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H I G H L I G H T S

• Distinctive cutaneous innervation changes in acute versus chronic neuropathic pain.

• Specific clinical-pathological associations in purely neuropathic, not mixed pain.

• A distinct role for non-peptidergic nociceptors in BiPN and CIAP patients.

A R T I C L E I N F O
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A B S T R A C T

Consistent associations between the severity of neuropathic pain and cutaneous innervation have not been
described. We collected demographic and clinical data, McGill Pain Questionnaires (MPQ) and skin biopsies
processed for PGP9.5 and CGRP immunohistochemistry from patients with bortezomib-induced peripheral
neuropathy (BiPN; n = 22), painful diabetic neuropathy (PDN; n = 16), chronic idiopathic axonal poly-
neuropathy (CIAP; n = 16) and 17 age-matched healthy volunteers. Duration of neuropathic symptoms was
significantly shorter in patients with BiPN in comparison with PDN and CIAP patients. BiPN was characterized
by a significant increase in epidermal axonal swellings and upper dermis nerve fiber densities (UDNFD) and a
decrease in subepidermal nerve fiber densities (SENFD) of PGP9.5-positive fibers and of PGP9.5 containing
structures that did not show CGRP labeling, presumably non-peptidergic fibers. In PDN and CIAP patients,
intraepidermal nerve fiber densities (IENFD) and SENFD of PGP9.5-positive and of non-peptidergic fibers were
decreased in comparison with healthy volunteers. Significant unadjusted associations between IENFD and
SENFD of CGRP-positive, i.e. peptidergic, fibers and the MPQ sensory-discriminative, as well as between UDNFD
of PGP9.5-positive fibers and the MPQ evaluative/affective component of neuropathic pain, were found in BiPN
and CIAP patients. No significant associations were found in PDN patients. Cutaneous innervation changes in
BiPN confirm characteristic features of early, whereas those in CIAP and PDN are in line with late forms of
neuropathic pathology. Our results allude to a distinct role for non-peptidergic nociceptors in BiPN and CIAP
patients. The lack of significant associations in PDN may be caused by mixed ischemic and purely neuropathic
pain pathology.

1. Introduction

Neuropathic pain is a frequent complication of peripheral neuro-
pathies, such as bortezomib-induced peripheral neuropathy (BiPN;

occurring in 25–80% of patients (Jongen et al., 2015; Rampen et al.,
2013), painful diabetic neuropathy (PDN; in 16–40% of patients (Javed
et al., 2015; Jongen et al., 2018) and chronic idiopathic axonal poly-
neuropathy (CIAP; in 42% of patients (Erdmann et al., 2010;
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Hanewinckel et al., 2016; Warendorf et al., 2017).
PDN and CIAP are both examples of chronic peripheral neuro-

pathies, while an acute or subacute neuropathy often presents with
BiPN, in contrast to other chemotherapy-induced peripheral neuro-
pathies (Jongen et al., 2015; Rampen et al., 2013; Richardson et al.,
2012). Specific alterations have been observed in (sub)acute as opposed
to chronic neuropathies. Axonal swellings, containing accumulations of
mitochondria, usually occur early in the course of distal symmetric
peripheral neuropathies, while (epi)dermal nerve fiber loss and de-
generative Schwann cell changes occur as late consequences (Bennett
et al., 2014; Ebenezer et al., 2007; Lauria et al., 2003).

Apart from a recent study that showed a correlation between GAP43
intraepidermal nerve fiber density and the severity of burning pain in
PDN patients (Galosi et al., 2018), no consistent associations between
cutaneous innervation and the severity of neuropathic pain have been
described (Kalliomaki et al., 2011; Lindenlaub and Sommer, 2002;
Schley et al., 2012; Vlckova-Moravcova et al., 2008). This may be ex-
plained by mixed pathology, for example in painful diabetic neuro-
pathy, or by the fact that selective degeneration of a subset of noci-
ceptors, which may not be detected using the pan axonal marker
PGP9.5, may drive hyperalgesia and eventually neuropathic pain. We
have recently published two papers, one in a rat-model of nerve-injury
induced pain (Bechakra et al., 2017) and one in patients with BiPN
(Bechakra et al., 2018), suggesting that selective degeneration of non-
peptidergic nerve fibers may directly or indirectly (via parasympathetic
sprouting) contribute to the affective and evaluative component of
neuropathic pain. Non-peptidergic nerve fibers have already previously
been considered to be more characteristically involved in neuropathic
pain (Willcockson and Valtschanoff, 2008), since sensory qualities that
are distinct in neuropathic pain, like paresthesias, burning pain and
tactile allodynia, are typically experienced in skin, which is pre-
dominantly innervated by non-peptidergic nerve fibers (Guedon et al.,
2016). Peptidergic nerve fiber loss on the other hand may contribute to
the sensory-discriminative component of neuropathic pain in BiPN
patients (Bechakra et al., 2018). The McGill Pain questionnaire
(Melzack and Torgerson, 1971; Melzack, 2005), a reliable and ex-
tensively validated test in many languages, was specifically designed to
discern the sensory-discriminative, affective and evaluative compo-
nents of neuropathic pain. More recently it has been suggested that
separate anatomical pathways exist for these respective components
(Braz et al., 2005; Craig, 2003).

The aim of the current study is to further explore the hypothesis that
selective degeneration of nociceptors in neuropathic pain syndromes
can be associated with distinctive pain qualities, by comparing the
pathology and pain perception among BiPN, PDN and CIAP patients.

2. Results

In Table 1, demographic data and clinical characteristics of 17 he-
athy volunteers, 22 patients with BiPN (previously described in
(Bechakra et al., 2018)), 16 patients with PDN (previously described in
(Emanuel et al., 2017)) and 16 patients with CIAP are listed. Median
ages and percentages of males were not significantly different among
the four groups (p = 0.453 and p = 0.139, using Kruskal-Wallis and
chi-square test respectively). Median and range of duration of neuro-
pathy symptoms until the moment of study entry was significantly
shorter in BiPN patients (2 [0.5–23] months) than in PDN (36 [8–60]
months) and in CIAP patients (60 [12–132]), while the difference be-
tween PDN and CIAP patients was not significantly different
(p < 0.001, p < 0.001 and p=0.831 respectively; Kruskal-Wallis test
with post-hoc comparisons using Dunn’s test). Additionally, 16 out of
22 BiPN patients were considered to have (sub)acute neuropathies (i.e.
duration of neuropathy symptoms ≤3 months), whilst none of the PDN
or CIAP patients had. Median time between a diagnosis of diabetes and
inclusion in the study of PDN patients was 144 [12–408] months.

In Fig. 1 representative PGP9.5 and CGRP immunohistochemical

staining patterns in the epidermis, subepidermal layer and upper
dermis are presented, from healthy volunteers (Fig. 1A, B, I and J),
patients with BiPN (Fig. 1C, D, K and L), patients with PDN (Fig. 1E, F,
M and N) as well as patients with CIAP (Fig. 1G, H, O and P). Char-
acteristic staining patterns of these fibers, including orientation, mor-
phology and branching of PGP9.5 and CGRP positive fibers as well as
immunohistochemical control experiments have been previously de-
scribed by our group (Bechakra et al., 2018). The density of PGP9.5
positive intraepidermal nerve fibers appeared lower in PDN and in CIAP
patients, while the density of upper dermal fibers appeared higher in
BiPN patients. Looking in close detail (see insets in Fig. 1), PGP9.5-
positive intraepidermal nerve fibers also showed axonal swellings, both
small (2–3× the nerve diameter) and large (> 5× the nerve diameter).
These nerve swellings appeared more abundant in BiPN patients com-
pared to the other groups.

In Fig. 2 the results of IENFD (Fig. 2A), SENFD (Fig. 2C) and UDNFD
(Fig. 2D) of PGP9.5, CGRP and (PGP9.5-CGRP) are summarized.
Swelling ratios of intraepidermal PGP9.5 fibers are presented in Fig. 2B.
In CIAP patients, IENFD of PGP9.5 and of (PGP9.5-CGRP), i.e. pre-
sumed non-peptidergic fibers, were significantly decreased in compar-
ison with healthy volunteers (p = 0.007 and p = 0.015 respectively),
while in PDN patients IENFD of (PGP9.5-CGRP) was significantly de-
creased (p = 0.030) and the decrease in IENFD of PGP9.5 almost
reached statistical significance (p = 0.054; Kruskal-Wallis test with
post-hoc comparisons using Dunn’s test). Similarly, significant de-
creases were found for SENFD of PGP9.5 (p = 0.006) and of (PGP9.5-
CGRP) (p = 0.006) in CIAP and in PDN patients (p = 0.006 and
p = 0.006 respectively). BiPN patients were characterized by a sig-
nificant increase in epidermal axonal swellings (p < 0.001) and upper

Table 1
Demographic data and clinical characteristics of healthy volunteers (HV),
bortezomib-induced peripheral neuropathy (BiPN), painful diabetic neuropathy
(PDN) and chronic idiopathic axonal polyneuropathy (CIAP) patients.
PRI = Pain Rating Index, NWC = Number of Words Count. Adjuvant medi-
cation included anti-epileptics and anti-depressants. ***p < 0.001, Kruskal-
Wallis test with post-hoc comparisons using Dunn’s test.

Median (range) or n (%)

Patients HV BiPN PDN CIAP

n = 17 n = 22 n = 16 n = 16

Demographic
data

Age (years) 63 (27–75) 63 (39–79) 66 (30–76) 67 (49–76)
Sex (male) 10 (59%) 19 (86%) 9 (56%) 12 (75%)
Duration of

neuropathy
(months)

2 (0.5–23) 144 (12–408) 60 (12–132)

Neuropathic pain
McGill pain

questionnaire
PRI-Sensory (0–36

points)
11 (4–22) 10 (4–22) 11 (3–23)

PRI-Affective (0–15
points)

3 (0–8) 2 (0–11) 4 (0–11)

PRI-Evaluative (0–12
points)

6 (2–9) 5 (3–7) 5 (3–9)

PRI-Total (0–63
points)

20 (10–37) 18 (9–38) 22 (6–54)

NWC-Sensory (0–12
words)

7 (3–12) 7 (4–12) 7 (3–12)

NWC-Affective (0–5
words)

7 (0–5) 2 (0–4) 3 (0–5)

NWC-Evaluative (0–8
words)

3 (2–3) 3 (3–3) 3 (3–3)

NWC-Total (0–25
points)

13 (7–20) 13 (7–20) 14 (6–20)

Pain Medication
Adjuvant medication 12 (55%) 6 (38%) 4 (25%)
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dermis nerve fiber densities (UDNFD) of PGP9.5 (p = 0.015) and of
(PGP9.5-CGRP) (p = 0.015), whilst a significant decrease was found in
SENFD of PGP9.5 (p < 0.001) and of presumed non-peptidergic fibers
(p < 0.001; Kruskal-Wallis test with post-hoc comparisons using

Dunn’s test), as previously described (Bechakra et al., 2018). IENFD,
SENFD and UDNFD of CGRP fibers in BiPN, PDN and CIAP patients
were not significantly different from healthy volunteers.

In Table 2 correlations between the nerve fiber densities for each

Fig. 1. Immunohistochemical staining patterns of PGP9.5 (A, C, E, G) and CGRP (B, D, F, H), in healthy volunteers (A, B), in BiPN patients (C, D), in PDN patients (E,
F) and in CIAP patients (E, F). I, K, M, O, J, L, N and P represent high-power insets, which enable to visualize the length of the intra-epidermal fibers, branching
pattern and intra-epidermal axonal swellings. Red arrowheads represent intra-epidermal nerve fibers, green arrowheads axonal swellings, white arrowheads sub-
epidermal nerve fibers and black arrowheads upper-dermal nerve fibers. The white bars measure 50 µm. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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immunohistochemical marker and the sensory-discriminative, affective
and evaluative PRIs and NWCs with corresponding p-values and
Spearman’s rank correlation coefficients are presented. In BiPN pa-
tients, the correlations between UDNFD of PGP9.5 and the evaluative
MPQ PRI and NWC were ρ = 0.447; p = 0.037 and ρ = 0.427;
p = 0.047 respectively (not significant following Bonferroni correction
with an adjusted significance level of 0.017) and there was a unadjusted
significant negative correlation between SENFD of CGRP and the sen-
sory-discriminative MPQ NWC with ρ = −0.423; p = 0.050, as pre-
viously described (Bechakra et al., 2018). In CIAP patients, the corre-
lation between UDNFD of PGP9.5 and the affective MPQ PRI was
ρ = 0.542 (p = 0.030; not significant following Bonferroni correction
with an adjusted significance of 0.017), and there were unadjusted
significant correlations between IENFD of CGRP and the sensory-dis-
criminative MPQ PRI was ρ = 0.574 (p = 0.020) and NWC (ρ = 0.517;
p = 0.040). The evaluative MPQ NWC was 3 in all CIAP patients and
therefore no correlation coefficients could be calculated. Finally, cor-
relation coefficients in PDN patients were not statistically significant.

3. Discussion

This study describes changes in (epi)dermal innervation and asso-
ciations with pain qualities in cohorts of BiPN, PDN and CIAP patients
with neuropathic pain. Cutaneous innervation changes in BiPN pa-
tients, which mostly presented as (sub)acute neuropathies, were char-
acterized by a decrease in SENFD, as opposed to an increase in UDNFD
of PGP9.5 and of presumed non-peptidergic nerve fibers as well as by
an increase in epidermal axonal swellings. PDN and CIAP on the other
hand, which invariably presented as chronic neuropathies, were char-
acterized by a decrease in IENFD and SENFD of PGP9.5 and of pre-
sumed non-peptidergic fibers. Significant unadjusted associations be-
tween IENFD and SENFD of peptidergic fibers and the sensory-
discriminative component, and between UDNFD of PGP9.5 and the
evaluative/affective component of neuropathic pain, were found in

BiPN and CIAP patients. No significant associations were found in PDN
patients.

Concerning the immunohistochemical quantification of cutaneous
innervation, one should be aware that PGP9.5 may be expressed not
only in nerve terminals, but also in Langerhans cells in denervated skin
(Hsieh et al., 1996) and under certain conditions in fibroblasts (Olerud
et al., 1998). Thus, it could have been of additional value to incorporate
additional specific markers of cutaneous innervation, especially to label
the non-peptidergic nerve fiber population and possibly also functional
markers of excitability such as sodium channel subtypes (Kalliomaki
et al., 2011; Schley et al., 2012). However, as we are aware thus far
there have been no reports of reproducible immunohistochemical
staining patterns allowing for quantification of non-peptidergic fibers
and of sodium channels in humans. Furthermore, we do believe that
based upon morphology and predefined quantification criteria nerve
fiber (terminals) can be selectively separated from non-nerve cells.

Since no consistent associations between cutaneous innervation and
neuropathic pain intensities have been described so far, mainly in pa-
tient cohorts containing different types of nerve-injury induced pain
(Kalliomaki et al., 2011; Schley et al., 2012), we analyzed three cohorts
representing distinctive types of painful peripheral neuropathy sepa-
rately, i.e. (sub)acute (BiPN), chronic (CIAP) and chronic mixed pa-
thology (PDN) neuropathic pain. The specific epidermal innervation
changes that we found in BiPN (increased axonal swellings) as opposed
to the changes in PDN and CIAP (decreased IENFD of PGP9.5 and of
(PGP9.5-CGRP) fibers) are consistent with previously described differ-
ential neuropathic changes in (sub)acute versus chronic neuropathies
(Bennett et al., 2014; Ebenezer et al., 2007; Lauria et al., 2003). This
match with prior results enhances the notion that any further results
should be valid. The decrease in IENFD of PGP9.5 in PDN patients as
compared to healthy volunteers just failed to reach statistical sig-
nificance (p = 0.054), but this may be due to the sample size. The
increased density of upper dermis PGP9.5 fibers that we observed in
BiPN patients has been described in an animal model of subacute

Fig. 2. Skin innervation measurements in healthy volunteers (n= 17), BiPN patients (n= 22), PDN patients (n= 16) and CIAP patients (n= 16). Box-plots showing
the median, interquartile range and total range of the number of intra-epidermal (IENFD; A), sub-epidermal (SENFD; C), upper-dermal (UDNFD; D) nerve fiber
densities and the axonal swelling ratios (B), using PGP9.5, CGRP and (PGP9.5-CGRP) as markers to measure the total number of fibers and peptidergic and non-
peptidergic subclasses, *p ≤ 0.05, **p ≤ 0.01***p ≤ 0.001; Kruskal-Wallis test with post-hoc comparisons using Dunn’s test.
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neuropathy, see also below (Grelik et al., 2005; Ramien et al., 2004;
Taylor and Ribeiro-da-Silva, 2011; Taylor et al., 2012).

Mixed pathology is common in PDN, especially in patients with long
standing diabetes as was the case in our cohort of PDN patients. In long
standing diabetes, pain in the feet may be explained by other factors
than nociceptor degeneration, like myelinated nerve fiber degeneration
(Vlckova-Moravcova et al., 2008), autonomic nerve dysfunction
(Vlckova-Moravcova et al., 2008), ischemia and inflammation (Schmidt
and Holmes, 2018). This may explain why no significant associations of
cutaneous innervation parameters (mainly representing nociceptors)
and neuropathic pain descriptors were found in our cohort of PDN
patients, which is in line with previous findings (Shun et al., 2004).

In a previous publication (Bechakra et al., 2017) we have demon-
strated changes in cutaneous innervation following nerve injury in rats,
of peptidergic nerve fibers that were labeled by CGRP-ir and of non-
peptidergic nerve fibers that were labeled by P2X3-ir. It is generally
known that these two classes of nociceptors target specific neurons in
the spinal dorsal horn (Jongen et al., 2005), are modality-specific
(Zhang et al., 2013) and supposedly may each convey specific in-
formation about pain along labeled lines to the spinal cord and brain
(Bechakra et al., 2017, 2018; Braz et al., 2005; Craig, 2003). Pepti-
dergic nerve fibers can be labeled by CGRP-ir, substance P-ir, but also
contain the TrkA receptor for Nerve Growth Factor and the TRPV1

receptor for capsaicin. Non-peptidergic nerve fibers can be labeled with
P2X3-ir, Isolectin B4, Mrgprd-ir and contain the RET receptor for glial
cell line-derived neurotrophic factor (GDNF) (Jongen et al., 2007).
While these two classes of neurons are for the greatest part mutually
exclusive, there is some overlap depending on the markers used to label
them (Bechakra et al., 2017; Price and Flores, 2007). Thus, peptidergic
and non-peptidergic nerve fibers may be considered complementary,
because they serve different functions and are more or less mutually
exclusive. Since we and others were unable to immunohistochemically
label cutaneous non-peptidergic nerve fibers for quantification in the
human skin, we decided to use IENFD, SENFD and UDNFD of the dif-
ference between PGP9.5 and CGRP labeled fibers as surrogate markers
for the number of nonpeptidergic fibers in order to get a complete
picture of cutaneous innervation in our cohorts of BiPN, PDN and CIAP
patients. Our findings in BiPN and CIAP patients on associations of
peptidergic nerve fiber innervation with the sensory-discriminative
component of neuropathic pain on the one hand and that of upper-
dermis nerve fiber sprouting resulting from non-peptidergic nerve fiber
degeneration (see below) with the affective/evaluative component on
the other hand are both in line with the labeled lines hypothesis men-
tioned above (see also Grelik et al., 2005; Ramien et al., 2004; Taylor
and Ribeiro-da-Silva, 2011; Taylor et al., 2012).

As far as the upper dermis is concerned, a rapid decrease followed

Table 2
Correlations between immunohistochemical markers and McGill Pain Questionnaire (MPQ) Pain Rating Index (PRI) and Number of Words Count (NWC), in bor-
tezomib-induced peripheral neuropathy (BiPN) (n = 22), painful diabetic neuropathy (PDN) (n = 16) and chronic idiopathic axonal polyneuropathy (CIAP) patients
(n = 16). Numerals in the upper left part of the cells refer to p values, numerals in the lower right part of all the cells refer to Spearman’s correlation coefficients.
Correlation coefficients with an uncorrected p ≤ 0.05 are printed in bold with an asterisk. IENFD = IntraEpidermal Nerve Fiber Density, SENFD = SubEpidermal
Nerve Fiber Density, UDNFD = Upper Dermis Nerve Fiber Density.

Patients MPQ Pain Glossary IENFD SENFD UDNFD

PGP9.5 CGRP PGP-CGRP PGP9.5 CGRP PGP-CGRP PGP9.5 CGRP PGP-CGRP

BiPN PRI-Sensory 0,637
0,106

0,079
−0,382

0,694
0,089

0,648
−0,103

0,139
−0,326

0,240
0,261

0,553
−0,134

0,050
−0,422

0,596
0,120

PRI-Affective 0,056
0,413

0,825
−0,050

0,075
0,388

0,466
0,164

0,903
−0,028

0,206
0,280

0,576
0,126

0,831
−0,048

0,533
0,140

PRI-Evaluative 0,271
0,245

0,276
0,243

0,388
0,193

0,192
0,289

0,618
0,113

0,943
0,016

0,037
0,447*

0,427
0,179

0,231
0,266

NWC-Sensory 0,998
−0,001

0,064
−0,401

0,939
0,017

0,405
−0,187

0,050
−0,423*

0,312
0,226

0,189
−0,291

0,071
−0,392

0,883
−0,033

NWC-Affective 0,457
0,167

0,421
−0,181

0,453
0,169

0,760
0,069

0,923
−0,022

0,216
0,275

0,926
−0,007

0,407
−0,186

0,674
0,095

NWC-Evaluative 0,621
0,111

0,088
0,373

0,805
0,056

0,935
−0,019

0,279
0,241

0,279
−0,241

0,047
0,427*

0,870
−0,037

0,107
0,353

PDN PRI-Sensory 0,127
0,398

0,307
0,273

0,311
0,270

0,598
0,143

0,635
0,129

0,806
0,067

0,780
0,076

0,356
0,247

0,427
−0,214

PRI-Affective 0,329
0,261

0,510
0,178

0,371
0,240

0,240
0,612

0,119
0,240

0,350
0,250

0,877
−0,042

0,351
0,250

0,217
−0,327

PRI-Evaluative 0,851
0,051

0,349
0,251

0,609
−0,139

0,400
0,226

0,320
0,266

0,859
0,048

0,467
−0,196

0,329
0,261

0,400
−0,226

NWC-Sensory 0,142
0,384

0,299
0,277

0,331
0,260

0,531
0,169

0,643
0,126

0,610
0,138

0,743
0,089

0,359
0,246

0,411
−0,321

NWC-Affective 0,288
0,283

0,450
0,203

0,342
0,254

0,158
0,370

0,078
0,453

0,252
0,304

0,864
−0,047

0,352
0,249

0,204
−0,336

NWC-Evaluative 0,918
−0,028

0,754
−0,085

0,918
−0,028

0,346
0,252

0,757
0,084

0,166
0,364

0,346
−0,252

0,105

0,420

0,105
−0,420

CIAP PRI-Sensory 0,970
0,010

0,020
0,574*

0,892
−0,037

0,542
−0,165

0,446
0,205

0,710
−0,101

0,595
0,144

0,404
0,224

0,718
0,098

PRI-Affective 0,465
0,197

0,249
0,306

0,386
0,233

0,468
0,196

0,052
0,494

0,497
0,183

0,030
0,542*

0,278
0,289

0,327
0,262

PRI-Evaluative 0,830
0,058

0,784
0,075

0,736
0,091

0,687
−0,109

0,793
0,071

0,996
0,001

0,139
0,387

0,741
−0,090

0,195
0,342

NWC-Sensory 0,375
0,238

0,040
0,517*

0,432
0,211

0,904
0,033

0,247
0,307

0,926
0,025

0,637
0,128

0,456
0,201

0,669
0,116

NWC-Affective 0,649
0,123

0,224
0,322

0,601
0,141

0,881

0,041

0,215
0,328

0,643
0,126

0,191
0,344

0,613
0,137

0,302
0,275

NWC-Evaluative –
–

–
–

-
–

–
–

–
–

–
–

–
–

–
–

–
–
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by a slow return (at 10 weeks after ligation) to normal values of UDNFD
of NF-200-labeled myelinated nerves has been described in rats with
partial nerve ligation (Duraku et al., 2013). However, although myeli-
nated nerves are affected in BiPN as well as in CIAP patients given EMG
abnormalities (Bechakra et al., 2018; Hanewinckel et al., 2016), (neu-
ropathic) pain is a cardinal symptom alluding to significant small nerve-
fiber involvement. It has been shown repeatedly in experimental ani-
mals (Grelik et al., 2005; Ramien et al., 2004; Taylor et al., 2012) that
peptidergic nerve-fiber degeneration causes sympathetic nerve fibers to
sprout in the upper dermis, while non-peptidergic nerve fiber degen-
eration, which was demonstrated in our BiPN patients in the sub-epi-
dermal layer and in CIAP patients in the epidermis as well as in the sub-
epidermal layer, induces parasympathetic fibers to sprout. Thus, the
increased UDNFD of PGP9.5 in BiPN patients likely represents para-
sympathetic sprouting as a consequence of non-peptidergic nerve fiber
degeneration. This upregulation is temporary (Grelik et al., 2005) and
may therefore explain why an absolute increase in UDNFD of PGP9.5
was not observed in chronic neuropathies like PDN and CIAP. Although
the correlations between UDNFD of PGP9.5 and the evaluative/affec-
tive pain components in BiPN and CIAP patients just failed to reach
statistical significance after correction for multiple testing (p ≤ 0.05,
but p > 0.017), we still conclude that our results allude to a distinct
role for non-peptidergic nociceptors in BiPN and CIAP patients, in light
of consistent findings across the BiPN and CIAP groups, our previous
data in rats, clinical observations and the literature regarding labeled
lines.

The inverse association of subepidermal peptidergic nerve fibers
with the sensory-discriminative component of neuropathic pain in BiPN
patients may imply that in (sub)acute neuropathies this pain compo-
nent is driven by increased degeneration or impaired regeneration of
CGRP fibers in the subepidermal layer, while the positive associations
in the epidermis of CIAP patients may imply that in chronic neuro-
pathies this component is driven by decreased degeneration or in-
creased regeneration of CGRP fibers in the epidermis. However, the
significant associations between IENFD of CGRP and the sensory-dis-
criminative pain component in CIAP patients should be interpreted
with caution due to the scarcity of intraepidermal CGRP fibers.

Finally, although the evaluative component is classified as a sepa-
rate entity within the MPQ, we analyzed it here in conjunction with the
affective pain component, because many of its descriptors have an
emotional-affective connotation (Melzack and Torgerson, 1971; van der
Kloot et al., 1995).

4. Conclusion

Changes in cutaneous innervation in BiPN represent early, whereas
those in PDN and CIAP represent late neuropathic pathology.
Furthermore, our results allude to a distinct role for non-peptidergic
nociceptors in BiPN and CIAP patients. The significant associations
between IENFD of CGRP and the sensory-discriminative pain compo-
nent in CIAP patients should be interpreted with caution due to the
scarcity of intraepidermal CGRP fibers. The lack of significant asso-
ciations in PDN may be caused by mixed ischemic and purely neuro-
pathic pain pathology. Although the MPQ may be impractical for use in
routine clinical practice, we suggest to rate pain intensity as well as
pain unpleasantness separately in neuropathic pain patients using a
numerical rating scale, to consider both sensory-discriminative and
affective components.

5. Methods and materials

5.1. Patients, clinical data and skin biopsies

The study was approved by the medical ethical committees of
Leiden University Medical Centre, Leiden (NL46921.058.13) and of
Erasmus MC, Rotterdam (NL24284.078.08) in the Netherlands and was

performed in accordance with the Declaration of Helsinki of 2013
(World Medical, 2013). All participants had given written informed
consent. Parts of the study results have been published previously
(Bechakra et al., 2018; Emanuel et al., 2017), which is indicated in the
results section.

A total of 71 subjects were included: 17 healthy volunteers (HV), 22
patients with BiPN, 16 patients with PDN, and 16 patients with CIAP.
The diagnosis of BiPN was established on clinical grounds by a neu-
rologist as a new-onset peripheral neuropathy or a (sub)acute clear
deterioration of previously minimally symptomatic peripheral neuro-
pathy following start of bortezomib, fulfilling the ACTTION-APS Pain
Taxonomy (AAPT) diagnostic criteria for a diagnosis of CiPN (Paice
et al., 2017). Patients were treated with either intravenous bortezomib
monotherapy or intravenous bortezomib in combination with non-
neurotoxic chemo/immunotherapy, that is, hydroxydaunorubicin
(n = 8) (Sonneveld et al., 2012), lenalidomide (n = 2) (Broijl et al.,
2016), or rituximab (n = 2). The diagnosis of PDN was established by a
neurologist based on the medical history, signs and symptoms upon
clinical examination in patients with diabetes mellitus type 2 (Emanuel
et al., 2017). The diagnosis of CIAP was established by a neurologist
who interpreted the combination of clinical manifestation, nerve con-
duction parameters as well as relevant laboratory tests as an axonal
peripheral neuropathy in the absence of identifiable underlying
etiology (Hanewinckel et al., 2016).

The study consisted of the collection of demographic data and
clinical data, including pain intensity on a numerical rating scale (NRS)
and McGill Pain Questionnaires (Dutch (n = 70) or English (n = 1)
language versions) (Melzack and Torgerson, 1971; van der Kloot et al.,
1995). For the McGill Pain Questionnaire, the sum of the sensory-dis-
criminative, affective and evaluative Pain Rating Indices (PRI) and the
overall sum of PRIs were calculated. In addition, the Number of Words
Chosen (NWC) for these items were used.

5.2. Obtaining, processing and analysis of skin biopsies

Three-mm skin biopsies were taken 10 cm proximal to the lateral
ankle under local anesthesia and stored, according to international
guidelines (Lauria et al., 2010). From these biopsies, 50 µm sections
were cut on a freezing microtome and processed for free-floating im-
munohistochemistry using rabbit anti-PGP9.5 (Catalog# ADI-905-520;
Enzo Life Sciences, Farmingdale, NY), representing all cutaneous nerve
fibers, and guinea-pig anti-CGRP (Catalog # 16013; Progen Biotechnik,
Heidelberg, DE), representing peptidergic nerve fibers, as previously
described (Bechakra et al., 2018). After the sections had been mounted
to glass slides they were scanned, digitized using a Hamamatsu Nano-
Zoomer 2.0-HT slide scanner (Hamamatsu Photonics, Hamamatsu City,
JP), analyzed and quantified using Leica Aperio ImageScope freeware,
as previously described (Bechakra et al., 2018) (see also Supplemental
Methods file).

Cutaneous innervation was expressed as intra-epidermal nerve fiber
density (IENFD), subepidermal nerve fiber density (SENFD), upper
dermis nerve fiber density (UDNFD) of PGP9.5- and CGRP-fibers and as
the axonal swelling ratio of PGP9.5-fibers. Definitions of IENFD,
SENFD, UDNFD and axonal swelling ratio were previously published
(Lauria et al., 2010; Schley et al., 2012) and extensively described and
validated in our recent publications (Bechakra et al., 2017, 2018). As a
surrogate for non-peptidergic innervation, we also calculated IENFD,
SENFD and UDNFD of the difference between the number of PGP9.5
fibers (i.e. the total number of nerve fibers) and the number of CGRP
fibers (i.e. peptidergic nerve fibers) and called this (PGP9.5-CGRP). As
we are aware, thus far there are no reports of reproducible im-
munohistochemical staining patterns allowing for quantification of
these fibers in humans (Bechakra et al., 2018). Besides, the population
of peptidergic and non-peptidergic nerve fibers are mostly com-
plementary (Bechakra et al., 2017).
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5.3. Statistical analysis

Given that most variables had a non-normal distribution, as assessed
with Kolmogorov-Smirnov test, data were summarized using medians
and ranges. The Kruskal-Wallis test with post-hoc comparisons using
Dunn’s test and the chi-square test were used to compare age, duration
of neuropathy symptoms and sex of healthy volunteers, BiPN, PDN and
CIAP patients. The Kruskal-Wallis test with post-hoc comparisons using
Dunn’s test were used to compare IENFD, SENFD and UDNFD of
PGP9.5, CGRP and (PGP9.5-CGRP) and to compare axonal swelling
ratios of healthy volunteers with those of BiPN, PDN and CIAP patients.
The Dunn’s tests were performed for each comparison between healthy
volunteers and a patient group, with Bonferroni-adjusted p-values to
correct for multiple testing due to these three comparisons. Spearman’s
rank correlation coefficients between immunohistochemical markers
and neuropathic pain descriptors were determined. Correction for
multiple testing was not applied to the correlation analysis, apart from
Bonferroni correction with an adjusted significance level of 0.017 for
comparisons of UDNFD of PGP9.5 with sensory-discriminative, affec-
tive and evaluative components of the MPQ, since this part of the
analysis was hypothesis driven. All remaining statistical tests were two-
sided with a significance level of 0.05. The statistical analysis was
performed using IBM SPSS Statistics v.24.0.0.0 software (IBM Corp.,
Armonk, NY).
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