 17478.66

9 476 -7530.49 16012.98 17884.73

10 579 -7462.34 16082.68 18359.45

M2: Multinomial logit LM model without covariates 4 63 -8069.21 16264.43 16512.16

M3: M2 + regimen effect on initial prob. 4 66 -8065.49 16262.97 16522.50

M4: M2 + gender effect on initial prob. 4 66 -8061.73 16255.45 16514.98

M5: M2 + age effect on initial prob. 4 66 -8055.35 16242.69 16502.22

M6: M2 + regimen effect on transition prob. 4 75 -8063.37 16276.74 16571.66

M7: M2 + gender effect on transition prob. 4 75 -8060.33 16270.66 16565.58

M8: M2 + age effect on transition prob. 4 75 -8061.07 16272.14 16567.06

M9: M2 + time-var chemotherapy dose on both prob. 4 78 -8045.55 16247.10 16553.82

M10: M2 + time-var WBC count on both prob. 4 78 -8062.53 16281.07 16587.78

M11: M2 + time-var PLT count on both prob. 4 78 -8047.15 16250.30 16557.02

M12: M2 + time-var NEUT count on both prob. 4 78 -8062.67 16281.34 16588.05

𝑌𝑖1
(1)

𝑌𝑖2
(1)

𝑌𝑖3
(1)

𝑌𝑖4
(1)

𝑌𝑖5
(1)

𝑌𝑖6
(1)

Cycle  𝑡 = 1

𝑼𝑖
(1)

…

Cycle 𝑡 = 2

𝑼𝑖
(2)

𝑎𝑔𝑒𝑖 − 15

Covariates

𝑿𝑖
(1)

𝑼𝑖
(6)

𝒀𝑖
(1)

𝒀𝑖
(2)

𝒀𝑖
(6)

Cycle 𝑡 = 6

Response
variables

Initial latent states 
prevalence 𝛿

𝑢|𝒙𝑖
(1)

Transition probabilities 𝜏𝑢|ഥ𝑢

Conditional response
probabilities 𝜙𝑗𝑦|𝑢

Latent variables

nausea infection cardiac
toxicity

oral
mucositis

ototoxicity neurological
toxicity

Figure 6.1. Path diagram for a given subject i under the latent Markov model M5 with non-

haematological toxicities as response variables, time-homogeneous transitions and age at randomization

as covariate affecting the initial probabilities of the latent variables.

130



C
H
A
P
T
E
R
6

6.2. Data application

0.723

0.149

0.11

0.018

0.246

0.419

0.214

0.121

0.025

0.234

0.445

0.296

0

0.081

0.435

0.484

1 2 3 4

none

mild

mod

severe

State

C
at

eg
or

y
Nausea/Vomiting

0.713

0.058

0.177

0.053

0.802

0.065

0.085

0.048

0.842

0.073

0.074

0.011

0.38

0.076

0.269

0.274

1 2 3 4

none

mild

mod

severe

State

C
at

eg
or

y

Infection

0.676

0.117

0.132

0.076

0.677

0.135

0.147

0.04

0.774

0.172

0.047

0.006

0.166

0.131

0.35

0.353

1 2 3 4

none

mild

mod

severe

State

C
at

eg
or

y

Oral mucositis

0.986

0.014

0.818

0.182

0.979

0.021

0.983

0.017

1 2 3 4

no

   yes   

State

C
at

eg
or

y

Cardiac toxicity

0.988

0.012

0.571

0.429

0.991

0.009

0.936

0.064

1 2 3 4

no

   yes   

State

C
at

eg
or

y

Ototoxicity

0.988

0.012

0.821

0.179

0.998

0.002

0.984

0.016

1 2 3 4

no

   yes   

State

C
at

eg
or

y

Neurological toxicity

Figure 6.2. Estimated conditional response probabilities φ̂jy|u for the final LM model in Figure 6.1.

Each panel refers to a different toxicity j ∈ J = {1 : naus, 2 : inf, 3 : oral, 4 : car, 5 : oto, 6 : neur}.
Each row refers to a response categories y ∈ {none; mild; moderate; severe} for j = 1, 2, 3 (generic

toxicities) and y ∈ {no; yes} for j = 4, 5, 6 (drug-specific toxicities). Each column refers to a latent states

u ∈ {1, 2, 3, 4}.

state u ∈ {1, 2, 3, 4}. People in good conditions are allocated in state 1, since for all non-

haematological toxicities the most probable category was the absence of the adverse event.

State 2 seems to correspond to patients with non-severe nausea and it was the only state

where drug-specific toxicities occurred with a relevant probability, especially for ototoxi-

city where φ̂51|2 = 0.429. State 3 seems to be characterized by patients undergoing only

nausea or vomiting, mostly moderate or severe. In State 4 people with multiple generic

toxicities - mostly severe or moderate - with the certainty of having nausea (φ̂10|4 = 0)

are present. Based on these results, the following LOTox states labelling were derived:

• State 1: quite good conditions (non-toxic) → no LOTox

• State 2: non-severe nausea with possible drug-specific AEs → moderate LOTox

• State 3: moderate/severe nausea/vomiting only → low LOTox (limited to nausea)

• State 4: multiple severe/moderate generic toxicities → high LOTox.

Note that the states numbering (from 1 to 4) does not correspond with the progressive

severity of overall toxicity burden (from no to high).

Table 6.3 displays the estimated regression parameters β̂u =
(
β̂0u, β̂1u

)
for the initial

probabilities in Equation (6.9) and the estimated transition probabilities τ̂u|ū in Equation

(6.10). The estimated intercepts indicates that for 15-year patients the most prevalent

state at cycle 1 was low LOTox state 3 (limited to nausea), followed by no LOTox state

1, high LOTox state 4 and moderate LOTox state 2. The estimates for age were all

positive, indicating that older individuals reported a higher overall severity at the first

cycle compared to younger patients. The estimated transition probabilities τ̂u|ū shows a

quite high persistence in the same state, especially for non-toxic state 1 and moderate
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Table 6.3. Estimated regression parameters affecting the distribution of the initial probabilities in

Equation (6.9) and estimated transition probabilities in Equation (6.10).

Regression parameters for initial probabilities

u 2 3 4

Intercept β̂0u -1.2679 1.0138 -0.3031

Age β̂1u 0.1858 0.0014 0.0512

Transition probabilities from ū to u (τ̂u|ū)

ū \ u 1 2 3 4

1 0.9674 0.0167 0.0032 0.0127

2 0.0525 0.9214 0.0245 0.0016

3 0.1070 0.0526 0.7581 0.0824

4 0.1555 0.0356 0.0868 0.7221
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Figure 6.3. Left panel: estimated initial probabilities of latent states for patients aged 10, 15 and 20

years old and average δ̄ of the initial probabilities over all the 377 subjects in the sample.

Right panel: latent states prevalences over cycles t = 1, . . . , 6 averaged over all the subjects.

Different colours refer to different Latent Overall Toxicity (LOTox) state (green: no LOTox state 1 ;

yellow: low LOTox state 3 ; orange: moderate LOTox state 2 ; red: high LOTox state 4 ).

state 2, where drug-specific AEs may also lead to permanent conditions (see Table 5.2

in Chapter 5). The highest transition probability was 15.6% and was observed from the

high LOTox state 4, where the effects of generic AEs are reversible and temporary, to

the first non-toxic state. Other transitions were observed from high LOTox state 4 to

nausea/vomiting only in state 3 (8.7%) and from low LOTox state 3 (limited to nausea)

to no LOTox state 1 (10.7%) or high LOTox state 4 (8.2%). The remaining transition

probabilities were always lower than 8%.

Starting from these parameter estimates, Figure 6.3 (left panel) displays the estimated

vectors of initial probabilities δ̂i =
(
δ̂1|agei , δ̂2|agei , δ̂3|agei , δ̂4|agei

)
for patients aged 10, 15

and 20 years old and the vector δ̄ =
(
δ̄1, δ̄2, δ̄3, δ̄4

)
= (0.202, 0.093, 0.557, 0.148) obtained

as average of vectors δ̂i over all the 377 subjects in the sample. On average, at cycle

1 low LOTox state 3 of subjects with nausea/vomiting only had the largest dimension

(55.7%), followed by 20.2% of individuals for no LOTox state 1. No and low LOTox

states together, representing the states with the lowest overall toxic severity, accounted
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for more than 75% of the patients, whereas less than 25% belonged to the latent states

corresponding to the worst toxic conditions (moderate and high LOTox states 2 and 4).

Right panel in Figure 6.3 shows the estimated average probability of each latent state

at each time-occasion, i.e., the latent states prevalences averaged over all the subjects

at each cycle. On average, the presence of low overall severity limited to nausea (state

3) decreased over cycles from 55.7% to 19.3% (t = 6), whereas no and moderate overall

toxicity (state 1 and 2, respectively) increased from 20.2% to 49.7% and from 9.2% to

18.9%. The presence in high overall severity (state 4) was rather stable over cycles ranging

in 10.1%-15.6%, with peaks at cycles 2 and 3.

6.2.3. Longitudinal profiles of Latent Overall Toxicity

Once the parameters were estimated for the final LM model, the longitudinal latent prob-

ability profiles piu were reconstructed for each patient i and latent state u, as explained

in Section 6.1.4. In case of longitudinal toxicity data, profiles piu in (6.5) are defined as

longitudinal Probability profiles of LOTox (P-LOTox ) since they represent the probability

over cycles t = 1, 2..., 6 of being in the LOTox state u ∈ {1, 2, 3, 4} for each patient i,

given the observed toxic categories over treatment and individual characteristics (i.e., the

age at randomization).

Figure 6.4 shows the longitudinal P-LOTox profiles piu for four patients i = {A,B,C,D}
aged 15 years old and with different observed toxic categories over cycles, as reported in

Table 6.4. Each panel refers to a different patient and displays the individual realisations

of the latent process over cycles. Different patterns of overall toxicity evolution during

treatment can be observed between subjects, based on patient-specific observed toxicity

data. For example, right panel shows that at cycle 1 patient D had probabilities 79.6% of

being in low LOTox state, 15.5% of having a non-toxic condition, 4.5% and 0.4% of high

and moderate LOTox, respectively. The probabilities evolved over the cycles, as shown

by the four profiles, ending with a 99.7% probability of being in quite good conditions at

the end of treatment.

The lowest toxic burden is represented by the non-toxic state 1 of patients in good con-

ditions, chosen as reference state (R = 1: no LOTox ) to reconstruct the longitudinal

latent relative risk profiles riu for each patient i and latent state u ∈ {2, 3, 4}. In case

of longitudinal toxicity data, profiles riu in Equation (6.8) can be also called longitudi-

nal Relative Risk profiles of LOTox (RR-LOTox ). They represent for each patient i the

relative risk (in logarithmic scale) over cycles t = 1, 2..., 6 of being in the LOTox state

u ∈ {2, 3, 4} rather than in the non-toxic state R = 1, given the observed toxic categories

over treatment and individual characteristics.

Figure 6.5 shows the longitudinal RR-LOTox profiles riu for patients i = {A,B,C,D}.
Different toxic risk progressions during treatment can be observed among patients, de-

pending on their observed toxicity data. For example, right panel shows that at first cycle

patient D’s risk of being in low LOTox state was 5.14 times higher the risk of having a
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Table 6.4. Observed toxicity categories over cycles t = 1, ..., 6 for four random patients i ∈ {A,B,C,D}
aged 15 years old. Categories for generic toxicities (nausea, infection and oral mucositis) are {0 : none, 1 :

mild, 2 : moderate, 3 : severe} (j = 1, 2, 3). Categories for drug-specific toxicities (cardiac toxicity,

ototoxicity and neurological toxicity) are {0 : no, 1 : yes} (j = 4, 5, 6). For each patient i the complete

response vector is ỹi =
(
y

(1)
i , . . . ,y

(1)
i

)
where y

(t)
i =

(
y

(t)
i1 , . . . , y

(t)
i6

)
.

Patient i Cycle t agei Naus y
(t)
i1 Inf y

(t)
i2 Oral y

(t)
i3 Car y

(t)
i4 Oto y

(t)
i5 Neur y

(t)
i6

A 1 15 3 0 1 0 0 0

2 3 1 0 0 0 0

3 3 3 0 0 0 0

4 3 2 1 0 0 0

5 3 0 2 0 0 0

6 3 0 1 0 0 0

B 1 15 1 0 0 0 0 0

2 1 0 0 0 0 0

3 3 0 0 0 0 0

4 1 0 0 0 1 0

5 1 0 0 0 1 0

6 1 0 0 0 1 0

C 1 15 2 0 0 0 0 0

2 1 0 0 0 0 0

3 1 0 0 0 0 0

4 1 0 0 0 0 0

5 1 0 0 0 0 0

6 1 0 0 0 0 0

D 1 15 2 0 0 0 0 0

2 2 0 2 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0

non-toxic condition, whereas risks of high and moderate LOTox were 0.29 and 0.03 times

lower, respectively. Then, RR-LOTox profiles evolved over the cycles, as shown by the

four trajectories, ending up with negligible relative risks (< 0.01) for low/moderate/high

LOTox conditions compared with a non-toxic condition at the end of treatment.

Both longitudinal P-LOTox and RR-LOTox profiles summarize and quantify the overall

toxic risk over time for each patient based on observed individual characteristics, capturing

differences in the overall history of toxicity across patients. P-LOTox profiles reflect the

absolute size of the probabilities over time for each latent state, whereas RR-LOTox

profiles focus on the relative risk with respect to the clinically desirable condition, i.e.,

the non-toxic one.
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P−LOTox: longitudinal Probability profiles of LOTox over cycles
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Figure 6.4. Longitudinal Probability profiles of Latent Overall Toxicity (P-LOTox) piu. Each panel

refers to a different patient i = {A,B,C,D} in Table 6.4. Different colours refer to different latent states

u ∈ {1, 2, 3, 4} (green: no LOTox state 1 ; yellow: low LOTox state 3 ; orange: moderate LOTox state 2 ;

red: high LOTox state 4 ).

RR−LOTox: longitudinal Relative Risk profiles of LOTox over cycles
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Figure 6.5. Longitudinal Relative Risk profiles of Latent Overall Toxicity (RR-LOTox) riu. Each panel

refers to a different patient i = {A,B,C,D} in Table 6.4. Reference LOTox state is no LOTox state

R = 1. Different colours refer to different non-reference latent states u ∈ {2, 3, 4} (light-blue: low LOTox

state 3 vs no LOTox ; blue: moderate LOTox state 2 vs no LOTox ; purple: high LOTox state 4 vs no

LOTox ).

6.3. Final remarks

Due to the presence of multiple types of Adverse Events (AEs) with different levels of

severity, identifying the actual extent of toxic burden and investigating the evolution of

patient’s overall toxicity represent challenging problems in cancer research. AEs are one

of the main factors determining clinical decisions in medical interventions and treatment

planning, playing a fundamental role in health assessment and patient monitoring. The

development of statistical methods able to summarize multiple AEs and to deal with

the complexity of chemotherapy data, considering both the longitudinal and categorical

aspects of toxicity levels progression, is necessary and clinically relevant.

This chapter proposed a new taxonomy based on LM models with covariates and CoDa

methods to provide novel techniques for investigating the evolution of the latent overall

toxicity condition for each patient over chemotherapy treatment. This is important for the

development of new tools to support clinical decisions in tailored interventions for effec-

135



C
H
A
P
T
E
R
6
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tive management of adverse symptoms and treatments. The novel approach was applied

to longitudinal chemotherapy data for osteosarcoma patients from MRC BO06/EORTC

80931 Randomized Controlled Trial.

By assuming the existence of a LM chain for the LOTox condition of a patient, the

proposed taxonomy identified sub-populations of patients characterized by a common

distribution of toxic categories, and by a similar overall toxicity burden. Four LOTox

states were found, which represent different levels of multiple AEs severity: (i) people

in quite good conditions (no LOTox state 1 ), (ii) patients undergoing only nausea or

vomiting - mostly moderate or severe - (low LOTox state 3 ), (iii) subjects with non-severe

nausea and the possibility to develop drug-specific AEs (moderate LOTox state 2 ), or (iv)

people with multiple severe/moderate generic toxicities (high LOTox state 4 ). The LM

approach estimated the initial prevalence of each state and the probability of individual

changes over time. This allowed to reconstruct the patient-specific longitudinal LOTox

profiles to assess the dynamic evolution of overall toxicity burden during treatment for

each subject.

Both longitudinal P-LOTox and RR-LOTox profiles captured the individual realisations

of the latent process over cycles, showing different patterns of overall toxicity evolution

during treatment among patients. P-LOTox profiles illustrated the latent process using

absolute terms, giving insights into the actual probabilities of being in the various LOTox

states over cycles. RR-LOTox profiles – obtained by additive log-ratios transformation –

reported relative risk measures to emphasize the difference between low/moderate/high

LOTox states and the clinically desirable non-toxic condition. These aspects can not

be investigated using a simple path prediction (see Appendix C.1). Together, absolute

probabilities and relative risks provide a full picture of the individual LOTox dynamics

during treatment, which may be considered as a proxy for patient’s quality of life and

used to describe patient’s response to therapy over cycles in terms of toxic AEs.

This retrospective exploratory analysis has some limitations. The procedure used to se-

lect the final model may miss the best available one, since not all possible models have

been fitted. However, it is computationally efficient and follows a standard stepwise for-

ward selection approach. The analysis was performed on a single trial in osteosarcoma,

considering only non-haematological toxicities. Other factors of potential interest were

not routinely recorded during the trial, including among others nephrotoxicity, lympho-

cytes count or tumour size. To get more information about the robustness of the model

developed in this study, it should be applied to other osteosarcoma data provided that

the toxicity are longitudinally recorded. Nevertheless, this work opens doors to further

researches, both in the field of statistical methodology development as well as in can-

cer research. The additive log-ratios transformation allowed to remove non-negative and

sum-to-one constraints of the CoDa vectors, mapping the compositions to a real space.

Standard statistical techniques could then be applied to the transformed data, opening

doors for further research. Based on their different LOTox dynamics, patients could be

stratified in different risk groups to be used during treatment. The relationship between

AEs, treatment modifications and time-to-event outcomes may be investigated to pro-

vide new insights in the treatment effect during the evolution of the disease. To model

136



C
H
A
P
T
E
R
6
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them simultaneously is not a trivial task since a suitable characterisation of the intricate

mechanism between toxicity, chemotherapy dose and survival requires both statistical and

clinical expertises, as we will see in Chapter 7.

In summary, in this chapter we proposed a novel approach to summarise and quantify

patient’s overall toxic risk and its evolution during treatment. Provided that toxicities

are recorded according to the CTCAE scale or an analogous grading system, the LM

approach represents a general and flexible method to quantify the personal evolution

of overall toxic risk during chemotherapy. In cooperation with medical staff, this novel

methodology might provide insights for the definition of new guidelines to reduce the

impact of chemotherapy treatment in terms of toxicity burden.
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Appendix C

C. Appendix to Chapter 6

C.1. Path prediction for latent Markov models

In latent Markov models literature, once the model has been estimated, a decoding pro-

cedure is usually implemented to obtain a path prediction
∗
ui =

(
∗
u

(1)

i , . . . ,
∗
u

(T )

i

)
of the

most likely latent states over time for each subject i, on the basis patient-specific observed

data.

Among the developed procedures, local decoding finds the most likely state occupied by a

subject at any time point t: elements of
∗
ui can be obtained by maximizing the posterior

probabilities at each time t in Equation 6.4, as follows

∗
u

(t)

i = max
u∈{1,...,k}

p
(t)
iu = max

u∈{1,...,k}
P
(
U

(t)
i = u

∣∣Ỹi = ỹi, X̃i = x̃i

)
for all t = 1, ..., T.

As an alternative, global decoding finds the most likely sequence of latent states for a given

subject on the basis of the responses he/she provided. It is based on an adaptation of

the Viterbi algorithm [211, 96] which maximises the joint conditional probability for each

subject i, i.e.,
∗
ui = arg max

u
P
(
Ui = u

∣∣Ỹi = ỹi, X̃i = x̃i

)
,

through a forward-backward recursion. For further details see [22, 23].

C.1.1. BO06 data application: LOTox sequences

In case of longitudinal toxicity data, path prediction
∗
ui represents the sequence of LOTox

states over time for subject i. Let us consider the four patients aged 15 years old with

different observed toxic categories over cycles reported in Table 6.4. The LOTox sequences

for patients i = {A,B,C,D} can be then obtained as

(i) the sequences of the most probable LOTox states at each cycle t (i.e., local decoding)

∗
uA = (3, 3, 4, 4, 4, 4),

∗
uB = (3, 3, 3, 2, 2, 2),

∗
uC = (3, 3, 3, 3, 3, 3),

∗
uD = (3, 1, 1, 1, 1, 1);

(ii) or the sequences of the most likely LOTox states across cycles (i.e., global decoding)

∗
uA = (3, 3, 4, 4, 4, 4),

∗
uB = (3, 3, 3, 2, 2, 2),

∗
uC = (3, 3, 3, 3, 3, 3),

∗
uD = (3, 3, 1, 1, 1, 1).

Differences between (i) and (ii) are due to the different types of probabilities that are

maximized, respectively posterior and joint conditional probabilities. The individual LO-

Tox sequence allows to predict the LOTox state to which every patient belongs at a given

cycle. However, it represents a summary of how the entire latent process evolves during

treatment for a patient, as it only provides information about the most-likely condition

without giving details about other states.
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CHAPTER 7

Investigating the causal effects of

joint-exposure on survival outcome in

presence of time-varying confounders

The content of this chapter is based on the work by M. Spreafico, C. Spitoni, C. Lancia, F. Ieva

and M. Fiocco “Causal effects of chemotherapy regimen intensity on survival outcome in os-

teosarcoma patients through Marginal Structural Cox Models” 2022.

Although multidisciplinary management of chemotherapy has improved clinical outcomes

in patients with osteosarcoma, over the past 40 years there have been no further improve-

ments in survival [15]. The strongest prognostic factor of both event-free and overall

survival known so far in osteosarcoma is Histological Response (HRe) [31], i.e., improve-

ment in the appearance of microscopic tissue specimens in a patient after pre-operative

chemotherapy, whereas the impact of chemotherapy dose modification on patients’ sur-

vival is still unclear [111].

As mentioned in the previous chapters, in cancer trials the relationship between chemother-

apy regimen intensity and survival is problematic to analyse due to the presence of neg-

ative feedback between exposure to cytotoxic drugs and consequent toxic side effects.

Chemotherapy is usually modelled by different allocated regimens, i.e., by Intention-To-

Treat (ITT) analysis [70]. Since ITT ignores anything that happens after randomization,

such as protocol deviations or changes in drug intake over time [110], the Received Dose

Intensity (RDI) [86] indicator has been introduced to analyse how close the actual treat-

ment delivered is to the planned treatment, marking a significant departure from ITT in

the direction of a closer description of the actual clinical practice. Lancia et al. (2019)

[111] showed that there is mismatch between target and achieved chemotherapy-RDI in

osteosarcoma due to toxic side effects developed by patients through therapy. Toxicities

affect subsequent exposure by delaying the next cycle or reducing chemotherapy doses

[112], representing one of the principal reasons for treatment discontinuation [186]. Be-

ing at the same time risk factors for mortality and predictors of future exposure levels,

toxicities hence represent time-dependent confounders for the effect of chemotherapy on

patient’s survival. In the presence of confounders, classical survival approaches, such
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7. Causal effects of joint-exposure on survival in presence of time-varying confounders

as the Cox model [46], have limitations in causally interpreting the hazard ratio of the

treatment variable, even if the treatment assignment is randomized [2].

Time-dependent confounding of the exposure-outcome association represents a specific

challenge for estimating the effect of a treatment on an outcome of interest. Standard

analyses fail to give consistent estimators in the presence of time-varying confounders if

those confounders are themselves affected by the treatment [48]. For this reason, different

statistical methods to control for exposure-affected time-varying confounding have been

proposed, including, among others, g-computation formula [169], g-estimation of struc-

tural nested models [170] or Marginal Structural Models (MSMs) estimated using Inverse

Probability of Treatment Weighting (IPTW) [171]. In case of time-to-event outcomes,

Clare et al. (2019) [39] found that the Cox-type Marginal Structural Model (Cox MSM,

or marginal structural Cox model) approach is by far the most commonly used method

in practice.

Cox MSMs were introduced by Hernán et al. (2000) [78] as a class of methods for estimat-

ing the causal effect of therapy modifications on survival in presence of time-dependent

confounders through IPTW. Making use of marginal (population average) rather than

conditional hazard models [105], Cox MSMs target counterfactual (or potential) time-to-

event variables, i.e., variables indicating when an event would have been observed if the

patient had been administered a specific exposure level. IPTW is a propensity score-based

method that creates a pseudo-population by weighting each subject with the inverse prob-

ability of observing a certain treatment allocation given past exposure and confounders.

In such a new pseudo-population, confounders no longer predict exposure and the causal

effects of treatment modifications on survival can be just obtained by a crude analysis.

IPTW construction requires a thoughtful process that includes the determination of an

adequate set of confounding covariates which enter into the decision-making process of

allocating a treatment modification and on which the four main assumptions of causal

inference with MSMs (i.e., no unmeasured confounding, consistency, positivity, no model

misspecification) [77] can be tolerated [41]. Compared to a standard propensity score

matching, IPTW has the advantages of retaining all eligible patients in the analysis,

which may be preferred if there are limitations in terms of sample size, as well as the

ability to include more than two treatment comparisons simultaneously [10].

Motivated by a clinical question concerning the effect of changes in therapy intensity on

survival for osteosarcoma patients, in this chapter treatment-administration data are used

to assess the causal effect on Event-Free Survival (EFS) of chemotherapy-exposure seen

in terms of both (i) improvement in the appearance of microscopic tissue specimens in

a patient after pre-operative treatment, i.e., by HRe, and (ii) reductions in actual ver-

sus anticipated/planned dose intensity, i.e., by RDI reductions. Data from the control

arms of two clinical trials of chemotherapy in osteosarcoma, namely, European Osteosar-

coma Intergroup studies MRC BO03/EORTC 80861 [120] and MRC BO06/EORTC 80931

[119] are analysed. These data are complex because the drug administration is longitu-

dinal while only the most severe side-effects are recorded. The analysis of such mixed

longitudinal/non-longitudinal data requires both an original analytical strategy and an

unconventional model formulation. Moreover, since adjustments in treatment allocation
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are determined by the overall toxic burden of each patient, the different types and number

of side effects must be adequately summarized and quantified [190]. Suitable IPTW-based

techniques and Cox MSMs are hence designed to mimic a randomized trial where joint-

exposure intensity is no longer confounded by toxicities or other confounders, and a crude

analysis suffices to estimate the causal effect of exposure modifications. This requires (i) a

proper (time-dependent) definition of the joint-exposure, (ii) a tailor-made identification

of all possible (time-dependent) confounders, and (iii) a suitable characterisation of the

causal structure of the chemotherapy data. In particular, two alternative definitions of

joint-exposure, based on time-fixed final RDI or time-dependent pre/post-operative RDI

[120] combined with HRe, are proposed along with their relative confounding factors and

Direct Acyclic Graphs (DAGs) [67, 77] to characterized the causal exposure-confounders-

outcome structure. To the best of our knowledge, this is the first application of IPTW-

based techniques to survival data from randomized trials of chemotherapy in order to

eliminate the toxicity-treatment-adjustment bias.

The aim of this chapter is hence presenting an all-round RDI-based analysis of complex

chemotherapy data, with tutorial-like explanations of the difficulties encountered and the

problem-solving strategies deployed. Data from BO03 and BO06 trials are presented

in Section 7.1. The process of building proper causal models based on joint-exposure

(difficult due to lack of longitudinal confounders) using two alternative strategies is shown

in detail in Section 7.2. Sections 7.3 and 7.4 are devoted to discussing the Cox MSMs

results, in contrasts with their standard Cox analogues fitted on the unweighted original

population, and drawing final conclusions, respectively.

7.1. Data description

Data from control arms (i.e., conventional regimen Reg-C ) of the Randomized Con-

trolled Trials (RCTs) MRC BO03/EORTC 80861 and MRC BO06/EORTC 80931 (In-

ternational Standard Randomised Controlled Trial Number : ISRCTR 11824145 and IS-

RCTR 86294690 respectively, https://www.isrctn.com) were analysed. Both RCTs

were funded by the Medical Research Council (MRC) (https://www.ukri.org/councils/

mrc/) and the European Organisation for Research and Treatment of Cancer (EORTC)

(https://www.eortc.org). In both trials, control arms were characterized by the stan-

dard European Osteosarcoma Intergroup (EOI) treatment structured in 6 cycles of 3-

weekly Cisplatin (CDDP) (100 mg/m2) plus Doxorubicin (DOX) (75 mg/m2), and com-

pared to a different therapy regimen (i.e., variant of Rosen’s T10 regimen [178] in BO03

and a 2-weekly dose-intensified version of CDDP+DOX [119] in BO06). Results of the

primary analyses on BO03 and BO06 data can be found in Lewis et al. (2000; 2007)

[120, 119].

In Section 7.1.1 the selected cohort of patients from BO03 and BO06 trials is illustrated.

Longitudinal chemotherapy data and patient characteristics are presented in Section

7.1.2.
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7.1.1. Control arms protocol and Cohort selection

As the control arms design in Figure 7.1 shows, in both RCTs chemotherapy was admin-

istered before and after surgical removal of the primary osteosarcoma. At the end of the

pre-operative treatment, with a nominal duration of 3 cycles in BO03 and 2 in BO06,

the tumour was surgically resected, and the levels of tumour necrosis and HRe evaluated.

Variations to the planned surgery-schedule happened quite often due to administrative

reason (delayed surgery) or disease progression (premature surgery), in a limited num-

ber of cases surgery was delayed due to haematological toxicity (low platelets count).

Post-operative chemotherapy was intended to resume 2 weeks after surgery.

Originally, 444 patients were enrolled in the control arms of BO03 (199) and BO06 (245).

In this sample, 106 (23.9%) patients were excluded due to missing HRe. Of the remaining

338 patients, 58 terminated the chemotherapy treatment prematurely or without surgery,

while 4 completed the treatment but experienced an event throughout. The final cohort

of 276 patients (114 from BO03 and 162 from BO06, respectively) included in the analyses

(62.2% of the initial sample) is shown in the consort diagram in Figure 7.2.

Figure 7.1. Control arms design for BO03 and B006 randomised clinical trials, characterized by the stan-

dard European Osteosarcoma Intergroup treatment structured in 6 cycles of 3-weekly Cisplatin (CDDP)

(100 mg/m2) plus Doxorubicin (DOX) (75 mg/m2).

Figure 7.2. Flowchart of cohort selection.
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7.1.2. Complexity of chemotherapy data

In cancer trials, therapy administration is usually complicated by the dynamical adjust-

ment of the treatment on patients’ clinical picture. Exposure to chemotherapy is likely

to produce multi-systemic side effects, e.g. organ toxicity or myelosuppression. These

side effects are a threat to patient’s life and must be controlled by allocating either dose

reductions/discontinuations or delays in the administration of the next course [112].

In BO03 and BO06 trials, case report forms were used to document across cycles all

the information required by protocols for each patient. Patients baseline characteristics

(age, gender, allocated chemotherapy regimen, site and location of the tumour) were

registered at randomization. Therapy starting day was usually on the day of randomiza-

tion or the day after, but could be postponed in case of administrative or clinical reasons.

Treatment-related factors (administered dose of chemotherapy, cycles delays, haematolog-

ical parameters, chemotherapy-induced toxicity and histological response to pre-operative

chemotherapy) were collected prospectively during therapy.

A summary of baseline and trial characteristics over the entire dataset and by trial is

shown in Table 7.1. Among 276 patients, 167 (60.5%) were males. Median age was 15.1

years (IQR [11.7; 18.2]). Therapy started on time in 71.0% of patients and surgery was

performed on time since the start of the first cycle in 29.0% of patients.

In both studies, toxic side effects were recorded using the Common Terminology Criteria

for Adverse Events Version 3 (CTCAE v3.0) [208], with grades ranging from 0 (none) to

4 (life-threatening) (see Table 7.2). Toxicity were collected longitudinally in BO06 trial,

whereas in BO03 only the highest CTCAE grade (i.e., the most severe) was recorded for

each toxicity in both the pre-operative and post-operative periods. According to pro-

tocols, the following side effects were linked to specific dose reduction or delay rules:

leucopenia (i.e., a decrease in the number of white blood cells), thrombocytopenia (i.e.,

a decrease in the number of neutrophils), oral mucositis, ototoxicity, cardiotoxicity and

neurotoxicity. If different rule-specific conditions co-existed and more than one dose re-

duction (or cumulative delays) applied, the lowest dose (or the highest delays) calculated

was employed. According to expert knowledge, although not directly related to a specific

adjustment rule, the patient’s generic conditions of nausea/vomiting and infections was

also taken into account during therapy. Treatment adjustments were hence determined as

a combination of overall toxic burden related to both rule-specific and generic conditions,

representing the confounding mechanisms due to toxicities.

To let pre- and post-operative toxicities be properly considered as confounding covariates

and included in the analyses, individual side effects had to be appropriately summarized

in order to quantify the overall toxic burden. For this purpose, the longitudinal Multiple

Overall Toxicity (MOTox) score [190] introduced in Chapter 5 can be exploited. Since

toxicity data over cycles were not recorded for BO03, MOTox computation was based on

pre-operative and post-operative periods, considering the highest CTCAE grade recorded

for each toxicity during pre/post-operative cycles.
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Table 7.1. Patients baseline and trial characteristics.

All BO03 BO06

Patients 276 114 (41.3%) 162 (58.7%)

Age [years]

child* 76 (27.5%) 26 (22.8%) 50 (30.9%)

adolescent* 117 (42.4%) 49 (43.0%) 68 (42.0%)

adult* 83 (30.1%) 39 (34.2%) 44 (27.1%)

Median [IQR] 15.1 [11.7;18.2] 16.0 [12.8;19.0] 14.6 [11.3;17.7]

Min/Max 3.6/37.5 4.7/32.6 3.6/37.5

Gender

Female 109 (39.5%) 43 (37.7%) 66 (40.7%)

Male 167 (60.5%) 71 (62.3%) 96 (59.3%)

Starting day**

on time (day 0-1) 196 (71.0%) 63 (55.3%) 133 (82.1%)

low-delay (day 2-3) 43 (15.6%) 23 (20.2%) 20 (12.3%)

delay (day ≥ 4) 37 (13.4%) 28 (24.5%) 9 (5.6%)

Median [IQR] 1 [0;2] 1 [0;3] 0 [0,1]

Min/Max 0/15 0/15 0/7

Surgery time‡
on time 80 (29.0%) 29 (25.4%) 51 (31.5%)

delayed 196 (71.0%) 85 (74.6%) 111 (68.5%)

Median [IQR] 11 [4;22] 14 [5.25;22] 10 [4;21]

Min/Max -39/132 -39/103 -3/132

* Age groups were defined according to Collins et al. (2013) [43]: child (male: 0–12 years; female: 0–11 years),

adolescent (male: 13–17 years; female: 12–16 years) and adult (male: 18 or older; female: age 17 years or older).

** Starting day since randomization date. P-value of two-sided Mann-Whitney U test for starting day in BO03 vs

BO06: 7.571e-08; p-value of chi-squared test among starting day category and trial: 1.096e-06.

‡ Surgery time (i.e., days since start of the first cycle) with respect to schedule is considered on time if performed

from at most at the end of the scheduled week (BO03: week 10 – day 63 since start of first cycle; BO06: week 7 –

day 42 since start of first cycle), or delayed if performed 7 or more days after scheduled date. P-value of two-sided

Mann-Whitney U test for surgery time wrt schedule in BO03 vs BO06: 0.0899; p-value of chi-squared test among

surgery time category and trial: 0.3397.

Multiple Overall Toxicity score. Let T and k denote the set of different toxicities and

the time-period index, respectively. Let toxij,k (with value from 0 to 4) be the

most severe CTCAE grade of the j-th toxicity (with j = 1, ..., |T |) measured during

period k for the i-th patient. The Multiple Overall Toxicity (MOTox) score for the

i-th patient during period k is defined as:

MOToxi,k =
1

|T |
∑
j∈T

toxij,k + max
j∈T

(toxij,k).

In particular, for each patient i four different MOTox scores could be computed considering

as time-period index the pre-operative and post-operative periods, i.e., k ∈ {pre, post},
and two disjoint sets of toxicities related to rule-specific and generic conditions, i.e,

T (rule) = {leucopenia, thrombocytopenia, oral mucositis, ototoxicity, cardiotoxicity, neuro-

toxicity} and T (gen) = {nausea, infection}.
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Figure 7.3. Left panel: boxplots of pre-operative and post-operative MOTox scores related to rule-

specific toxicities, i.e., MOTox
(rule)
i,k with k ∈ {pre, post} and T (rule) = {leucopenia, thrombocytopenia,

oral mucositis, ototoxicity, cardiotoxicity, neurotoxicity}. Right panel: boxplots of pre-operative and

post-operative MOTox scores related to generic toxicities, i.e., MOTox
(gen)
i,k with k ∈ {pre, post} and

T (gen) = {nausea, infection}.
Boxplots are grouped by cohorts (gray: All ; red: BO03 ; purple: BO06 ). Squares and diamonds rep-

resent minimum and maximum values, respectively. P-values p refer to Mann-Whitney U tests for the

distribution of MOTox scores in BO03 vs BO06 cohorts.

Figure 7.3 displays a summary of pre/post-operative MOTox characteristics for both rule-

specific (left panel) and generic (right panel) conditions. Overall (gray boxes), generic

MOTox scores were high: pre/post-operative median MOTox values were equal to 4.5

meaning that in median patients experienced at least one generic side effect of CTCAE-

grade 3, i.e., severe or medically significant. This is not surprising because nausea is the

most common chemotherapy-induced adverse event. Rule-specific MOTox resulted higher

in the post-operative period than in the pre-surgery one. This indicates that toxicity

levels have accumulated over time resulting in more severe overall toxic burden in the

second phase of treatment.

7.1.3. Chemotherapy exposure characteristics

Data on chemotherapy administration (administered dose of chemotherapy, cycle starting

dates, delays) were collected prospectively at each treatment cycle in both trials. After

pre-operative treatment cycles, surgery was performed and data about HRe were mea-

sured. Chemotherapy exposure can hence be evaluated in terms of both (i) reductions in

the actual dose intensity with respect to anticipated/planned one (i.e., by RDI reduction)

and (ii) improvement in the appearance of microscopic tissue specimens in a patient after

pre-operative treatment (i.e., by HRe).

As mentioned in Section 7.1.1, control arm patients in both BO03 and BO06 underwent

the standard EOI treatment structured in 6 cycles of 3-weekly CDDP plus DOX. Re-

ductions of CDDP and/or DOX dosage at each cycle may be assessed considering the

cycle-standardized dose, defined as follows:

146



C
H
A
P
T
E
R
7

7.1. Data description

Cycle-standardized dose. The cycle-standardized dose of drug d for patient i at cycle j

is

δdij =
actual dose of drug d assumed at cycle j by patient i [mg/m2]

anticipated dose of drug d [mg/m2]
(7.1)

where d is the type of drug (CDDP or DOX). As established by trial protocols (see

Figure 7.1), anticipated doses of CDDP and DOX are 100 mg/m2 and 75 mg/m2,

respectively.

Figures 7.4 shows the longitudinal nature of drug-dosage data and how treatment modi-

fications were differently deployed in the two studies. Reductions were usually allocated

in the last cycles. This is in line with the common understanding that toxicity levels are

more severe towards the end of the treatment and tend to cumulate over time.

To evaluate both dose reductions/discontinuations, time-delays, and their impact in reduc-

ing the intensity of the whole therapy, the so-called Received Dose Intensity [86] approach

can be adopted. RDI method is able to summarize information on treatment adjustments

during the whole therapy, considering both standardized dose and standardized time.

Standardized dose. The standardized dose for patient i at the end of the treatment is

∆i =
1

2

(
∆CDDP
i + ∆DOX

i

)
=

1

12

(
6∑
j=1

δCDDPij +
6∑
j=1

δDOXij

)
. (7.2)

∆i < 1 indicates dose-reduced therapies, whereas ∆i > 1 corresponds to dose-

augmented therapies.

Standardized time. The standardized time for patient i at the end of the treatment is

Γi =
actual treatment time

anticipated treatment time
(7.3)

where

• actual treatment time is the difference in days between the starting date of

cycle 1 and the 3rd day after the start of cycle 6,

• anticipated treatment time is 21× 5 + 14 + 3 = 122 days, i.e., 5 cycles lasting

21 days each, 14 days of surgery and 3 days after the start of cycle 6.

Γi > 1 indicates delayed therapies, whereas Γi < 1 corresponds to accelerated

treatments.

Received Dose Intensity. The Received Dose Intensity at the end of the treatment (i.e.,

final RDI) for patient i is defined as the ratio between standardized dose ∆i and

standardized time Γi, as follows

RDIi =
∆i

Γi
. (7.4)
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7.1. Data description

In general, ∆i ≤ 1 and Γi ≥ 1 due to dose reductions and delays, respectively, and so

RDIi ≤ 1.

Instead of considering the whole treatment from cycle 1 to 6, standardized dose, time and

RDI could be computed for pre-operative and post-operative periods separately. For each

patient, the pre-operative period is made up of cycles performed before surgery, while

the post-operative period of cycles performed after surgery. Appendix D.1 reports how

definitions in Equations (7.2), (7.3) and (7.4) can be adapted to consider pre-operative

and post-operative periods separately, i.e., ∆i,k, Γi,k and RDIi,k with k ∈ {pre, post}.
Note that RDIi 6= RDIi,pre +RDIi,post.

As mentioned in Section 7.1.1, the level of tumour necrosis for each patient was assessed

after surgical resection (planned at the end of cycle 3/2 in BO03/BO06 – see Figure 7.1)

and used to define HRe, as follows:

Histological Response. Histological Response (HRe) to pre-operative chemotherapy is

defined as poor if tumour necrosis is less than 90% (i.e., ≥ 10% of viable tumour)

or good if tumour necrosis is greater than or equal to 90% (i.e., < 10% of viable

tumour).

Figure 7.5 reports a summary of treatment exposure characteristics for the whole cohort

and conditional on trials. The percentages of patients with a good HRe after surgical

resection were 34.1% (94 patients) in the whole cohort, 32.5% in BO03 and 35.2% in BO06.

Overall, median value of final RDI was 0.759 (IQR=[0.649; 0.857]), with minimum and

maximum values of 0.376 and 1.121, respectively. Median percentages of pre-operative

and post-operative RDI were 0.810 (IQR=[0.727; 0.901]) and 0.723 (IQR=[0.584;0.870]),

respectively, confirming that reductions and delays are usually allocated in the post-

operative cycles.

Figure 7.6 shows a scatter plot of RDI at the end of treatment (final RDIi) against

the final standardized dose of CDDP+DOX (∆i) conditional on trial (left panel: BO03 ;

right panel: BO06 ) and HRe (blue: poor ; green: good). The solid horizontal lines in

pink vertically divide patients with normal RDI levels (RDIi ≥ 0.85) from low reduction

(0.70 ≤ RDIi < 0.85) and high reduction (RDIi < 0.70) patients. The solid diagonal line

in black satisfies equation RDIi = ∆i, dividing the group of patients with standardized

time Γi > 1 (delayed therapy, below the line) from the group, almost void, of patients with

Γi < 1 (anticipated therapy, above the line). The dotted diagonal line in black satisfies

equation RDIi = ∆i/1.2, dividing the group of patients with therapy delayed by more

than 20% of anticipated time (below the dotted line) from the group of patients with

therapy delayed by less than 20% of anticipated time (between solid and dotted black

lines). This figure shows the lack of a clear association between HRe and RDI. Analogous

figures for pre/post-operative RDI against their relative standardized doses can be found

in Appendix D.1 . Both Figures 7.5 and 7.6 clearly display the difference of treatment

delivery in BO03 and BO06 trials.
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Figure 7.5. Patients treatment exposure characteristics. Left panel: barplots of Histological Response

(HRe) by cohort (All, BO03, BO06) coloured according to HRe level (blue: poor ; green: good). P-value

p refers to the chi-squared test for the association between HRe and BO03/BO06 trial. Right panel: box-

plots of final, pre-operative and post-operative Received Dose Intensity (i.e., RDIi, RDIi,pre, RDIi,post)

grouped by cohort (gray: All ; red: BO03 ; purple: BO06 ). Squares and diamonds represent minimum

and maximum values, respectively. P-values p refer to Mann-Whitney U tests for the distribution of RDI

values in BO03 vs BO06 cohorts.
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Figure 7.6. Scatter plots of RDI at the end of treatment (i.e., RDIi in Equation (7.4)) against the final

standardized dose of CDDP+DOX (∆i) conditional on trial (BO03 : left panel; BO06 : right panel) and

HRe (blue points: poor ; green points: good).

7.2. Causal inference structure and methods

Since negative feedback between therapy administration and toxicities acts as a (generally

time-dependent) confounder for the effect of chemotherapy exposure on outcome, the idea

of this study is to create a pseudo-population in which medical history no longer predicts

exposure through IPTW. In that framework, Cox MSMs can be used to estimate the

joint causal effect of HRe and dose intensity on Event-Free-Survival (EFS). In order

to create such a pseudo-population, outcome, exposure, confounders and their mutual

relationships have to be defined. EFS outcome is defined in Section 7.2.1. Causal inference

assumptions for MSMs are introduced in Section 7.2.2. A suitable characterisation of the

causal structure of the chemotherapy data is given in Section 7.2.3. Two alternative
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definitions of joint-exposure with their relative models are finally introduced in Sections

7.2.4 and 7.2.5.

7.2.1. Event-Free Survival Outcome

The endpoint of this study is Event-Free Survival (EFS), defined as time from the end of

therapy until the first event (local recurrence, evidence of new or progressive metastatic

disease, second malignancy, death, or a combination of those events) or censoring at last

contact. In particular:

EFS outcome. The time-to-event outcome for patient i ∈ {1, ..., N} is denoted as (Ti, Di),

where Ti = min(T ∗i , Ci) is the observed EFS time, T ∗i is the true event time, Ci is

the censoring time (i.e., the time from the end of the therapy until the last visit)

and Di = I(T ∗i ≤ Ci) is the event indicator, with I(·) being the indicator function

that takes the value 1 when T ∗i ≤ Ci, and 0 otherwise.

7.2.2. Causal inference assumptions for marginal structural models

Marginal structural Cox models allow the estimation of the causal associations between

treatment exposure A and time-to-event response T in the presence of time-dependent

covariates L that may be simultaneously confounders and intermediate variables [78, 79,

100]. Cox MSMs target counterfactual (or potential) time-to-event variables T a, i.e., the

time at which an event would be observed had the subject, possibly contrary to fact, been

administered a treatment exposure A = a . There exist four main assumptions for causal

inference with (Cox) MSMs through IPTW [41, 77].

1. Exchangeability or No unmeasured confounding

Exchangeability (or conditional exchangeability) implies the well-known assumption

of no unmeasured confounding [41]. It states that exposure allocation is independent

of the potential outcomes conditional on pre-treatment covariates (i.e., T a ⊥⊥ A|L)

or, in a longitudinal setting, that treatment is sequentially randomized given the

past [41]. This assumption is often referred as “ignorable treatment assignment”

or “sequential randomization” in statistics, “selection on observables” in the social

sciences or “no omitted variable bias” in econometrics [77].

The main limitation is that, in absence of randomization such as in observational

studies, exchangeability is not be testable so there is no guarantee that it holds.

Experts knowledge is then necessary for the identification of enough joint predictors

of exposure and outcome such that, within the levels of these predictors, associations

between exposure and outcome that are due to their common causes will disappear

[41].
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2. Consistency

Consistency means that the outcome observed for each individual is precisely the

counterfactual outcome under their observed treatment history, that is T a = T for

every individual with A = a. This assumption would be violated in the presence of

misclassification bias [217] and has two requirements [77]:

i. since one must be able to explain how a certain level of exposure could hy-

pothetically be assigned to a person exposed to a different level, the exposure

must be defined unambiguously so that the counterfactual outcomes are well-

defined;

ii. there is a need to link the counterfactuals with observed data and thus to

reasonably assume that the equality is valid for at least some individuals.

Although consistency can not be empirically verified, it is assumed plausible in

observational studies of medical treatments, because one can imagine how to hypo-

thetically manipulate an individual’s treatment status [40].

3. Positivity

Positivity states that there is a non-zero (i.e., positive) probability of receiving every

level of exposure for every combination of values of exposure and covariate histories

that occur among individuals in the population [41]. If this assumption is violated,

then the weights in IPTW are undefined leading to biased estimates of the causal

effect.

If someone cannot be exposed to one or more levels of the confounders (e.g., it

cannot be treated in the presence of recommendations from guidelines or established

contraindications), then positivity is violated due to a structural zero probability

of receiving the exposure. A solution is to restrict the inference to the subset with

a positive probability of exposure, whenever possible [40]. Even in the absence of

structural zeros, random zeros may occur by chance due to small sample sizes or

highly stratified data by numerous confounders. The inclusion of weak or highly-

stratified confounders can provide a better confounding adjustment but may cause

severe non-positivity, increasing the bias and variance of the estimated effect. An

indication of non-positivity may be the presence of estimated weights with the mean

far from one or very extreme values [40].

4. No misspecification of both weighting and outcome models

The final assumption of MSMs is that both the weighting model for IPTW and

the structural outcome model, which links the outcome to the exposure history,

must be correctly specified. This assumption has similar roots in essentially all

statistical models [217], as model misspecification leads to instability in the Cox

MSM estimator [100, 101].

Since the presence of estimated stabilized weights with the mean far from one or

very extreme values are indicative of non-positivity or misspecification of the weight
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model [40], correctness of the weighting model specifications can be checked by

exploring the distribution of weights [41]. In addition, quantitative (e.g., weighted

standardized difference to compare means or prevalences) and qualitative graphical

methods can be used to assess whether measured covariates are balanced between

treatment groups in the weighted sample [19].

If these assumptions hold, causal inference is possible from MSMs through IPTW. In

particular, IPTW creates a pseudo-population by weighting each patient with the inverse

probability of observing a certain treatment allocation given the past treatment and con-

founders history. In the context of chemotherapy treatment, a pseudo-population created

in this way has the following two properties:

i. the past history of pseudo-patients no longer predicts exposure to chemotherapy in

the next cycle;

ii. the association between exposure and outcome is the same in both the original and

the pseudo-population, so that causal effect of treatment modifications can be just

obtained by a crude analysis on the pseudo-population.

In the following sections, joint-exposure, confounders and Cox MSMs are introduced

through a thoughtful process designed to make the four assumptions acceptable. Section

7.2.3 describes a suitable characterisation of the causal structure of the chemotherapy

data through the introduction of appropriate Direct Acyclic Graphs (DAGs) that iden-

tify all possible (time-dependent) confounders and their relationships with exposure and

outcome. In fact, once defined the appropriate DAGs according to clinical and statisti-

cal knowledge, it can be reasonably assumed that exchangeability is approximately true

within confounding strata. Sections 7.2.4 and 7.2.5 introduce two alternative unambigu-

ous definitions of exposure which meet consistency according to experts, along with their

corresponding counterfactual EFS outcomes and relative proposed Cox MSMs to estimate

the association between them. Positivity and no misspecification will be finally checked

for data application results in Section 7.3.

7.2.3. Causal structure of chemotherapy data

Relationships between random variables (i.e., exposure, confounders and outcome) is usu-

ally represented using DAGs in causal inference [67, 77]. Both clinical/oncological exper-

tise in osteosarcoma treatment and statistical competence in variables definitions and

mathematical modelling are required to construct an appropriate DAG for the problem

under analysis, where the main interest is to estimate the joint causal effect of HRe and

dose intensity reduction on EFS.

In both trials, HRe level was measured after surgery and can be considered as a conse-

quences of patient’s pre-operative characteristics. Only the most severe CTCAE grades

were recorded in BO03, while data from BO06 are fully longitudinal in both exposure and

side-effects (see Section 7.1.2). This fact posed a modelling issue, because the therapy
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adjustment cannot be modelled cycle-by-cycle. Two alternative options are then plausible

for dose intensity:

1. time-fixed final RDI : the final value of RDI (i.e., the value at the end of treatment)

can be seen as the result of the most severe toxicities experienced by the patient

throughout the therapy;

2. time-dependent pre/post-operative RDI : therapy adjustment can be modelled by

pre- and post-operative periods, considering the values of pre/post-operative RDI

as results of the most severe overall toxicities experienced by the patient during

pre/post-operative cycles.

The first option leads to a time-fixed joint-exposure of HRe and final RDI, whereas the

second one to a time-varying joint-exposure given by HRe and time-varying pre/post-

operative RDI.

Confounders were identified according to protocol guidelines and oncological experts

knowledge. Conditioning chemotherapy administration over treatment as mentioned in

Section 7.1.2, both rule-specific and generic multiple overall toxicities represent time-

dependent confounders. Influencing the drug metabolism, and so being risk factors for

increased toxicity, age and gender are baseline confounders because they were also clini-

cally considered independent predictors of mortality. Although the trial does not represent

a proper risk factor for failures (p-value of log-rank test for Kaplan-Meier estimators strat-

ified by trial is about 1), it can be considered as a baseline confounder, being both an

independent predictor for HRe (through number of preoperative cycles [119] and ther-

apy starting days) and for dose intensity (see Figures 7.4, 7.5, 7.6), and influencing EFS

through the way CTCAE grades were assessed and therapy modifications allocated (see

Section 7.1.2). Furthermore, since there is usually a tendency not to delay surgery in the

case of disease progression, the surgery timing may influence HRe.

According to the literature on MSMs, where the roman capital letter L is used to indicate

a confounder, the following variables denote the characteristics of the i-th patient that

influence both exposure and outcome.

Time-fixed confounders for the i-th patient are represented by vectors of baseline and

surgery characteristics, i.e., Lbasei and Lsurgi with elements:

• Lbase,1i : trial number (BO03; BO06);

• Lbase,2i : gender (female; male);

• Lbase,3i : age group defined according to Collins et al. (2013) [43] (child : 0–12/0-

11 years for males/females; adolescent : 13–17/12–16 years for males/females;

adult : 18/17 or older for males/females);

• Lsurgi : surgery time category with respect to schedule (0: delayed ; 1: on time

– see Table 7.1).
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Time-varying confounders for the i-th patient are represented by the vectors of Multiple

Overall Toxicity burden during pre/post-operative periods k ∈ {pre, post}, i.e.,

Ltoxi,pre and Ltoxi,post with elements

• Ltox,1i,k = MOTox
(rule)
i,k : MOTox score related to period k based on rule-specific

conditions T (rule) (see Section 7.1.2)

• Ltox,2i,k = MOTox
(gen)
i,k : MOTox score related to period k based on generic con-

ditions T (gen) (see Section 7.1.2).

The choice of MOTox scores instead of individual CTCAE grades for the various toxicities

is motivated both by the positivity/confounders trade-off and by the clinical protocols.

By considering the individual grades for each toxicity, the number of possible confounders

combinations would be too high leading to non-positivity. This choice also meets the

clinical rationale, in the case of multiple toxicities, of adapting treatment according to

the overall toxic burden of the patient (see Section 7.1.2).

According to experts knowledge, these characteristics have been believed to form a set

of variables that satisfies the hypothesis of no unmeasured confounding. In particular,

baseline and pre-operative MOTox confounders affect both HRe and RDI. As the delay in

the surgery time already included in the calculation of the RDI (it concurs to standardized

time), surgery confounder only affects HRe (p-value of chi-squared test for association

is 0.023). Being HRe the response to pre-operative treatment, post-operative MOTox

confounders only influence RDI.

Figure 7.7 shows two alternative DAGs resulting from the causal structure described

above. DAG-1 (top panel) is characterized by EFS outcome, aforementioned confounders,

and the time-fixed joint-exposure given by both HRe and final RDI. DAG-2 (bottom

panel) identifies a relationship among EFS outcome, confounders and a time-varying

joint-exposure given by HRe and pre/post-operative RDIs. Both DAGs rely upon the

hypothesis that HRe and RDI(s) are conditionally independent on the patient’s toxicity-

history. In other words, given two patients with the same toxicity history but different

values of HRe, the probability of observing a reduction in RDI, say of 15%, is the same

in the two patients regardless of one being poor responder and the other good responder.

This assumption can be defended on the following two facts:

i. HRe is typically not known until several weeks since chemotherapy is resumed after

surgery, i.e., HRe could influence the decision to reduce therapy intensity only in

the very last cycles;

ii. in a randomized trial clinicians can be expected to be rather committed to following

the trial protocol.

Moreover, both modelling choices do not allow for a fine continuous analysis of RDI, as

this would not guarantee the assumptions of consistency and positivity. Therefore, an

unambiguous well-defined categorization according to a clinical rational of RDI exposure

variables must be introduced.
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Figure 7.7. Directed Acyclic Graphs (DAGs) used to represent the causal relationships between event

free survival outcome Ti, joint-exposure Ai, time-fixed confounders Li (baseline and surgery) and time-

varying confounders Li,k (pre/post-operative multiple overall toxicities). Top panel (DAG-1): joint

exposure is characterized by HRe and time-fixed final RDI. Bottom panel (DAG-2): joint-exposure is

characterized by HRe and time-varying pre/post-operative RDI.

7.2.4. Joint-exposure and marginal structural Cox model for DAG-1

DAG-1 (top panel in Figure 7.7) is characterized by the EFS outcome Ti, the time-fixed

and time-varying confounders
(
Lbasei , Lsurgi Ltoxi,pre,L

tox
i,post

)
, and a joint-exposure Ai given

by HRe and final RDI, both time-fixed. According to expert knowledge, a normal RDI

level (i.e., RDIi ≥ 0.85) can be analysed in contrast to low-reduction (from 15% to 30%)

and high-reduction (more than 30%) categories. Joint-exposure Ai for DAG-1 can hence

be defined as follows.

Joint-exposure. The time-fixed joint-exposure administered for subject i is denoted by

the vector

Ai =
(
A1
i , A

2
i

)
(7.5)

where
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• A1
i is the three-level exposure related to final RDI

A1
i =


0 if RDIi ≥ 0.85

1 if 0.70 ≤ RDIi < 0.85

2 if RDIi < 0.70

• A2
i is the binary exposure related to HRe

A2
i =

{
0 if tumour necrosisi < 90%

1 if tumour necrosisi ≥ 90%

that is, A2
i = 1 is equivalent to a “good” HRe, while A2

i = 0 denotes a “poor”

HRe.

Once joint-exposure is defined unambiguously, the counterfactual EFS outcome, i.e., the

outcome that would be observed had the subject followed, possibly contrary-to-fact, a

given treatment, is also well-defined:

Counterfactual outcome. Let T a
i = T

(a1,a2)
i denote the counterfactual EFS time that

would be observed in a subject i with joint-exposure treatment

A1
i = a1, a1 ∈ {0, 1, 2}, and A2

i = a2, a2 ∈ {0, 1}.

In particular, there are exactly six joint-exposure (a1, a2) that can be realised according

definition in Equation (7.5):

• (0,0): poor responder without significant reduction (i.e., normal RDI level);

• (1,0): poor responder with final low-reduction of 15-30%;

• (2,0): poor responder with final high-reduction of more than 30%;

• (0,1): good responder without significant reduction;

• (1,1): good responder with final low-reduction of 15-30%;

• (2,1): good responder with final high-reduction of 30%.

Within a counterfactual framework, i.e., in the pseudo-population, Cox MSMs enable the

conceptual comparison of the hazard functions for different treatment level a = (a1, a2).

No baseline/experimental covariates are included in the model because there is no clinical

interest in assessing the causal effect of changes in chemotherapy exposure within specific

population strata. The main interest consists in proposing a Cox MSM that represents

the causal RDI analogue of the Intention-To-Treat (ITT) Cox model presented by Lewis

et al. (2007) [119], which included HRe, intended treatment, and their interaction. A

Cox MSM with interactions between a1 and a2, where the treatment binary variable is

replaced by the actual final RDI level, is hence proposed as follows:
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Cox MSM 1. The Marginal Structural Cox Model for EFS time under treatment level

a = (a1, a2) is

hTa
i

(t) = h0(t) exp
{
β11(a1=1) + β21(a1=2) + β3a2 + β41(a1=1)a2 + β51(a1=2)a2

}
(7.6)

To estimate the causal parameters β of the Cox MSM in Equation (7.6), a weighted Cox

model [30, 126] can be fitted to the pseudo-population obtained through IPTW, as follows

hSWi
Ti

(t|Ai) = h0(t) exp
{
θ11(A1

i=1) + θ21(A1
i=2) + θ3A

2
i + θ41(A1

i=1)A
2
i + θ51(A1

i=2)A
2
i

}
(7.7)

with subject-specific stabilized weights

SWi = SWA1

i · SWA2

i (7.8)

where

SWA1

i =
P (A1

i )

P
(
A1
i

∣∣L1
i

) =
P (A1

i )

P
(
A1
i

∣∣Lbasei ,Ltoxi,pre,L
tox
i,post

) ;

SWA2

i =
P (A2

i )

P
(
A2
i

∣∣L2
i

) =
P (A2

i )

P
(
A2
i

∣∣Lbasei ,Ltoxi,pre, L
surg
i

) .
In both SWA1

i and SWA2

i cases, numerators are the probability that a subject i received

observed exposures A1
i and A2

i respectively, whereas denominators are the probability that

the subject received observed exposures given relative time-fixed and time-dependent con-

founders. Regression models have to be chosen appropriately, according to the type of of

exposure. In particular, multinomial logistic regression models are used for both numera-

tor and denominator of SWA1

i , whereas binary logistic regression models are adopted for

SWA2

i .

Under causal inference assumptions (see Section 7.2.2), association is causation in the

pseudo-population and the estimates of the associational parameters θ are consistent for

the causal parameters β. In applying this methodology to the chemotherapy data, differ-

ent model specifications in terms of confounding covariate features must be compared to

satisfy the final assumptions of positivity and no misspecification of the weight-generating

models and guarantee an unbiased estimation of the results.

7.2.5. Joint-exposure and marginal structural Cox model for DAG-2

DAG-2 (bottom panel in Figure 7.7) is characterized by the EFS outcome Ti, the time-

fixed and time-varying confounders
(
Lbasei , Lsurgi Ltoxi,pre,L

tox
i,post

)
, and a joint-exposure Āi

given by HRe and time-varying pre/post-operative RDI. As in the previous section, a

normal RDI level can be analysed in contrast to low and high reductions. Time-varying

joint-exposure Āi for DAG-2 is hence defined as follows.
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Joint-exposure. The time-varying joint-exposure administered for subject i is denoted

by the vector

Āi =
(
Ā1
i , A

2
i

)
=
((
A1
i,pre, A

1
i,post

)
, A2

i

)
(7.9)

where

• Ā1
i is the time-varying three-level exposure vector related to pre/post-operative

RDI with elements

A1
i,k =


0 if RDIi,k ≥ 0.85

1 if 0.70 ≤ RDIi,k < 0.85

2 if RDIi,k < 0.70

where k ∈ {pre, post} indicating the pre-operative and post-operative periods,

respectively;

• A2
i is the binary exposure related to HRe

A2
i =

{
0 if tumour necrosisi < 90%

1 if tumour necrosisi ≥ 90%

that is, A2
i = 1 is equivalent to a “good” HRe, while A2

i = 0 denotes a “poor”

HRe.

Once joint-exposure is defined unambiguously, the counterfactual EFS outcome, i.e., the

outcome that would be observed had the subject followed – possibly contrary-to-fact – a

given treatment, is also well-defined:

Counterfactual outcome. Let T ā
i = T

((a11,a12),a2)
i denote the counterfactual EFS time

that would be observed in a subject i with time-varying joint-exposure

A1
i,pre = a11, A1

i,post = a12, a11, a12 ∈ {0, 1, 2}, and A2
i = a2, a2 ∈ {0, 1}.

In particular, there are exactly 18 time-varying joint-exposure combinations ā = (ā1, a2) =

((a11, a12), a2) that can be realised according definition in Equation (7.9). To avoid too

many combinations, we specify a model that combines information from many strate-

gies to help estimate the causal effects. For example, we can hypothesize a cumulative

treatment effects under sub-strategy ā1, named cumulative RDI-exposure

cum (ā1) =
2∑

k=1

a1k

which could takes value

• 0: if no reduction, neither pre nor post surgery;

• 1: if only one low reduction pre or post surgery;

• 2: if low reductions both pre and post surgery or high reduction pre or post surgery;
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• 3: if both pre-operative (or post-operative) low reduction and post-operative (or

pre-operative) high reduction;

• 4: if high reductions both pre and post surgery.

Therefore cum (ā1) represents the number of reductions by a value of 15-30%, where a

single high reduction of at least 30% can be seen as twice a low reduction of 15-30%. In the

following, the time-varying joint-exposure levels and values for patient i (with 18 different

possible combinations) are indicated by ā = (ā1, a2) and Āi =
(
Ā1
i , A

2
i

)
respectively,

whereas the cumulative joint-exposure levels and values for patient i (with 10 different

possible combinations) are indicated by ã = (cum (ā1) , a2) and Ãi =
(
cum

(
Ā1
i

)
, A2

i

)
,

respectively.

Within a counterfactual framework, Cox MSMs enable the conceptual comparison of the

hazard functions for different treatment exposure ā = (ā1, a2). As in Section 7.2.4,

no baseline/trial covariates are included in the proposed structural model. Since the

interests is in analysing the causal RDI analogue of the ITT Cox model presented by

Lewis et al. (2007) [119] according to pre/post-operative RDI definitions, a Cox MSM

with interactions between cum (ā1) and a2 is hence proposed.

Cox MSM 2. The Marginal Structural Cox Model for EFS time under cumulative treat-

ment level ã = (cum (ā1) , a2) is

hT ã
i

(t) = h0(t) exp {β1cum (ā1) + β2a2 + β3cum (ā1) a2} (7.10)

To estimate the causal parameters β of the Cox MSM in Equation (7.10), a weighted

Cox model [30, 126] can be fitted to the pseudo-population obtained through IPTW, as

follows

hSWi
Ti

(
t|Āi

)
= h0(t) exp

{
θ1cum

(
Ā1
i

)
+ θ2A

2
i + θ3cum

(
Ā1
i

)
A2
i

}
(7.11)

where cum
(
Ā1
i

)
is the cumulative RDI-exposure vector

cum
(
Ā1
i

)
=

∑
k∈{pre,post}

A1
i,k

and SWi are the subject-specific stabilized weights given by

SWi = SW Ā1

i · SWA2

i (7.12)

with

SW Ā1

i = SW
A1
pre

i · SWA1
post

i =
P
(
A1
i,pre

)
P
(
A1
i,pre

∣∣Lbasei ,Ltoxi,pre
) · P

(
A1
i,post

∣∣A1
i,pre

)
P
(
A1
i,post

∣∣A1
i,pre,L

base
i ,Ltoxi,pre,L

tox
i,post

) ;

SWA2

i =
P (A2

i )

P
(
A2
i

∣∣Lbasei ,Ltoxi,pre, L
surg
i

) .
As in the previous section, multinomial logistic regression models can be used for both

numerators and denominators of SW Ā1

i , whereas binary logistic regression models can be

adopted for SWA2

i .
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Under causal inference assumptions, association is causation in the pseudo-population and

the estimates of the associational parameters θ are consistent for the causal parameters

β. In applying this methodology to the chemotherapy data, different model specifications

must be compared to satisfy positivity and no misspecification of the weight-generating

models and guarantee an unbiased estimation of the results.

7.3. Results

IPTW-based causal methodologies introduced in Section 7.2 are now applied to BO03-

BO06 chemotherapy data presented in Section 7.1. In Section 7.3.1 joint-exposures for

DAG-1 and DAG-2 are explored in terms of percentages of patients in each exposure-level

and association with EFS in the original population. Different IPTW model specifica-

tions to determine the subject-specific standardized weights for the pseudo-population are

presented in Section 7.3.2. Results of causal Cox MSMs fitted on the pseudo-population

are presented in Section 7.3.3, along with their relative unweighted Cox results to show

the toxicity-treatment-adjustment bias present in the original data. Statistical analy-

ses were performed in the R-software environment [161], in particular using ipw [210]

and survival [201] packages. R code for the current study is provided here: https:

//github.com/mspreafico/BO0x-CoxMSM.

7.3.1. Joint-exposure descriptive and association with EFS

Once computed the time-fixed and time-varying joint-exposures for each subject, the

percentage of patients in each level and the naive association with survival were observed.

Overall, median EFS time computed using the reverse Kaplan-Meier method by Schemper

and Smith (1996) [182] was 89.59 months (IQR = [50.33; 146.30]) and 155 patients (55.1%)

experienced an event after the end of the therapy. Figure 7.8 shows both time-fixed Ai

(top panels) and cumulative Ãi (bottom panels) joint-exposure characteristics. In both

cases, left panels report percentage of patients according to the various joint-exposure

levels and right panels display Kaplan-Meier estimators for EFS curves stratified by joint-

exposure levels with time expressed in months since end of therapy. As expected, Good

Responders (GRs) (green curves) presented a better survival with respect to Poor ones

(PRs – blue curves). In particular, in GRs an increased final/cumulative RDI level seemed

associated with better survival, whereas a reversed association was observed in the group

of PRs. However, in both cases the curve of GRs with the highest reduction overlapped

PRs curves, suggesting the possibility of a non-negligible interaction between the joint-

exposure components and validating the Cox MSMs proposed in Equations (7.6) and

(7.10).

To further investigate these findings and analyse the causal effect of time-fixed/time-

varying joint-exposure on EFS through Cox MSMs, subject-specific standardized weights

must be computed from correctly specified IPTW models which take into account all the

confounding factors identified in Section 7.2.3.
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Figure 7.8. Joint-exposure characteristics. Top panels refer to time-fixed joint-exposure Ai =
(
A1
i , A

2
i

)
introduced in Section 7.2.4 , where A1

i is the final RDI level (0: normal RDIi ≥ 0.85; 1: low-reduction

0.70 ≤ RDIi < 0.85; 2: high-reduction RDIi < 0.70) and A2
i is the HRe (0: poor : 1: good). Bottom panels

refer to cumulative joint-exposure Ãi =
(
cum

(
Ā1
i

)
, A2

i

)
, where cum

(
Ā1
i

)
is the cumulative pre/post-

operative RDI level described in Section 7.2.5 and A2
i is the HRe (0: poor : 1: good). In both cases,

left panels report percentage of patients by joint-exposure levels and right panels display Kaplan-Meier

estimators for EFS curves stratified by joint-exposure levels.

7.3.2. IPTW diagnostics

Different specifications of the subject-specific standardized weights for final RDI level

SWA1

i , HRe category SWA2

i and pre/post-operative RDI levels SW Ā1

i = SW
A1
pre

i ·SWA1
post

i

were investigated in order to check whether and which models best satisfied positivity

and no misspecification. As mentioned in Sections 7.2.4 and 7.2.5, multinomial logis-

tic regression models were used for both numerators and denominators of SWA1

i and

SW Ā1

i , whereas binary logistic regression models were adopted for SWA2

i . In all cases,

the following four different model specifications in terms of confounding features for the

denominators were compared:

1. each confounding covariate entered the IPTW model as a main effect only and the

MOTox scores were linearly related to the log-odds;

2. specification 1 + two interaction terms linearly related to the log-odds, that is (i)

interaction between pre-operative rule-specific and generic MOTox scores and (ii)

interaction between post-operative rule-specific and generic MOTox scores

3. specification 1 + four interaction terms between the four MOTox scores and the

trial assumed linearly related to the log-odds;

4. each categorical/binary confounding covariates entered the IPTW model as a main

effect only and cubic smoothing B-splines with 3 internal knots were used to model
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the relationship between each of the continuous MOTox scores and the log-odds of

treatment.

Table 7.3 reports the summaries of the stabilized weights obtained with the different

specifications for final RDI level SWA1

i , HRe category SWA2

i and pre/post-operative RDI

levels SW Ā1

i .

By examining the distributions of the standardized weights for final RDI, there was no

evidence of non-positivity or of misspecification for IPTW methods 1 and 2 (mean values

of about 0.99 without extreme values), whereas methods 3 and 4 presented lower mean

values and higher standard deviations. The same was confirmed by the diagnostics balance

plot in top-left panel of Figure 7.9, where the mean absolute standardized differences for

final RDI confounders in the unweighted sample (black points) always exceeded those in

the weighted samples, and the lowest values were observed for IPTW 1 and 2. IPTW

model 1 was finally selected among the two as it had a mean value closer to 1 and lower

standard deviation.

Similarly, according to the distributions of the standardized weights for HRe models, there

was no evidence of non-positivity or misspecification in the four IPTW methods: they

all presented a mean value of 1 with standard deviation from 0.22 to 0.25. In terms of

covariates balance (top-right panel in Figure 7.9, all IPTW methods performed better

than the unweighted sample (black) but IPTW 4 (blue) was worse than the others. In

the absence of any particular contraindications, IPTW model 1 was finally selected as it

was simpler (in terms of features) and had lower standard deviation weights.

Table 7.3. Inverse Probability of Treatment Weighting (IPTW) diagnostics based on summaries of

stabilized weights related to final RDI level SWA1

i , HRe category SWA2

i and pre/post-operative RDI

levels SW Ā1

i computed using the four different specifications listed in Section 7.3.2.

Final RDI level: SWA1

i

Specification Mean (s.d.) Min/Max

IPTW 1 0.988 (0.668) 0.330/5.252

IPTW 2 0.987 (0.682) 0.354/5.189

IPTW 3 0.979 (0.700) 0.324/5.469

IPTW 4 0.968 (0.797) 0.326/6.946

HRe: SWA2

i

Specification Mean (s.d.) Min/Max

IPTW 1 1.001 (0.200) 0.598/1.746

IPTW 2 1.001 (0.201) 0.603/1.780

IPTW 3 1.001 (0.242) 0.578/2.116

IPTW 4 0.999 (0.250) 0.531/2.373

Pre/Post RDI levels: SW Ā1

i

Specification Mean (s.d.) Min/Max

IPTW 1 0.988 (0.839) 0.285/7.109

IPTW 2 0.994 (0.910) 0.267/8.555

IPTW 3 0.998 (1.101) 0.266/11.438

IPTW 4 0.998 (1.245) 0.161/12.959
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Figure 7.9. Diagnostic balance plot for Inverse Probability of Treatment Weighting (IPTW). Lines

represent the (mean) absolute standardized differences for each exposure-related confounder according to

the four different specification methods introduced in Section 7.3.2 and their unadjusted versions (pink:

IPTW 1 ; orange: IPTW 2 ; green: IPTW 3 ; blue: IPTW 4 ; black: Undajusted).

IPTW methods for pre/post-operative RDI levels was selected as trade-off between the

two product components. No evidence of assumptions violation was observed according

to the distributions of the standardized weights SW Ā1

i . IPTW 4 method resulted in

a worse balance of confounders in terms of mean absolute standardised differences for

cumulative-RDI levels based on SW Ā1

i (see bottom-right panel in Figure 7.9). The same

was valid for post-RDI levels using SW
A1
post

i obtained through IPTW 3 (bottom-centre

panel). Between IPTW methods 1 and 2, both with a mean value of about 0.99, IPTW

1 was selected as it was simpler (in terms of features) and had lower standard deviation

weights.

The formulas of the denominators of SWA1

i , SW
A1
pre

i SW
A1
post

i and SWA2

i related to the

selected IPTW specifications are reported in Appendix D.2.

Left panel of Figure 7.10 shows the standardized weights SWi in Equation (7.8) obtained

as product of SWA1

i and SWA2

i to be used for create the pseudo-population in case of

time-fixed joint exposure. The y-axis is in logarithmic scale. Mean value of SWi was 0.983

(s.d. = 0.694) with minimum and maximum values of 0.272 and 4.849. Analogously, right

panel of Figure 7.10 shows the standardized weights SWi in Equation (7.12) obtained as

product of SW Ā1

i and SWA2

i to be used for create the pseudo-population in case of time-
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Figure 7.10. Diagnostic boxplots of subject-specific standardized weights computed via Equations (7.8)

(left panel) and (7.12) (right panel). The scale on the y-axis is lgarithmic. Diamonds represent the mean

values (in logarithmic scale).

varying joint exposure. Mean value of SWi was 0.981 (s.d. = 0.865) with minimum and

maximum values of 0.230 and 7.518. These weights satisfied all the required assumptions

and were finally used to fit on the relative pseudo-populations the IPT weighted Cox

models in Equations (7.7) and (7.11).

7.3.3. Causal inference through marginal structural Cox models

Once met causal inference assumptions, association was causation in both pseudo popu-

lations. The causal parameters β in Cox MSMs (7.6) and (7.10) were hence estimated

through their consistent associational parameters θ in IPT weighted Cox models (7.7)

and (7.11) fitted on the relative pseudo-populations. Obtained estimates were finally

compared to the results obtained by fitting the corresponding standard (i.e., unweighted)

Cox models on the original population.

Estimated parameters for both Cox MSMs and their unweighted versions are reported

in Table 7.4. In Cox MSM 1 and 2 robust standard errors for computing the confidence

interval of each coefficient were obtained via the option robust=TRUE in R function coxph

[201]. Figure 7.11 graphically displays the Hazard Ratios related to the different joint-

exposure levels for Cox MSMs in 7.6 and 7.10 fitted on the pseudo population (left panels)

and the results for corresponding unweighted models (right panels).

Top panels refers to the causal structure of DAG-1 presented in Section 7.2.4. Reference

level was PRs with normal RDI level at the end of treatment, i.e., (a1, a2) = (0, 0). Consid-

ering the unweighted Cox model 1 (top-right), which represents the RDI-analogue of the

ITT Cox model presented by Lewis et al. (2007) [119] without considering IPT weights,

in PRs the RDI reductions appeared associated with an improvement in EFS, even if not

statistically significant. With respect to GRs receiving a normal RDI, GRs receiving a

low-reduction experienced an event 12% slower (HR = 0.273/0.309 = 0.88) whereas those
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Table 7.4. Estimated parameters β̂ along with their 95% Confidence Intervals (CIs) for Cox MSMs 1

and 2 in Equation 7.6 and 7.10, respectively, and for their corresponding unweighted versions.

Cox MSM 1 Unweighted Cox model 1

Treatment β̂ 95% CIs β̂ 95% CIs

a1 = 1 −0.498 [−0.986;−0.010] −0.116 [−0.568; 0.335]

a1 = 2 −0.833 [−1.409;−0.257] −0.359 [−0.844; 0.127]

a2 = 1 −1.914 [−2.880;−0.948] −1.175 [−1.921;−0.429]

a1 = 1× a2 = 1 0.762 [−0.399; 1.923] −0.006 [−0.997; 0.984]

a1 = 2× a2 = 1 1.850 [0.643; 3.057] 0.979 [0.020; 1.938]

Cox MSM 2 Unweighted Cox model 2

Treatment β̂ 95% CIs β̂ 95% CIs

cum (ā1) −0.181 [−0.370; 0.009] −0.062 [−0.197; 0.072]

a2 = 1 −1.823 [−2.714;−0.932] −1.461 [−2.215;−0.707]

cum (ā1)× a2 = 1 0.397 [0.052; 0.743] 0.305 [0.010; 0.601]

receiving a high-reduction experienced an event 86% faster (HR = 0.574/0.309 = 1.86).

However, these results were affected by the toxicity-treatment-adjustment bias and could

not be interpreted in a causal way. In fact, the final value of RDI was the realisation

of the treatment trajectory as result of both the severity of the overall toxicity experi-

enced by each patient and the side-effects handling operated by physicians. To overcome

these issues, Cox MSM 1 (top-left) represented a clear improvement with respect to its

unweighted version. At the same final RDI level, a good response caused an 85.2% de-

crease in the risk of an event (exp(β̂3) = 0.148) with respect to a poor one. Reductions

in the final RDI caused better EFS for PRs, whereas a reverse causal association was

founded in GRs. In particular, the higher the final reduction, the better the survival for

PRs (estimated HRs were 0.608 and 0.435 for low and high reduction PRs, respectively).

On the contrary, the higher the final reduction, the worsen the survival for GRs: GRs

with low or high reduction experienced an event 1.30 (HR = 0.192/0.148 = 1.30) or 2.76

(HR = 0.408/0.148 = 2.76) times faster than GRs with normal -RDI.

Bottom panels refers to the causal structure of DAG-2 presented in Section 7.2.5, where

reference level was PRs without reduction, neither pre nor post surgery, i.e., (cum (ā1) , a2)

is (0, 0). Results were in line with previous results: (i) GRs presented better survival with

respect to PRs; (ii) an increasing number of pre/post-operative reductions in RDI showed

opposite trends for PRs and GRs, improving and worsening EFS, respectively. This was

even more evident in the Cox MSM 2 (bottom-left) than in its unweighted version (bottom-

right) affected by the toxicity-treatment-adjustment bias: point estimates with respect to

reference level dramatically improved even if statistical significance did not change, again

showing the bias due to toxicity-treatment-adjustment. Considering parameter estimates

for Cox MSM 2 (see Table 7.4), at the same RDI level, a good response caused an 83.8%

decrease in the risk of an event (exp(β̂3) = 0.162) with respect to a poor one. Moreover,

1-unit increase in the number of reductions of 15-30% (i.e., 1-unit increase in cum (ā1))

caused a decrease of 16.5% in the risk of an event for PRs (exp(β̂1) = 0.835) and an

increase of 24.1% for GRs (exp(β̂1 + β̂3) = 1.241).
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Figure 7.11. Graphical displays of Hazard Ratios (HRs) along with their 95% Confidence Intervals

(CIs) for Marginal Structural Cox Models (left panels) and corresponding unweighted Cox models (right

panels). Top panels refer to Cox MSM 1 in Equation (7.6), where reference level is poor responder with

normal RDI level at the end of treatment (i.e., (a1, a2) = (0, 0)). Bottom panels refer to Cox MSM 2 in

Equation (7.10), where reference level is poor responder without reduction, neither pre nor post surgery,

i.e., (cum (ā1) , a2) = (0, 0).

One possible clinical explanation for these reverse behaviours could lie in the fact that

chemotherapy also damages non-cancerous cells and processes of the immune system

that can detect and kill cancer cells. In PRs, for whom chemotherapy is less effective,

this negative effect is not offset by treatment efficacy, and an increase in RDI may be

detrimental to survival due to the impact on the immune system.

7.4. Final remarks

In cancer trials, longitudinal chemotherapy data are problematic to analyse due to the

presence of negative feedback between exposure to cytotoxic drugs and consequent toxic

side effects. Therapy administration is usually complicated by the dynamical adjustment

of the treatment based on patients’ clinical picture, especially on chemotherapy-induced
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multi-systemic toxicities. For this reason, chemotherapy is usually modelled by Intention-

To-Treat (ITT) analysis [70], although the introduction of the Received Dose Intensity

(RDI) [86] marked a significant departure from ITT in the direction of a closer descrip-

tion of the actual clinical practice. The main issue in analysing actual treatment lies in

the fact that toxicities act as time-dependent confounders for the effect of chemotherapy

intensity exposure on survival, determining the toxicity-treatment-adjustment bias if not

properly considered. Suitable methodologies are hence needed to control for exposure-

affected (time-varying) toxicity confounding in longitudinal chemotherapy data. In ad-

dition, since the assignment of dose reductions/interruptions or delays in administration

during treatment is determined not by individual toxicities but by the overall toxic bur-

den of each patient, the different types and number of side effects must be adequately

summarized to be included in the analysis.

Motivated by a sharp yet delicate clinical question on the effect of treatment modifications

on Event-Free Survival (EFS) in osteosarcoma patients, this chapter proposed Marginal

Structural Models (MSMs) in combination with Inverse-Probability-of-Treatment Weighted

(IPTW) estimators to assess the causal effects of chemotherapy intensity exposure seen

in terms of both Histological Response (HRe) and RDI reductions compared to proto-

col. Control arms data from BO03 and BO06 trials for osteosarcoma were analyzed.

Since only the most severe side-effects were recorded in BO03, the analysis of such mixed

longitudinal/non-longitudinal data required both an original analytical strategy and an

unconventional model formulation. First, pre and post-operative toxicity data were sum-

marized using a Multiple Overall Toxicity (MOTox) approach [190] based on most severe

CTACE grades of both rule-specific and generic side effects. This allowed (i) to reduce

the number of possible confounders combinations, avoiding non-positivity and highly-

correlated data, and (ii) to meet the clinical rationale of tailoring treatment according

to the patient’s overall toxic burden in the case of multiple toxic side effects. Then, two

different joint-exposure characterizations – which met consistency according to experts –

were defined unambiguously based on time-fixed final RDI or time-dependent pre/post-

operative RDI ) combined with HRe. This led to the introduction of two alternative Direct

Acyclic Graphs (DAGs) to identify all possible (time-dependent) confounders and their

relationships with both joint-exposure and EFS outcome, validating the assumption of no

unmeasured confounding. Suitable IPTW-based techniques and Cox MSMs, representing

the causal RDI analogues of the ITT Cox model presented by Lewis et al. (2007) [119],

were finally designed to mimic a randomized trial where the joint-exposure intensity was

no longer confounded by toxicities. Once positivity and no misspecification were satisfied,

in the pseudo-population thus created, a crude analysis sufficed to estimate the causal

effect of joint-exposure modifications on EFS.

Regardless of RDI-level, in both Cox MSMs all estimated HRs were lower for Good Re-

sponders (GRs) than for Poor ones (PRs), showing that GRs presented a better EFS than

PRs in all cases. This was not surprising because HRe is the strongest prognostic survival

factor known to date in osteosarcoma [31]. Increasing RDI-reductions created two oppo-

site trends for PRs and GRs: the higher the reduction in final or pre/post-operative RDI,

the better (worsen) was the EFS in PRs (GRs). One possible clinical explanation for
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these inverse behaviours could lie in the effect of chemotherapy on non-cancerous cells.

By targeting a broad spectrum of cells, chemotherapy also damages the processes and

mechanisms of the immune system that can detect and kill cancer cells. While in GRs

this negative effect may be largely offset by the efficacy of the tumour therapy, in PRs –

for whom chemotherapy is less effective – an increased RDI may be harmful to survival

due to the impact on the immune system.

This study highlighted both the confounding nature of toxicity data and the detrimental

effect of not considering them in the analysis, showing the potential pitfalls of a naive

RDI-based analysis of chemotherapy data. When ITT models were translated into RDI-

based ones by simply neglecting the role of toxicities as in the unweighted Cox models,

results were clearly affected by the toxicity-treatment-adjustment bias. The use of Cox

MSMs allowed to model the contribution of patient’s toxicity history to EFS through the

realisation of the (cumulative) joint-exposures. In other words, the use of IPTW-based

Cox MSMs broke the feedback between side effects and therapy adjustments, resulting in

unbiased estimates of the effect of treatment modifications on EFS and describing better

the effect of low-intensity regimens.

The presented IPTW-based MSMs have clear limitations. The property of MSMs to give

unbiased estimates relies on the four main assumptions presented in Section 7.2.2, which

are often unverifiable and mostly based on experts knowledge. This is really the potential

weakness of both the analysis presented above and the methodology based on IPTW

and MSMs in general. In addition, the lack of longitudinal confounders in BO03 forced

the causal structures represented by the DAGs in Figure 7.7. These DAGs relied on the

assumption that the most severe CTCAE grades of each toxicity in pre- and post-operative

treatment predicted well the final and pre/post-operative RDI values, thus flattening

the toxicity history. This assumption might still be challenged, since severe toxicities

might look simultaneous producing some significant interactions. However, there is no

guarantee that severe CTCAE grades occurred simultaneously, so these interactions were

not considered. The development of appropriate causal structures and methodologies

for studying chemotherapy data using a cycle-by-cycle longitudinal perspective would be

of great interest for future analyses, as it would overcome this issue, but the need for

adequate toxicity data collection still remains.

In summary, this chapter showed the difficulty of analysing chemotherapy data on a

RDI-based approach, mostly originated from data quality. The main contribution of

this work is the presentation of an all-round analysis of complex chemotherapy data, with

tutorial-like explanations of the difficulties encountered and the problem-solving strategies

deployed. Focusing on a way of analysing chemotherapy data that is RDI-based rather

than ITT-based, it illustrated the key role played by toxicities in this transition and

showed the detrimental effect of neglecting them. To the best of our knowledge, this is

the first application of IPTW-based techniques to survival data from a randomized trial

of chemotherapy in order to eliminate the toxicity-treatment-adjustment bias.
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D. Appendix to Chapter 7

D.1. Pre/Post-operative Received Dose Intensity definitions

For each patient i, let npi denote the number of cycles performed before the surgery.

Pre-operative period is made up of cycles performed before surgery, i.e., j ∈ {1, ..., npi}.
Post-operative period is made up of cycles performed after surgery, i.e., j ∈ {npi+1, ..., 6}.
To consider the two periods separately, definitions in Equations (7.2), (7.3) and (7.4) in

Section 7.1.3 can be adapted as follows.

Pre/Post-operative standardized dose. The pre-operative and post-operative standard-

ized doses ∆i,pre and ∆i,post for patient i are defined as

∆i,pre =
1

2

(
∆CDDP
i,pre + ∆DOX

i,pre

)
=

1

2 · npi

(
npi∑
j=1

δCDDPij +

npi∑
j=1

δDOXij

)
,

∆i,post =
1

2

(
∆CDDP
i,post + ∆DOX

i,post

)
=

1

2 · (5− npi)

(
6∑

j=npi+1

δCDDPij +
6∑

j=npi+1

δDOXij

)
.

Pre/Post-operative standardized time. The pre-operative standardized time for the i-

th patient is

Γi,pre =
actual pre-operative time

anticipated pre-operative time

where

• actual pre-operative time is the difference in days between the starting date of

cycle 1 and the date of the surgery,

• anticipated pre-operative time is 21 × npi days, i.e., npi cycles lasting 21 days

each.

Similarly, the post-operative standardized time for patient i is

Γi,post =
actual post-operative time

anticipated post-operative time

where

• actual post-operative time is the difference in days between the surgery date

and the 3rd day after the start of cycle 6,

• anticipated post-operative time is 14 + (5− npi)× 21 + 3 days, i.e., 14 days of

surgery, 5− npi cycles lasting 21 days each and 3 days after the start of cycle

6.

Pre/Post-operative Received Dose Intensity. The pre-operative and post-operative Re-

ceived Dose Intensities (RDIs) for patient i are defined as

RDIi,pre =
∆i,pre

Γi,pre
, (7.13)
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Figure 7.12. Top panels: Scatter plots of pre-operative RDI (i.e., RDIi,pre in Equation (7.13)) against

pre-operative standardized dose of CDDP+DOX (∆i,pre) conditional on trial (BO03 : left panel; BO06 :

right panel) and HRe (blue: poor ; green: good).

Bottom panels: Scatter plots of post-operative RDI (i.e., RDIi,post in Equation (7.14)) against post-

operative standardized dose of CDDP+DOX (∆i,post) conditional on trial (BO03 : left panel; BO06 :

right panel) and HRe (blue: poor ; green: good).

RDIi,post =
∆i,post

Γi,post
. (7.14)

The RDI computed on the whole treatment as in Equation (7.4) is not the sum of pre-

operative and post-operative RDIs, i.e., RDIi 6= RDIi,pre +RDIi,post.

A summary of RDIi,pre and RDIi,post exposure characteristics for the whole cohort and

conditional on trials is reported in Figure 7.6. Figure 7.12 shows the scatter plots of

pre- (top panels) and post- (bottom panels) operative RDI (RDIi,k) against their relative

standardized doses of CDDP+DOX (∆i,k) conditional on trial (left panel: BO03 ; right

panel: BO06 ) and HRe (blue: poor ; green: good). The solid horizontal lines in pink

vertically divide patients with normal RDI levels (RDIi,k ≥ 0.85) from low reduction

(0.70 ≤ RDIi,k < 0.85) and high reduction (RDIi,k < 0.70) patients. The solid diagonal

line in black satisfies equation RDIi,k = ∆i,k, dividing the group of patients with stan-

dardized time Γi,k > 1 (delayed therapy, below the line) from the group, almost void, of

patients with Γi,k < 1 (anticipated therapy, above the line). The dotted diagonal line in

black satisfies equation RDIi,k = ∆i,k/1.2, dividing the group of patients with therapy

delayed by more than 20% of anticipated time (below the dotted line) from the group of

patients with therapy delayed by less than 20% of anticipated time (between solid and

dotted black lines). This figure clearly shows the difference of treatment delivery in BO03
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vs. BO06, also considering pre/post-operative periods separately. It also shows the lack

of a clear association between HRe and pre/post-operative RDI.

D.2 Denominator specifications for selected IPTW models

In Section 7.3.2, different model specifications (in terms of confounding covariates L for

the denominators) to determine the subject-specific standardized weights for final RDI

level SWA1

i , HRe category SWA2

i and pre/post-operative RDI levels SW Ā1

i = SW
A1
pre

i ·
SW

A1
post

i were investigated. The following denominator formulas were selected:

• multinomial logistic regression model for denominator of final RDI level SWA1

i :

log
Pr
(
A1
i = a

∣∣L1
i

)
Pr
(
A1
i = 0

∣∣L1
i

) = γa0 + γa1 · 1(triali=BO06) + γa2 · 1(agei=adolescent)
+

γa3 · 1(agei=adult)
+ γa4 · 1(genderi=male)

+

γa5 · MOTox(gen)
i,pre + γa6 · MOTox(rule)

i,pre +

γa7 · MOTox(gen)
i,post + γa8 · MOTox(rule)

i,post

where confounding covariates are

L1
i =

(
Lbasei , Ltoxi,pre, L

tox
i,post

)
=

=
(
triali, agei, genderi, MOTox

(gen)
i,pre , MOTox

(rule)
i,pre , MOTox

(gen)
i,post, MOTox

(rule)
i,post

)
;

• binary logistic regression model for denominator of HRe category SWA2

i

log
Pr
(
A2
i = 1

∣∣L2
i

)
1− Pr

(
A2
i = 1

∣∣L2
i

) =α0 + α1 · 1(triali=BO06) + α2 · 1(agei=adolescent)
+

α3 · 1(agei=adult)
+ α4 · 1(genderi=male)

+

α5 · MOTox(gen)
i,pre + α6 · MOTox(rule)

i,pre +

α7 · 1(surgeryi=on time)

where confounding covariates are

L2
i =

(
Lbasei , Ltoxi,pre, L

surg
i

)
=

=
(
triali, agei, genderi, MOTox

(gen)
i,pre , MOTox

(rule)
i,pre , surgeryi

)
;

• multinomial logistic regression model for denominator of pre-operative RDI level

SW
A1
pre

i :

log
Pr
(
A1
i,pre = a

∣∣L1
i,pre

)
Pr
(
A1
i,pre = 0

∣∣L1
i,pre

) = γa0 + γa1 · 1(triali=BO06) + γa2 · 1(agei=adolescent)
+

γa3 · 1(agei=adult)
+ γa4 · 1(genderi=male)

+

γa5 · MOTox(gen)
i,pre + γa6 · MOTox(rule)

i,pre
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where confounding covariates are

L1
i,pre =

(
Lbasei , Ltoxi,pre

)
=
(
triali, agei, genderi, MOTox

(gen)
i,pre , MOTox

(rule)
i,pre

)
;

• multinomial logistic regression model for denominator of post-operative RDI level

SW
A1
post

i :

log
Pr
(
A1
i,post = a

∣∣L̄1
i,post, A

1
i,pre

)
Pr
(
A1
i,post = 0

∣∣L̄1
i,post, A

1
i,pre

) = γa0 + γa1 · 1(triali=BO06) + γa2 · 1(agei=adolescent)
+

γa3 · 1(agei=adult)
+ γa4 · 1(genderi=male)

+

γa5 · MOTox(gen)
i,pre + γa6 · MOTox(rule)

i,pre +

γa7 · 1(A1
i,pre=1) + γa8 · 1(A1

i,pre=2)+

γa9 · MOTox(gen)
i,post + γa10 · MOTox(rule)

i,post .

where A1
i,pre is the pre-operative RDI level and confounding covariates are

L̄1
i,post =

(
Lbasei , Ltoxi,pre, L

tox
i,post

)
=
(
triali, agei, genderi, MOTox

(gen)
i,pre , MOTox

(rule)
i,pre , MOTox

(gen)
i,post, MOTox

(rule)
i,post

)
.
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In this doctoral dissertation, various mathematical and statistical methods were intro-

duced to represent time-varying processes from complex raw data, and model them within

the context of time-to-event analysis using appropriate Cox-type survival models. All re-

search topics were motivated by specific clinical questions related to gaining knowledge

about personalised treatments for cardiological and oncological patients. The novelties of

this work concern both the statistical and the clinical community. The main strengths

lie in the methodological contributions of the individual chapters, as well as in the use of

the developed time-varying approaches in a medical treatment context, which is not yet

standard practice in the literature. The results obtained can thus be contextualised in

both statistical and medical contexts.

Part I focused on the processes of drug consumption, re-hospitalization events and their

effect on long-term survival in Heart Failure (HF) patients. First, we tackled the issue of

adherence to polypharmacy, a direct consequence of the multi-morbidity condition that

characterises HF (Chapter 1). On one hand, we described how evidence-based therapies

were applied in a real world setting. On the other, we proposed a novel method for

measuring adherence to polypharmacy and we investigated its effect on patients survival.

Results from administrative data of Friuli Venezia Giulia region (Italy) showed that good

patients’ adherence to polypharmacy was associated with lower death rate. However, the

target dose guidelines were not achieved and HF patients’ adherence remained unsatis-

factory. Although the Patient Adherence Indicator was developed as time-fixed covariate,

this study represented a first step forward in the pharmacoepidemiology context for HF

patients as few data on polypharmacy adherence exist in a real-world setting.

Since the time-fixed way adherence is usually computed in pharmacotherapy practice dis-

cards valuable information, we then proposed (Chapter 2) two novel time-varying covari-

ates able to reflect the dynamics and the behaviour of drug consumption during therapy,

i.e., the continuous cumulative months covered by drug assumption up to time t and

the dichotomous adherence to the therapy at time t. To capture the interaction among

time-varying and survival processes over time, (generalized) mixed effect models for lon-

gitudinal data were jointly modelled with Cox-type regression model for time-to-death.

Results from administrative data of Lombardia region (Italy) showed that having a good

adherence trend during time had a protective effect on patients’ survival. With a dynamic

study of adherence, it was possible to understand in real-time its effects on patient’s health

status directly monitoring the treatment. This ongoing analysis and quantification of drug

consumption could help clinicians to better target therapies for their patients. Modelling

the drug intake process as time-dependent covariates in a joint modelling framework is

therefore an effective approach for drug utilization studies. This shows the importance of
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developing methods to pharmacotherapy using a time-varying perspective.

For that reason, in Chapter 3 we developed a novel methodology based on marked point

process theory and Functional Data Analysis (FDA) to reconstruct the compensators of

suitable marked point processes for recurrent events intended as functional data. Func-

tional Principal Component Analysis (FPCA) was then used to include the functional

compensators into a Multivariate Linear Cox Regression Model (MFLCRM) for long-term

survival. From the study on the administrative database of Lombardia region (Italy), we

observed that the marked point process formulation was a natural way to represent the

occurrence of re-hospitalisations or drug purchases over time. The use of FPCA made

it possible to extract additional information contained in the functions, representing a

powerful exploratory and modelling technique for highlighting trends and variations in

the shape of processes over time. From a clinical point of view, this allowed us to model

self-exciting behaviour for which the occurrence of events in the past increases the proba-

bility of a new event, including a large portion of information from administrative data to

describe the patient’s medical history. Furthermore, the proposed approach was able to

include the information that HF patients usually consume different types of drugs at the

same time, representing a novelty for clinical research in the direction of properly treating

multimorbidity patients and polypharmacy.

From a pharmacoepidemiology perspective, it should be emphasised that using adminis-

trative databases has both strengths and limitations. On one hand, the analyses can be

easily reproduced in all Italian regions where data on the drugs purchase are collected,

thanks to the flexibility of the methods developed. On the other, the impossibility of

ascertaining whether the patient was currently consuming the dispensed drug remains

the major data-driven limitation of using drug purchases as a proxy for drug intake. In

future research, it might be interesting to link, when possible, administrative data with

information on prescribed daily doses in order to obtain a more realistic analysis of cover-

age periods and achieve more precise results. Nevertheless, we have developed a general

analytical framework for processing and modelling information from administrative data

sources in a fully innovative way for both health policy and research in clinical epidemi-

ology. This is a great added value of our work.

Part II focused on chemotherapy treatment in osteosarcoma patients, considering the

processes of dose modifications, biomarkers and toxicities evolution over time. First, we

proposed a Functional covariate Cox Model (FunCM) combining FDA techniques to rep-

resent time-varying processes in terms of functional data and FPCA to include them into

a MFLCRM (Chapter 4). This method was applied to data from the BO06 randomised

controlled trial to study the effect of time-varying biomarkers and chemotherapy dose on

overall survival. FunCM revealed differences between patients with different biomarkers

and treatment evolution, even when randomized to the same regimen. The results based

on this new method provided more information to the clinical community than the stan-

dard standard Intention-To-Treat (ITT) approach. Despite the introduction of relevant

dynamic features related to the continuous nature of the processes, dose-intense profiles

were not associated with survival. This suggested that considering only the achieved dose

as a proxy for treatment was not sufficient. Several other aspects, such as latent accumu-

lation of toxicity, needed to be taken into account.
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For this reason, we proceeded focusing on the methodological aspects concerning a proper

representation of the overall toxicity burden over time, still lacking in the medical liter-

ature. We first introduced a novel cycle-dependent longitudinal mean-max method for

quantifying Multiple Overall Toxicity (MOTox) during therapy (Chapter 5). The devel-

oped MOTox score simultaneously included information on worst grade events, multiple

lower grade chronic toxicities and the time dimension related to chemotherapy cycles.

This is a flexible method to investigate the individual progression of overall toxicity in

cancer patients compared to traditional indexes. The evolution of high MOTox over cy-

cles was then analysed through the implementation of cycle-specific multivariable logistic

regression models. Results for BO06 data showed that the highest impact on the risk

of the re-occurrence of high-MOTox over cycles was observed for the last available toxic

condition. This indicated that longitudinal methods should be considered in the anal-

yses of cancer trials. For this reason, we then proposed (Chapter 6) a new taxonomy

based on Latent Markov (LM) models and compositional data to model the evolution of

a latent condition of interest (i.e., the Latent Overall Toxicity, LOTox) on the basis of

interval-based categorical observations (i.e., the nominal toxicity grades registered over

cycles according to the Common Terminology Criteria for Adverse Events, CTCAE). By

assuming the existence of a LM chain for the LOTox condition of a patient, the proposed

taxonomy identified sub-populations of patients characterized by a similar overall toxicity

burden. Individual LOTox dynamics during treatment was then obtained by modelling

the personalized longitudinal profiles representing the probability over time of being in a

specific LOTox state or the relative risk with respect to a reference “good” toxic condition.

Provided that toxicities are recorded according to the CTCAE scale or an analogous grad-

ing system, the developed approaches represent flexible methods to quantify the personal

evolution of overall toxic risk during chemotherapy. In cooperation with medical staff,

they might provide insights for the definition of new guidelines to reduce the impact of

chemotherapy treatment in terms of toxic side effects, possibly improving patients quality

of life.

In Chapter 7, we introduced Cox-type Marginal Structural Models (Cox MSMs) in com-

bination with Inverse-Probability-of-Treatment Weighted (IPTW) estimators to model

the causal effects of joint-exposure on survival outcome in presence of time-varying con-

founders. Suitable procedures were designed to mimic a randomized trial where joint-

exposure – given by chemotherapy Received Dose Intensity (RDI) and histological re-

sponse – was no longer confounded by toxicities or other confounders. Results from the

randomised controlled trials BO03 and BO06 showed that Good Responders (GRs) had

better survival than Poor Responders (PRs), but increased reductions in RDI created two

opposite trends in the two groups. In particular, in PRs – for whom chemotherapy is less

effective – the greater the reduction, the better the survival, meaning that an increase in

RDI may be detrimental to survival due to the impact on the immune system. By focus-

ing on a way of analysing chemotherapy data based on RDI rather than ITT, this study

illustrated the key role played by toxicities during treatment and showed the detrimental

effect of neglecting them.

The added value of Part II was the presentation of comprehensive analyses of complex

chemotherapy data, with tutorial-like explanations of the difficulties encountered and the
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problem-solving strategies employed. This required the fusion of statistical and medical

expertise, showing that a close collaboration between statisticians and clinicians is fun-

damental. The contribution is thus not limited to statistical methodologies, but concerns

the use of the developed methods to assess the potential of dynamic covariates in the

context of clinical studies, where a time-fixed approach is usually preferred. The adop-

tion of more refined approaches for managing chemotherapy data is therefore of great

value and provides insights both for general guidelines and personalised chemotherapy

treatments.

Motivated by these multiple and challenging medical problems, we have developed novel

methodologies capable of extracting additional information from composite raw data to

enrich advanced or traditional survival models for the clinical endpoints of interest. Weak-

nesses and limitations of the present work have been discussed on a case-by-case basis

in the final remarks of each chapter, along with possible extensions and further devel-

opments. Overall, this work reflects the desire to create a comprehensive framework of

methods whose intent is to go beyond the state of the art for clinical studies. By im-

plementing a more valuable setting for dealing with complex data sources, this work has

led to new insights that would not have been gained by traditional methods. The great

added value of this thesis is therefore to have demonstrated the importance of going be-

yond current practice towards a more sophisticated and informative analytical framework.

Clinicians and healthcare managers can benefit from identifying customised longitudinal

and functional representations that reflect variability and differences between patients, as

they can improve patient profiling and tailor their therapies. Moreover, thanks to their

flexibility, the developed methods are not only suitable for the cardiological and oncolog-

ical context under consideration. The procedures can in fact be extended and generalised

to many different settings, adapting them to the different biological and clinical aspects

of the specific application.

As a final remark, the importance of an interdisciplinary collaboration between statisti-

cians and clinicians must be emphasised, as it can lead to great contributions for both

fields. On one hand, interesting clinical research questions can provide inspiration for

the development of new statistical methodologies. This has been demonstrated several

times in this work. On the other, advanced statistical tools can help improve current clin-

ical practice. Despite their potential relevance, elaborate methods are usually underused

in the clinical setting due to their mathematical complexity. Close collaboration would

therefore ensure that new methods are carefully introduced and explained by statisticians

to the clinical community, so that the latter can properly benefit from their advantages.

This cross-sectional cooperation can thus make the patient pathway through the health-

care system more efficient and effective, representing a significant step forward in the

definition of new personalized monitoring tools.
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Summary

In clinical research, time-varying covariates are of great interest since they represent the

way dynamic patterns evolve, affecting patient’s health status and disease progression.

In literature such data are usually considered using a piecewise-constant or fixed-baseline

approach, losing the potential information content they may provide if the association be-

tween time-varying and time-to-event data is properly captured. Due to the complexity

of the phenomena, an advanced analytical framework is required to adequately model dis-

ease evolution and characterise its relationship to the dynamic nature of time-dependent

features. These aspects are rarely addressed and may provide new insights for medical

research, representing a challenge of both clinical relevance and statistical interest.

This dissertation focuses on developing mathematical and statistical methods to properly

represent time-varying processes and model them within the context of time-to-event

analysis by means of appropriate Cox-type survival models. The main purpose is to

enrich the knowledge available for modelling survival with relevant features related to the

time-varying covariates of interest. The efforts of this work address the complexities of

both (i) developing adequate dynamic characterizations of the processes under study (i.e.,

the representation problem) and (ii) identifying and quantifying the association between

time-varying processes and patient survival (i.e., the time-to-event modelling problem). In

both cases, the main issue is dealing with complex data sources while taking into account

the nature of the processes and their particular aspects (such as temporal dynamics,

categorical levels or recurring events) and managing the complex trade-off between clinical

interpretability and mathematical formulation.

Depending on the context of the study, different approaches are proposed. In terms

of representations, on one hand complex data integration and functional data analysis

are exploited to propose new longitudinal or functional features capable of incorporat-

ing trends and variations in the evolution of processes over time. On the other, novel

statistical methodologies are introduced to extract additional information in terms of lon-

gitudinal or functional data from different data sources. Stochastic process theory, latent

Markov models and compositional data analysis are exploited, among others, to address

the research questions. In terms of time-to-event modelling, advanced versions of Cox-

type regression are proposed to include the dynamic covariates in the survival analysis.

Subject to the type of study and data, joint models, functional survival models exploiting

dimensionality reduction techniques or marginal structural models are employed.

By solving the aforementioned statistical complexities, this work is not only impacting

the community of researchers in mathematics and statistics, but it aims at providing
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useful tools to support doctors and clinicians in their work. All research topics are moti-

vated by specific clinical questions aimed at gaining insights into personalised treatments

for cardiological and oncological patients. Part I of this thesis focuses on the study of

the processes of drug consumption, adherence to medications and re-hospitalizations in

heart failure patients. Part II deals with the investigation of the time-varying aspects

of chemotherapy treatment, such as dose modifications, biomarkers and accumulation of

toxicities, in patients affected by osteosarcoma.

In conclusion, the development of novel tailored methodologies capable of enhancing time-

to-event modelling with time-varying characteristics may represent a significant step for-

ward in the definition of new customized and flexible monitoring tools, which could then

be applied to the study of different pathologies characterised by complex data sources.
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Samenvatting

Tijdsafhankelijke covariaten zijn van groot belang in klinisch onderzoek. Ze geven name-

lijk zowel inzicht in de evolutie van dynamische patronen, als in de invloed daarvan op de

gezondheidsstatus en ziekteprogressie van een patiënt. De literatuur beschouwt zulke ge-

gevens meestal als stuksgewijs-constant of met vaste baseline. Daarbij gaat een poten-

tieel aan informatie verloren, wat wél benut kan worden wanneer goed wordt gekeken

naar de associatie tussen de tijdsafhankelijke covariaat enerzijds, en de tijd tot een be-

paalde gebeurtenis anderzijds. De genoemde fenomenen zijn complex, wat vraagt om een

geavanceerd analytisch kader waarbinnen men zowel de evolutie van de ziekte als de re-

latie met de dynamische aard van tijdsafhankelijke kenmerken adequaat kan modelleren.

Een dergelijk analytisch kader wordt nog zelden overwogen, terwijl het nieuwe inzichten

kan verschaffen voor medisch onderzoek. Dit vormt een uitdaging van zowel klinische als

statistische relevantie.

Dit proefschrift richt zich op het ontwikkelen van wiskundige en statistische methoden

om tijdsafhankelijke processen adequaat weer te geven en te modelleren binnen de con-

text van de analyse van de tijd tot een gebeurtenis. Hiervoor wordt gebruik gemaakt

van toegespitste “Cox”modellen. Het voornaamste doel is het verrijken van de huidige

kennis op dit gebied, door kenmerken toe te voegen die relevant zijn voor de betreffende

tijdsafhankelijke covariaten. De inspanningen van dit werk zijn tweeledig: ze richtten zich

op de complexiteit van (i) de ontwikkeling van adequate dynamische karakteriseringen

van de bestudeerde processen (d.w.z. het representatieprobleem) en (ii) de identificatie

en kwantificering van het verband tussen tijdsafhankelijke processen en de overleving van

patiënten (d.w.z. het tijd-tot-gebeurtenis modelleringsprobleem). In beide gevallen is het

voornaamste probleem het hanteren van complexe gegevensbronnen, waarbij men twee

aspecten in ogenschouw moet houden: ten eerste de aard van de processen en hun bij-

zondere kenmerken – denk aan temporele dynamiek, categorische niveaus of terugkerende

gebeurtenissen – en ten tweede de complexe balans tussen klinische interpreteerbaarheid

en mathematische formulering.

Afhankelijk van de context van het onderzoek worden verschillende benaderingen voor-

gesteld. Wat betreft representaties wordt ten eerste gebruikgemaakt van complexe data-

integratie en “functionele”data-analyse. Nieuwe longitudinale of functionele kenmerken

maken het mogelijk om trends en variaties in de evolutie van processen in de tijd op te

nemen. Ten tweede worden nieuwe statistische methoden gëıntroduceerd waarmee men

bijkomende informatie, om precies te zijn longitudinale dan wel functionele gegevens,

kan ontlenen aan verschillende bronnen. Om antwoord te geven op onderzoeksvragen
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worden onder andere stochastische procestheorie, latente Markovmodellen en compositi-

onele data-analyse gebruikt. Wat betreft het modelleren van de tijd tot de gebeurtenis

worden geavanceerde versies van regressiemodellen van het Cox-type voorgesteld. Op die

manier is het mogelijk om dynamische covariaten in de overlevingsanalyse op te nemen.

Afhankelijk van het type studie en gegevens wordt gekozen voor gecombineerde of func-

tionele overlevingsmodellen, die technieken gebruiken om de dimensie te verminderen, of

marginale structurele modellen.

Met het oplossen van bovengenoemde statistische uitdagingen heeft dit werk niet alleen

impact voor de wiskundige en statistische onderzoeksgemeenschap. Het tracht daarnaast

artsen en andere clinici te ondersteunen door instrumenten aan te bieden die nuttig zijn

voor hun beroepspraktijk. Alle onderzoeksonderwerpen zijn ingegeven door specifieke

klinische vragen, met als doel om meer inzicht te krijgen in gepersonaliseerde behande-

lingen voor cardiologische en oncologische patiënten. Deel I van dit proefschrift is gericht

op de studie van de processen van medicijngebruik, therapietrouw aan medicatie en her-

opnames bij patiënten met hartfalen. Deel II betreft het onderzoek van tijdsafhankelijke

aspecten van chemotherapiebehandeling bij patiënten met een osteosarcoom. Denk hierbij

aan dosiswijzigingen, biomarkers en accumulatie van toxiciteiten.

De nieuw ontwikkelde, op maat gemaakte methoden verbeteren dus de modellering van

de tijd tot een gebeurtenis waarbij tijdsafhankelijke kenmerken worden meegenomen. Dit

markeert een belangrijke stap voorwaarts in de definitie van nieuwe, aangepaste én flexi-

bele monitoringinstrumenten. De in dit werk ontwikkelde instrumenten vinden hun toe-

passing in onderzoek naar diverse ziektebeelden, waarbij men beschikt over complexe

gegevensbronnen.
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Nella ricerca clinica, le covariate tempo-dipendenti sono di grande interesse in quanto rac-

chiudono informazioni sull’evoluzione di elementi dinamici che possono avere un impatto

sullo stato di salute del paziente e sulla progressione della malattia. In letteratura, que-

ste caratteristiche vengono solitamente analizzate utilizzando un approccio di “baseline”

o “costante a tratti”, perdendo cos̀ı il potenziale contenuto informativo che potrebbero

fornire se l’associazione tra i dati tempo-dipendenti e quelli di tempo all’evento venisse

catturata in maniera appropriata. Data la complessità dei fenomeni, è necessario formu-

lare adeguatamente i modelli per l’evoluzione della malattia e caratterizzare in un con-

testo analitico avanzato la relazione tra di essa e la natura dinamica delle caratteristiche

tempo-varianti. Questi aspetti sono raramente affrontati e possono fornire nuovi spunti

per la ricerca medica, rappresentando una sfida sia di rilevanza clinica che di interesse

statistico.

Questa tesi si concentra sullo sviluppo di metodi matematici e statistici per rappresen-

tare appropriatamente i processi tempo-dipendenti ed includerli in un contesto di analisi

di tempo all’evento, mediante modelli di sopravvivenza di tipo “Cox”. Lo scopo princi-

pale è quello di arricchire le informazioni disponibili per studiare la sopravvivenza con

caratteristiche rilevanti legate alle covariate tempo-varianti di interesse. Questo lavoro

affronta quindi le difficoltà sia di (i) sviluppare adeguate caratterizzazioni dinamiche dei

processi oggetto di studio (ovvero il problema di rappresentazione), sia di (ii) identificare e

quantificare l’associazione tra i processi tempo-dipendenti e la sopravvivenza dei pazienti

(ovvero il problema della modellazione del tempo all’evento). In entrambi i casi, la sfida

principale consiste nel trattare fonti di dati complesse, sia tenendo conto della natura

dei processi e dei loro aspetti peculiari (come le dinamiche temporali, i livelli categorici

o gli eventi ricorrenti), sia bilanciando in modo adeguato l’interpretabilità clinica e la

formulazione matematica.

Lungo il corso della tesi vengono proposti approcci diversificati a seconda del contesto del-

lo studio. In termini di rappresentazione, grazie all’integrazione di fonti di dati complesse

e all’utilizzo di tecniche di analisi dei dati funzionali, vengono elaborate nuove covariate

tempo-dipendenti (longitudinali o funzionali) in grado di riflettere l’evoluzione dei proces-

si nel tempo. Inoltre, vengono introdotte nuove metodologie statistiche per estrarre dai

dati informazioni aggiuntive, impiegando, tra gli altri, la teoria dei processi stocastici, i

modelli di Markov latenti e l’analisi dei dati composizionali. In termini di modellazione

del tempo all’evento, i modelli di regressione di tipo “Cox” vengono estesi al fine di inclu-

dere le covariate dinamiche nell’analisi di sopravvivenza. Le tecniche di riduzione della
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dimensionalità ed i modelli proposti (“joint” o “marginal structural”) sono implementati

a secondo del tipo di studio e di dati a disposizione.

Oltre ad avere un impatto sulla comunità dei ricercatori in matematica e statistica, questo

lavoro mira a fornire strumenti utili per supportare i medici nella pratica clinica. Tutti

i temi di ricerca che vengono affrontati sono motivati da domande cliniche specifiche

riguardanti i trattamenti personalizzati in pazienti cardiologici ed oncologici. La parte

I di questa tesi si concentra sullo studio dei processi di re-ospedalizzazione, consumo ed

aderenza ai farmaci in pazienti con scompenso cardiaco. La parte II tratta lo studio degli

aspetti tempo-varianti della chemioterapia, come le modifiche del dosaggio, i biomarcatori

o l’accumulo di tossicità, in pazienti affetti da osteosarcoma.

In conclusione, lo sviluppo di nuove metodologie per dati di tempo all’evento che includano

informazioni dinamiche può rappresentare un significativo passo avanti nella definizione

di nuovi strumenti di monitoraggio personalizzati, che potrebbero poi essere applicati allo

studio di diverse patologie caratterizzate da fonti di dati complesse.
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