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ABSTRACT
Many real-world black-box optimization problems from industry
are computationally expensive. Due to the advantage in wall-clock
time, fully parallel sampling (one-shot search) is therefore often
chosen over iterative search and adaptive sampling approaches.
Our contribution shows how using a surrogate model (one-shot
optimization with surrogate) can enhance the best solution found
within the initial sample, requiring no further problem evaluations.

We test several surrogate types for one-shot optimization on
a real-world problem from the field of vehicle dynamics control
systems and the 24 well-known BBOB benchmark test functions.

For the real-world problem and most of the benchmark functions
considered, a multi-layer perceptron (neural network) as surrogate
model for one-shot optimization leads to worse solutions than the
one-shot search, in contrast to random forest and support vector
machine. Moreover, our results show that mean squared error as a
commonly used quality metrics for regression models is not feasible
for selecting a surrogate model for one-shot optimization.

To characterize the considered problems and to assess the similar-
ity between the real-world problem and the benchmark functions,
exploratory landscape analysis was performed. We provide some
guidance on how to utilize this information to select a surrogate
type for specific problems.

CCS CONCEPTS
• Applied computing→ Engineering; • Mathematics of com-
puting → Continuous optimization; Exploratory data analysis; •
Computing methodologies→ Supervised learning by regression.

KEYWORDS
one-shot optimization, vehicle dynamics, exploratory landscape
analysis, benchmarking, surrogate-assisted optimization
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1 INTRODUCTION
Competition in the automotive industry is intensifying from year
to year. This results in the need to bring technologically advanced
vehicles to the market within ever shorter development intervals.
To achieve this, large parts of the development process take place
virtually. This means that instead of building physical prototypes,
the vehicles are modeled virtually. One development task consists
in tuning the parameters of control systems in vehicle dynamics
design. For this, virtual models are developed that allow the search
for optimal parameter sets for these control systems.

Vehicle dynamics is affected by many control systems, e.g., yaw
stability control, engine control, active suspensions, rollover pre-
vention, etc. [44]. Each of these control systems requires the specifi-
cation of many highly interdependent parameters. Hence, the field
of control systems in vehicle dynamics design offers a variety of
highly complex optimization problems.

In this paper we will look at two vehicle dynamic control sys-
tems that can significantly improve driving safety by reducing the
braking distance while simultaneously maintaining the vehicle’s
lateral stability: the anti-lock braking system (ABS) [26] and the
variable damper control (VDC) [38].

1.1 Problem Description
The ABS controls the relative motion between a tire and the road
surface during braking, so-called brake slip, by adjusting the brake
pressure so that the brake slip remains within the optimal range,
thus preventing the wheels from locking and keeping the vehicle
stable during braking. The system achieves this by predicting the
degree of slip between the wheels and the road surface. Meanwhile
the VDC regulates damper constants of the shock absorbers, which
influence the wheel load and, therefore, the braking force.
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Figure 1: Start time ts and end time te for calculating the
braking distance while an emergency straight-line full-stop
braking maneuver from vs = 100 km/h to ve = 0 km/h.

One maneuver used as a standard in the industry for assessing
braking performance of a vehicle is the emergency straight-line full-
stop braking maneuver with ABS fully engaged [17], which consists
of the following phases (Figure 1):
• At the beginning of the maneuver the vehicle is accelerated
until it reaches a maximum velocity of 103.5 km/h.
• Then a waiting phase follows in which neither acceleration
nor deceleration is applied.
• The braking begins at a velocity of 103 km/h.
• When the vehicle stands still, the maneuver is completed.

The braking distance 𝑦 is then defined as the integral of the
vehicle longitudinal velocity over time from velocity 𝑣𝑠 = 100 km/h
at time 𝑡𝑠 to 𝑣𝑒 = 0 km/h at time 𝑡𝑒 (Figure 1):

𝑦 =

∫ 𝑡𝑒

𝑡𝑠

𝑣 (𝑡) 𝑑𝑡 . (1)

To avoid possible disturbances which might affect the beginning
of the braking process, the starting velocity of the breaking maneu-
ver 𝑣𝑠 is considered lower than the velocity at the beginning of the
braking process.

There are hundreds of ABS and VDC control parameters in a
vehicle covering different driving situations such as straight-line
braking and braking while cornering at different velocities, and
different environmental situations such as low or high friction
values between the tire and the road surface. Not all of them affect
the braking distance during straight-line braking.

Based on sensitivity analysis with the Morris method [35]1, we
have selected 28 ABS and 2 VDC parameters that have been shown
to have the largest influence on the braking distance during a
straight-line braking maneuver from 100 km/h to 0 km/h. The
chosen number of parameters is large enough to describe the prob-
lem realistically for the industrial setting. For technical reasons,
there is a certain resolution for each parameter, which makes them
discrete. The number of levels varies across the 30 parameters from
31 to 10001. Also, each parameter has a defined lower bound 𝐵𝑙𝑏
and upper bound 𝐵𝑢𝑏 .

1Details of this study are outside the scope of this paper.

Therefore, for each of the 30 parameter a set of values 𝐷𝑖 with
the resolution as equal distance between the values is allowed. The
𝑛-dimensional input space over all parameters D𝑛 = ×𝑛

𝑖=1𝐷𝑖 is the
corresponding Cartesian product (𝑛 = 30 in our case).

The objective is to find a parameter setting 𝑥 within D𝑛 that
minimizes the braking distance 𝑦 (𝑥) while simulating the straight-
line braking maneuver, as defined in equation (1):

minimize
𝑥 ∈𝑋

𝑦 (𝑥), 𝑋 = {𝑥 ∈ D𝑛 : 𝐵𝑙𝑏 ≤ 𝑥 ≤ 𝐵𝑢𝑏 }. (2)

To apply algorithms for continuous input spaces, we consider this
problem as quasi-continuous (Section 3.3).

1.2 Simulation
For the simulation of the vehicle dynamics, driver and environment,
we use a two-track model implementation in Simulink [53]. The
vehicle dynamics is partitioned into the mechanical vehicle and
control systems, which include ABS and VDC models. The mechan-
ical vehicle is implemented as a five-body model (car body and
four wheels) moving in 16 degrees of freedom with the following
components: equation of motion, tires, drive-train, aerodynamics,
suspension, steering, and braking. The control systems consists
of sensors, logic and actuators. The interaction of these modeled
components enables the simulation of an integrated control system.

For tire models, we use the MF-Tyre/MF-Swift [49], which is
based on the Pacejka’s so-called Magic Formula [40] to accurately
simulate the steady-state and transient behavior of the tires under
slip conditions. The road surface is described by a curved regular
grid (CRG) track [55], which defines the road width and elevation
along a predefined reference line. CRG tracks can model 3D roads
in great detail while keeping the memory usage to a minimum. On
a standard workstation2, one full simulation run takes about 15 to
20 minutes.

2 STATE OF THE ART
2.1 Optimization
Real-world optimization problems are often called black-box prob-
lems, meaning that the underlying objective function is unknown.
There are many algorithms for solving single-objective (continu-
ous) black-box optimization problems. Two different approaches
can be distinguished [10]: iterative optimization heuristics and one-
shot optimization algorithms – both are sampling-based heuristics.
While iterative optimization heuristics evaluate solution candidates
sampled adaptively according to the algorithm’s logic to derive
new solution candidates, one-shot optimization algorithms are non-
adaptive and select the set of solution candidates prior to the first
evaluation.

In this paper, we concentrate on one-shot optimization algo-
rithms, that approach the problem in a fully parallel fashion. This
is particularly advantageous for computationally expensive prob-
lems like many real-world problems, as it allows to distribute the
simulations across multiple machines without the need for inter-
machine communication, thereby the wall clock time is reduced by
parallelization.

2HP Workstation Z4 G4 Intel Xeon W-2125 4.00GHz/4.50GHz 8.25MB 2666 4C 32GB
DDR4-2666 ECC SDRAM
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We distinguish between one-shot search and one-shot optimiza-
tion with surrogate:
• In one-shot search, 𝑠 solution candidates are evaluated in
parallel and the best candidate 𝑥𝑏𝑒𝑠𝑡 determines the perfor-
mance 𝑓 (𝑥𝑏𝑒𝑠𝑡 ).
• In one-shot optimization (with surrogate), a surrogate model
𝑓 is build based on these 𝑠 solution candidates as training-
data to approximate the actual function 𝑓 . In combination
with an optimization algorithm, a solution candidate 𝑥𝑏𝑒𝑠𝑡
can then be derived. The performance is measured by com-
puting its actual function value 𝑓 (𝑥𝑏𝑒𝑠𝑡 ).

Commonly used strategies for generating solution candidates
for one-shot search and optimization are grid sampling, uniform
samples, Latin hypercube sampling [31], and samplings based on
low-discrepancy sequences such as Sobol’ [51] or Halton [12].

One-shot search has recently gained attention in hyperparam-
eter optimization for machine learning models like deep neural
networks and heuristic optimization techniques [3, 5, 7]. Moreover,
surrogate models are traditionally used for expensive optimization
problems in the engineering field [25, 28, 41, 42, 52].

2.2 Exploratory Landscape Analysis
A variety of benchmark problems are traditionally used for com-
parative assessments of black-box optimization algorithms [8, 18].
A current research direction is to relate the resulting algorithm
performance assessments on these benchmark problems to relevant
real-world problems from industry [29, 48]. The aim is to find the
best optimization algorithm out of a set of algorithms for a specific
problem, called the algorithm selection problem [46]. Therefore, a
generalization of the characteristic of a problem is required.

In the context of continuous single-objective optimization, prob-
lems can be described by high-level properties, such as separability
or multi-modality [33]. Exploratory landscape analysis (ELA) [32]
quantifies these characteristics of an optimization problem with
mathematical and statistical techniques. Therefore, features are cal-
culated on a sample of points of the objective function. The feature
values are sensitive to the sampling strategy and sample size, and
a recommended strategy is Sobol’ sequences [45]. Moreover, the
feature values can vary because of the stochastic properties of the
sampling strategies used. Many ELA features are implemented on
different platforms or at least across several packages. The flacco
package provides a wide collection within only a single package
[24].

Applications of ELA are for example the analysis of similarities
of problems across benchmark sets [50], the selection of an opti-
mization algorithm [23] or the hyperparameter optimization of an
optimization algorithm [2]. Muñoz et al. [37] gives an overview
on the research field combining feature-based landscape analy-
sis and algorithm selection for continuous black-box optimization
problems.

3 METHODOLOGY
Our investigation is divided into two parts. In the first part we
characterize our problem by computed landscape features. The
aim is to find functions similar to our problem that may, for one-
shot optimization algorithms, be of similar difficulty and therefore

might serve as a proxy for the real-world problem. For comparison
with our real-world problem we have chosen the 24 noiseless prob-
lems 𝑓𝑗 , 𝑗 𝜖 {1, 2, ..., 24} from the black-box optimization benchmark
(BBOB) [13]. We consider the first instance of each problem and
the default input space in 𝑛 dimensions, [−5, 5]𝑛 .

In the second part we then juxtapose the performance of one-
shot search and one-shot optimization on our real-world problem
and the 24 BBOB functions.

3.1 Exploratory Landscape Analysis
To characterize single-objective (continuous) optimization problems
we use ELA. Therefore, we consider all six available feature sets in
the flacco package [24], that are appropriate and can be computed
for our 30 dimensional problem:
• classical ELA features (distribution, level, meta) [32],
• information content features [36],
• dispersion features [30],
• linear model features,
• nearest better clustering features [21, 43],
• principal component features.

Together, these six sets contain 68 single features. The large
number of considered features can lead to redundant features [50].
Therefore, we conduct two feature selection steps [29]. First, we
remove all features with a standard deviation of zero across all
problems considered. In the second step, we remove highly corre-
lated features by using the Spearman’s rank correlation coefficient
[27]. For each feature pair with a higher correlation than 0.99, the
feature with the higher average correlation to the other features is
removed.

To quantify the similarity between problems, we define the simi-
larity of two problems 𝑝1 and 𝑝2 as the Euclidean distance𝑑 between
their feature vectors 𝐹𝑝1 and 𝐹𝑝2 :

𝑑 (𝑝1, 𝑝2) =


𝐹𝑝1 − 𝐹𝑝2

2 . (3)

Moreover, to weight the features equally, we re-scale the feature
values to [0, 1] according to the minimal and maximal values for
the specific feature over all considered problems. Thus, we can
quantify the similarity between our real-world problem and each
of the BBOB functions.

As another approach to find groups of similar problems, [29] use
the pairwise distances 𝑑 (𝑝1, 𝑝2) between the problems to perform
hierarchical clustering based on Ward’s minimum variance method
[19]. At the beginning each problems is one cluster. Then similar
clusters are are merged to a combined clusters until all problems
are grouped in one large cluster.

3.2 One-Shot Optimization
Algorithm 1 shows the steps of our implementation of the one-shot
optimization with surrogate. During one run of the algorithm the
surrogate type is predefined and will not be changed.

Initially, a design containing the input-data 𝑋 is created (Line 1),
e.g. with Sobol’ sampling, and evaluated with the actual function 𝑓

to get the output-data 𝑦 (Line 2).
The performance of the surrogate model depends on its hyper-

parameters. Therefore, we perform Bayesian optimization [20, 34]
to efficiently find the optimal hyperparameter values (Line 5). We
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Table 1: Hyperparameter-space of the surrogate types random forest, support vector machine and multi-layer perceptron
for the hyperparameter optimization with Bayesian optimization. The hyperparameters not listed remain in their default
configuration.

Surrogate Type Hyperparameter Description Search Space

Random forest Number of trees in the forest [100, 1000] ∩ Z
Maximal number of features considered for splitting a node [5, 30] ∩ Z
Minimum number of samples required to be at a leaf node [1, 5] ∩ Z

Support vector machine Kernel type {rbf}
Regularization parameter C [1e-3, 1e+3], log-uniform
Kernel coefficient gamma [1e-4, 1e+2], log-uniform

Multi-layer perceptron Number of neurons in hidden layer [3, 20] ∩ Z
(one hidden layer) alpha: L2 penalty (regularization term) parameter [1e-2, 1e+2], log-uniform

Activation function of hidden layer {tanh, relu}
Solver for weight optimization {lbfgs}
Maximum number of iterations of the solver {5000}

assess the accuracy of a surrogate model by the average mean
squared error (MSE) over a 10-fold cross-validation. Then the sur-
rogate model with the optimized hyperparameters ℎ𝑝𝑜𝑝𝑡 is trained
on the entire data-set (Line 6). For the training of the surrogate
model, we scale the input-data to [0, 1]𝑛 .

Since the training of the surrogate models is stochastic and so is
the optimization of the hyperparameters, we perform 𝑘 = 1, ..., 10
Bayesian optimizations with subsequent training on the entire data-
set, obtaining 10 surrogate models 𝑓𝑘 (Line 4).

To find the solution on the surrogate model, we use a (𝜇,𝜆) evolu-
tion strategy (ES) [1] as an optimization algorithm with a budget of
100000 surrogate evaluations (Line 8). Furthermore, to ensure that
the optimum on the surrogate 𝑓𝑘 is found, we execute 𝑙 = 1, ..., 10
optimization runs on each surrogate model and select the best so-
lution 𝑥𝑏𝑒𝑠𝑡,𝑘 from these 10 possible candidates 𝑥𝑏𝑒𝑠𝑡,𝑘,𝑙 (Line 10).

Next, the best found solution on each surrogate model 𝑥𝑏𝑒𝑠𝑡,𝑘 is
validated in the simulation. We obtain 10 validated solution candi-
dates for a given data set (X, y). In the last step, the best solution
𝑥𝑏𝑒𝑠𝑡 within these 10 validated solutions is selected (Line 12).

Algorithm 1: One-shot optimization with surrogate
1 𝑋 ← Sampling ⊲ generate design

2 𝑦 ← 𝑓 (𝑋 ) ⊲ evaluate function

3 ℎ𝑝 ← 𝑑𝑖𝑐𝑡 ⊲ hyperparameters (Table 1)

4 for 𝑘 = 1, ..., 10 do ⊲ 10 times hp optimization
5 ℎ𝑝𝑜𝑝𝑡,𝑘 ← 𝐵𝑎𝑦𝑒𝑠𝑆𝑒𝑎𝑟𝑐ℎ𝐶𝑉 (𝑋,𝑦, ℎ𝑝) ⊲ optimized hp

6 𝑓𝑘 ← train(𝑋,𝑦, ℎ𝑝𝑜𝑝𝑡,𝑘 ) ⊲ surrogate training

7 for 𝑙 = 1, ..., 10 do ⊲ 10 times evolution strategy

8 𝑥𝑏𝑒𝑠𝑡,𝑘,𝑙 ← argmin
𝑥 ∈R𝑛

𝑓𝑘 (𝑥), 𝐵𝑙𝑏 ≤ 𝑥 ≤ 𝐵𝑢𝑏

9 end
10 𝑥𝑏𝑒𝑠𝑡,𝑘 ← argmin

𝑥 ∈{𝑥𝑏𝑒𝑠𝑡,𝑘,𝑙 }
𝑓𝑘 (𝑥) ⊲ best solution on 𝑓𝑘

11 end
12 𝑥𝑏𝑒𝑠𝑡 ← argmin

𝑥 ∈{𝑥𝑏𝑒𝑠𝑡,𝑘 }
𝑓 (𝑥) ⊲ best validated solution

Result: 𝑥𝑏𝑒𝑠𝑡

3.3 Experimental Setup
For our experiment we have generated four "scrambled" Sobol’ de-
signs [39, 51]𝑋𝑖 , 𝑖 𝜖 {1, 2, 3, 4} of dimension 𝑛 = 30 and 4096 samples
each. Due to the parameter-specific resolution (Section 1.1), we
round the values of the Sobol’ designs and the found solution can-
didates for our real-world problem to the nearest possible values 3.
We then computed the associated responses 𝑦𝑖 of our real-world
problem using simulation.

As a compromise between accuracy and computational effort in
ELA a sample size of 50 × 𝑛 to classify the BBOB functions with
ELA features is recommended [22]. For our problem this results in
a sample size of 1500. However, to further improve the accuracy, we
use the highest considered sample size of 4096 in our investigation.

Before calculating the feature values 𝐹 for the four data sets of our
real-world problem, we scale the input-data𝑋𝑖 to [−5, 5]𝑛 according
to the BBOB functions’ input space. Moreover, to calculate the
feature values of the 24 BBOB, we evaluated the BBOB functions
with the scaled design 𝑋1.

After the post-processing of the calculated features, 40 features
remain for further investigation. Five features were removed be-
cause of a variance of zero and 23 features were removed because
of a high correlation of over 0.99 to other features.

As surrogates for the one-shot optimization (Algorithm 1), we
compare three standard regression techniques: random forest (RF)
[6], support vector machine (SVM) [9], and multi-layer perceptron
(MLP) [15] with one hidden layer. Table 1 contains the specific
hyperparameters for the hyperparameter optimization which have
a major influence on the MSE of the surrogate models.

The samples of a Sobol’ design are taken one after the other
from a Sobol’ sequence, thus the generation of a Sobol’ desing is
a sequential process. This enables the investigation of different
evaluation budgets by taking only the first samples out of each
Sobol’ design. For the one-shot optimization with surrogate we
consider the three sample sizes 𝑠 𝜖 {512, 2048, 4096}. This results in
4 * 3 = 12 scenarios and therefore, 360 derived solution candidates

3Evaluating also the BBOB functions 𝑓17 and 𝑓21 with the four rounded Sobol’ designs
would change 𝑓 (𝑥𝑏𝑒𝑠𝑡 ) by at most±5% (relative improvement, not statistically result).
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Table 2: Used software packages in our experiment.

Package Name Description Version

scipy [56] Sobol’ sequences, clustering 1.8.0
scikit-learn [11] Surrogate models, t-SNE 1.0.2
scikit-optimize [16] Hyperparameter optimization 0.9.0
pymoo [4] Optimization with ES, CMA-ES 0.5.0
flacco [24] Calculating features for ELA 1.8

from the surrogates for each problem (12 scenarios for 3 surrogate
types and 10 runs, each).

We then juxtapose one-shot search with one-shot optimization
by comparing the function value of the best sample 𝑓 (𝑥𝑏𝑒𝑠𝑡 ) with
the actual function values of the solution candidates from the sur-
rogates 𝑓 (𝑥𝑏𝑒𝑠𝑡 ) for each scenario. We conduct these steps for one-
shot search and one-shot optimization with surrogate (Algorithm 1)
on our real-world problem and the 24 BBOB functions as well.

Table 2 gives an overview of the versions of the software pack-
ages used in our implementation. All packages are implemented in
Python, except the flacco package which is implemented in R.

4 RESULTS
Figure 2 shows the distribution of the computed braking distances
of our real-world problem samples 𝑦𝑖 for the four input-designs
𝑋𝑖 , 𝑖 𝜖 {1, 2, 3, 4}. The braking distances range from 32.1 m to 43.6 m.
The shape of the distributions is very similar. Moreover, we find
in each design several solution candidates with a braking distance
below 32.5 m.

4.1 Exploratory Landscape Analysis
Using equation (3), we can compare the four sampled data-sets of
our real-world problem to each of the 24 BBOB functions via the Eu-
clidean distance between their computed feature values (Figure 3).

As figure 3 shows, similar and dissimilar BBOB functions to the
real-world problem in terms of the distance can be identified. The
most similar BBOB functions to our real-world problem are 𝑓17
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the four Sobol’ designs with each 4096 samples.
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Figure 4: Dendrogram of the hierarchical clustering for the
distances between the feature values of the four responses yi
of the real-world problem and the feature values of the 24
BBOB functions fj.

with a distance around 1.0 and 𝑓21 with a distance around 1.2. The
most dissimilar BBOB function is 𝑓5 with a distance around 3.3. As a
reference, the distances between the four designs of our real-world
problem vary between 0.3 and 0.4.

These computed distances were used to perform hierarchical
clustering and plotted as a dendrogram (Figure 4). As expected, the
four designs of our real-world problem form one cluster with a
relative small distance. The nearest cluster is 𝑓21 and 𝑓22, and then
𝑓16 and 𝑓23. These three clusters then form one of the two major
clusters. The other major cluster contains the remaining BBOB
functions.

𝑓22 has a higher distance to the real-world problem than 𝑓17
(Figure 3), so wewould expect 𝑓17 to be in the first major cluster with
the real-world problem as 𝑓22 is, and not in the other major cluster.
The reason is that the hierarchical clustering does not compare
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Figure 5: Two-dimensional projection of the 40-dimensional
feature spaces through t-SNE visualization of the four re-
sponses yi of the real-world problem and the 24 BBOB func-
tions fj.

single distances, but distances of clusters to each other and then
the closest clusters are combined into one cluster and so on.

To visualize this in two dimensions we apply the t-SNE approach
[54] to the 40-dimensional feature spaces (Figure 5). For computa-
tion we use the t-SNE implementation in scikit-learn [11] with a
maximum number of 5000 iterations to ensure convergence and a
perplexity of 10 because of the low data density of 4 + 24 problems.

The BBOB function 𝑓17 is closer to the four responses of the
real-world problem 𝑦𝑖 as 𝑓22 in the visualisation (Figure 5) and also
with respect to the Euclidean distance (Figure 3). But 𝑓17 is first
merged with 𝑓14 and 𝑓18 in a cluster, which is then further away
from the cluster of the real-world problem. In contrast, 𝑓22 forms a
cluster with 𝑓21, which is then closer to the cluster of the real-world
problem.

Therefore, clustering is well suited for finding similar groups of
problems, but not individual functions that are similar to a particular
problem.

4.2 Optimization
To juxtapose one-shot search and one-shot optimization with surro-
gate on our real-world problem, we generated four Sobol’ designs
(Section 3.3). Although all samples of the four Sobol’ designs can
be evaluated in fully parallel, the generation of the samples is a
sequential process. This allows posteriori the identification of the
best solution that the one-shot search would have found with a
given budget of problem evaluations (Figure 6). Moreover, Figure 6
shows the best solution derived from the surrogates trained with
the samples from the one-shot search for the four designs and at the
three samples sizes {512, 2048, 4096}. On our real-world problem
one-shot optimization with surrogate (Algorithm 1) finds a better
solution than one-shot search, which leads to a smaller braking
distance in 11 out of the 12 scenarios.

However, the variance of the optimization results on the sur-
rogate can be tremendous, especially for the smallest considered
sample size with 512 samples. This has the consequence that for
design 2 the best solution is found with the lowest sample size of

512 samples at 32.0 m.Within the solution candidates from one-shot
optimization for this scenario, the second best found solution is at
32.3 m. For design 3 the solution on the surrogate does not improve
significantly over the sample size, while for design 1 it does. The
best solution from the one-shot search improves constantly over
the problem evaluations with minor differences across the four
designs.

Figure 7 provides a closer analysis of the performance of each
surrogate type. The best validated solutions from the MLP are
never better than the best sample from the one-shot search. For
design 1 and 3 SVM is never better than one-shot search.Within one
Sobol’ design RF always performs better than SVM and MLP except
for design 4 with 2048 samples, where SVM is better. Moreover,
compared to SVM and MLP, the solution candidates from RF are
more often better than the solution from one-shot search, in two
cases seven out of 10 (Figure 8). Nevertheless, often only one out
of 10 solution candidates from one-shot optimization runs is better,
for design 3 with 4096 sample none is better.
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Figure 6: Smallest braking distance over problem evaluations
for one-shot search and one-shot optimizationwith surrogate
for the four designs and the sample sizes {512, 2048, 4096}.
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We conducted the same investigation on one-shot search and one-
shot optimization with surrogate to each of the 24 BBOB functions.
Figure 9 summarizes the results.

MLP as a surrogate type for one-shot optimization almost never
leads to better solutions, only for the BBOB function 𝑓5 MLP seems
to be as good as RF and SVM, in fact it even outperforms them in
terms of the absolute value found. The reason is that the minimum
on MLP for a majority of the parameters lies near the upper or
lower bounds of the input space, which actually is only the case
for 𝑓5. For example, for our real-world problem, 𝑓17 and 𝑓21 over
90 % of all parameter values from the one-shot optimization runs
using MLP as surrogate lie near the upper or lower bounds, within
1 %. For comparison, when using RF as surrogate for our real-world
problem or 𝑓17 below 2 % and for 𝑓21 below 7 % parameter values
lie near the upper or lower bounds.

Furthermore, Figure 9 shows that the fraction of one-shot op-
timization runs performing better than one-shot search does not
necessarily increase with higher sample size. This is not a contra-
diction, as both the search and the optimization with surrogate can
find better solutions at higher sample sizes.
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Figure 10: Smallest function values of f17 over problem
evaluations for one-shot search and one-shot optimization
with surrogate for the four designs and the sample sizes
{512, 2048, 4096}.

For the BBOB function 𝑓17 RF and for 𝑓21 SVM finds more often
better solutions, while SVM respectively RF achieve this less often.
Thus, despite the similarity between our real-world problem and
𝑓21 in terms of their feature value distances, 𝑓17 apparently exhibits
similar phenomena when it comes to surrogate type selection. How-
ever, the one-shot optimization is much less likely to find a better
solution for our real-world problem than for 𝑓17. One reason for
this could be the similarity of the real-world problem to 𝑓16 and 𝑓23,
for which the search is almost always better.

The best found solution with one-shot optimization over all runs
for 𝑓17 is -33.2 m (Figure 10). The actual optimum of 𝑓17 is -38.7. For
comparison, the average solution over 1000 optimization runs, that
can be found with an iterative optimization heuristic as CMA-ES
[14] in default setting and a budget of 4096 function evaluations
per run is -38.5 with a standard deviation of 0.3.

Besides the similarity between our real-world problem and 𝑓17,
there are some different phenomena. For example, the best solution
found with the surrogates is without exception always better than
the one-shot search and improves with increasing the sample size
(Figure 10). Also, the fraction for which the search is better is much
higher for the real-world problem than for 𝑓17 (Figure 9).

4.3 Surrogate Selection
The surrogate type and the surrogate model itself have a great
influence on the quality of the solution found. We have measured
the quality of different surrogate models by validating the derived
solution candidates. To minimize the computational cost, a common
alternative for selecting a surrogate is to measure the quality with a
metric such as the average MSE over a 10-fold cross-validation and
picking the best one. This approach assumes a correlation between
the MSE and the quality of the solution found, which does not
necessarily have to be the case (Figure 11).

For the real-world problem, the median MSE for MLP is only
slightly worse than for RF and even better than SVM, yet the median
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Figure 11: Box-plots of average mean squared error (MSE)
over a 10-fold cross-validation and validated solution values
from one-shot optimization over all 120 trained surrogates
(10 runs for the three sample sizes and four designs) for surro-
gate types random forest (RF), support vectormachine (SVM),
multi-layer perceptron (MLP) for the real-world problem y
and the BBOB function f17.

Table 3: Average validated solution from one-shot optimiza-
tion for different surrogate model selection strategies over
the 12 scenarios (four designs and three sample sizes) for the
real-world problem y and the BBOB function f17.

Best model Best RF model Best model
Problem by MSE by MSE by validation

𝑦 33.8 32.6 32.2
𝑓17 -8.3 -27.6 -30.5

of the validated braking distances for MLP is much worse than for
RF and SVM. This is even more the case for the BBOB function 𝑓17.
MLP has the lowestMSEmedian but the highest median of validated
solutions, lower solutions are better.

Figure 11 indicates for our real-world problem and the BBOB
function 𝑓17 that selecting the surrogate depending on MSE would
lead to worse performance in one-shot optimization. Indeed this is
the case. Table 3 shows the average validated solution over the four
designs and three sample sizes for the three strategies for selecting
a surrogate model: picking best model by MSE, picking the best
RF model by MSE and for comparison testing all and picking the
model with the best validated solution.

Thus, selecting the surrogate type according to the MSE leads
to worse solutions for our real-world problem and also for f17.
Also within a surrogate type, selecting the model according to
the MSE leads to worse solutions. But with the knowledge of the
performance of MLP on the similar functions 𝑓17 and 𝑓21 to our
real-world problem, MLP could have been omitted a priori as a
surrogate type for the real-world problem to save computational
effort without causing performance degradation.

5 CONCLUSIONS
In this paper, we analyzed the performance of one-shot search
and one-shot optimization with a surrogate model on a real-world
problem from the field of vehicle dynamic control systems and the
24 problems from the black-box optimization benchmark (BBOB).

One-shot optimization with surrogate is able to improve the
found solution compared to one-shot search for the real-world prob-
lem and almost all BBOB functions, only for the BBOB functions 𝑓11,
𝑓16 and 𝑓23 the search is significantly better. Because the surrogate
training is stochastic, it is important to train several surrogates with
the same data to obtain a set of solution candidates that can then be
validated on the original problem. This is an effective data-driven
way to improve the solution from the one-shot search, especially
in terms of problem evaluations. However, it remains to investigate
whether iterative optimization heuristics such as CMA-ES can find
better solutions than the one-shot optimization algorithms for the
real-world problem, and how much the disadvantage in terms of
wall-clock time is due to the limitation of parallelization of the
computationally expensive simulation.

Furthermore, we have observed that the mean square error (MSE)
as a commonly used quality metric for regression models is not
feasible for the surrogate selection in one-shot optimization. In
particular, a multi-layer perceptron as a surrogate type for one-
shot optimization performs worse than support vector machine
or random forest for our real-world problem and a variety of the
BBOB functions, despite its comparatively good MSE.

We used exploratory landscape analysis (ELA) to compute the
similarity between problems by the Euclidean distance of their fea-
ture values. In a nutshell, a single similar function cannot explain
all characteristics of the real-world problem, but it can give hints
whether the use of a surrogate for optimization improves the solu-
tion compared to the one-shot search, and if so, which surrogate
type is promising. To improve the similarity, a larger benchmark
set could be an approach for further investigations, since the BBOB
functions do not cover the entire problem space [50].

For automated surrogate type selection, [47] used a classifier
trained with computed ELA features for a large set of benchmark
problems as input and the best surrogate type as output. This classi-
fier can then predict for a new problem the best surrogate type for
one-shot optimization. We consider this as a promising research
direction. However, selecting the right surrogate for one-shot opti-
mization is a difficult task.

To improve the generality, it remains to investigate whether
other sampling strategies and surrogate types confirm our results
on the real-world problem and the 24 BBOB functions.
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