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Abstract 

Random-field effects on 3-dimensional (3-d) and quasi 2-d weakly aniso- 
tropic Heisenberg antiferromagnets with easy-axis type anisotropy are 
discussed. The effective, field-dependent anisotropy model is used. This 
model yields an accurate and quantitative description of the effects of an 
applied field on the intrinsic properties of the domainwalls, i.e., the wall 
tension U and the wall-thickness d, .  A comparison with experimental data 
for K,Mn,,_,,Mg,F, (quasi 2-d) and Mn(,-,,Zn,F, (3-d) is given. The dif- 
ferences with the strongly anisotropic 3-d antiferromagnetic, Fe,, -x,Zn,F,, 
are briefly considered. Furthermore it is argued that weakly anisotropic 
systems offer very promising possibilities for the study of the peculiar relaxa- 
tion and metastability effects that are so characteristic for random field Ising 
systems. 

1. Introduction 

Recently, random-field effects in 3-dimensional (3-d) and 
quasi 2-d Ising-type antiferromagnets have been extensively 
studied [l-31. Most efforts have been concentrated on the 
investigation of the critical behaviour at the phase boundary 
T,(B). This problem is still not understood although it has 
already led to basically new ideas about equilibrium critical 
properties and critical slowing down in random-field Ising 
systems [4]. 

The present paper deals with another novel aspect of the 
topic. For weak Ising-type anistropy there is a transition in 
the low-temperature phase which is field-induced, namely the 
spinflop transition that occurs for a critical value B = BSf of 
the applied magnetic field. A very weak rms random field B, 
already has drastic effects on this transition in the quasi 2-d 
case. This is evidenced by the experimental observation that 
even in nominally pure systems the first-order character of 
the spinflop is destroyed, which yields a strong indication that 
for T < T, (B) a domain structure is always present in the 2-d 
case. In the 3-d system on the other hand there is no such 
effect at all. This is in full agreement with the recent theoreti- 
cal proof of Imbrie [5 ]  that the lower critical dimension 
d,, < 3. It should be noted that the occurrence of domains 
near B,, in the 2-d case at low temperature can only be 
understood by the presence of weak random fields [6]. 

We also argue that investigations of the spinflop effect may 
contribute to the understanding of the metastability problem 
which has arisen from the investigations of randomly diluted 
3-d systems [2, 31 and which is of high current interest. From 
our considerations it follows that the weakly anisotropic anti- 
ferromagnet may be brought into a region where the relaxa- 
tion times should be of the order of minutes or even shorter. 
In that case the metastability behaviour will be accessible 
to various experimental techniques, a.0. neutron diffraction, 
NMR, the Mossbauer-effect and frequency dependent suscepti- 
bility measurements. 

In the present paper we focus mainly on field-induced 
effects connected with the random field problem. More about 
field-induced effects in weakly anisotropic Heisenberg anti- 
ferromagnets may be found in Ref. [6]. 

2. Domainwalls in the weakly anisotropic antiferromagnet 

The central item in our interpretation of the various magnetic 
phenomena that occur in the weakly anisotropic antiferro- 
magnetic system is the concept of the effective, field-dependent 
anisotropy [6,7]. It may be applied to quasi 1-d, quasi 2-d and 
3-d cases [6] and is very useful for the description of the 
domainwalls since it yields an explicit expression for the field- 
dependence of the surface tension r~ and the wall-thickness d,. 
In nearly all theoretical papers one of the basic assumptions 
is that the wall properties (r and d, are irrelevant and can be 
left out of the discussion. To our opinion this assumption is 
wrong for weakly anisotropic systems, which is what makes 
them so interesting. 

In general the weakly anisotropic antiferromagnet may be 
modeled by a classical isotropic interaction hamiltonian with 
orthorhombic anisotropy 

H = -2J C S,S, + C(DzS2z - D,S,,  + gpBB.S). (1) 

Here J < 0 is the isotropic nearest-neighbour exchange 
interaction and the anisotropies 0, and 0, together establish 
an easy (xy-)plane for the magnetic moments S with the 
x-axis as the preferential (Ising-)axis within this plane. The 
last term in hamiltonian (1) represents the conventional way 
of including an applied magnetic field B. As is explained in 
detail in [6], for B along the easy axis (B = B,) or along the 
intermediate axis (B = By)  one may unite the last two terms 
in hamiltonian (1) into one effective, field-dependent ani- 
sotropy term D,*,Si, with 

( h J )  k 

D& = D.,(1 - B:/B;,) for B = B, and ( 2 4  

D& = D,(1 + B:/Bz,) for B = By.  (2b) 

This effective, field-dependent anisotropy finds its origin in 
the difference between the magnetic susceptibility parallel (xlI ) 
and perpendicular (xl) to the easy axis of an antiferromag- 
net. At low temperatures one has xl < xI. In that case 0, 
and B, are competing, since the latter tends to polarize the 
moments perpendicular to itself and thus perpendicular to 
the easy (x)axis associated with 0,. At low temperatures the 
small xl, can be neglected and the net anistropy D,”,equals the 
differences between the anisotropy energy 0, S2 and the 
Zeeman energy +xl B:. The spinflop field B,, corresponds to 
D& = 0 and is determined through the equation +xlB;f = 
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D,S2. For B, < B,, one has D& > 0, and the moments are 
on the average along the x-axis. For B, > B,, on the other 
hand one has D,& < 0 so that the moments are mainly per- 
pendicular to the x-axis and are, in fact, polarized along the 
jl-axis, due to the additional presence of the positive D: term. 

We also emphasize that in case of orthorhombic anisotropy 
the symmetry is of the easy-axis type, both for B, < B,, and 
for B ,  > BSf.  Since D,k -+ 0 for B, -+ B,, i t  is the Dl-term 
that determines the symmetry around the spinflop transition 
at the lowest temperatures. Thus only for B,, = B,, the sys- 
tem becomes of the easy-plane type since then D,;t = 0 and 
Dz > 0. This will happen even in case of very small D,. and 
since most uniaxial systems will have some orthorhombic 
component, e.g., due to higher order effects, it is the orthor- 
hombic description which is most suitable for the interpreta- 
tion of the low-temperature behaviour near to Bs,, 

It may be noted that in case of a field parallel to the inter- 
mediate axis, B = B v ,  one may also define an effective 
anisotropy, cf. eq. (2b). Here the field-induced anisotropy 
strengthens the easy-axis anisotropy, so that D& increases 
starting from D,y at B, = 0. 

The concept of effective, field-dependent anisotropy may 
be applied to describe quantitatively (0, A,) the domainwall in 
the antiferromagnetic system, for B,y < B,, [Fig. l(a)] and for 
B, > B,, [Fig. l(b)]. An order of magnitude estimate of B and 
d, for such walls can be obtained using a simple classical 
mean-field domainwall model [8]. A more sophisticated des- 
cription can be given [6] on basis of the continuum approxi- 
mation to Hamiltonian (l) ,  namely the classical 2-d sine- 
Gordon (SG-)system. Here the domainwalls correspond to 
the soliton excitations in the SG-system. Taking into account 
the effective anisotropy one finds 

B = 4S2ID&(B)JI” and (3) 

d, = /J /D&(B)I’*.  (4) 
It follows immediately that B -+ 0 and d, -+ cc for B, -+ B,, 
and that both quantities vary continuously with B,. 

It is of interest to connect the above results to the random- 
field Ising model. The importance of the field-induced ani- 
sotropy effects becomes clear if one considers the random- 
field problem in the original form given by Imry and Ma [9]. 
In essence it comes down to a competition between the 
random-field energy and the surface tension of the domain- 
wall. According to the Imry-Ma criterion the energy of a 

domain can be estimated by: 

E, = aRd-‘ - B,Rd’, ( 5 )  
with B, the rms random field and R the radius of the domain. 
For x < 2 one has ED < 0 and the system prefers a domain 
structure. Recent careful calculations [5, 101 have established 
that also for d = 2 there is no long-range order. 

Consider now a weakly anisotropic antiferromagnet with 
d < dlc, subject to a weak random field B,. In that case the 
domains will be large in the absence of an applied field, since 
[T will be substantial and the domainwalls are fairly narrow 
(5-10 lattice units). Application of a field B,y will however 
decrease [T, and therefore influences the balance between the 
wall energy and the random field energy, cf. eq. ( 9 ,  through 
the f irs t  term. Consequently the wall-density 4- l  should 
increase, provided that the system stays at equilibrium. 

An interesting consequence of this argument is that in 
order to study random-field effects in weakly anisotropic 
antiferromagnets there is no strict need to make use of Fish- 
man and Aharony’s device [l I] .  They were the first to remark 
that an external field B,, applied to an antiferromagnet that 
is randomly diluted with nonmagnetic impurities, will give 
rise to a random staggered field B,“ K B,y. This allows the 
variation of the second term in eq. ( 5 ) .  In case of strong 
anisotropy or low fields and a fairly large amount of nonmag- 
netic impurities the variation with B, of the second term 
should predominate the first. However. for weak anisotropy 
and B,  % B,, the variation of the first term may become 
predominant. Furthermore, for nominally pure systems the 
random field will hardly depend on the applied field since the 
very small B, that is present should be mainly due to lattice 
defects and the like. In such cases the first term may still be 
tuned by the external B,. This opens the possibility of inves- 
tigating the random field effects by means of experiments on 
formally pure systems, where the additional random-exchange 
effects arising from nonmagnetic impurities are much less 
interfering than in heavily diluted systems. 

A problem that has attracted much attention recently is 
the peculiar metastability phenomenon observed in the vari- 
ous experimental cases [2, 31. It has been found that relaxa- 
tion of the wall-pattern towards its equilibrium configuration 
at T < T,(B,y) proceeds extremely slow, which has been 
attributed to pinning of the walls by defects and impurities 
[12]. This would imply for the present case that, notwith- 
standing the decrease of B as B, -+ B,, the wall density 
q - ~ ’  would not change, at least not on the timescale of the 
experiment. As long as B, 6 B,, this may happen indeed. 
However, for B,y z B,, the d, will increase and may become 
of the order of 10-100 lattice units (1.u.). In that case the 
relaxation times may become quite short. Since d, varies 
continuously with B, also the relaxation behaviour may thus 
be tuned with the field, and probably with the temperature. 
In particular for temperatures in the vicinity of the phase 
boundary T,(B)  one would expect a thermal meandering of 
the walls. 

+d, -+ 3. Experiments 
Fig. I .  Domainwalls in weakly anisotropic antiferromagnets (schematic) for 
B, < B,, (a) and for B,  > B,, (b). The total width is approximately rrd, and 
the moments on both sublattices rotate through an angle 71. The wall corres- 
ponds either to a fragment of the flopped phase in the low field phase (a) or 

Below we present 

diagram Of the quasi 2-d compound K 2 M n F 4  [131- for 

experimental data, supporting the 
ideas presented in the above. In Fig. 2(a) we show the phase 

parallel and perpendicular to the easy axis, whereas Fig. 2(b) to ;I fragment of thelow-field phase in the flopped phase (b). 
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0 20 40 60 
temperature (Kelvin) 

Fig. 2. (a) Phase diagram of chemically pure K,MnF,, which is an example 
of a quasi 2-d weakly anisotropic antiferromagnet. Data are from Ref. [13] 
and are for Bparallel(0, A, +)and perpendicular (m) to the easy e-axis. The 
solid and dashed lines represent the theory according to eq. (6). The dotted 

gives the phasediagram of MnF, for B = B, [14]. Both 
samples were nominally pure. 

For K,MnF, the effective anisotropy is of the uniaxial 
Ising type for B,  < B,, and of the XY-type of B, > B,, 
except for the lowest temperatures, where the symmetry 
should be weakly orthorhombic due to a small distortion of 
the quadratic layers [ 131. In Fig. 2(a) the dotted line is a guide 
to the eye whereas solid and dashed lines give the predictions 
for the phase boundaries for B = By ,  respectively. Here the 
effective anisotropy model has been applied, yielding the vari- 
ation of D& with B in the expression: 

Tc(B)  [D&(B)l”. (6) 
This formula gives the predicted variation of Tc with ani- 
sotropy for a weakly anisotropic 2-d Heisenberg magnet 
obtained from Monte Carlo calculations [15]. The fit to the 
experiment gives n x 0.04 [13], in good accord with the 
theoretical value (n z 0-0.02). The apparent agreement 
between theory and experiment clearly demonstrates the suc- 
cess of the effective anisotropy model for a specific case. 
Other excellent examples can be found elsewhere [6], notably 
for quasi 2-d and quasi 1-d systems. 

The spinflop transition corresponds to the horizontal 
curve in the diagram of Fig. 2(a). It has been obtained from 
both a.c.-susceptibility and neutron scattering studies. In the 
neutron experiment the variation of the intensity of a mag- 
netic Bragg reflection with field is followed, yielding the 
rotation of the staggered magnetization m. The result of such 
an experiment, which has been performed at T = 4.2K, is 
shown in Fig. 3. It appears that m rotates gradually as B, is 
increased to a value larger than BSf, where the total width of 
the transition is almost one Tesla, i.e., 20% of Bsf! For 
subsequent use we define: 

12.5 

12.0 

1 1.5 

7 

D 

0 

0 
0 

0 
0 

0 

I 0 

6 4 . 5  6Y.7  6 4 . 9  0 

6 2  63 64  65 6 6  6 1  68 
temperature (Kelvin) 

curve is a guide to the eye, The bifurcation is shown enlarged in the inset. (b) 
Phase diagram of the 3-d system MnF,, also chemically pure. Data are from 
Ref. [14] and have been taken in magnetic fields parallel to the easy axis. The 
bifurcation is shown in detail in the inset. 

( m i )  3 (m:)  for B, < Bsf and 

( m i )  ( m f )  for B, > Bsf. (7) 
Here m, and m, are the components of m parallel and 

perpendicular to the easy axis, respectively. The smeared 
spinflop detected in the neutron experiment on a 2-d example 
is widely different from what is observed in the 3-d system. In 
the latter the total width amounts to x 1OP2T and can be 
fully explained taking into account demagnetizing effects. It 
is commonly accepted that in the 3-d system the spinflop is 
first-order. This may be illustrated from Fig. 4, where we 
show the behaviour of the magnetization in applied fields B, 
for the quasi 2-d system K,MnF, and the 3-d system MnF,, 

++++‘++-it ,“F+ 

0 . 8  

o - 6  0.4 1 0 8 1  K2MnF4 
0s T - 4  2 K  

H//c-ax is 
+8 (QUASI 2 - d )  :@ 

V 0 .2  

0.0 
4.5 .EL0 5.5 6.0 6.5 1.0 

magnetic field (Tesla) 
Fig. 3. Rotation of the staggered magnetization in applied fields B, for 
K,MnF, at T = 4.2K.  Circles: (mi), crosses: (mi). 
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W 5 
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0 2  4 6 8 

magnetic field (Tesla) 

Fig. 4. (a) Spinflop transition in thequasi 2-d-system K,Mn(,-,,Mg,F,. The 
magnetization data shown are for the pure compound (0) and for two 
diluted compounds with x = 0.07 ( A )  and x = 0.24 (+). The experiments 
have been performed in pulsed fields. Solid curves are fits to eqs. (8) with 
4- '  = and with xL = 0.022emu/mole and xI = O.O26emu/mole for 

both pure and with nonmagnetic impurities (Mg, Zn). The 
data are from Refs. [1&18]. The results for the pure com- 
pounds are given by the open circles. As regards the width of 
the transition the difference is quite striking. More examples 
of sharp spinflops in 3-d systems and broadened spinflops in 
quasi 2-d systems and also in quasi 1-d systems may be found 
in the literature [6, 191. 

To our opinion the broadening of the spinflop in low-d 
systems has to be attributed to the presence of domainwalls. 
In order to explain this we go back to Fig. 1.  In the anti- 
ferromagnetic domainwall the moments rotate through an 
angle 7c on both sublattices. The total width is approximately 
nd,. For B, < B,, the domainwall may be considered as a 
region of the flopped phase in the low-field phase [cf. 
Fig. l(a)], since inside the wall the average polarization of the 
individual moments is tilted with respect to the easy (x-axis) 
and thus will give rise to perpendicular components m L .  
Along the same lines one may argue that for B, > B,, the 
domainwall is in fact a region of the low-field phase in the 
flopped phase [cf. Fig. l(b)]. As mentioned before there may 
be two reasons why the walls show up in the experiments for 
B, + B,,, namely firstly via the increase of d,, and secondly, 
in case the relaxation of the system is sufficiently fast with 
respect to the characteristic time of the experiment, due to the 
increase in the wall density q-' . In the neutron experiment of 
Fig. 3 equilibrium could be obtained, although the relaxation 
took several minutes. 

Also in Fig. 4 we show the magnetization curves of some 
K,Mn(,_.,Mg,F, [I61 and Mn,,-,,Zn,F, [17, 181 compounds. 
The results for the K,Mn(,_,,Mg,F, samples have been 
obtained in pulsed fields where the pulse duration is within 
z 0.1 s. In these diluted compounds the external field will give 
rise to a random staggered field [I  13 so that eq. (5) will depend 
on the applied field through both the first and the second 
term. However, during such a fast experiment the wall density 
can not be expected to change since the relaxation times are 
much longer than the pulse duration. Nevertheless, the effect 
of the increasing d, alone is apparently sufficient to cause a 

Physica Scripta TI3  

30 

20 

10 

0 

V -- I/ - ) , r 
I C1 

- '  

c 

I 5 0  

! 00 

50 

0 

2 a) 
v 

.- s 

.- t .I- 

.I- 

f 
0 5 1 0  15 

magnetic field (Tesla) 

x = 0 and x = 0.07 respectively. (Data taken from Refs. [16]). (b) Spin-flop 
transitions in the 3-d-system Mn,, -,,Zn, F,, pure (0) and with 25% Zn (solid 
line). Data are from Refs. [17, 181. Note the absence of broadening, also for 
the .x = 0.25 compound. 

substantial broadening of the spinflop even in the chemically 
pure system! The solid curves in Fig. 4(a) are fits to the 
theoretical prediction [6] for the magnetization as given by 

for B ,  < B,, and 
(8) 

= Mso,  

M = xLB,  - M,,, for B,  > BSf, 

with 

M,,, = 8 S 2 i L B x [  -1 2Jds q-' nkg T (9) 

the contribution of the static domainwalls to the magnetiza- 
tion [20]. Indeed, from these fits the wall density in the impure 
system is found to be the same as in the pure one. 

In an attempt to analyze the neutron data of Fig. 3 one 
may compare the experimental results with theoretical 
predictions for the weakly anisotropic system in a random 
field. Here we use the close correspondence [6] with the 
commensurate-incommensurate (CI-)transition in a noble 
gas monolayer on a solid surface, that has been investigated 
extensively during the past few years [21]. Both phenomena 
are described by the same continuum model, the SG-system. 
In the CI-problem the chemical potential p for walls is vari- 
able. For domainwalls in a weakly anisotropic antiferromag- 
net one has p = 0 since a finite p would be a "twist field" that 
cannot be applied in an experiment. 

The influence of random fields on the CI-problem has been 
investigated a.0. by Villain et al. [22]. They considered a 2-d 
modified Ising-type system with a preferential direction for 
walls. In such a system the walls will be long and almost 
straight. Although in this work the isotropic case is con- 
sidered we shall nevertheless adopt their model since as far as 
we know it is the best approximation available. Villain et al. 
found that in the low-temperature phase the system has a 
considerable amount of order but is not long-range ordered. 
The wall-density is low and for p = 0 it may be expressed as 

q - '  CT exp (10) 
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Fig. 5. Semi-logarithmic plot of (mi) vs. ( U / U ~ ) ~ ’ ~ ,  The solid line is the fit to 
the theory given by eq. (10). 

with 

a. = 4 S 2 m  and (1 1) 

y = 2 ( 0 ~ / b , ) ~ / ~ .  (12) 
Here b, = gPBBr/kB. Furthermore one has ( m i )  ac q - ’ ,  
yielding an exponential law for ( m i ) .  In Fig. 5 the com- 
parison between the neutron data of Fig. 3 and this theory is 
shown. From the slope of the curve we obtain b, = 8K,  
which is consistent with a random field strength bo = bride 
at the defects of about 500 K, assuming a defect concentra- 
tion c x 10-3-10-4 per 1.u. The value bo % 500K seems 
reasonable since it is of the same order as the droplet creation 
energy [6, 211 in the 2-d SG-approximation, 47tJS2/kB % 

460 K. 
Thus it appears that the intensity variation of the magnetic 

Bragg peak may be well-explained in terms of domainwalls. 
Of particular interest here is that the relaxation effects were 
indeed observed during the neutron measurements. 

As far as experiments on 3-d examples is concerned, the 
attention is focussed mainly on Mn(,-,Zn,F, [3] and 
Fe,yZn(,-,,F, [2]. In the Mn-compounds the anisotropy is of 
dipolar origin and is therefore, weak, as in K,MnF4. The 
x = 0.25 and x = 0.35 Mn-compounds have been exten- 
sively studied [23]. Despite the fact that here compounds with 
d > dl, are concerned a domain state appears to be thermo- 
dynamically stable if the samples are cooled in a field that 
generates the random field according to the Fishman and 
Aharony device. One may argue that for these diluted sys- 
tems the random field approach is too restricted to yield a full 

explanation of the experimental observations. Recent mean 
field computer simulations [24] of diluted 3-d weakly ani- 
sotropic antiferromagnets that should provide a better 
theoretical description than the random field model, indeed 
yield such a stable domain phase between the paramagnetic 
and the Ising ordered phase. 

In fact it is not so surprising that the ramdom-field model 
may only partly explain the field-induced phenomena for 
these diluted systems. The nonmagnetic impurities affect the 
system in various other ways, e.g., there will be random 
exchange effects and random anisotropy effects. The former 
occurs since part of the nearest-neighbour exchange-bonds 
are removed by the dilution. The latter occurs in case the ani- 
sotropy is due to the dipolar interactions between the mag- 
netic moments, which is typically a long-range effect. In dilu- 
ted systems these dipolar interactions are then non-uniform. 
Both effects, i.e. the influences on the exchange and on the 
anisotropy, have important implications for the experimental 
behaviour. Obviously, for very high impurity concentrations 
one ultimately reaches the percolation threshold, correspond- 
ing to the situation that T, = 0 and D, = 0, but even for 
moderate concentrations of non-magnetic ions the reduction 
of T, and D, are well-observable [25]. Furthermore it is 
well-known that the phase diagram is quite complex, with 
many different phases. (This is also found in the computer- 
simulations of Ref. [24]). Thus it appears that already for 
moderate impurity concentrations a random-field descrip- 
tion, which is essentially a perturbation approach, is too 
restricted. On the other hand, if one wants to investigate 
random field effects in magnetic systems, the strategy out- 
lined in the present paper, i.e., variation of the energy-balance 
through the first term in eq. (5), may be useful, since it should 
be applicable to chemically pure systems. In that case B, is 
weak and may indeed be considered as a perturbation. 

Furthermore, in the experimental literature the influence 
of the applied field on the intrinsic properties of the domain- 
walls has not been taken into account. Also in the 3-d case 
one should consider field-induced anisotropy effects. Con- 
sidering the amount of dilution one would expect that for low 
B, the effect of the field-dependence of B, will be much more 
important than the effect of the field-induced variation of a .  
On the other hand, one has a -, 0 for B, -, Bsf, so that 
in this limit the field-induced variation of r~ is the domi- 
nant effect. This might explain why the correlation lengths 5 
observed by Cowley et al. [23] in samples of Mno,,,Zno,,,F, 
cooled in fields between 4 T  and B s f ,  are significantly lower 
than in zero field. At low temperatures and for B, = 4 T they 
find 5-‘ x 0.0003 and a x 0.6a0, whereas for B,  = 4.8T 
one has 5-l x 0.0005 and CT x 0.3a0, i.e., a decrease of r~ 

implies an increase in the wall-density, which is fully compar- 
able to what is observed for systems with d < d,c. 

Since the walls are broad (nd, z 11 1.u. for B, = 0) relax- 
ation is possible, as in K,MnF4, and has been observed 
indeed in both the real experiments [3, 231 and in the com- 
puter simulations [24]. Some differences between the two are 
still unresolved, namely: in both cases relaxation towards the 
Ising ordered phase is observed as the field is removed, but in 
the simulations the domain-state is restored upon subsequent 
increase of B, whereas in the experiments the ordered state is 
stable since the domain state cannot be obtained starting 
from B ,  = 0. The latter is in agreement with the spinflop 
experiment [18] on the x = 0.25 compound shown in 
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Fig. 3(b). The transition is as narrow as in the pure system, 
indicating the complete absence of domainwalls. 

Also in Fe,, ,)Zn, F2 a domain state is observed upon field 
cooling [26]. Here the anisotropy is due to crystal field effects 
and is quite strong, which is reflected int he much higher value 
for B,, zz 40T [27]. Several diluted compounds have been 
investigated, for E ,  up to 5 T  [2]. Since E ,  4 B,, the field- 
induced effects on B and d, are less than 1 %, in strong contrast 
to what happens in the Mn counterpart. Consequently the 
walls are very narrow, nd, zz 1 I.u. and for T < T, they 
should be strongly pinned by defects and impurities in the 
field region. This is in agreement with the experimental obser- 
vations [26]. It has been reported that the domain state does 
not transform into the Ising ordered state if the field is 
removed at low temperatures, T < T,(B,). On the other 
hand it has been reported that for T S T,(B,) the system 
behaves similar as Mn,, ..xlZn.xFz, i.e., relaxation towards the 
ordered state upon a field decrease and preservation of the 
ordered state upon increasing the field. The reason may be 
that for T 2 T, (E , )  there will be an effective decrease of due 
to thermal fluctuations. The latter effect occurs in any Ising- 
type system around T, and is part of the critical behaviour. 
Within the context of the present work one might state that 
variation of the temperature in the critical region may be 
viewed as causing an effective variation of the first term in 

Finally we would like to discuss briefly the behaviour 
observed for E ,  zz B,, at T 2 T,(B,). In this region both 
contributions to the decrease of B are important, i.e. that due 
to field-induced effects and that due to thermal fluctuations. 
Moreover the associated increase of d, may have its conse- 
quences. Going along the phase line T,(B,) a crossover from 
metastability in low fields (narrow walls) towards thermal 
wall meandering for E, x EST should take place. 

It is of interest to see how these phenomena influence the 
phase diagrams of the weakly anisotropic systems. Compari- 

eq. ( 5 ) .  

TC 
temperature 

Fig. 6. (a) Phase diagram (p-7‘ )  for the 2-d-SG-system in a “twist-field” p 
(schematic). The different phases are: disordered (D), ordered commensurate 
(C) and floating incommensurate (IC). Only in the IC-phase there are 

son of the inserts in Figs. 2(a) and 2(b) shows the difference 
in behaviour. In the quasi 2-d system the spinflop line and the 
XY-P and I-P transition bifurcate from the spinflop line. The 
latter is considered to be the normal situation since it also 
occurs for quasi 1-d systems and since it has been explained 
by various theories. However, the anomalous type of bifurca- 
tion has also been found in the diluted 3-d Mn(,-xZn,F2 
systems, where this behaviour may be a random-field effect 

For the 2-d system this is corroborated by the theoretical 
work on the CI problem. In Fig. 6(a) we show (schematic- 
ally) the phase diagram of the pure 2-d weakly anisotropic 
Ising system [28]. Here p is the “twist-field’’ or chemical 
potential for walls and p c  cc B .  There are three phases. The 
commensurate or ordered phase (C), the disordered phase 
(D) and the incommensurate (I) phase where there are long 
meandering domainwalls. At T = 0 and for p 1 pcc the wall 
density vanishes so that for p < p c  the system is ordered 
(C-phase). In Fig. 6(b) we give a schematic sketch of what this 
phase diagram might look like if a random field becomes 
involved [6]. In that case the wall density decreases but does 
not completely vanish for p 1 pc  and the low-T/low-p phase 
should be pseudo-commensurate (PC), that is with only a few 
walls which are almost static. The IC-D phaseline should join 
the PC-D line at some point (T2, p 2 ) .  

In the quasi 2-d magnetic modelsystems discussed here one 
has , ~ i  = 0 and p c  1 0 for B, -+ BSf.  However, the B, that is 
present may be considered as an effective chemical potential 
for walls, p r ,  which is almost field-independent for a chemi- 
cally pure system. If B,  -+ B,, one has pc  1 0 and p z  1 0. 
Hence for B, FZ B,, there should be a phase with thermally 
meandering walls between the ordered phase and the para- 
magnetic phase. Furthermore the bifurcation may corres- 
pond to a Lifshitz-type point. 

Note that the IC-D transition is a Kosterlitz-Thouless 
transition whereas both the IC-PC and the D-PC transitions 

P81. 

T C  
temper at ure 

domainwalls in the system. (b) Proposed phase diagram ( p T )  for the 2-d- 
SG-system in an effective “twist-field” pr due to a random field B, .  In the 
PC-phase the system contains (nearly) frozen walls. 
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are Ising transitions. This follows from the various renor- 
malization approaches to the CI-problem [2 1, 22, 28-30], 
where it appears that Ising-type anisotropies ae strongly 
relevant [31]. This is in agreement with the experimentally 
found phase diagram of K,MnF, [cf. Fig. 2(a)]. Here the 
whole boundary of the (pseudo-)ordered phase, including the 
spinflop line, is described by the Monte-Carlo prediction for 
systems with weak Ising-type anisotropy (cf. eq. (6) ) .  

Obviously, one of the problems with the above explana- 
tion is that it relies heavily on the 2-d nature of the system, 
whereas experimentally the peculiar bifurcation appears to be 
also seen in 3-d diluted MnF,. It may therefore well be that 
the explanation should be sought elsewhere, and would apply 
to the 3-d as well as to the quasi 2-d case. In this respect it is 
worthwhile to recall that the first-order spinflop line and the 
bi-critial point in which it ends are extremely sensitive to 
“hidden” variables in the system. For the spinflop transition 
both molecular field theory and spin wave-theory [32] predict 
supercooling and superheating effects, the value of the spin- 
flow field being substantially different for increasing and 
decreasing applied field. Although these first-order effects 
have not been observed in pure 3-d antiferromagnets, they 
might well be triggered by the slightest amount of impurity 
and give rise to domains of flopped and unflopped phases. As 
regards the bicritical point, Landau-type free-energy expan- 
sions already show that its occurrence should be very sensi- 
tive to the presence of other, weak thermodynamic besides 
the field and the temperature. 

In conclusion one may state that within the context of the 
effective field-dependent anisotropy model, weakly anisotro- 
pic systems offer quite promising novel possibilities for the 
study of random-field and metastability behaviour, possibili- 
ties that have so far not been considered. The experimental 
data discussed above strongly support the various theoretical 
predictions from the model and yield convincing evidence 
that the intrinsic properties of the domainwalls, CT and d,, are 
indeed important for a complete description of the various 
interesting phenomena that are observed in the experiments. 
We strongly advocate more effort along these lines, theoretic- 
ally as well as experimentally. 
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