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Background: Although endovascular treatment (EVT) has greatly improved outcomes

in acute ischemic stroke, still one third of patients die or remain severely disabled after

stroke. If we could select patients with poor clinical outcome despite EVT, we could

prevent futile treatment, avoid treatment complications, and further improve stroke care.

We aimed to determine the accuracy of poor functional outcome prediction, defined as

90-day modified Rankin Scale (mRS) score ≥5, despite EVT treatment.

Methods: We included 1,526 patients from the MR CLEAN Registry, a prospective,

observational, multicenter registry of ischemic stroke patients treated with EVT. We

developed machine learning prediction models using all variables available at baseline

before treatment. We optimized the models for both maximizing the area under the curve

(AUC), reducing the number of false positives.

Results: From 1,526 patients included, 480 (31%) of patients showed poor outcome.

The highest AUC was 0.81 for random forest. The highest area under the precision recall

curve was 0.69 for the support vector machine. The highest achieved specificity was 95%

with a sensitivity of 34% for neural networks, indicating that all models contained false

positives in their predictions. From 921 mRS 0–4 patients, 27–61 (3–6%) were incorrectly

classified as poor outcome. From 480 poor outcome patients in the registry, 99–163

(21–34%) were correctly identified by the models.

Conclusions: All prediction models showed a high AUC. The best-performing models

correctly identified 34% of the poor outcome patients at a cost of misclassifying 4% of

non-poor outcome patients. Further studies are necessary to determine whether these

accuracies are reproducible before implementation in clinical practice.

Keywords: ischemic stroke, prediction modeling, machine learning, functional outcome, poor outcome, MRS,

endovascular treatment (EVT)
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INTRODUCTION

Over the past 4 years, endovascular thrombectomy (EVT)
unquestionably proved its value in anterior circulation acute
ischemic stroke (1, 14–20). Despite the encouraging results,
however, still ∼30% of patients die or remain dependent of daily
nursing care after EVT, making their treatment benefit essentially
minimal (17, 18).

If we could reliably select patients with poor outcome after
stroke despite EVT, we could spare patients a futile treatment
with a needless risk of complications and enable a more efficient
use of resources (21). Unfortunately, so far, no studies have been
able to definitively identify a subgroup of patients that should not
be treated with EVT (21).

In patient selection, it could be useful to predict poor

outcome.Many previous studies focused on predicting functional
independence after EVT (22). However, the use of such models
would raise an ethical question. If a model predicts a zero percent

chance of functional independence with EVT for a patient, one

might advise to not treat. Untreated, the patient likely has a
worse outcome, possibly needing continuous care in a nursing
home. Treated, the patient may be able to function with some
assistance in daily activities. Should we not treat this patient? A
more valuable argument could be a reliable prediction of death or
complete dependence of continuous care, even after EVT.

Some studies, such as MR PREDICTS, used data from
randomized trials to predict treatment benefit as a modified
Rankin Scale (mRS) score shift, using ordinal logistic regression
(13). Predicting treatment benefit can be useful: if a patient is
predicted to benefit from EVT in addition to regular care, one
would proceed with EVT. However, data from randomized trials
are necessary for such a model because predicted outcomes need
to be based on a sufficient number of patients who did or did
not receive EVT without indication bias. The amount of available
data from randomized trials on EVT is limited. No new data
after the HERMES trials will be available to train and validate
models (17). An outcome measure that can enable long-term
model improvement such as poor functional outcome could be
of added value to models predicting treatment benefit.

Only a few studies have used poor outcome as their outcome
measure; however, they had a limited amount of data and focused
on linear classifiers (23). Machine learning (ML) may be of added
value in predicting outcome after EVT. The number of relevant
prognostic factors in stroke patients is high, and their effects on
outcome may be indirect, combined, or otherwise complicated.
With the ability to identify relevant prognostic variables through
linear and non-linear relationships, ML may have added value in
poor outcome prediction.

ML belongs to the artificial intelligence domain, where
algorithms are designed to automatically learn patterns from
data. In the work by Van Os et al. (22), ML methods predicted
functional independence after acute ischemic stroke in a large
population (1,383 patients), with reasonable certainty [area under
the curve (AUC) 0.79].

Since the addition of EVT to standard care, the amount of
available outcome data has greatly increased, now allowing for
more powerful and elaborate prediction modeling. In the current

study, we aim to assess the accuracy of pre-procedural prediction
of poor functional outcome after EVT using ML models in
patients from the MR CLEAN Registry.

METHODS

Study Population
We included patients from the MR CLEAN Registry, which
is a prospective, observational, multicenter study, consecutively
including all EVT-treated acute ischemic stroke patients in
the Netherlands since the completion of the MR CLEAN
trial (24) in March 2014. The MR CLEAN Registry contains
data from 16 centers distributed across The Netherlands. The
current study is a retrospective report on patients included
in the MR CLEAN Registry between March 2014 and June
2016 with intracranial proximal occlusions of the anterior
arterial circulation (internal carotid artery (ICA) or internal
carotid artery terminus (ICA-T), middle (M1/M2) or anterior
(A1/A2) cerebral artery), aged ≥18 years, and treated in a
MR CLEAN trial center. Patients were treated with intravenous
thrombolysis (IVT) before EVT, if eligible. The central medical
ethics committee of the Erasmus Medical Center Rotterdam,
the Netherlands, evaluated the study protocol and granted
permission (MEC-2014-235) to carry out the data collection as
a registry (18). The procedures followed were in accordance
with institutional guidelines. Patients provided permission for
study participation through an opt-out procedure. The data can
be made available on reasonable request from the MR CLEAN
Registry committee (mrclean@erasmusmc.nl). All code used for
the development of the models and data analysis is available
at https://github.com/L-Ramos/MrClean_Poor. All imaging was
assessed by an independent core laboratory, composed of
21 observers (20 interventional neuro- and/or interventional
radiologists and one interventional neurologist) who were
blinded to all clinical findings, except for symptom side. Assessed
baseline imaging modalities were non-contrast CT [dense vessel
sign, Alberta Stroke Programme Early CT Score (ASPECTS),
hemorrhage, old infarcts, leukoaraiosis], CT angiography (CTA;
occlusion location, clot burden score, collateral grade), and
digital subtraction angiography (DSA; successful reperfusion,
defined as extended thrombolysis in infarction score 2B-3).
Other imaging variables that have proven to be predictive for
outcome such as stroke lesion shape and size are difficult to
observe on CT scans and were therefore not included in our
models (25).

Study Variables, Outcome, and Missing
Data
Provided the correct methodology is used, MLmethods allow the
analysis of a large number of features. Therefore, we analyzed
all 51 patient variables collected at baseline before treatment.
Ordinal variables such as pre-stroke mRS, collaterals, ASPECTS,
National Institutes of Health stroke scale (NIHSS), clot burden
score, and Glasgow Coma Scale were treated as linear continuous
scores. Some variables like time to groin puncture, despite not
being readily available at baseline, can be estimated. If groin
puncture is estimated to be possible within 6 h, patients can
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be treated within the regular EVT time window. In addition,
achievable door-groin time of <60min is currently used as
inclusion criterion for several acute stroke trials (such as MR
CLEAN-NO IV; ISRCTN80619088). More details about the
included variables, distributions, and how they were included in
the models are listed in Supplementary Table 1.

The outcome measure of interest of this study was poor
functional outcome, defined as an mRS score of ≥5 at 90 days
after stroke. Data on the mRS were collected by the MR CLEAN
Registry hospitals as part of usual care (18).

Missing baseline and outcome data [mRS, n= 125 (8%)] were
imputed using two approaches: a multiple imputation approach
using Multiple Imputation by Chained Equations (MICE) (11),
which is the most commonly used in literature (and the standard
for MR CLEAN Registry–based studies) and a single imputation
approach using Random-Forest Imputation (RFI) (26), which is a
more recent, state-of-the-art imputation method. Variables with
more than 40% missing were excluded from the analysis.

Machine Learning Methods
We applied the following ML methods:

• Random forest classifier (RFC) (27), an ensemble classifier
that combines many decision trees trained individually.
Each decision tree is trained on random samples from the
dataset, which reduces the variance of the prediction without
increasing the bias;

• Support vector machine (SVM) (28), which separates classes
by constructing hyperplanes and maximizing the margin in a
multidimensional space;

• Artificial neural networks (NN) (6), which is composed
of many interconnected nodes arranged in layers, where
information is propagated from the first input layer up to a
final output layer that delivers a prediction;

• Gradient boosting (XGB) (7), which is also an ensemble
classifier that uses decision trees, but instead of training
the trees individually, Gradient Boosting trains the trees
sequentially, gradually improving them based on the previous
ones; and

• Logistic regression (LR), which models the probability
of a binary outcome using a linear function of the
predictor variables.

Because there are many ML methods described in the literature,
for which learning occurs in very different ways, we selected
models that differ in learning procedure to increase the chance
of developing models that generalize well (2). These methods
have shown state-of-the-art results in several stroke-related
applications (3, 22, 29). For the Gradient Boosting method, we
used the implementation from https://github.com/dmlc/xgboost
(7). For all the other methods, we used the implementations from
Scikit Learn toolkit version 0.21.3 (4).

Machine Learning Pipeline
We used a nested cross-validation (CV) strategy for model
optimization and evaluation. In the outer CV loop, the dataset
was split into 10 equally sized folds. For each CV iteration, 9-
fold were used as training set and one was used as test set. In

the inner CV loop, the training set was again divided into 5-fold
(four used for training and one for validation), used for training
the RFI imputer and determining the best hyper-parameters for
all ML models. Hyper-parameters are parameters specific to each
ML method. Their values cannot be automatically learned by
the methods. The hyper-parameters were optimized using the
random grid search function available on Scikit Learn (4), for
maximizing the AUC. A list of the hyper-parameters used can be
found in Supplementary Table 2, together with a description of
the optimization procedure and choice of values.

For the LR models, we used feature selection using LASSO
to define a subset of relevant variables. Creating a subset avoids
diluting the coefficients of the model, which can form a challenge
in interpreting variable importance (8).

Because the outcome variable was slightly imbalanced, and
class imbalance can bias some classifiers, we applied balanced
class weights during training of all models (4, 30). Class weights
change the way the loss is calculated. The individual errors are
multiplied by a sample weight, which shifts the minimum of
the loss function. This way, when the error is high for a sample
from a less prominent class, its impact will be higher in the loss,
leading to a larger penalization in the whole model. We chose
this approach because it has shown to work well even when class
imbalanced in severe (up to thousands of times fewer samples
from a given class) (30).

Model Performance
Model performance was evaluated on the testing sets. We
evaluated model performance using AUC, sensitivity (poor
outcome patients correctly classified as poor outcome), specificity
(percentage of non-poor outcome patients correctly classified as
non-poor outcome), positive predictive value (PPV) (predicted
poor outcome patients actually having poor outcome), negative
predictive value (NPV) (predicted non-poor outcome patients
actually having non-poor outcome), Matthews Correlation
Coefficient (MCC) (correlation coefficient between the observed
and predicted classes that is robust to class imbalance) (31),
and the area under the precision recall curve (AUPRC). A high
AUPRC relates to high precision (low false positive rate) and
recall (low false negative rate), and is also a robust measure for
class imbalance (4).

We built 10 models for each ML method through cross-
validation. Therefore, the measures were averaged over all
iterations and 95% confidence intervals (CIs) were computed.
To limit the number of false positives (and, consequently, the
risk of withholding treatment from patients who may still have
good functional outcome), we optimized the predictions from
themodels (probability of poor outcome) tomaximize specificity;
above or equal to 0.95, 0.98, and 1.00, using the validation dataset
to determine a threshold for the probabilities. This threshold
was determined based on incremental search, by continuously
increasing the threshold in 0.01 units until specificity was equal
or higher than 0.95.

To assess model performance, we used Grotta bars to visualize
themRS distribution of patients that were classified by themodels
into poor outcome vs. non-poor outcome. Per ML method, three
Grotta bars were computed for a specificity threshold of 0.95,
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TABLE 1 | Baseline characteristics; overall compared with mRS 5–6 vs. 0–4.

Characteristics Total study sample N = 1,526 mRS 5–6 N = 480 mRS 0–4 N = 921

Age (years)—median (IQR) 71 (60–79) 77 (69–84) 67 (55–75)

Male sex—n (%) 809 (53.0) 245 (51.0) 502 (54.5)

Diabetes—n (%) 145 (13.9) 117 (24.4) 262 (17.2)

Pre-stroke mRS—n (%) 0–2 1,327 (86.9) 370 (77.1) 957 (91.5)

3–5 172 (11.3) 95 (19.8) 77 (7.4)

NIHSS at baseline—median (IQR) 14 (9–18) 16 (12–20) 13 (8–16)

Systolic blood pressure (mmHg)—mean (SD) 150 (24.6) 154 (25.8) 147 (23.7)

Glucose level before EVT median (IQR) 6.7 (8.0–5.9) 7.2 (8.8–6.1) 6.6 (7.8–5.8)

Intravenous alteplase—n (%) 1,170 (76.7) 327 (68.1) 743 (80.7)

Onset to groin puncture time (min)—median (IQR) 210 (160–270) 219 (170–273) 200 (155–266)

Hyperdense artery sign—n (%) 773 (50.7) 248 (51.7) 459 (49.8)

ASPECTS subgroups—n (%) 0–4 95 (6.2) 39 (8.13) 51 (5.5)

5–7 351 (23.0) 120 (25.0) 198 (21.5)

8–10 1,013 (66.4) 292 (60.8) 639 (69.4)

Occlusion location—n (%) ICA-T 322 (21.1) 128 (26.7) 194 (18.6)

M1 842 (55.2) 242 (50.4) 600 (57.4)

M2 181 (11.9) 52 (10.8) 129 (12.3)

Intracranial ICA 85 (5.6) 21 (4.4) 64 (6.2)

Other (M3 or anterior) 19 (1.3) 6 (1.3) 13 (1.2)

Clot Burden Score—median (IQR) 6 (4–8) 6 (4–8) 6 (4–8)

Collateral score—n (%) 0 98 (6.4) 57 (11.9) 35 (3.8)

1 467 (30.6) 188 (39.2) 246 (26.7)

2 547 (35.8) 135 (28.1) 361 (39.2)

3 305 (20.0) 61 (12.7) 218 (23.7)

EVT, endovascular treatment; ICA, internal carotid artery; IQR, interquartile range; mRS, modified Rankin Scale; NIHSS, National Institutes of Health stroke scale; ASPECTS, Alberta

Stroke Programme Early CT Score.

TABLE 2 | Evaluation measures in validation data for all poor outcome prediction models, trained to maximize the AUC.

Method Specificity Sensitivity PPV NPV AUC AUPRC

RFC 0.84 (0.81–0.86) 0.56 (0.51–0.62) 0.62 (0.56–0.68) 0.80 (0.78–0.83) 0.80 (0.77–0.82) 0.66 (0.61–0.72)

SVM 0.67 (0.61–0.72) 0.78 (0.75–0.81) 0.53 (0.48–0.57) 0.87 (0.84–0.89) 0.77 (0.74–0.76) 0.69 (0.65–0.74)

NN 0.89 (0.87–0.90) 0.53 (0.49–0.57) 0.69 (0.65–0.74) 0.80 (0.78–0.83) 0.81 (0.79–0.83) 0.68 (0.64–0.73)

XGB 0.79 (0.76–0.83) 0.63 (0.60–0.67) 0.59 (0.54–0.65) 0.82 (0.80–0.84) 0.78 (0.76–0.81) 0.64 (0.59–0.69)

LR 0.75 (0.73–0.78) 0.71 (0.68–0.73) 0.57 (0.53–0.62) 0.85 (0.83–0.86) 0.80 (0.78–0.82) 0.68 (0.63–0.74)

The average of 10 cross-validation iterations is presented. RFC, random forest classifier; SVM, support vector machine; LR, logistic regression; XGB, gradient boosting; NN, neural

networks; AUC, area under the curve; AUPRC, area under the precision recall curve; NPV, negative predictive value; PPV, positive predictive value.

0.98, and 1.00, to assess the impact of reducing the number of
false-positive predictions. Finally, we investigated the variables
with the most predictive value for the best-performing models
(high PPV and small number of FP) using odds ratio for LR
and permutation feature importance (32). In permutation feature
importance, each variable is individually shuffled before training
and the decrease in accuracy (or in our case, AUC) is computed.
The more the AUC decreases, the more important the variable is
for the model.

RESULTS

Study Population
A total of 1,526 patients were included
(Supplementary Figure 1). Mean age was 71 years, and

median baseline NIHSS was 14 (Table 1). Successful reperfusion
was achieved in 863/1,505 patients (57%), and 753/1,092 (69%)
of patients with complete post-EVT DSA runs available. At 90
days, 480 (31%) patients had a poor functional outcome (mRS
5–6), whereas 921 (61%) did not [outcome missing in n =

125 (8%)].

Prediction Accuracy
For all models trained, the best average AUC was 0.81 (Table 2)
for NN, and the best AUPRC was 0.69 for the SVM. In the test
sets, the highest PPV was 0.69 for the NN and the highest NPV
was 0.87 for SVM: from all non-poor outcome predictions, 79%
of the patients indeed had a non-poor outcome. All models but
the SVM showed higher values of specificity than sensitivity,
with 0.89 being the highest specificity (for the NN). The NN

Frontiers in Neurology | www.frontiersin.org 4 October 2020 | Volume 11 | Article 580957

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Ramos et al. Predicting Poor Functional Outcome

FIGURE 1 | Distribution of mRS for the predictions of each model as poor vs. non-poor outcome with 95% specificity threshold. Along the y-axis, the various ML

methods are presented including the number of patients who were classified as poor and non-poor outcome. Along the x-axis, the percentage of patients per mRS

value is presented. In each graph, the black bar separates mRS 0–4 from 5 to 6. RFC, random forest classifier; SVM, support vector machine; LR, logistic regression;

NN, neural network; XGB, gradient boosting; mRS, modified Rankin Scale. Numbers in bars represent absolute number of patients.

showed also the highest MCC (0.45) and LR the highest balanced
accuracy (0.73) (Supplementary Table 3).

In Supplementary Table 4, the results for the probability
threshold of 95% specificity are shown. Note that because the
specificity is based on the training set, the actual specificity in
the validation set is somewhat lower than 0.95. Because the
probability thresholds were optimized for high specificity, values
for sensitivity were low (highest 0.34 for NN), indicating a
relatively high number of false negatives (poor outcome patients
classified as non-poor).

NN was considered the most accurate model because it
showed the highest PPV values (Table 2). For the probability
threshold of 95% specificity, NN, XGB, and LR showed the best
PPV results, and NN and LR showed the highest AUPRC results
(Supplementary Table 4). They also had the highest NPV values
among the other models. We did not find any difference between
single imputation using Random Forest and multiple imputation
using MICE; therefore, we used Random Forest imputation as
default. The results for theMICE imputation approach are shown
in Supplementary Table 5.

Model Performance
Figures 1–3 show the mRS distribution outcome of patients
classified as poor outcome and non-poor outcome in the testing

data, for different specificity thresholds. For each ML method
on the y-axis, we show how many patients were classified as
poor and as non-poor outcome along the y-axis. Along the x-
axis, the percentage of patients per mRS value is presented. In
each graph, the black bar separates mRS 0–4 (non-poor outcome)
from 5 to 6 (poor outcome). In Figure 1, the probability threshold
was optimized to reach 95% specificity, and for some classifiers
the rate of correct poor outcome prediction was higher than
80%. This is the case for LR, where from all poor outcome
predictions, the total of mRS 0–4 patients is lower than 20%.
However, all models still mistakenly predicted some mRS 0–4
patients as poor outcome (27 patients for the best model; <3%
of all mRS 0–4 patients; Table 3). More patients were classified
as non-poor outcome than poor outcome. For the NN model
for example (Supplementary Figure 2), 11% (163/1,526) of all
patients were classified as poor outcome, whereas 31% actually
had a poor outcome.

Figure 2 shows mRS distributions for the probability
threshold optimized to 98% specificity. The numbers of both
correct and incorrect poor outcome predictions were reduced
compared with the 95% threshold. Ten (1.1%) of mRS 0–4
patients were still misclassified as poor in the best-performing
models (NN and LR); 92 poor outcome patients were correctly
classified (Supplementary Figure 3).
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FIGURE 2 | Distribution of mRS for the predictions of each model as poor vs. non-poor outcome with 98% specificity threshold. Along the y-axis, the various ML

methods are presented including the number of patients who were classified as poor and non-poor outcome. Along the x-axis, the percentage of patients per mRS

value is presented. In each graph, the black bar separates mRS 0–4 from 5 to 6. RFC, random forest classifier; SVM, support vector machine; LR, logistic regression;

mRS, modified Rankin Scale; NN, neural network; XGB, gradient boosting. Numbers in bars represent absolute number of patients.

Figure 3 shows the mRS distribution of patients that were
classified as poor outcome vs. non-poor outcome in the
validation data, for the probability threshold optimized to reach
100% specificity. Again, both correct and incorrect poor outcome
predictions were reduced compared with the 95 and 98%
thresholds. One (0.1%) patient was misclassified as poor outcome
by LR and two (0.2%) by NN (Supplementary Figure 4).
However, the ability to correctly identify poor outcome patients
was reduced with 8.1% (n = 39) of poor outcome patients being
correctly identified (RFC).

Table 4 shows the odds ratios for each variable included in the
LR model. Baseline NIHSS, glucose level before EVT, age, 50% or
more atherosclerotic stenosis at symptomatic carotid bifurcation
on CTA, pre-stroke mRS, collateral score, leukoaraiosis, atrial
fibrillation, and Glasgow coma scale were significantly associated
with poor outcome.

For the ML models, we show the permutation feature
importance for the models with the least number of FP
(LR and NN—Table 3) in Figures 4, 5. Permutation feature
importance for the remaining ML methods is shown in
Supplementary Figures 5–7. Age consistently shows the highest
impact on the average AUC in all ML models. For both LR

and NN, age, collaterals, glucose level, NIHSS, and pre-stroke
mRS are ranked in the top 5 of the most important variables.
In addition, RR diastolic at baseline and time from onset to first
hospital were important variables for other ML models.

DISCUSSION

We have shown that poor outcome for acute ischemic stroke
patients who were treated with EVT from the MR CLEAN
Registry can be predicted with a high specificity. Although
the models were optimized for high AUC and the thresholds
optimized to high specificity, all models still classified some
non-poor outcome patients as poor outcome, suggesting that
these models are not yet accurate enough to be included in
clinical practice.

To our knowledge, this is the first study to use multiple
ML models and a large dataset for the prediction of poor
functional outcome in acute ischemic stroke patients. Besides,
our study included a larger number of variables than most stroke
prediction models to date, so our study can be considered quite
extensive (13). The presented accuracy was similar to the results
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FIGURE 3 | Distribution of mRS for the predictions of each model as poor vs. non-poor outcome with 100% specificity threshold. Along the y-axis, the various ML

methods are presented including the number of patients who were classified as poor and non-poor outcome. Along the x-axis, the percentage of patients per mRS

value is presented. In each graph, the black bar separates mRS 0–4 from 5 to 6. RFC, random forest classifier; SVM, support vector machine; LR, logistic regression;

NN, neural network; XGB, gradient boosting; mRS, modified Ranking Scale. Numbers in bars represent absolute number of patients.

of studies focusing on good functional outcome prediction,
although a different cut-off for dichotomization could have
impacted prediction accuracy and relevance of variables (13, 22).

All models showed similar performance in terms of AUC and
AUPROC, although NN was the method with the highest PPV
and specificity and was deemed the best-performing model in
multiple experiments. ML models can also be compared in terms
of complexity (training time, number of hyper-parameters, and
interpretability) (33). However, this was beyond the scope of
this study. Regarding the number of hyper-parameters, training
time, and interpretability, LR is the best method, being simpler
to handle while showing accuracies similar to the other more
complex models. In Fatima and Pasha (33), it was shown that ML
methods can greatly outperform each other in different datasets,
although this was not the case in our study.

The most important features in our models were age (in
all models), collaterals, glucose level, baseline NIHSS, onset-to-
first hospital time, and pre-stroke mRS (in LR and NN, the
models with the lowest false-positive rates). Recent studies that
used the MR CLEAN Registry dataset found similar variables
with the highest relevance for functional outcome using logistic
regression (mRS ≤ 2): age, NIHSS, diabetes, and time from
stroke onset to treatment (21, 22, 24). Interestingly, these studies

also identified ASPECTS, location of occlusion, smoking, and
hypertension as relevant, which were less frequently marked as
important in our study (21, 22, 24). This may be related to
the different dichotomization of mRS we used. Alternatively,
it may have to do with the manual selection of variables for
these logistic regression models, as opposed to the selection of
included variables by the ML methods we used. Despite none of
the currently known prognostic factors being selective enough to
base any EVT exclusion decision on, the more or less intuitive
importance of age, baseline stroke severity, and workflow times
for a patient’s outcome is confirmed in both our data and the
mentioned previous studies.

Regarding poor outcome prediction, some studies have
identified groups of patients that show poor outcome after IVT
regardless of reperfusion using diffusion-weighted MRI and CT
perfusion, respectively (5, 34).

STRENGTHS AND LIMITATIONS

Strengths of our study include the large sample size and
heterogeneity (coming from multi-centers) of the data, which
includes patients from all over the Netherlands. One of the
possible downsides of a heterogeneous dataset is that the models
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TABLE 3 | Number of false positives (mRS 0–4 classified as poor) and true positives (mRS 5–6 classified as poor) per specificity threshold for each ML method.

Method Optimized specificity True positives

mRS 5–6 patients classified as poor

of total mRS 5–6 patients (n = 480)

False positives

mRS 0–4 patients classified as poor

of total mRS 0–4 patients (n = 921)

RFC 95% 145 (30.2%) 52 (5.6%)

98% 91 (19.0%) 20 (2.2%)

100% 39 (8.1%) 8 (0.9%)

SVM 95% 136 (28.3%) 61 (6.2%)

98% 62 (12.9%) 28 (3.0%)

100% 33 (6.9%) 10 (1.1%)

NN 95% 163 (34.0%) 41 (4.5%)

98% 92 (19.2%) 10 (1.1%)

100% 21 (4.4%) 2 (0.2%)

XGB 95% 99 (20.6%) 27 (2.8%)

98% 63 (13.1%) 12 (1.3%)

100% 21 (4.4%) 6 (0.7%)

LR 95% 147 (30.6%) 35 (3.8%)

98% 92 (19.2%) 10 (1.1%)

100% 23 (4.8%) 1 (0.1%)

RFC, random forest classifier; SVM, support vector machine; LR, logistic regression; NN, neural network; XGB, gradient boosting; mRS, modified Rankin Scale.

TABLE 4 | Odds ratio of each variable included in the logistic regression model.

Variable Odds ratio (95% CI)

Age (years) 1.05 (1.04–1.06)

Pre-stroke mRS 1.35 (1.21–1.50)

Atrial fibrillation 1.37 (1.01–1.85)

NIHSS at baseline 1.06 (1.03–1.09)

Glucose level 1.16 (1.10–1.22)

Glasgow Coma Scale 0.90 (0.84–0.97)

Time: onset to groin puncture 1.00 (1.00–1.01)

50% or more atherosclerotic stenosis at

symptomatic carotid bifurcation on CTA

0.61 (0.38–0.99)

ASPECTS on baseline NCCT 0.94 (0.88–1.01)

Leukoaraiosis 1.69 (1.28–2.24)

Collaterals 0.60 (0.51–0.70)

CI, confidence interval; CTA, CT angiography; mRS, modified Rankin Scale; NIHSS,

National Institutes of Health stroke scale; NCCT, non-contrast CT; ASPECTS, Alberta

Stroke Programme Early CT Score.

could learn the differences between centers instead of focusing
on the task at hand (predicting poor outcome). Nevertheless,
we made sure that no variables related to the individual centers
were included and shuffled the dataset to prevent pre-determined
patient clusters. Despite this downside, the benefits of having
a heterogeneous dataset outweigh this risk because we aim
to develop models on data that are closer to the clinical
practice setting.

Furthermore, we explored distinct state-of-the-art ML
methods and optimized their hyper-parameters using an inner
CV loop, while testing the optimized model on the test sets in
the outer CV, which helps to prevent overoptimistic results,
increasing stability and reliability. We did not separate a unique
test set due to risk of, by change, separating a dataset with easier

or harder samples. We used several evaluation measures that
allow the models to be assessed from different points of view,
highlighting their differences. Our results show that there is
little difference in AUC values between models. By using other
measures, such as PPV, differences in performance between
models became clearer.

Some limitations to the current study should be noted.
Even though we used imputation to account for missing data,
a bias in the imputed values can never fully be excluded
because the estimates are always based on the available data.
No difference between imputation using Random Forest and
imputation using MICE was found. This can be due to the fact
that the disadvantages of single imputation are mostly relevant
in small datasets (with <100 events), which is not the case in the
MR CLEAN Registry (9). Despite MICE being a more common
imputation approach, RFI imputation is often more efficient
than MICE as shown in previous studies (35), and we therefore
only present the results for this approach. The large number
of variables included can also be a limitation because some of
the variables are not readily available or easily assessed and its
assessment may delay treatment decision. However, all variables
included can be derived before treatment decision (either by
local radiologists or automated tooling). Another limitation lies
in the models’ performance. The number of patients classified
as poor outcome became very low when specificity was set to a
very high value, and models still had false positives. Furthermore,
we used class weights to deal with data imbalance because other
approaches, such as under-sampling, would lead to a distribution
that is not realistic when compared with the real-life scenario of
acute ischemic stroke. Finally, we did not use test sets during
cross-validation or imputation, preventing information leakage
between datasets, which could lead to overoptimistic results.

Part of the goals of this study was to study to what extent
the ratio of correctly and falsely classified patients was with ML
models. In the prediction of poor outcome, high specificity and
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FIGURE 4 | Permutation feature importance for the Neural Network models. Average impact on the AUC. *50% or more atherosclerotic stenosis at symptomatic

carotid bifurcation on CTA baseline. ASPECTS, Alberta Stroke Programme Early CT Score; CRP, C reactive protein; mRS, modified Rankin Scale; NIHSS, National

Institutes of Health stroke scale.

PPV are important to avoid withholding treatment from patients
that may still have a non-poor outcome after EVT. The ML
models investigated in the current study had relatively high AUC,
PPV, and specificity, although not all patients were correctly
classified, even with a specificity threshold of 100%.

The ML methods applied in this study highlighted the
relevance of several baseline factors in the prediction of poor
functional outcome. For future research datasets, inclusion of
variables such as glucose level should be considered. In daily
practice, knowledge of the relevance of these variables could
support decision-making by clinicians when combined with
other relevant factors such as time from symptom onset and
the patient’s or family’s wishes. Although the prognostic models
included many baseline characteristics, other data of prognostic
relevance derived from CTP imaging were not included because
these were not commonly available in the data from the MR
CLEAN Registry. The inclusion of these parameters have the
potential to improve prediction in future studies. Besides, the
more extensive follow-up NIHSS could be used to define poor
functional outcome in future studies. Furthermore, for future
research, ML models could be created using the raw imaging
data (CT or CT angiography or both) and combined with the
models created in this study (10, 12, 36, 37). However, the
large number of data points has to be taken into account when

developing such approaches because imaging data is often of high
dimensionality, and medical datasets have often a very limited
number of samples.

Finally, we used poor outcome as our primary outcome. Poor
functional outcome could be a valuable outcome measure for
further studies because the certainty of death or severe disability
even after EVT could, to our expectations, form a relatively solid,
ethically justifiable ground to refrain from EVT. That way, rates
of futile treatment could be lowered. Poor outcome prediction
may be useful as an outcome measure as an addition to the
prediction of EVT benefit (mRS shift) because it does not require
data from randomized trials and can hence be used to train
models on future new data.

CONCLUSION

Poor outcome can be predicted with high specificity, although
all of the prediction models incorrectly classified some patients
as poor outcome. The percentage of misclassified non-
poor outcome patients was low, whereas more than one
third of the poor-outcome patients were correctly identified.
However, lowering false-positive rates came at the cost of
decreased sensitivity. It has to be studied further whether
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FIGURE 5 | Permutation feature importance for the Logistic Regression models. Average impact on the AUC. mRS, modified Rankin Scale; NIHSS, National Institutes

of Health stroke scale; RR, blood pressure (Riva-Rocci).

these accuracies are reproducible before implementation in
clinical practice could be considered or could be improved
further. Age, NIHSS, baseline glucose levels, pre-stroke mRS, and
collaterals were consistently ranked as important variables in all
prediction methods.
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