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PHASE DIAGRAMS OF WEAKLY ANISOTROPIC HEISENBERG ANTIFERROMAGNETS:III. 
NONLINEAR EXCITATIONS AND RANDOM FIELDS IN QUASI 2-DIMENSIONAL SYSTEMS. 

H.J.M. de Groot and L.J. de Jongh 
Kamerlingh Onnes Laboratorium der Rijksuniversiteit te Leiden, 

Postbus 9600, 2300 RA Leiden, Nederland 

(Received 21st May 1985, by R.A. Cowley) 

The concept of effective field-dependent anisotropy is applied to the 
"spinflop" transition in the quasi 2-d Heisenberg antiferromagnet with 
weak orthorhombic anisotropy. From the correspondence between the 
"spinflop" problem and the commensurate-incommensurate transition it 
follows that the "spinflop" is not first order and that random fields 

maY cause domain-wall formation. This would explain the observed 
broadening of the "spinflop" in K2MnF4. In 3-d antiferromagnets such 
anomalous broadening is not observed, which would agree with the 
critical dimensionality d, = 2 for the random-field problem. 

In two previous papers 1~~ (I and 11) the field- 
induced phase transitions occurring in respec- 
tively the quasi one-dimensional (l-d) and quasi 
two-dimensional (2-d) Heisenberg antiferromag- 
nets with weak anisotropies have been discussed 
using the concept of effective field-dependent 
anisotropy. For both cases theoretical predic- 
tions for the magnetic phase diagram were de- 
duced and compared with experimental data avail- 
able in the literature. Furthermore it was shown 
in paper I that the physical mechanisms underly- 
ing the field-induced behaviour in the quasi l-d 
system are quite different from those in the 3-d 
case. In particular the "spinflop" phenomenon 
obtains a different meaning and does not corre- 
spond with a first order transition. It was 
argued that at finite temperatures it may even 
be a continuous (perhaps infinite-order) tran- 
sition, in a lattice of antiferromagnetic 
soliton-pair-states. 

Encouraged by these results we proceeded to 
consider in more detail the "spinflop" transi- 
tion in the quasi 2-d system as well. In the 
present work we apply the same field-dependent 
anisotropy concept to this problem and we point 
out the close relationships with other topics in 
2-d physics, as there are the commensurate-in- 
commensurate (C-I) transit on 

t p3. 
the Kosterlitz- 

Thouless (K-T) transition a d the random field 
or random anisotropy problem . 

When applied to the 2-d Heisenberg antifer- 
romagnet with weak orthorhombic anisotropy, the 
effective anisotropy model yields the hamil- 
tonian: 

Jc = -25 C 13 - C (DeffS;x - DZStZ) 
<i,j> i j k 

(1) 

with J<O and D,>O. Here Deff is the effective 
anisotropy as given by the equation: 

Deff = D, (1 - H~/H:~) . (2) 

As in papers I and II, D, is the anisotropy in 
zero field favouring the X-axis (D,>O), and Hsf 

= 4S 12zD,Jj+/gp is the "spinflop" field. Deff 
arises from theB competition between the aniso- 
trop 

s 
energy D S(S+l) and the Zeeman energy 

VX 
associate d with a field parallel to the 

easy axis. Application of the effective aniso- 
tropy model to a hamiltonian which contains an 
easy-axis term DxS$ together with a field term 

gl.r HXSX 
sk pping B 

amounts to replacing D, by Deff and 
the field term, which results in hamil- 

tonian (1). The first term represents the ex- 
change interaction, which is taken to be iso- 
tropic, and the last term establishes an easy 
(XY) plane. The symmetry in this plane is broken 
by the anisotropy D ff, that favours either the 
X-axis (Deff >0) or t%e Y-axis (Deff<O). 

T 
P 

‘X 

H 
Sf 

Fig. 1 Phase diagram (schematic) of the 2-d 
antiferromagnet with orthorhombic anisot- 
ropy for fields Hx along the easy axis. 
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The phase diagram for H = Hx for a such a 
system was discussed in paper II and is sketched 
in fig. 1. For Hx < H the anisotropy D ff is 
of the Ising type and st%e phase line (I-P? cor- 
responds to transitions from the 2-d long-range 
uniaxially ordered Ising state towards the para- 
magnetic phase. For I-l, = H,f one has Deff = 0 
and the anisotropy is of the XY-type due to the 
presence of the Dg term in eq.(l). Hence the 
(dashed) "spinflop line should be a line of 
continuous phase transitions ending in the bi- 
critical point (T2,H ). The latter should 
correspond to a Koster itz-Thouless 1 transition, 
i.e. a transition from a state of topological 
order towards the paramagnetic state. For 

the system is also Ising, as for 
but with the Y-axis as the easy axis 

is negative in this case 
and the X-axis becomes the intermediate axis. 
When H is further increased, one passes in? a 
situat on where Deff > D,, and a switching r of 
the hard axis occurs. For the present work, how- 
ever, this will not be considered since we shall 
concentrate on the phenomena observed for fields 
Hx close to Hsf. 

In paper II the field-dependent anisotropy 
concept was applied to the phase diagrams of the 
compounds Mn(HC00)2.2H20 and K2MnF4. From the 
good agreement between theory and the experi- 
ments it appeared that the effective anisotropy 
concept is a powerful tool for understanding the 
field-induced transitions in the weakly aniso- 
tropic 2-d antiferromagnet. Therefore it is of 
interest to investigate the extent to which it 
can be used to explain the physical phenomena 
leading to the "spinflop" transition. The latter 
again turns out to be quite different from the 
conventional spinflop in the 3-d antiferromag- 
net. In fig. 
data 7 

2 we reanalyse neutron scattering 
for K2MnF 

f 
that demonstrate this. In the 

experiment in re .7 the intensity I of the mag- 
netic Bragg-peak at the reciprocal lattice 
vector (h,k,l) = (3/2,1/2,0) was followed at 
T = 4.2 K for magnetic fields H between 45 kOe 
and 70 kOe. It is clear from Kg. 3 of ref. 7 
that the average orientation of the magnetic 
moment changes from mainly perpendicular to 
(3/2,1/2,0) at H, = 45 kOe to mainly parallel to 
(3/2,1/2,0) at Hx = 70 kOe, corresponding to a 
spinflop-type transition at H f IJ 55 kOe. At low 
temperatures and for Hx>Hsf tf;e symmetfy of this 
compound is effectively orthorhombic since an 
antiferromagnetic spin component within the 
basal plane will induce a distortion of the 
tetragonal lattice, as can be understood from 
magnetic-grouptheoretical arguments. Then the 
system is decribed by the effective spinhamil- 
tonian (1) with small D,. From the relation: 

1(3/2,1/2,0) a <mi><sin* 0,,> + <m:><sin' 81) (3) 

where m 
malized 

1 
and m,, are the components of the nor- 
staggered magnetization parallel and 

perpendicular to the c-axis, and 6 % 
the 

angles they make with the 
1 
3/2,1/2,0)Id;rection, 

the field dependence of 
duced. 

<m > and <mi> can be de- 
The neutron beam 1 n the experiment was 

perpendicular to the c-axis, SO 8 = 90'. Now 
for Hx << H,f one may safely state '<m:> = 0 and 
<m*> 
th$ 

= 1 with 1(3/2,1/2,0) = IO. For H?>> H,f on 
other hand, <m*> = 0 and <m > = 1 SO 

I(3/2,1/2,G) - 1. <sinh 91). If the &nmetry of 

the high-field phase were of the planar type 
there would be no preferential value for 8 so 
one would have <sin* 0 > = $. This would yield 
I(3/2,1/2,0) = $I0 for & >> Hsf, which is half 
the intensity in low field. This clearly dis- 
agrees with fig. 3 of ref.7, where one has 

= 0.2 IO, so it follows that the 
symmetry is indeed not retained for 

I > Hsf. When the lattice transforms into a 
lozenge, the moments can be either along the 
(-l,l,O) direction, with <sin* S > = 0.8, or 
along the (l,l,O) direction with1 <sin* 81) = 
0.2. The latter corresponds to the experimental 
observation and thus we will assume below that 
in the "flopped" phase the moments are along the 
(l,l,O) direction. The reason why the crystal 
becomes a single domain can be e.g. a small mis- 
orientation of the sample. This is of course in- 
evitable and will result in a small perpendicu- 
lar component of the applied field that will fa- 
vour one of the two possible transformations. On 
basis of the above discussion we show in fig. 2 
the field-dependence of <m*> and <m*>, according 
to eq.(3) with <sin* 6 > 20.2. It'is seen that 
the transition is 10 k&e broad, much broader in- 
deed than could possibly be explained by demag- 
netizing effects or sample misorientation, since 
those would cause a broadening of at most 1 kOe. 
Similar widely smetred "spinflop" transitions 
have been observed in other 2-d antiferromag- 
nets, as in K2NiF4 and Rb2NiF4. 

1.0 

0.8 

0.6 

0.4 
h 
"1,;; 

" 0.2 

0.0 
115 50 55 60 65 70 

H (kne) 

Fig. 2 R tation 
rn' 

of the staggered magnetization 
versus an applied field Hllc-axis at 

T = 4.2 K in 
crosses <mf>. 

K2MnF4. Circles: <mi>, 

Since the broadening is much too large to 
be due to demagnetizing effects or misorienta- 
tion, another process must be involved. It was 
argued in paper I that in the quasi l-d antifer- 
romagnet, where comparable broadening effects 
are observed, the thermal excitation of small 
l-d droplets accounts well for the observed 
broadening. These may be considered as bound 
states of a soliton and an antisoliton (domain- 
walls) in the l-d magnet. The idea behind it is 
that inside a wall the spins have components 
perpendicular to the preferential axis and 
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therefore a wall corresponds to a fragment of 
the flopped phase in the low-field phase for 

ZaLHSf 
and to a fragment of the low-field 

n the flopped phase for Hx > Hsf. The 
question now arises whether walls may also exist 
in the quasi 2-d antiferromagnet, either in the 
form of small droplets or as large meandering 
domain-walls, and yield similar effects as in 
the l-d case. 

First we shall consider the model of exci- 
tation of small droplets, in view of its success 
in the chainlike systems. It has been pointed 
out that weakly localized magnon bound states or 
vortices may exist in the 92-d antiferromagnet 
with weak Ising anisotropy . They will possess 
a certain stabiiity provided they contain suffi- 
cient magnons, due to the fact that the radius 
of the droplet must e larger than the wall 
thickness d = IJ/Deffl 3: of an isolated domain- 
wall. The creation energy of a droplet equals 
Ed = E, + E, with E, = 8 IJlS*Q for the vortex 
part and E, = 4S21Deff J[ 5 .R for the wall part. 
Here Q is the topological charge of the vortex 
(i.e. the amount of vorticity) and II is the 
perimeter of the droplet. For K2MnF4 one then 
calculates Ed = 650 K as the minimum value for 

Edy that is for Q = 0 and I = 2rd. This 
does not depend on Deff since d = IJ 
may conclude that the probability of 

/De f 
sue 

F, ,$a% 
a vor- 

tex excitation will be very low at T = 4.2 K, 
which is the temperature at which the neutron 
diffraction experiment of fig.2 was performed. 
Apparently, the analogue of the l-d soliton 
pair-state invoked in paper I to explain the 
spinflop in chain systems can not be responsible 
for the observed broadening in the 2-d case. 

As regards the second possibility of large 
meandering domain-walls, the situation is more 
complex. In the 2-d magnetic layer the walls 
will form line-patterns and, besides the wall- 
energy which depends on the length 1 of the wall 
as in the above, also the entropy arising from 
the wall pattern may give an important contribu- 
tion to the free energy of the system. If one 
considers a large, closed domain-wall (i.e. a 
droplet with II >> l), this can be seen as a 
self-avoiding closed loop. For large L the nu - 

I_ -II: ber of realisations is given by n(n)= p 1 , 
with p = 2.6395 and h = 312 for the square lat- 

tice lo. The contribution of such a vortex to 
the free energy 

& 
s estimated as 

AF = (4S21DeffJI - TRn(u))L + ThLn(L). Since 
for sufficiently large I. one has L>>lln(ll) the 
last term can be neglected. Di sociation of the 
vortex occurs for 'ii 

then AF will become 
4S2/De fJ14<ln(p), 

f 
because 

negat ve . Although this 
would be an interesting type of Kosterlitz- 
Thouless transition, it is not of help for the 
present problem. A calculation for K2MnF4 shows 
that it would happen for fields U.97<Hx/Hsf<l 
whereas the observed broadening already starts 
at Hx/Hsf = 0.8. 

Recently, it has been shown that notwith- 
standing the above considerations 2-d systems 
may become5upstable with respect to domain-wall 
formation 9 in the presence of (infinitesi- 
mal) random fields or random anisotropies. Also 
it was suggested by Imry and Wortis l2 that 
first order transitions are smeared in the pres- 
ence of random fields for systems below the 
lower critical dimensionality. Now there are two 
possible sources of random fields in the present 

case. First, in the solid state there will al- 
ways be a small amount of impurities or lattice 
defects present (typical concentration c 2 10s3) 
which may give rise to random field effects. 
Second, in case of partial flopping of regions 
of spins, the interplane interactions may act as 
a random field too. Also random anisotropy ef- 
fects will be present since the anisotropy is of 
dipolar origin so that the presence of excita- 
tions will cause variations in the anisotropy at 
the same time. Although we cannot calculate the 
strength of the random field, it is possible to 
estimate its order of magnitude and we shall 
show that it may indeed explain the observed 
broadening of the "spinflop". 

The "spinflop" phenomenon in the quasi 2-d 
antiferromagnet is in fact closely related to 
the C-I transition in a 2-d Ising-type system 
(see fig. 3), which has pen extensively studied 
in the last few years . This can be seen as 
follows. In the C-I problem one considers a 
chemical potential 6 for the domain-wall. This 6 
can be varied in the experiment e.g. by changing 
the pressure. For 6 smaller than a critical 
value 6 the system is in the commensurate (or- 
dered) &ate. For d > oc the system enters the 

1 
6 

6c 

0 

-6, 
II 

Fig. 3 Phase diagram (schematic) of the 2-d sys- 
tem with a twist field 6. The layer can 
be in the commensurate (C), the incommen- 
surate (IC) or the disordered (D) state. 
The lines C-I indicate the commensurate- 
incommensurate transitions. 

incommensurate state, which consists of large 
ordered regions, separated by incommensurate 
domain-walls. In the 2-d antiferromagnet 6 would 
correspond to a "winding field", which cannot be 
physically realized and therefore one has 6 = 0 
always. Usually a description 13s14 of the C-I 
transition is given in terms of l-d quantum- 
field models, such as the Quantum Sine-Gordon 
and the Massive Thirring model via the transfer 
matrix. When applied to the spinflop problem it 
follows that 6, = 4S*[D 

"$: 
fJlb. So, in some sense 

the "spinflop" in the 2- antiferromagnet is the 
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magnetic analogue’df the C-I transition. Whereas 
in the C-I problem the quantity 6 is variable 
and is increased towards 6 the “spinf lop” 
problem corresponds to a s tuation where 6, f ’ 
approaches zero, 
From this 
“spinf lop” cannot be first order 
has been argued that random fields may entire y 
suppress the commensurate (ordered) phase lb 

although for 6<<6, only few walls are presen; 
and the system is almost completely ordered. In 
the model of Villain et al. the fre 
found to be given by the expression f6gnergy was 

$ = q-l{bc + 4scexp(-q/d)-#Hr(Hr/g)1’3~n(q)} (4) 

Here q is the average distance between long, al- 
most straight domain-walls (which cross the sys- 
tern))) and I-l, is the rms random field H, = H Jc, 
with Ho the average strength of the impurit es. P 
The parameter g equals 6 for the present case. 
When only few domain-walfs are present (q >> 1) 
one may omit the exponential term in eq.(4), 
which is the contribution arising from the 
interaction between the walls. Minimalization of 
F with respect to q then yields: 

-1 
q = exp{-y ll-~~/H~ 1*j3} (5) 

(with y = 2(4S2,HI;:13(B J)2’3). For a Sine- 
Gordon domain-wal one xmay calculate (in an 
analogous way as was done in paper I to obtain 
eq.(5)) the average spin-components perpendicu- 
lar to the preferential direction: 

for d << q. From the two e uations (5) and (6) 
it follows that <m:>(H < H sfq) 
should be proportional to exp(-yll-H /H,fI 

and <mi>(; >2$9f) 
. 

This is of considerable interest since it pro- 
vides a direct comparison of the theory with an 
experiment. Thus we show in fi 
the experi 

7”. 

f ’ 
4 a log-plot of 

tal values for <m > and <m2> versus 
1 l-H2/H2 Clearly an ex+onentia? law is 
followed: with y = 5. If one assumes that the 
system contains a small amount (c = 10e3) of 
impurities, it follows that they nevertheless 
provide a strong random field with Ho = 350 K. 
This is a reasonable value since Ho should be of 
the order of a vortex creation energy. Evident- 

ly, the quantitative results from this compari- 
son should be regarded with some caution. Since 
<m: I> 
of 8 

= d/q and d = De -5 f the field-dependence 
(which follows from eq.(2) should be taken 

into account. Thus for H + Hsf the field- 
dependence of d would even become the leading 
term. In that limit, however, the behaviour will 
become quite complex. The walls will start to 
overlap as soon as d = q, and the present simple 
model does not cover that situation. 

Concluding remarks. 
The strong broadening of the “spinflop” ob- 

served in quasi 2-d antiferromagnets with weak 
Ising anisotropy cannot be explained by demag- 
netizing effects as in the 3-d case. Also a 
droplet analogue of the soliton pair-states used 

I 

5 

*2 

%+ 
_ 

&i&o -1 
E 

5 

2 

10 -2 

0.0 0.2 0.4 0.6 ..0.8 1.0 

Fig. 4 Semi-logarithmic-plot of <m2> for 

Hx < Hsf and <m:> for Hx f Hsf versus 

1 1 - </Hif 12/3. The solid line is the 
prediction from the random field model of 
Villain et al. (eq.(5)) with y = 5.0. 

in paper I to explain similar broadening in the 
chainlike system, does not seem to apply. In- 
stead, we have argued that random fields may be 
responsible for domain-wall formation near H 
in the quasi 2-d antiferromagnet, since f f the r 
presence can explain the observed exponential 
behaviour of the broadening for reasonable 
values of the random field parameters. Thus it 
appears that the spinflop problem in the weakly 
anisotropic antiferromagnet offers a new and 
exciting possibility for experimental studies of 
the random field problem. A final remark to be 
made is the following. A crucial problem in the 
theories of random fields is the calculation of 
the lower critical dimension d , below which 
random fields may lead to a &main pattern. 
There i 
or two j8. 

a debate on whether d, equals three 17 

Indeed the latter value would agree 
with the present analysis of the “spinf lop” 
phenomenon. Although impurities will certainly 
also be present in the 3-d antiferromagnets, 
they apparently do not lead to domain-wall for- 
mation, since the observed spinfi;p transitions 
the in 3-d case are quite narrow . The observ- 
ed widths can be fully accounted for by demag- 
netizing effects so that the transition is 
apparently first-order in 3-d antiferromagnets. 
This is in agreement with recent theoretical 

developments *O that favour d, = 2. 
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