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A B S T R A C T   

Oil demand’s income and price elasticities are important behavioral parameters for policy making. Despite its 
popularity in research, few studies investigated the elasticities of consumption-based oil demand, i.e., the 
amount of crude oil required to meet a nation’s final demand regardless of the location of extractions, namely the 
oil footprint. Here we quantified the oil footprint of 49 countries/regions from 1995 to 2017 and estimated the 
elasticities of oil footprints using the panel Autoregressive Distributed Lag model. The results reveal the oil 
connections among countries hidden in the non-oil trade: the United States, China, and Japan imported a large 
amount of virtual oil embodied in the commodities and services, while Canada and Russia are the dominant 
suppliers. The elasticity estimations on 30 OECD countries show that oil footprints are more responsive to income 
increases in the long run than their short-run counterpart, with the elasticities around 0.75 and 0.48, respec
tively. Tariffs on oil products might not curb the oil footprint as the price elasticities are not robustly significant 
or negative. Moreover, the divergent elasticities of oil footprint by consumption categories highlight that more 
attention should be paid to the surge of oil demand embodied in construction, manufactured products, and 
services.   

1. Introduction 

Oil is one of the dominant energy sources in the modern economy 
and the strategic resource involving energy rights, geopolitical patterns, 
and economic trends (Costantini et al., 2007; Zhou et al., 2020). In a 
rapidly changing world, the focus on the oil industry has shifted from the 
concerns for insufficient supply caused by resource depletion to the 
uncertainty of demand and price under the intertwined impacts of the 
global pandemic, climate change mitigation, and increasingly frequent 
geopolitical conflicts (Brandt et al., 2018). The disturbances in crude oil 
demand and oil prices, especially those following the COVID-19 
epidemic and the Russia-Ukraine war, remind policymakers and in
vestors that the oil market plays a crucial role in reflecting the health of 
the global economy (Considine et al., 2021). 

Oil demand’s income and price elasticities denote their responsive
ness to economic growth and price fluctuation and are important 

behavioral parameters for predicting the demand trend. The forecast of 
these indicators supports decisions on refinery investment and policy
making concerning energy security, climate change, and international 
trade (Dahl, 2012; Ghoddusi et al., 2021). A large number of studies 
have estimated the income and price elasticity of oil or oil product de
mand in various countries and regions and gained fruitful findings on 
this topic (e.g., (Baranzini and Weber, 2013; Bhattacharyya and Blake, 
2009; Labandeira et al., 2017; Liddle and Huntington, 2020a; Sa’ad, 
2009; Yousaf Raza and Lin, 2021). However, almost all of them focused 
on the income and price elasticities of domestic use of crude oil or oil 
product (Polemis, 2006); few studies investigated the elasticities of a 
country’s actual oil demand driven by its final demand. 

The actual oil demand, which is the amount of crude oil required to 
meet a nation’s final demand regardless of the location of extractions, 
namely oil footprint, has been proven different from direct oil flows and 
domestic use (Wang and Jiang, 2019; Wang and Yang, 2020). It equals 
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the crude oil extraction to satisfy the final demand of a country, 
excluding the oil consumption embodied in downstream products out
sourced and consumed in other countries, and including those embodied 
in the imported products. Wu and Chen (2019) found that the global 
volume of oil embodied in trade is twenty percent larger than that in oil 
exploitation, and the role of the trade of non-oil goods in the global oil 
balance is comparable to that of the direct oil trade. Li et al. (2021) 
analyzed the time-series evolution characteristics of the global oil supply 
chain during 2000–2015 and pointed out that considering virtual oil 
flows embodied in the international trade of non-oil products (e.g., 
rubber, plastic, synthetic fiber, cosmetics and so on) greatly changes the 
perception of global oil supply chain and use patterns. Given these in
sights, investigating the elasticities of the footprint will assist with a 
more accurate forecast of countries’ actual oil demand and better de
cisions on policymaking and investment. 

Here enabled by the combination of a multi-regional input-output 
database (EXIOBASE 3.8.1) (Stadler et al., 2021) and crude oil pro
duction data from the International Energy Agency (IEA) (IEA, 2022b), 
we depict the oil footprint of 49 countries, territories, and regions in the 
past 23 years (1995–2017). The quantification of oil footprint is similar 
to the recent literature that examines consumption-based rather than 
territory-based environmental and resource footprints (Dorninger et al., 
2021; Wiedmann and Lenzen, 2018; Zheng et al., 2018). We further 
employed the panel Autoregressive Distributed Lag (ARDL) model to 
estimate the oil footprints’ income and price elasticities in 30 OECD 
countries where the oil price data are available. The findings generate 
new insights on energy-involving policies and investment decisions, 
facilitate a more comprehensive understanding of the global oil market, 
and help enhance the prediction and adaptation abilities in the rapidly 
changing world. 

2. Literature review 

2.1. Debates on oil demand prediction 

In terms of future oil demand predictions, researchers and investors 
haven’t reached a consensus (Kilian, 2022). A stream of arguments ac
knowledges that oil demand will change under the climate change 
vision, but not enough to shake up the industry (Spencer Dale and Fat
touh, 2018). They claim that the low-carbon transition from fossil fuels 
to renewable energy will take a long time, like all previous transitions. 
The lock-in effect of infrastructure committed that oil and other fossil 
fuels would not be squeezed out in the short term. At the same time, the 
construction of emerging infrastructure needed for the energy transition 
still depends on fossil fuels such as oil (Smil, 2016). Although the de
mand for oil as fuels in transportation, heating, and industry will 
decrease in the future along with full electrification and energy substi
tution, non-fuel use is hard to be substituted in the short term. Unless 
consumers compromise their lifestyles, the growing demand for petro
chemicals (especially plastics) from the emerging middle-class will 
continue driving the oil demand increase (IEA, 2018). 

By contrast, the opponents argue that there are indeed historical 
examples of rapid energy transitions, such as the quick transition from 
coal to natural gas in the United Kingdom (UK), the rise of nuclear power 
in France, and the retirement of coal in Ontario, Canada (Wilson and 
Staffell, 2018). Besides, even if the physical energy infrastructure 
changes slowly, financial parameters and investors’ confidence change 
very quickly and may broadly accelerate the evolution of oil demand. 
Especially when the economic cost of renewable energy is dramatically 
declining (BP, 2021; IRENA, 2020), the investors’ confidence and be
haviors could subvert. 

The divergent arguments imply the considerable uncertainties in the 
future of the oil industry. Some studies predict that oil demand has 
collapsed, and an early peak of the industry is coming. For example, 
British Petroleum (BP) ‘s Energy Outlook presented scenarios with harsh 
climate policies, in which the global oil demand peaked in 2019 and 

would never fully recover from the fall caused by Covid-19 (BP, 2020). 
However, as the OPEC forecast, global oil demand will grow until 
around 2040 and is unlikely to fall sharply (Wang, 2020). A better un
derstanding of actual oil demand driven by a country’s final demand and 
its composition relating to different consumption categories could lower 
the prediction uncertainties. 

2.2. Elasticity estimates of oil demand 

Income and price elasticities are two critical parameters in the oil 
demand prediction, which describe the response of producer and con
sumer behaviors to affluence changes and price fluctuations. The esti
mates of these two parameters have been a welcoming research topic 
(Huntington et al., 2019; Moore, 2011; Raghoo and Surroop, 2020; 
Ziramba, 2010). Previous studies have focused on the domestic con
sumption of crude oil or oil products and found that the elasticity varies 
considerably across countries, fuel types, data frequency, and even 
estimation methods (Ajanovic et al., 2012; Labandeira et al., 2017). For 
example, Dahl (2012) reviewed 240 studies and found that the price 
elasticity estimates from models for gasoline range from less than − 1.63 
to positive values, with a median of − 0.34; those for diesel fuel range 
from less than − 0.67 to positive values. Huntington et al. (2019) studied 
five countries (i.e., China, Brazil, India, Mexico, and Russia), and re
ported the averages of short and long-run price elasticities for oil de
mand around − 0.15~− 0.07, and the averages of short and long-run 
income elasticities for oil demand around 0.39–0.50. Liddle and Hun
tington (Liddle and Huntington, 2020b) assembled a wide panel dataset 
of energy consumption and prices for 37 OECD and 41 non-OECD 
countries and found that most evidence supports the income elasticity 
is less than unity (i.e., 0.7) and the price elasticities was insignificant. 

Despite the variations in the quantified results, some consensus has 
been achieved: 1) Both income elasticities and price elasticities have 
larger long-term elasticity coefficients than short-term elasticity co
efficients, implying that oil (product) demand is more responsive to 
changes in income and prices in the long term (Cooper, 2003a; Sita et al., 
2012). 2) Oil demand is more sensitive to changes in income than to 
price variations (Liddle and Huntington, 2020b). The former reported in 
many studies are inelastic or close to unity, while the latter have defi
cient elasticity, both in the short and long term, generally in the range of 
− 0.3~− 0.1 (Eleyan et al., 2021). 3) The income elasticity has been 
declining (Eleyan et al., 2021), which is positive for climate change as it 
implies that the oil intensity decreases with economic growth. 

The methods to obtain the above findings are diverse in previous 
studies. The model specifications evolve from static equation and partial 
adjustment method (Cooper, 2003a) to error correction and cointegra
tion techniques for analyzing time-series data (Akinboade et al., 2008). 
Recently, the use of ARDL Error Correction Model (ARDL-ECM) in 
elasticity estimation has gained popularity as it allows simultaneous 
assessment of short- and long-run elasticities (Raghoo and Surroop, 
2020). 

3. Methodology 

3.1. Oil footprint quantifications 

Combining the crude oil production data and the multi-regional 
input-output table, we quantified the oil footprint of 49 countries, ter
ritories, and regions during 1995–2017 (Table A1 lists the full name of 
the samples) by applying the Leontief demand-pull model (Eq. (1)). 

OFr = S × (I − A)− 1
× Yr (1)  

where OFr represents the oil footprint by country r. S is the physical 
amount of crude oil extraction per monetary output. I refers to the 
identity matrix and A is the technical coefficient submatrix. (I − A)− 1 

represents the Leontief inverse matrix which captures both direct and 

X. Zheng et al.                                                                                                                                                                                                                                   



Energy Policy 169 (2022) 113204

3

indirect economic inputs to satisfy one unit of final demand in monetary 
value. Yr is the final demand of country r. It is worth noting that the 
estimates in this study only capture the annual oil flow from production 
to consumption while ignoring the changes in the oil stocks (Kilian and 
Murphy, 2014). 

3.2. Empirical estimation models 

We employed the panel ARDL model (Pesaran et al., 1999) to esti
mate the long-run and short-run dynamic relationships between a 
country’s oil footprint and socioeconomic drivers. We adopt this model 
for three reasons. First, unlike static models that capture the 
intermediate-run elasticities, ARDL is a dynamic model that provides 
short- and long-run relationships among variables. Second, the ARDL 
model is suitable even if the sample size is small. Third, the ARDL model 
is valid for non-stationary variables, as well as for a mixture of variables 
that are stationary at level (known as I(0) variable) and those which are 
non-stationary at level but are first-difference stationary (known as I(1) 
variable), fitting the situation of our sample data well (see more details 
in section 3.3.2 unit root tests). 

The model estimated has the form of an ARDL(p,q,r) model (Eq. (2)): 

lnOFi,t = ai +
∑p

j=1
γi,jlnOFi,t− j +

∑q

j=0
θi,j ln GDPi,t− j +

∑r

j=0
δi,jPi,t− j + eit (2)  

where ln(OFi,t) is the logarithmic form of per capita oil footprints for 
country i in year t; ln(GDPi,t) denotes the logarithmic form of affluence, 
indicated by per capita GDP at purchasing power parity (2017 constant 
international dollars); Pi,t is the real index of oil product prices for in
dustry and households (2015 = 100); ai is the group-specific effect and 
eit is the error term. The optimal lag orders (p, q, r) are selected ac
cording to the Bayesian Information Criterion (BIC). 

If the variables are cointegrated, the model can be reparametrized 
into the error-correction model: 

ΔlnOFi,t = ai + φi
(
lnOFi,t− 1 − β1 ln GDPi,t− 1 − β2 ln Pi,t− 1

)

+
∑p− 1

j=1
γ*

i,jΔlnOFi,t− j +
∑q− 1

j=0
θ*

i,jΔln GDPi,t− j +
∑r− 1

j=0
δ*

i,jΔln Pi,t− j + eit (3)  

where β1 and β2 are the long-run coefficients of the explanatory vari
ables on per capita crude oil footprint and and φi is the error-correcting 
speed of adjustment term. This parameter is expected to be significantly 
negative under the prior assumption that the variables show a return to 
long-run equilibrium. γ*

i,j, θ*
i,j, and δ*

i,j are the short-run coefficients. Δ 
reflects the first difference operator, which means the series of changes 
from one period to the next. 

For comparison, we also estimated the income and price elasticities 
of per-capita domestic oil use on the same sample. The cointegration 
tests (see more details in section 3.3.2) didn’t reject the null hypothesis 
of no cointegration at a 10% confidential level, indicating the error- 
correction model is unsuitable. Thus we estimate the short-run elastic
ities using the First Difference (FD) model: 

ΔlnDUi,t = ai +
∑p− 1

j=1
γ′

i,jΔlnDUi,t− j +
∑q− 1

j=0
θ
′

i,jΔln GDPi,t− j +
∑r− 1

j=0
δ
′

i,jΔPi,t− j + eit

(4)  

where ln(DUi,t) is the logarithmic form of per capita domestic oil use for 
country i in year t. 

3.3. Data and tests 

3.3.1. Data sources 
The EXIOBASE database (Stadler et al., 2021) describes the world 

economy regarding the production, consumption, and trade of 200 

commodities between and among 44 countries/territories and 5 regions. 
The production, import, export, and domestic use data of crude oil by 
country are referenced from the IEA Oil Information database (IEA, 
2022b). Crude oil production is defined as the quantities of oil extracted 
from the ground after removing inert matter or impurities, including all 
crude oil, NGL, condensates, and other hydrocarbons (including the 
receipts of additives). The crude oil prices are indicated by the real index 
of oil product prices for industry and households (2015 = 100), which 
are referenced from the IEA Energy Prices database (IEA, 2022a). It is 
worth noting that the availability of price data across countries is the 
main factor constraining the sample size since the price data only cover 
the OECD countries. Thus the panel data analysis dataset of oil footprint 
is unbalanced, covering 30 countries from 1995 to 2017 (Table A2). The 
data of per capita GDP and population are sourced from World Bank 
Development Indicators (The World Bank, 2017). Table 1 provides the 
descriptive statistics of the variables used in the basic model. 

3.3.2. Unit root tests 
As Table 2 shows, we employed two methods to test the stationary of 

the variables: the Im–Pesaran–Shin (IPS) test (Im et al., 2003), and the 
Fisher-ADF test (Choi, 2001). Both test methods have the null hypothesis 
that all the panels contain a unit root. The tests show that per capital oil 
footprint (ppof) is stationary, while there is some doubt about the exis
tence of a unit root for the three independent variables. Regarding the 
first difference of the variables, the tests show all of them are stationary. 

3.3.3. Cointegration 
We performed the cointegration tests using the Pedroni (1999) and 

Westerlund (2005) methods (Table 3). Both tests reject the null hy
pothesis of no cointegration at 5% for Eq. (3), supporting the use of 
ARDL and interpreting the coefficients of the variables in levels as the 
long-run impact on the dependent variable. However, when per-capita 
domestic oil use is used as the dependent variable, the Westerlund test 
doesn’t reject the null hypothesis of no cointegration at a 10% signifi
cance level. 

4. Results 

4.1. Evolution of oil footprint 1995–2017 

From 1995 to 2017, the world has observed an overall increasing 
trend in crude oil consumption, from 3.3 to 4.5 billion tons of oil 
equivalent (toe) (Fig. 1a). More specifically, we found that the oil 
footprint in developing countries, such as China and India, has increased 
rapidly. China’s crude oil footprint grow considerably by four times, 
from 151.7 to 751.6 million toes, accounting for half of the global in
crease. India’s crude oil footprint grow by almost five times, from 44.9 
to 263.5 million toes, accounting for 19% of the global increase. By 
contrast, some developed countries, such as the United States (USA) and 
Japan, showed a shrinking trend in the crude oil footprint. The crude oil 
footprint in the USA peaked at 1.1 million toes in 2004 and decreased by 
7% from 2004 to 2017. The oil footprint in Japan shows a fluctuating 
decreasing trend, with a decrease rate of 16% in the past two decades. 
Despite the contrary direction of the oil footprint trend in developed and 
developing countries, the per-capita footprints in developing countries 
are still dramatically lower than those in developed countries. In 2017, 
the national average per capita footprints varied from 0.2 toe/y in India 
and Indonesia to 5–6 toe/y in Malta and Norway. 

The gaps between a country’s crude oil footprint and its domestic use 
represent the net exports or imports of crude oil embodied in the com
modity and service. From 1995 to 2017, the USA, EU, China (after 
2009), and Japan were the primary importer of embodied oil, while 
India and Russia were the dominant suppliers (Fig. 1b). We also see 
some interesting transitions in the import/export trend of crude oil and 
embodied oil. For example, driven by the increasing final demand, the 
USA and China transit from net exporters of embodied oil to net 
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importers in 1999 and 2009, respectively. Although the net imports of 
embodied oil in the USA are shrinking, its final demand was still 
dependent on other countries’ crude oil consumption until 2017. The EU 
has transitioned from a net embodied oil exporter to a net importer in 
1999 and back to a net exporter in 2015. Before 1999, it provided oil 
products and exported embodied oil thanks to its strong refining ca
pacity. Between 1999 and 2015, the older installations and less adapt
ability of European refineries led to declining competitiveness compared 
to the rapid capacity additions in Asia and the relatively low cost in the 
USA, so crude oil footprint exports declined and entered a period of net 
imports. After 2015, with industry consolidation, Europe again showed 
a net crude oil footprint export trend. 

Comparing the embodied oil imports/exports with the direct crude 
oil trade, we can classify the countries into four categories (Fig. 1c, and 
see more details in Table A1). Countries in category one are net ex
porters of crude oil in apparent trade but net importers of embodied oil. 
For example, the UK before 2005 was one of such countryies that 
extracted a large amount of crude oil but had the limited refining ca
pacity to meet its great final demand. Thus it exported crude oil and 
imported crude oil products, leaving part of the oil refining and pro
duction abroad. With the decrease in crude oil production amount, the 
UK became a net importer of crude oil after 2005; meanwhile, it was still 
the net importer of embodied oil. Countries in category two include the 
EU (1999–2014), the USA (after 1999), China (after 2009), Japan, 
Australia, and Switzerland. These countries not only imported crude oil 
directly but also imported embodied oil through commodity and service 
trade. Especially in China (since 2009) and Japan, these two countries 
have net imported millions of tonnes of crude oil directly, and the net 
imports of embodied oil were large too, accounting for 5%–45% and 

19%–75%, respectively as the direct imports. Countries in category 
three are net importers of crude oil but net exporters of embodied oil, 
including the EU (before 1999 and after 2015), China (before 2009), and 
India (2000–2016). In India, up to 60% of its domestic use of crude oil 
was embodied in the commodity to meet the final demand of other 
countries (Table A3), accounting for 84% of its apparent crude oil im
ports. The number in China (before 2009) and the EU (before 1999 and 
after 2015) are mainly 1%–15% (Table A3). Countries in these cate
gories are more like transit points, producing imported crude oil to oil 
products and then exporting them abroad. The last type incorporates 
countries that are net exporters of both crude oil and embodied oil. 
Examples of such countries are Canada and Russia, which have abun
dant oil resources and sufficient refining capacity to support other 
countries’ demands. 

4.2. Linking oil footprint with final demand 

Fig. 2a and Fig. 2b provide a global overview of the final users and 
final consumption categories responsible for the oil demand. On a 
worldwide scale, 52%–65% of the oil demand is driven by household 
consumption, 7%–9% is related to government consumption, and 27%– 
39% is related to the capital formation (i.e., investment) from 1995 to 
2017. Although the oil demand driven by household consumption ac
counts for the largest proportion, its proportion shows a slightly 
decreasing trend in this period, from 60% in 1995 to 56% in 2017. By 
contrast, the oil demand driven by capital formation shows an 
increasing trend, especially from 2001 to 2013 (+66%). 

Regarding the various consumption categories, the oil used by 
mobility (gasoline, diesel, kerosene, and other oil fuels directly used in 
the land and air transportation by residents and the government) is the 
dominant category driving the oil demand, which is in accordance with 
our common sense. However, it is not as crucial as we probably 
perceived since it only accounts for 26%–36% of the total. Oil footprint 
driven by shelter use followed, accounting for 16%–22% of the total. 
The oil footprints driven by shelter use (e.g., lighting, cooking, heating, 
etc.) are mainly related to fuel combustion in households or power 
plants. Service operates nearly 20% of the oil demand, in which “health 
and social work services” and “public administration and defense ser
vices, compulsory social security services” dominant by 8%. Crude oil 
demand driven by service is usually in the form of naphtha-made plas
tics and oil fuels powering trucks and trains that move commodities. The 
consumption of construction and manufactured products also plays a 
significant role in crude oil demand, which causes 10%–14% of the oil 
footprint. Oil footprints driven by these categories are often embodied in 
a wide range of products, such as insulation, paint, asphalt, and other 
petrochemical products, and the fuel consumption by freight trans
portation for moving these commodities. Food, clothing, and trade are 
the minor contributors to the oil footprint (less than 6%), which mainly 
happens in the supply chain. 

At the national scale, the consumption categories confirm the general 
patterns that households and mobility dominate the oil consumption, 
while enormous spatial heterogeneity exists (Fig. 2c and d). The share of 
oil footprint driven by investment is generally more significant in 
developing economies, such as China, Indonesia, and India, yet an 
exception exists in Norway. The share of oil footprint driven by shelter 
consumption in Norway is as large as 71%. In China, service and con
struction play incredibly significant roles in oil footprint, accounting for 

Table 1 
Variables definition and descriptive statistics.  

Variable name Definition Obs. Mean Std. Dev. Minimum Maximum 

ppof Oil footprint per capita (ton) 670 2.0 1.8 0.1 29.6 
ppdu Domestic use of crude oil per capita (ton) 670 1.6 1.2 0.0 5.9 
ppgdpppp GDP per capita, PPP (constant 2017 international $) 670 40994.1 17752.5 10949.7 120648.0 
realpriceindex Real index of oil product prices for industry and households, 2015 = 100 670 94.1 17.0 25.5 152.3  

Table 2 
Stationarity tests of the variables in levels and in first differences.  

Variable IPS Fisher-ADF 

Trend Constant Trend Constant 

ln(ppof) 0.0000 0.0000 0.0000 0.0000 
ln(ppdu) 0.0224 0.0001 0.6990 0.0000 
ln(ppgdpppp) 0.0000 0.9004 0.8562 0.0000 
realpriceindex 0.4705 0.0000 0.9974 0.0000 
△ln(ppof) 0.0000 0.0000 0.0000 0.0000 
△ln(ppdu) 0.0000 0.0000 0.0000 0.0000 
△ln(ppgdpppp) 0.0000 0.0000 0.0000 0.0000 
△realpriceindex 0.0000 0.0000 0.0000 0.0000 

Notes: the numbers in the table present the p values of the tests. Δ reflects the 
first difference operator. 

Table 3 
Cointegration tests.   

ln(ppof) as dependent 
variable 

ln(ppdu) as dependent 
variable 

Trend No trend Trend No trend 

Pedroni test 
Modified Phillips-Perron t 0.0011 0.0000 0.0112 0.1093 
Phillips-Perron t 0.0000 0.0000 0.0000 0.0034 
Augmented Dickey-Fuller t 0.0000 0.0000 0.0000 0.0002 
Westerlund test 
Variance ratio 0.0014 0.0105 0.3780 0.1554  
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32% and 31% of the total, respectively, which even exceed mobility 
(accounting for 17%). In Indonesia, shelter and construction cause the 
most oil footprint, accounting for 32% and 21%, respectively, while 
mobility only accounts for 19%. In Norway, the largest consumption 
category is shelter (60%), followed by mobility (13%). 

4.3. Drivers of the oil footprint evolution 

A panel data analysis is employed to investigate the income and price 
elasticities of oil footprint in 30 countries where oil price data are 
available. In the long run, the income elasticity of oil footprint is 0.747 
(Column II in Table 4, 0.747 = 0.207/0.277), suggesting a significantly 
positive correlation between oil footprint increase and economic 
growth. When time trends and prices are controlled, every 1% increase 
in per capita GDP is associated with a 0.75% increase in per capita oil 
footprint. Without holding the time trend, the long-run income elasticity 
turns out to be insignificant. This variation is explainable as the time 
trend captures the impact of technology improvement, efficiency 
enhancement, and renewable substitution on curbing oil demand, which 
might offset the positive effects of economic growth. The significantly 

negative time trend coefficient (0.046 = − 0.0128/0.277) supports 
such conjecture, showing that the per capita oil footprint decreases by 
4.6% annually. With regard to the price elasticity, whether the time 
trend is controlled or not also matters. With the time trend and per 
capita GDP controlled, the long-run price elasticity is positive but not 
stably significant when a sub-sample is used (Table A4). If mixed with 
the effects of time trend, the price elasticity is significantly negative at 
− 0.0091 (Column I in Table 4, − 0.0091 = − 0.00173/0.190), indi
cating a unit incline in the real price index of oil products links with a 
0.91% decrease in per-capita oil footprint. The negative coefficient is 
expected and can be explained as price incline links with less oil de
mand, probably enabled by the technology improvement, efficiency 
enhancement, and energy substitution. 

In the short run, economic growth also positively affects oil footprint 
increase with the time trend controlled, although the magnitude is lower 
than its long-run counterpart. A 1% increase in GDP growth rate is 
associated with a 0.48% increase in oil footprint growth rate. Moreover, 
the economic growth also has a two-year lagged positive effect on the oil 
footprint increase. The short-run price elasticity is insignificant, sug
gesting that an increase in oil product price doesn’t have a temporal 

Fig. 1. The evolution of crude oil footprint (a), embodied oil imports (b) during 1995–2017, and the comparison between embodied oil imports and direct 
oil imports in 2017 (c). Crude oil footprint refers to the amount of crude oil required to meet a nation’s final demand regardless of the location of oil extractions. 
Embodied oil imports refer to the gaps between a country’s crude oil footprint and its domestic use of crude oil, in which negative values indicate embodied oil 
exports. The area of the markers in panel (c) is proportionate to the natural log form of crude oil production. 
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demand-side impact. The coefficient for the error correction term is 
significantly negative as expected, which means that the deviations of 
short-term oil footprint from the long-term equilibrium are corrected in 
the next period. 

For comparison, we also estimated the income and price elasticities 
of per-capita domestic use of crude oil in the same sample countries 
(Column III in Table 4). Since the null hypothesis of no cointegration is 
not rejected, we only estimate the short-run income and price elasticities 
using the FD model (Column III in Table 4). The results show that do
mestic oil use is more responsive to income changes than oil footprint in 
the short run, with an inelastic income elasticity around 0.632 and a 
positive price elasticity around 0.00252. The lack of a long-run equi
librium relationship, however, suggests that in our sample, income 
changes have little effect on domestic oil use in the long run. More 
comparisons between our findings and previous ones are presented in 
Table A5. 

4.4. Additional tests on the elasticity 

Breaking down the oil footprint into consumption- and investment- 
driven ones, we found that income and price elasticities vary by use 
purposes (Table 5). In the long run, the consumption-driven oil footprint 
is income elastic, while the investment-driven one is inelastic. Every 1% 

increase in per capita GDP is associated with a 1.43% increase in 
consumption-driven oil footprint and a 0.69% increase in investment- 
driven oil footprint in the long term. That implies oil demand by final 
consumption increases more rapidly than economic growth, while 
investment-driven oil demand is less responsive. Regarding the price 
elasticity, the opposite situation appears. Consumption-driven oil foot
print has few responses to price changes, while investment-driven ones 
are more responsive. Every one-unit increase in the real index of oil 
product price is associated with a 0.98% increase in investment-driven 
oil footprint. In the short run, the consumption-driven oil footprint is 
insensitive to price and income, but the investment-driven one is posi
tively correlated with both. The short-term income elasticity of 
investment-driven crude oil demand is particularly prominent, with a 
high elasticity coefficient of 2.19. That means that investment-driven 
crude oil demand has increased at a rate more than twice the per cap
ita GDP growth rate. 

Moreover, we found that the reactions of oil footprint driven by 
various consumption categories to changes in income and price are also 
differentiated. In the long run, oil footprints driven by clothing con
sumption, construction, manufacturing products, mobility, and services 
are elastic with respect to income. Their income elasticity appears to be 
between 1.16 and 3.35, indicating that oil demand by these categories, 
either in the forms of fuel oil or petrochemicals, increases more rapidly 

Fig. 2. Crude oil footprint and the percentage structure for different consumption users and categories. Panels (a) and (b) show the global oil footprint trend 
by consumption users and consumption categories. Panels (c) and (d) show the percentage of oil footprint by different consumption users and consumption categories 
in 2017. 
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than affluence accumulation. In terms of the magnitude of effects, 
affluence increases exert greater influence on oil footprint driven by 
construction, followed by clothing, manufactured products, services, 
and mobility. Oil footprint driven by food consumption is moderately 
income inelastic, implying the nature of necessity goods. Regarding the 
price elasticity, only are the oil footprints driven by clothing, shelter, 
and manufactured products responsive to price changes but not at all for 
other categories. In the short term, the income elasticity of oil footprint 
driven by clothing, construction, and manufactured products varies 
from 1.016 to 2.039, and neither of the consumption categories is sig
nificant in price elasticity at a 5% confidential level. 

5. Discussion 

5.1. Oil connections among countries are more than direct trade but 
include virtual flows 

A country’s real crude oil demand does not only occur in its own 
country but may also be implicitly transferred to other countries through 
being embedded in the international trade. In this study, we first find 
that the crude oil footprint of developed countries is on a downward 
trend while developing countries are on an upward trend, which may be 
related to the rising consumption of the growing middle-income groups 
in developing countries. We also found the role some main economies 
played in the supply chain of embedded crude oil is divergent from that 
in the apparent trade. Some countries with high oil demand, such as 
China, the United States, and Japan, are not only direct importers of 
crude oil but also greatly dependent on foreign supplies of embedded oil. 
In contrast to these countries, major oil producers such as Russia and 
Canada net export both crude oil and embedded oil. This implies that in 
the event of geopolitical conflicts, such as the recent Russia-Ukraine 
war, the commodity trade sanctions that the West has launched 
against Russia will cause harm to the oil industry both directly and 
indirectly, e.g., jeopardizing Russia’s crude oil industry through virtual 
flow changes and causing supply insufficiency to meet other countries’ 
final demand. A comprehensive analysis of direct trade and virtual flow 
is useful for a more comprehensive understanding of each country’s 
position and role in the global crude oil market and provides insights for 
designing trade policy and energy security strategy. 

Table 4 
Income and price elasticities of oil footprint and domestic oil use.   

ln(ppof) ln(ppdu) 

ARDL(3,2,2) ARDL(3,2,1) FD 

ln(ppof )t− 1 − 0.190*** − 0.277***  
ln(ppgdpppp )t− 1 ¡0.0597 0.207**  
realpriceindextt− 1 ¡0.00173*** 0.000958**  
timetrendt− 1  ¡0.0128***  
△ln(ppof )t− 1 − 0.282*** − 0.243*** − 0.185*** # 

△ln(ppof )t− 2 − 0.0869*** − 0.0887***  
Δln(ppgdpppp )t 0.468 0.484* 0.632* 
Δln(ppgdpppp )t− 1 0.621*** 0.453**  
Δrealpriceindext 0.000463 0.00122 0.00252* 
Δrealpriceindext− 1 0.00249***   
Sample size 580 580 581 
R2 0.276 0.309 0.083 
AIC − 747.3 − 774.5 − 440.6 
BIC − 708 − 735.2 − 427.5 

Notes: # this is the coefficient of Δln(ppdu )t− 1. ppof denotes oil footprint per 
capita. ppdu is the domestic use of crude oil per capita. ppgdpppp is GDP per 
capita, PPP (constant 2017 international $). realpriceindex denotes the real index 
of oil product prices for industry and households, 2015 = 100. △ is the first 
difference operator. The preferred ARDL model is selected by the BIC. Co
efficients in bold are not long-run elasticities but − φiβ1 as Eq. (3) indicates. 
Long-run elasticities β1 is the coefficients divided by − φi. *p < 0.1, **p < 0.05, 
***p < 0.01.  
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5.2. Oil footprint is more responsive to income increases than price 
changes in the long tun 

In terms of income elasticity, domestic crude oil use is more sensitive 
to economic growth in the short term, but the country’s real crude oil 
footprint is not growing as fast as domestic use. This suggests that some 
of the oil demand increase may support final consumption in other 
countries. In the long term, the crude oil footprint increases significantly 
with economic growth, but on the same sample, there is no evidence that 
this positive correlation also exists for domestic oil use. 

Regarding price elasticities, the insignificant long-run and positive 
short-run price elasticities in oil footprint with the time trend held imply 
that tariffs on end-use oil products would not be a viable tool to promote 
a reduction in a country’s real oil demand. Excessive prices, such as 
pollution fees or carbon tax due to strict environmental regulations, 
increase production costs and discourage investment and production in 
the domestic crude oil industry. In this case, oil-intensive industries 
might be outsourced to other countries, which provide more trade 
comparative advantages and economic profits (Li et al., 2022), and the 
real oil demand of the country might not decrease as much as the do
mestic use does. 

Another interesting finding is that the time trend, which incorporates 
the combined impacts of technology improvement, efficiency enhance
ment, and energy substitution, matters for estimating income and price 
elasticities. When the time trend is controlled, affluence accumulation 
has a significant positive effect on oil footprint in both the long and short 
term; otherwise, the income elasticities are insignificant. This is prob
ably because the positive impact of economic growth is offset by the 
negative effect of technology and energy substitution progress. This ef
fect also exists for price elasticity. In the long run, the oil footprint is 
positively correlated with price changes when the time trend is 
controlled, while the opposite is true (i.e., negative correlation) without 
controlling. For robustness check, we performed the regression on a sub- 
sample between 1995 and 2015 (Table A4), confirming that these con
clusions remain robust after changing the sample size. The most 
straightforward implication of this finding is that addressing the factors 
captured by the time trend might facilitate the decoupling of oil foot
print from economic growth or enable the price tools to effectively curb 
oil demand. 

5.3. More mitigation effort should be put into other oil use than 
transportation fuels 

The high income elasticity of oil footprint driven by clothing, con
struction, manufactured products, and services predicts the surge of oil 
demand in these categories emanating from economic growth. It alerts 
the policymakers that curbing the oil demand in the carbon-constrained 
world should not only focus on direct fuel oil use by mobility but also on 
managing the oil demand hidden in the products and services for other 
purposes. However, the task is challenging, as embodied oil use is pri
marily in the forms of petrochemical refining & processing products, 
which have fewer substitutions than fuel oil. New production technol
ogies that use advanced biofuels, hydrogen, and synthetic fuels, the 
application of negative emission technologies, such as carbon capture 
and natural carbon sinks, and the reuse of petrochemical products are 
thus suggested to strengthen the mitigation efforts in the oil industry. 

The variances in the elasticities of the oil footprint driven by different 
consumption categories also imply that investors should pay attention to 
the structural changes in oil demand and make rational investment de
cisions. Although oil demand will not be phased out completely from the 

economy in the short run due to the use of petrochemical products, the 
industry’s production structure would be substantially different or even 
subvert to match the demand changes. 

6. Conclusion and policy implications 

Combing the oil production data with the MRIO tables, we calculated 
the crude oil footprint of 49 countries, territories, and regions from 1995 
to 2017 and investigated the footprint’s income and price elasticities 
based on ARDL estimation. Comparing a country’s oil footprint and 
domestic use of crude oil, we revealed the role of countries in the oil 
market, not only in the direct oil trade but also in the virtual flows 
embedded in other commodities and services. Countries including the 
United States (after 1999), China (after 2009), and Japan imported a 
large amount of embodied oil through commodity and service trade. By 
contrast, Canada and Russia, which have abundant oil resources and 
sufficient refining capacity, are net exporters of both crude oil and 
embodied oil. Countries like 27 European countries and South Korea are 
net importers of direct crude oil but swing between net importers and 
net exporters of embodied oil back and forth as the refining capacity and 
the adaptability to the market change. These insights of the embodied oil 
trade facilitate decisions on refinery investment and policymaking 
concerning energy security, climate change, and international trade. 

Furthermore, the panel data analysis on 30 OECD countries shows 
that oil footprints are more responsive to income increases in the long 
run than their short-run counterpart, with the elasticities around 0.75 
and 0.48, respectively. With the time trend held, the price elasticity is 
not stablely significant or negative, implying that tariffs on end-use oil 
products would not be a viable tool to promote a reduction in a country’s 
real oil demand. However, the negative impacts of time trends on oil 
footprint indicate that addressing the factors captured by the time trend, 
including technology improvement and energy substitution, are needed 
in oil use management. Moreover, the elasticities of oil footprint by 
consumption categories are divergent. Moreover, the divergent elastic
ities of oil footprint by consumption categories highlight that policy
makers and investors should pay more attention to the oil demand 
embodied in construction, manufactured products, and services, which 
are predicted to surge more rapidly than economic growth. 
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APPENDIX  

Table A1 
Net export of crude oil versus net import of embodied oil by country. 

Table A2 
The country and year samples included in the basic model of 
panel analysis  

Country The period of sample data 

Australia 1995–2017 
Austria 1995–2017 
Belgium 1995–2017 
Canada 1997–2017 
Czech Republic 1995–2017 
Denmark 1995–2017 
Estonia 1997–2017 
Finland 1995–2017 
France 1995–2017 
Germany 1995–2017 
Greece 1995–2017 
Hungary 1995–2017 
Ireland 1995–2017 
Italy 1995–2017 
Japan 1995–2017 
Latvia 1997–2017 
Lithuania 2004–2017 
Luxembourg 2007–2017 
Mexico 1995–2017 
Netherlands 1995–2017 
Norway 1995–2017 
Poland 1995–2017 
Portugal 1995–2017 
Slovenia 2000–2017 
Spain 1995–2017 
Sweden 1995–2017 
Switzerland 1995–2017 

(continued on next page) 
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Table A2 (continued ) 

Country The period of sample data 

Turkey 1995–2017 
United Kingdom 1995–2017 
United States 1995–2017 

Notes: The availability of the average data of imported crude 
oil is the main factor constraining the sample size in the 
fundamental estimation.  

Table A3 
The proportion of a country’s net imports/exports of embodied oil in its domestic use 

Table A4 
Income and price elasticities of oil footprint using sub-sample 1995-2015   

ln(ppof) 

ARDL(3,1,1) ARDL(3,2,1) 

ln(ppof )t− 1 − 0.245*** − 0.319*** 
ln(ppgdpppp )t− 1 0.087 0.358*** 
realpriceindextt− 1 ¡0.00202*** 0.000439 
timetrendt− 1  ¡0.0133*** 
△ln(ppof )t− 1 − 0.177** − 0.135** 
△ln(ppof )t− 2 − 0.0870*** − 0.0831*** 
△ ln(ppgdpppp )t 0.409 0.682*** 
△ ln(ppgdpppp )t− 1 0.764***  
△ realpriceindext 0.000548 0.00103 
Sample size 520 520 
R2 0.257 0.271 
AIC − 701.8 − 711.2 
BIC − 667.8 − 677.1 

Notes: ppof denotes oil footprint per capita. ppgdpppp is GDP per capita, PPP 
(constant 2017 international $). realpriceindex denotes the real index of oil product 
prices for industry and households, 2015 = 100. △ is the first difference operator. 
The preferred autoregressive distributed lag (ARDL) model is selected by the 
Bayesian Information Criteria (BIC). Coefficients in bold are not long-run elastic
ities but − φiβ1 as Eq. (3) indicates. Long-run elasticities β1 is the coefficients 
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divided by − φi. *p < 0.1, **p < 0.05, ***p < 0.01. 
Table A5 
Summary of selected studies on income and price elasticities on oil demand  

Study Country and time period Dependent 
variable 

Methodology Income elasticity Price elasticity 

Short-run Long-run Short-run Long-run 

Ziramba (2010) (Ziramba, 
2010) 

South Africa, 1980–2006 with a 
annually frequency 

Imported 
crude oil 

ARDL-ECM ns 0.429 ns − 0.147 

Eleyan et al. (2021) (Eleyan 
et al., 2021) 

BRICS countries, 1990:Q1-2018:Q4 
with a quarterly frequency 

Oil demand TVP – from − 0.646 
to 1.193 

– from − 0.186 
to 0.270 

Raza & Lin, 2021 (Yousaf Raza 
and Lin, 2021) 

Pakistan, 1986–2018 Imported 
crude oil 

ARDL-ECM 0.4774 0.2008 0.0854 − 0.0406 

Raghoo and Surroop (2020) 
(Raghoo and Surroop, 2020) 

Mauritius, 1990 to 2017 Fuel oil 
demand 

ARDL–ECM 0.988 1.193 ns − 0.431 

Altinay (2007) (Altinay, 2007) Turkey, 1980–2005 Imported 
crude oil 

ARDL–ECM 0.635 0.608 − 0.104 0.182 

Cooper, 2003b (Cooper, 2003b) 23 countries, 1971 to 2000 Crude oil 
demand 

PAM na na from − 0.109 
to 0.023 

from − 0.568 
to 0.038 

Dées et al., 2007 (Dées et al., 
2007) 

10 regions, 1984:Q1-2002:Q1 with 
a quarterly frequency 

Oil demand ARDL-ECM from 0.001 
to 0.82 

from 0.17 to 
0.98 

from − 0.00 to 
− 0.07 

na 

This study 30 countries, 1995–2017 Oil footprint ARDL-ECM 0.742 0.764 ns 0.0016 

Notes: ns: not significant at 10% confidential level; na: not applicable; ARDL: Autoregressive distributed lag; ECM: Error correction model; TVP: Time-varying 
parameter; PAM: Partial Adjustment Model; FD: First Difference Model. 
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