

Exploring strange new worlds with high-dispersion spectroscopy

Serindag, D.B.

Citation

Serindag, D. B. (2022, October 6). *Exploring strange new worlds with high-dispersion spectroscopy*. Retrieved from https://hdl.handle.net/1887/3466049

Version:	Publisher's Version
License:	<u>Licence agreement concerning inclusion of doctoral</u> <u>thesis in the Institutional Repository of the University</u> <u>of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/3466049

Note: To cite this publication please use the final published version (if applicable).

Exploring Strange New Worlds with High-Dispersion Spectroscopy

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Leiden, op gezag van rector magnificus prof.dr.ir. H. Bijl, volgens besluit van het college voor promoties te verdedigen op donderdag 6 oktober 2022 klokke 15:00 uur

 door

Dilovan Banks Serindag geboren te Alexandria, Virginia, United States of America in 1993 **Promotor:** Prof.dr. I.A.G. Snellen

Co-promotor: Dr. M.A. Kenworthy

Promotiecommissie:

Prof.dr. H.J.A. Röttgering Prof.dr. E.F. van Dishoeck Prof.dr. C.U. Keller Dr. L. Kaltenegger (Cornell University) Dr. H.J. Hoeijmakers (Lund University)

ISBN 978-94-6423-974-4

Cover designed by Maria Cristina Fortuna and Dilovan Banks Serindag, and illustrated by Maria Cristina Fortuna

Printed by ProefschriftMaken (www.proefschriftmaken.nl)

To my grandfather, David G. Banks, who instilled in me the importance and power of education and learning

Contents

1 Introduction				
	1.1	Method	s for probing exoplanet atmospheres	4
		1.1.1	Transit spectroscopy	4
		1.1.2	Emission spectroscopy	6
		1.1.3	Imaging spectroscopy	6
		1.1.4	Spectral resolution	7
	1.2	Studies	of exoplanet atmospheres	8
		1.2.1	Chemical composition	8
		1.2.2	Structure and dynamics	0
		1.2.3	Young planets	2
		1.2.4	Habitability and extraterrestrial life	3
	1.3	This dis	ssertation	5
	1.0			
_				
2	Is T	TiO emi	ssion present in the ultra-hot Jupiter WASP-33b?	_
2	Is T A r	CiO emi eassessr	ssion present in the ultra-hot Jupiter WASP-33b? nent using the improved ExoMol Toto line list 1	7
2	Is T A r 2.1	CiO emis eassessr Introdu	ssion present in the ultra-hot Jupiter WASP-33b? nent using the improved ExoMol Toto line list 1 ction	7 9
2	Is T A r 2.1 2.2	CiO emia eassessr Introdu Subaru	ssion present in the ultra-hot Jupiter WASP-33b? nent using the improved ExoMol TOTO line list 1 ction	7 9 0
2	Is T A r 2.1 2.2 2.3	CiO emi eassessr Introdu Subaru Search	ssion present in the ultra-hot Jupiter WASP-33b? nent using the improved ExoMol Toto line list 1 ction 1 data of WASP-33 2 for TiO emission 2	7 9 0 1
2	Is T A r 2.1 2.2 2.3	CiO emi eassessr Introdu Subaru Search 2.3.1	ssion present in the ultra-hot Jupiter WASP-33b?nent using the improved ExoMol Toto line list1'ction1data of WASP-332for TiO emission2ExoMol Toto opacities for TiO2	7 9 0 1
2	Is T A r 2.1 2.2 2.3	TiO emis eassessr Introdu Subaru Search 2.3.1 2.3.2	ssion present in the ultra-hot Jupiter WASP-33b? nent using the improved ExoMol Toto line list 1 action 1 data of WASP-33 2 for TiO emission 2 ExoMol Toto opacities for TiO 2 petitRADTRANS TiO emission models 2	7 9 0 1 2
2	Is T A r 2.1 2.2 2.3	CiO emis eassessr Introdu Subaru Search 2.3.1 2.3.2 2.3.3	ssion present in the ultra-hot Jupiter WASP-33b? nent using the improved ExoMol Toto line list 1 ction 1 data of WASP-33 2 for TiO emission 2 ExoMol Toto opacities for TiO 2 petitRADTRANS TiO emission models 2 Cross-correlation search for TiO emission 2	7 9 0 1 2 4
2	Is T A r 2.1 2.2 2.3	CiO emis eassessr Introdu Subaru Search 2.3.1 2.3.2 2.3.3 Results	ssion present in the ultra-hot Jupiter WASP-33b? nent using the improved ExoMol Toto line list 1 ction 1 data of WASP-33 2 for TiO emission 2 ExoMol Toto opacities for TiO 2 petitRADTRANS TiO emission models 2 Cross-correlation search for TiO emission 2 2 2 3 2 3	$7 \\ 9 \\ 0 \\ 1 \\ 2 \\ 4 \\ 4$
2	Is T A r 2.1 2.2 2.3 2.4	CiO emia eassesser Introdu Subaru Search 2.3.1 2.3.2 2.3.3 Results 2.4.1	ssion present in the ultra-hot Jupiter WASP-33b? nent using the improved ExoMol Toto line list 1 ction 1 data of WASP-33 2 for TiO emission 2 ExoMol Toto opacities for TiO 2 petitRADTRANS TiO emission models 2 Cross-correlation search for TiO emission 2 Welch's t-test 3	79012440
2	Is T A r 2.1 2.2 2.3 2.4	CiO emis eassessr Introdu Subaru Search 2.3.1 2.3.2 2.3.3 Results 2.4.1 2.4.2	ssion present in the ultra-hot Jupiter WASP-33b? nent using the improved ExoMol Toto line list 1 ction 1 data of WASP-33 2 for TiO emission 2 ExoMol Toto opacities for TiO 2 petitRADTRANS TiO emission models 2 Cross-correlation search for TiO emission 2 Welch's t-test 3 Injection-recovery test 3	790124400
2	Is T A r 2.1 2.2 2.3 2.4 2.4	CiO emis eassessr Introdu Subaru Search 2.3.1 2.3.2 2.3.3 Results 2.4.1 2.4.2 Discuss	ssion present in the ultra-hot Jupiter WASP-33b? nent using the improved ExoMol Toto line list 1 ction 1 data of WASP-33 2 for TiO emission 2 ExoMol Toto opacities for TiO 2 petitRADTRANS TiO emission models 2 Cross-correlation search for TiO emission 2 Welch's t-test 3 Injection-recovery test 3 ion and conclusions 3	790124003

		2.5.2	Scenario II: Only the Nugroho et al. (2017) detection with Plez98 is valid	36
		2.5.3	Scenario III: Both detections are valid	37
		2.5.4	Scenario IV: Both detections are false positives	38
	2.A	$K_{\rm p}$ – $v_{\rm s}$	$_{\rm ys}$ matrices	39
3	Mea	asuring	g titanium isotope ratios in exoplanet atmospheres	47
	3.1	Introd	luction	49
	3.2	High-1	resolution TiO spectral data	51
		3.2.1	CARMENES spectrum of GJ 1002	51
		3.2.2	Choice of wavelength range for TiO fitting	52
	3.3	High-1	resolution TiO spectral models	53
	3.4	Fittin	g TiO isotopologue abundances	55
	3.5	Result	ts	56
		3.5.1	Ti isotope ratios for the M-dwarf GJ 1002	56
		3.5.2	Ti isotope ratios from noise-degraded spectra	56
	3.6	Discus	ssion	59
		3.6.1	Effects of wavelength range and broadband filtering	59
		3.6.2	GJ 1002 Ti isotope ratios in context	62
		3.6.3	Determining Ti isotope ratios for gas-giant exoplanets	62
	3.7	Concl	usions	64
	3.A	Supple	ementary materials	66
4	A s	earch	for protoplanets around the young star HD 169142	1
	usir	ıg mol	ecule mapping	71
	4.1	Introd	luction	73
	4.2	Integr	al field spectroscopic data of HD 169142	75
		4.2.1	Data acquisition and characteristics	75
		4.2.2	Data reduction	76
		4.2.3	Removal of stellar and telluric contamination $\ldots \ldots \ldots$	78
		4.2.4	Combining observations	78
	4.3	Search	n for planet signals	79
	4.4	Injecti	ion–recovery tests of synthetic planet signals	80
	4.5	Result	ts	81
		4.5.1	Non-detection of planet signal	81
		4.5.2	Injection–recovery tests	81
	4.6	Discus	ssion and conclusions	83

Contents

5 '	Testing the detectability of extraterrestrial O_2 with the					
	\mathbf{extr}	emely large telescopes using real data with real noise 88	5			
ļ	5.1	Introduction	7			
ļ	5.2	Archival data of Proxima Centauri	9			
		5.2.1 Initial data reduction	9			
		5.2.2 Assessment of data quality	0			
ļ	5.3	Synthetic oxygen transmission spectra	2			
		5.3.1 Transmission model calculation and injection 92	2			
		5.3.2 Signal recovery	4			
		5.3.3 Perfect Gaussian-noise comparisons	4			
ļ	5.4	Results	5			
		5.4.1 Transits at constant v_{offset}	5			
		5.4.2 Combining transits at multiple v_{offset}	б			
	5.5	Discussion and conclusions	3			
Bib	oliog	graphy 100)			
Sur	nma	ary 11	1			
Sar	nenv	vatting 11	5			
List	t of	publications 119	9			
Cu	rricı	ulum vitae 12	1			
Acl	knov	vledgments 12	3			

Contents

iv