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Abstract
Background and Objective  Previous pharmacokinetic (PK) studies of ciprofloxacin in intensive care (ICU) patients have 
shown large differences in estimated PK parameters, suggesting that further investigation is needed for this population. Hence, 
we performed a pooled population PK analysis of ciprofloxacin after intravenous administration using individual patient data 
from three studies. Additionally, we studied the PK differences between these studies through a post-hoc analysis.
Methods  Individual patient data from three studies (study 1, 2, and 3) were pooled. The pooled data set consisted of 1094 
ciprofloxacin concentration–time data points from 140 ICU patients. Nonlinear mixed-effects modeling was used to develop 
a population PK model. Covariates were selected following a stepwise covariate modeling procedure. To analyze PK dif-
ferences between the three original studies, random samples were drawn from the posterior distribution of individual PK 
parameters. These samples were used for a simulation study comparing PK exposure and the percentage of target attainment 
between patients of these studies.
Results  A two-compartment model with first-order elimination best described the data. Inter-individual variability was 
added to the clearance, central volume, and peripheral volume. Inter-occasion variability was added to clearance only. Body 
weight was added to all parameters allometrically. Estimated glomerular filtration rate on ciprofloxacin clearance was iden-
tified as the only covariate relationship resulting in a drop in inter-individual variability of clearance from 58.7 to 47.2%. 
In the post-hoc analysis, clearance showed the highest deviation between the three studies with a coefficient of variation of 
14.3% for posterior mean and 24.1% for posterior inter-individual variability. The simulation study showed that following 
the same dose regimen of 400 mg three times daily, the area under the concentration–time curve of study 3 was the highest 
with a mean area under the concentration–time curve at 24 h of 58 mg·h/L compared with that of 47.7 mg·h/L for study 1 
and 47.6 mg·h/L for study 2. Similar differences were also observed in the percentage of target attainment, defined as the 
ratio of area under the concentration–time curve at 24 h and the minimum inhibitory concentration. At the epidemiological 
cut-off minimum inhibitory concentration of Pseudomonas aeruginosa of 0.5 mg/L, percentage of target attainment was 
only 21%, 18%, and 38% for study 1, 2, and 3, respectively.
Conclusions  We developed a population PK model of ciprofloxacin in ICU patients using pooled data of individual patients 
from three studies. A simple ciprofloxacin dose recommendation for the entire ICU population remains challenging owing 
to the PK differences within ICU patients, hence dose individualization may be needed for the optimization of ciprofloxacin 
treatment.
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Key Points 

A population pharmacokinetic model of ciprofloxacin 
was developed based on pooled data from three intensive 
care unit data sets, containing in total 140 intensive care 
unit patients and 1094 concentration–time samples.

Despite the large amount of data, only bodyweight and 
renal function were associated with pharmacokinetic 
parameters of ciprofloxacin still leaving much inter-indi-
vidual variability unexplained by commonly deployed 
covariates.

A simple dose strategy of ciprofloxacin suitable for all 
intensive care unit patients remains challenging and dose 
individualization may be needed.

1  Introduction

Ciprofloxacin is a commonly used antibiotic for treating 
infections in intensive care unit (ICU) patients given its 
broad spectrum of action against pathogenic bacteria includ-
ing most Gram-negative species [1–3]. However, adequate 
dosing of ciprofloxacin remains a major challenge in these 
patients. The ICU patient population exhibits high pharma-
cokinetic (PK) variability between patients and over the time 
course of disease and therapy owing to the large and variable 
physiological changes associated with the type and severity 
of illness as well as therapy [4]. For example, the clear-
ance (CL) of antibiotics may be decreased by acute kidney 
injury whereas the volume of distribution may be increased 
by capillary leakage and administration of intravenous flu-
ids [5]. Thus, prescribing appropriate antibiotic doses for 
ICU patients is challenging for clinicians. This needs to be 
addressed as underdosing may give rise to treatment failure 
in at least some ICU patients but also to long-term increased 
antibiotic resistance [6].

Population PK models are increasingly being used to opti-
mize and clinically guide antibiotic dose regimens. This is 
also the case for ciprofloxacin. Several studies have been 
performed characterizing ciprofloxacin population pharma-
cokinetics in ICU patients [7–13]. In theory, given sufficient 
data that includes all relevant model covariates, a well-devel-
oped model should be capable of accurately describing the 
entire patient population of the training data, i.e., the data 
used for the model development. However, considerable 
deviation can be observed in the reported population PK 
parameter estimates [6, 8–12, 14, 15]. Such results do not 
only highlight the high PK variability of ciprofloxacin in 

the ICU patient population, but also suggest that an impor-
tant part of the variability may still be unexplained in the 
ICU patient population. As population PK models are often 
used to recommend dosing regimens, the use of a model that 
is not able to adequately describe the majority of patients 
to be treated is likely to lead to poor PK predictions and 
thus selection of suboptimal dose regimens. Therefore, it 
is important to further study the pharmacokinetics of cip-
rofloxacin in a larger population of ICU patients. To this 
end, we aimed to combine individual patient data from three 
previous studies to develop a pooled population PK model of 
ciprofloxacin representative for a large ICU population and 
to investigate the PK differences between studies.

2 � Methods

2.1 � Data

The data set used in the current study contained 1094 cip-
rofloxacin total plasma concentration–time data points, as 
well as associated patients’ demographics and biochemical 
data from 140 ICU patients (Table 1). The data were col-
lected retrospectively from three prospective clinical trials 
conducted at four Dutch Hospitals. Henceforth, we refer 
to the study by Erasmus University Medical Center and 
Maasstad Hospital as study 1 [7], the study by Radboud 
University Medical Center as study 2 [8], and the study 
by Amsterdam University Medical Center (UMC) loca-
tion Vrije Universiteit Medical Center as study 3. Overall, 
patient characteristics from these three studies were simi-
lar (Table 1). The primary diagnoses of the majority of 
the patients of study 1 were respiratory infection (47.6%) 
and sepsis (19%). Ciprofloxacin dosing was administered 
at the discretion of the clinician with most participants 
receiving ciprofloxacin intravenously 400 mg twice daily 
or three times daily (t.i.d.) with an infusion rate range 
from 30 to 60 min. For each patient, two trough samples 
and one peak sample were drawn. The patients of study 2 
were mostly treated for pneumonia (72%). These patients 
received ciprofloxacin 400 mg twice daily intravenously. 
Within 24 h after the start of ciprofloxacin therapy, collec-
tion of two PK curves with eight timepoints each during 
a dosing interval were collected with a time interval of 
12–24 h. For study 3, 55% of patients fulfilled the sepsis-3 
criteria for septic shock and the cardiovascular system was 
the primary affected organ system upon admission [16]. 
The patients received ciprofloxacin dosing intravenously 
either 400 mg t.i.d. or individualized dosing following the 
advice of AutoKinetics, a bedside model-based, antibiotic 
precision dosing advice software [17, 18]. Plasma samples 
were drawn at peak concentration, mid-interval concen-
tration, or trough concentration after the first dose and 
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trough concentration for the following doses. The data of 
study 1 and study 2 were previously published and further 
details can be found in the respective publications [7, 8]. 
The use of patient data in these studies was approved by 
the local ethics committees and if applicable individual 
written informed consent was obtained. Data organization 
and visualization were carried out with R (version 4.0.3; 
R-project.org).

2.2 � Population Pharmacokinetic Modeling

2.2.1 � Base Model Development

A pooled population pharmacokinetic analysis was per-
formed with the individual concentration–time data from 
the three studies using the nonlinear mixed-effects mod-
eling approach. One-compartment, two-compartment, and 
three-compartment models with first-order elimination were 
evaluated to fit the PK data. Inter-individual variability (IIV) 
was tested exponentially on CL, volume(s) of distribution, 
as well as inter-compartmental CL when evaluating multi-
compartment models. Assuming that dosing regimens may 
be evaluated and adjusted on a daily basis, we defined every 
24 h as an occasion, which was taken into account for testing 
inter-occasion variability (IOV). Inter-occasion variability 
was only tested exponentially on ciprofloxacin CL, consid-
ering that CL is the most clinically relevant parameter for 
ciprofloxacin pharmacokinetics [19]. As the PK data were 
originally determined at different hospitals, we tested addi-
tive, proportional, or combined statistical error models sepa-
rately for the data of each study. The analysis was performed 
using NONMEM software (version 7.5; ICON Development 
Solutions, Hanover, MD, USA). Parameters were estimated 
using the first-order conditional estimation method with 
interaction.

2.2.2 � Covariate Selection

We tested demographic and biochemical data of the patients 
including age, sex, serum creatinine level, estimated glomer-
ular filtration rate (eGFR), serum albumin level, Sequential 
Organ Failure Assessment score, and the use of continu-
ous veno-venous hemofiltration support. However, despite 
efforts, we were not able to access a wider range of data 
items for all three studies. Thus, various clinical relevant 
data such as sepsis were not included for the covariate analy-
sis. The eGFR (mL/min/1.73 m2) was calculated using the 
MDRD equation [20]. Additionally, creatinine level, eGFR, 
serum albumin level, and Sequential Organ Failure Assess-
ment score were time-varying variables for which we also 
tested to separate the baseline effect and the time-varying 
effect [21].

In order to identify the covariate relationships, a stepwise 
covariate modeling procedure implemented in Perl-speaks-
NONMEM was performed. Covariates were selected fol-
lowing a forward selection and a backward elimination 
procedure [22, 23]. Whether a covariate was retained or 
eliminated was determined based on the statistical signifi-
cance using the likelihood ratio test. The significance level 
was set to 0.01 and 0.001 for the forward selection and the 
backward elimination, respectively. Both linear and power 
models were evaluated for covariate relationship selection. 
Missing covariates values (< 2%) were imputed using a 
carry forward method. Allometric scaling of body weight 
was added a priori to all PK parameters with a power of 
0.75 on CL and/or intercompartmental CL parameters, and 
a power of 1 on volume of distribution parameters.

2.2.3 � Model Evaluation

During model development, models were evaluated primar-
ily based on the likelihood ratio test, goodness of fit plots, 

Table 1   Baseline patient 
demographics and 
characteristics

Data are expressed in median (interquartile range)
CVVH continuous veno-venous hemofiltration, eGFR estimated glomerular filtration rate calculated using 
the MDRD equation [20], SOFA Sequential Organ Failure Assessment

Study 1 Study 2 Study 3 Total

Patients 42 39 59 140
Observations 204 531 359 1094
Sex, %male/%female 60/40 72/28 78/22 66/34
Age, years 65.5 (56–71) 68 (61–74.5) 68 (60.75–75) 67 (59–74)
Weight, kg 80 (64–90) 80 (66–98.5) 80 (70.75–93) 80 (69–93)
Serum creatinine, μmol/L 90 (70–153) 83 (66–146.5) 101 (76.75–158) 97 (69–156)
eGFR, mL/min/1.73 m2 58.5 (31.75–101.75) 67 (39–93) 56.5 (37.75–93.75) 59 (37–96)
Albumin, g/L 25 (22-29) 23 (18.5–26) 24 (19–27) 25 (20–28)
SOFA score 12.5 (9–15.75) 9 (5–13.5) 10 (8–12) 10 (8–13)
CVVH, % 12 0 10 8
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and prediction- and variability-corrected visual predictive 
check plots [24]. Additionally, precision of the parameter’s 
estimate, i.e., relative standard error, was taken into account.

2.3 � Post Hoc Analysis of Pharmacokinetic 
Variability between Studies

2.3.1 � Posterior Distribution

Pooled random samples of individual PK parameters’ poste-
rior distribution were previously proven to be able to reflect 
the distribution of these parameters among the entire popula-
tion [25]. For each random-effect parameter, multiple sam-
ples can be drawn from its posterior distribution, whereas 
there exists only one empirical Bayes estimate sample. In 
addition, gathered random samples from posterior distribu-
tions do not suffer from shrinkage, whereas empirical Bayes 
estimate-based metrics tend to be less reliable when shrink-
age is larger than 20% [25, 26]. Therefore, we drew 100 ran-
dom samples from the random-effect posterior distribution 
of each PK parameter of each individual using a Markov-
chain Monte Carlo method by tweaking the SAEM algo-
rithm implemented in NONMEM: $EST METHOD=SAEM 
NBURN=0 NITER=0 MASSRESET=0 ETASAMPLES=1 
ISAMPLE=100 EONLY=1. The posterior mean and poste-
rior IIV were calculated using Eqs. 1 and 2 as below:

where P represents the posterior samples of a random-effect 
parameter, P and Pi denote posterior mean and i th posterior 
sample, respectively, n is equal to the number of drawn pos-
terior samples of a random-effect parameter, i.e., 100 in this 
case, and VAR(P) denotes the variance of posterior samples.

2.3.2 � Differences in Pharmacokinetic Exposure

To study the potential differences in PK exposure due to 
the PK variability between the three studies, we simulated 
full concentration–time profiles based on the random sam-
ples drawn. As posterior samples can be traced back to the 
patient from whom they were drawn, no assumptions were 
made on the covariate distribution in the simulation. As the 
data set used in the current study contained 140 patients and 
we drew 100 posterior samples for each parameter of each 
patient, the number of subjects for the simulation was effec-
tively 14,000. We performed the simulation of ciprofloxacin 
pharmacokinetics for the first 24 h of treatment assuming 
a commonly prescribed dose regimen of a 400-mg t,i.d. 

(1)P =

n
∑

i=1

Pi

n
,

(2)IIVP =
√

eVAR(P) − 1 × 100%,

intravenous infusion. We specifically chose the first 24 h for 
this simulation because early appropriate antibiotic treat-
ment is in general associated with a positive clinical out-
come in ICU patients [27, 28]. The antimicrobial efficacy of 
ciprofloxacin is best described by the ratio of area under the 
concentration–time curve relative to the minimum inhibitory 
concentration (MIC), we thus calculated the area under the 
concentration–time curve at 24 h (AUC​24) and the percent-
age of target attainment (PTA), defined as the percentage of 
patients of which the AUC​24/MIC was equal to or greater 
than 125 [19, 29]. The PTA was calculated for a series of 
MICs from 0.0625 to 1 mg/L covering the epidemiologi-
cal cut-off value for treating Pseudomonas aeruginosa with 
ciprofloxacin (0.5 mg/L) according to EUCAST [30]. This 
study aimed to only demonstrate the resulting differences 
in PK exposure between the three studies. The used PK tar-
get for this purpose was evaluated based on the steady-state 
concentrations [29]. Hence, it did not necessarily suggest 
any dosing strategies.

3 � Results

3.1 � Population Pharmacokinetic Model

A two-compartment model with IIV on CL, volume of dis-
tribution of the central compartment (V1), and volume of 
distribution of the peripheral compartment (V2), and IOV 
on CL best described the data. The parameters’ estimates 
of the final model were 14.7 (L/h) for CL, 61.2 (L) for V1, 
44.9 (L/h) for inter-compartmental clearance (Q), and 71.6 
(L) for V2 and all parameters were estimated with good pre-
cision with a relative standard error equal to or lower than 
7.1% (Table 2). Apart from the included allometric scaling 
of body weight, only a linear covariate association between 
eGFR and ciprofloxacin CL was identified without separat-
ing the baseline effect and the time-varying effect. The esti-
mated covariate coefficient was 0.008, which means that cip-
rofloxacin CL increases 0.008 L/h when eGFR increases 1 
mL/min/1.73 m2 relative to the median eGFR value of 58.64 
mL/min/1.73 m2. The IIVs were successfully estimated for 
CL, V1, and V2 with all estimates equal to or greater than 
46.8%. While the inclusion of covariates resulted in an 
absolute decrease of 11.5% in the IIV of CL compared with 
the base model, the IIV of CL remained high (47.2%) com-
pared with the original results (25.8%) of study 2 in which 
a model with the same parametrization and covariate as the 
current study was developed. Inter-occasion variability was 
estimated as 13.6% for CL in the final model. A combined 
residual error model for the data of study 1 and a propor-
tional error model for the data of study 2 and study 3 were 
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applied, respectively. The final model can be expressed as 
follows:

where WGT denotes body weight and eGFR denotes eGFR, 
�CL , �V1 , and �V2 represent the random-effect parameters for 
IIVs, and �IOV represents the random-effect parameters for 
IOV in ciprofloxacin CL.

The goodness-of-fit plot shows that both the population 
predictions and the individual predictions of ciprofloxacin 
concentration data were well in accordance with the actual 
observations, suggesting that the structural model was 

(3)
CL = 14.7 ×

(

WGT

70

)0.75

× [1 + 0.008 × (eGFR − 58.64)] × e�CL+�IOV ,

(4)V1 = 61.2 ×
WGT

70
× e�V1 ,

(5)Q = 44.9 ×

(

WGT

70

)0.75

,

(6)V2 = 71.6 ×
WGT

70
× e�V2 ,

adequately established (Fig. 1). The conditional weighted 
residual errors were evenly and randomly distributed around 
0 across both time and the population predictions, indicating 
that the residual errors were properly specified. The predic-
tion- and variability-corrected visual predictive check plot 
indicated that the model properly fits the data as the percen-
tiles of observed data mostly fall within the prediction inter-
vals except that the concentration data at low levels (2.5th 
percentile) were slightly overpredicted (Fig. 2).

3.2 � Post Hoc Analysis of Pharmacokinetic 
Variability Between Studies

3.2.1 � Posterior Distribution

The results of the post hoc analysis showed that the PK 
parameters differed in both posterior mean and posterior IIV 
between the three studies (Table 3, Fig. 3). The CL showed 
the largest deviation between the three studies with a coef-
ficient of variation of 14.3% for posterior mean and 24.1% 
for posterior IIV (Table 3). Overall, the results of study 1 and 
study 2 were relatively closer in terms of posterior means 
while the results of study 2 and study 3 were relatively closer 
in terms of posterior IIVs (Table 3).

3.2.2 � Differences in Pharmacokinetic Exposure

A clear distinction was observed in the calculated AUC​24 
between studies after a simulated intravenous ciprofloxacin 
dose of 400 mg t.i.d. (Fig. 4a). The AUC​24 of study 3 was 
the largest among the three studies with a mean AUC​24 of 
58 mg·h/L compared with 47.7 mg·h/L for study 1 and 47.6 
mg·h/L for study 2. Marginal differences were observed in 
the standard deviation of calculated AUC​24 between studies, 
with a range from 22.8 to 25.8 mg·h/L for the three stud-
ies. Similar to the results of AUC​24, the highest PTA was 
observed for the patients of study 3 (Fig. 4b). The PTA is 
good with an intravenous dose of 400 mg t.i.d. when MIC 
is not greater than 0.125 mg/L. However, at the EUCAST 
epidemiological cut-off value of 0.5 mg/L, only 21%, 18%, 
and 38% of the patients achieved the target for study 1, 2, 
and 3, respectively.

4 � Discussion

In this study, we performed a pooled population PK analysis 
of ciprofloxacin in a large cohort of ICU patients describ-
ing the data of three studies. As we developed the model 
based on a pooled data set consisting of individual patient 
data from multiple studies representing a larger sample of 
the ICU population, the estimated IIVs were overall higher 
compared with the original studies of study 1 and study 2 

Table 2   Parameter estimates of the base model and the final model

The relative standard error is shown within the parenthesis and the 
shrinkage is shown within the square bracket
Add additive residual error, CL clearance, eGFR estimated glomeru-
lar filtration rate using the MDRD equation, IIV inter-individual vari-
ability, IOV inter-occasion variability, OFV objective function value, 
Prop proportional residual error, Q inter-compartmental clearance, V1 
central volume of distribution, V2 peripheral volume of distribution

Base model Final model

∆OFV – −61.91
Fixed-effect parameters
 CL (L/h) 15.2 (5%) 14.7 (4.1%)
 V1 (L) 61.7 (7.1%) 61.2 (7.1%)
 Q (L/h) 44.3 (6.6%) 44.9 (6.7%)
 V2 (L) 72.1 (5.9%) 71.6 (6%)

eGFR on CL (linear) – 0.008 (12%)
Random-effect parameters
 IIVCL 58.7% (14.2%) [7.6%] 47.2% (14.7%) [8.5%]
 IIVV1 62.1% (19.7%) [25%] 61.1% (19.7%) 

[25.2%]
 IIVV2 46.5% (23%) [36%] 46.8% (21.8%) [35%]
 IOVCL 16% (32.9%) [64.8%] 13.6% (38.7%) 

[65.2%]
Residual error
 AddStudy1 0.149 mg/L (27.7%) 0.151 mg/L (27.1%)
 PropStudy1 17.5% (9.5%) 17.5% (9.5%)
 PropStudy2 13.8% (3.6%) 13.7% (3.6%)
 PropStudy3 24.2% (5.2%) 24.5% (5.1%)
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[7, 8]. The fact that substantial unexplained IIV and IOV 
were still present in the final model with only one covariate 
identified, despite the large size of the data set, indicates that 
ciprofloxacin pharmacokinetics is not yet comprehensively 
understood in the ICU patient population and remains dif-
ficult to predict on the individual level. The observed PK 
differences between the three studies in the post hoc analysis 
also illustrated that there are likely still factors to be identi-
fied that can explain the PK variability between studies and 
individuals.

Apart from the allometric scaling of body weight, the 
only covariate association identified was eGFR on CL. 
Expectedly, renal function-related variables should be 

strong predictors of CL, as ciprofloxacin is weakly bound to 
protein and the majority of the ciprofloxacin molecules in 
serum is eliminated through the kidneys [31, 32]. Notably, 
the original report of study 1 did not identify any covariate 
associations. Mathematically, the likelihood of a candidate 
covariate model is a composite of the likelihoods as con-
tributed by the data of each study. In the covariate selec-
tion procedure, the data of study 1 might mask a weak or 
modest covariate effect that was more abundantly present 
in the data of study 2 and 3. It is worth mentioning that we 
purposely did not evaluate “study” as a covariate. This vari-
able provides rather limited insight into how patients differ 
in the three studies, which should in principle be explained 

Fig. 1   Goodness of fit of the final model including observations vs 
individual predictions (a), observations vs population predictions 
(b), conditional weighted residuals (CWRES) vs population predic-
tions (c), and CWRES vs time (d). The solid red line is the LOESS 

regression of the scatter plot; the black dashed line is the unity line; 
the dashed red line represents the 95%, 50%, and 5% percentile of the 
data
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by differences in patients’ actual characteristics. Moreover, 
“study” being a covariate would have drastically diminished 
the model’s external applicability because such a model 
would be impossible to externally validate and use in any 
other clinical setting.

While the final model could describe the data of the three 
studies as a whole, we revealed that there was still some PK 
variability unexplained between studies (Table 3, Fig. 3). 
The largest variability was observed in CL for both the pos-
terior mean and the posterior IIV. This may be attributable 
to the studied patient population. Study 3 included patients 
with severe sepsis and septic shock. Consequently, a high 
percentage of septic patients were included in that study, 
with 55% of patients fulfilling the criteria for septic shock. 
Patients with sepsis have an increased risk of elevated drug 
exposure owing to the derangement of renal and hepatic 
functions on which the elimination of ciprofloxacin mainly 
relies [33]. This may be indicated by the estimated poste-
rior mean of CL, V1, and V2, which were all smaller for the 
patients of study 3 compared with the patients of study 1 and 
2 (Table 3). In addition, as we previously mentioned, there 
is a deviation in the reported PK parameters in the published 

studies [6, 8–12, 14, 15]. The parameters’ estimates of our 
model differ from previously published models to varying 
extents as well. For instance, the most clinically relevant 
parameter CL is associated with a difference of up to 38.1% 
from the values of previously published two-compartment 
models, while for V1, Q, and V2 the differences may be as 
high as more than 200%. This could be due to the differences 
in the characteristics of the studied populations, for exam-
ple, in underlying condition or disease severity. In compari-
son to a study in which a relatively similar population was 
studied, our results are in agreement with theirs, resulting 
in a difference in CL of below 5% [12]. However, we still 
observed large differences in PK parameters despite the stud-
ied patient population of our study being comparable to that 
of the published patient population [13]. Such a difference 
may be because of the differences that exist between the 
investigated populations that were not identified as a result 
of limitations in the collected data on patient characteristics 
and thus covariates analyzed in the respective studies, which 
we further discuss below. This is perhaps partially evidenced 
by the unreduced IIV of this study as well, despite a larger 
data set used for the analysis. It is also conceivable that the 

Fig. 2   Prediction-corrected and variability-corrected visual predictive 
checks of the final model illustrating the pharmacokinetic profile over 
time (a) or over time after dose (b). The red dashed lines indicate the 
97.5%, 50%, and 2.5% percentile of the observed data; the light gray 

area is the 95% prediction interval of the 97.5% or 2.5% percentile 
of the model predicted data, and the dark area is the 95% prediction 
interval of the 50% percentile of the model predicted data

Table 3   Comparison of 
parameters’ posterior 
distributions between studies

CL clearance, CV coefficient of variation, calculated for the posterior mean and posterior inter-individual 
variability of three studies, V1 central volume of distribution, V2 peripheral volume of distribution
For each patient, 100 random samples were drawn from the posterior distribution of each random-effect 
parameter

Parameter Posterior mean Posterior inter-individual variability

Study 1 Study 2 Study 3 CV (%) Study 1 (%) Study 2 (%) Study 3 (%) CV (%)

CL 16.6 L/h 16 L/h 12.6 L/h 14.3 54 35 38 24.1
V1 65 L 59.1 L 55.7 L 7.9 55 54 48 7.2
V2 75.8 L 70.1 L 63.7 L 8.7 35 32 44 16.9
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parameterization of a model can have an impact on the esti-
mates of PK parameters. Nevertheless, the large remaining 
IIV suggests an insufficient knowledge on the ciprofloxacin 
pharmacokinetics in ICU patients because of the highly vari-
able nature of this population. It is thus pivotal for clinical 
professionals to validate and perhaps calibrate an external 
model before the implementation in a clinical setting.

According to the simulation results, given the same dose 
regimen, the AUC​24 and the PTA of ciprofloxacin differed 
between studies but mostly between study 3 and the other two 
(Fig. 4). When the MIC was equal to or greater than 0.125 
mg/L, the PTA started to differentiate between studies. Such 
differences could be clinically relevant at an MIC of 0.25 

mg/L. Because the PTA at a MIC of 0.5 mg/L was low for 
patients in the three studies, the need for a ciprofloxacin dose 
regimen higher than 400 mg t.i.d. is indicated for higher PTA 
if microorganisms are to be treated with such an expected 
MIC. This was in accordance with the findings of the original 
studies of both study 1 and 2 [7, 8]. However, a breakpoint 
of 0.5 mg/L is only applicable when treating P. aeruginosa 
caused infection for which a higher dose is required (≥ 1200 
mg/day). Nevertheless, it may be difficult to determine a 
generally applicable dose regimen owing to the large unex-
plained existent PK variability between studies. Meanwhile, 
dosing strategies probably need to be tailored per treatment 
center likely because of the different subtypes of patients. 

Fig. 3   Posterior distribution of pharmacokinetic parameters in the 
three studies, relative to the typical value of the final model including 
clearance (CL, upper panel), central volume of distribution (V1, mid-

dle panel) and peripheral volume of distribution (V2, lower panel). 
Dashed lines are the mean values of the three studies. The summary 
statistics are provided in Table 3
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This highlights that in order to adequately capture the PK 
variability between ICU patients, we may need better instead 
of larger datasets including a more diverse and detailed set 
of covariates. The primary reason for ICU admission may 
be associated with the pharmacokinetics of ciprofloxacin 
where, for example, trauma may be related to augmented 
renal CL while cardiosurgical patients might often have poor 
organ function. The underlying condition such as comorbid-
ity scores and life expectancy reflecting the health status of a 
patient can probably also help to explain a fraction of PK var-
iability. Local treatment policies may have an impact on the 
PK variability as well, for example, the intensity and duration 
of ventilation, types and doses of fluid resuscitation includ-
ing total parenteral nutrition, and the doses and duration of 
the use of inotropes and their changes over time. A number 
of these factors have been previously identified as covariates 
for other antibiotics in ICU patients [34–37]. In addition, 
the immune response, for example, C-reactive protein, has 
also been shown to influence pharmacokinetics [38]. Such 
covariates are undoubtedly of interest to be collected and 
tested in future studies; however, these were unfortunately 
not available in the current pooled data analysis, which is an 
important limitation of this study.

Published models of ciprofloxacin are to a large extent 
similar in terms of identified covariates [8, 11–15]. The most 
commonly found are body weight and renal function. We 
also observed this in other commonly used antibiotics such as 
vancomycin and meropenem [39, 40]. Undoubtedly, the body 
weight and renal function reflect a large portion of the PK var-
iability. From a clinical perspective, however, there are likely 
additional factors that are explanatory for the PK variability 
between ICU patients, such as those mentioned earlier. We 
showed in this study that despite a larger dataset, the result-
ing model is not necessarily more elucidative, which may 
also explain the differences in the reported PK parameters of 
published studies and this study, as there may be differences 
in the distribution of yet unknown but potentially influential 

covariates between studies. This raises our concern on the 
covariates identifiability through conventional PK modeling 
approaches. As the traditional compartmental models repre-
sent the biological system with a high level of abstraction at 
the cost of omitting much detail, we may not be able to iden-
tify the covariates that are carried in granular clinical data. 
Dosing may alternatively be optimized through model-based 
therapeutic drug monitoring where individual dose advice can 
be produced using the individual PK parameters.

5 � Conclusions

We developed a pooled population PK model of ciprofloxa-
cin representative for a large ICU population on the basis of 
data from three studies. The model was able to describe the 
population but there was still a large amount of IIV unex-
plainable by commonly deployed covariates. In addition, a 
modest PK variability between studies was also revealed. 
Therefore, a simple dose strategy of ciprofloxacin suitable 
for all ICU patients remains challenging and improved mod-
els or feedback from therapeutic drug monitoring may be 
needed.
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