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1 Introduction

The reconstruction of our universe’s history relies on the assumption that the primordial
curvature fluctuation ζ(~x) (responsible for our universe’s inhomogeneities) was initially
distributed according to a Gaussian statistics, parametrised by an almost scale invariant
power spectrum Pζ(k). Although this assumption agrees with every relevant cosmological
observation [1], there are good reasons to suspect that our primordial universe could not
have been perfectly Gaussian. To start with, the simplest models of cosmic inflation —
the theory that explains the origin of ζ(~x) — predict tiny, but non-vanishing, levels of
non-Gaussianities [2]. Unfortunately, this minimal prediction will likely remain out of
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reach for the next generation of cosmological surveys. On the other hand, large non-
Gaussianity can arise if, during inflation, ζ(~x) evolved experiencing large self-interactions
and/or interactions with other relevant degrees of freedom [3–8]. One way to parametrise
the observable effects of these interactions on the distribution of ζ(~x) is in the form of
n-point correlation functions 〈ζ(~x1) · · · ζ(~xn)〉. The shape of these n-point functions in
momentum space can display distinctive signatures, providing a powerful diagnostic of the
types of fields present during inflation. For example, massive fields with spin can leave
oscillatory features in the primordial bispectrum (the amplitude of the 3-point correlation
function of primordial fluctuations) with a shape determined by their spin [9–12].

However, n-point correlation functions computed with standard perturbation theory
are inappropriate to assess the occurrence of large statistical excursions of ζ(~x). The
prevalence of large statistical excursions is dictated by the shape of the tail of the prob-
ability distribution function describing the statistics of ζ(~x). But perturbative methods
fail to correctly determine the profile of tails. As emphasised in [13], perturbation theory
schematically relates the 1-point probability distribution of ζ and connected nth-moments
〈ζn〉c [which, in turn, are related to connected n-point correlation functions of ζ(~x)] as

P (ζ) ∼ exp
[
− ζ2

2σ2
ζ

+
∞∑
n=3

〈ζn〉c
σ2n
ζ

ζn
]
, (1.1)

where σ2
ζ is the Gaussian variance of the distribution, determined by the power spectrum

Pζ(k) as σ2
ζ =

∫
d3kPζ(k). In terms of the usual fNL and gNL parameters for the first few

terms in the expansion, the previous expression takes the form

P (ζ) ∼ exp
[
− ζ2

2σ2
ζ

(
1 + fNLζ + gNLζ

2 + · · ·
)]
. (1.2)

For typical statistical excursions ζ ∼ σζ � 1, the expansion of the distribution function
in terms of moments 〈ζn〉c remains under control as long as 〈ζn〉c/σnζ � 1, which can be
satisfied in perturbation theory even for values of fNL and gNL of order 1. On the other
hand, for unlikely large statistical excursions ζ ∼ 1 this expansion may fail, particularly in
models predicting fNL and gNL of order 1 (or larger) commonly encountered in theories of
inflation involving sizable non-linear interactions (for instance, in the form of interactions
with other degrees of freedom). In such models, not only 〈ζ3〉c and 〈ζ4〉c, but all n-point
moments are expected to contribute corrections of order 1 on the tail of the distribution,
making the expansion (1.2) useless to study extreme fluctuations. This failure of pertur-
bation theory to parametrise large statistical excursions of ζ in certain models of inflation
motivates the consideration of non-perturbative techniques to study the consequence of
non-linear interactions of ζ during inflation [13–19].

As unlikely as they might be, large statistical fluctuations of the primordial field ζ can
have dramatic effects on the formation of structure in our universe. More to the point, after
inflation, large fluctuations of ζ(~x) can lead to overdense regions of space that inevitably
collapse into primordial black holes (PBHs) (see refs. [20, 21] for recent reviews). These
black holes could become the seeds of supermassive black holes at the center of galaxies,
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and form a substantial part of the dark matter content of our universe. The abundance
and clustering properties of these PBHs are extremely sensitive to the shape of the tails
of the PDF dictating the distribution of ζ(~x) [22–25].1 Thus, to correctly understand the
possible generation of PBHs as a result of inflation, we need a reliable, non-perturbative
approach to reconstruct the non-Gaussian tails of the primordial fluctuation’s PDF.

The purpose of this work is to quantify precisely the effects of light isocurvature fluctu-
ations on the probability density function of ζ(~x) by using the non-perturbative approach
offered by the stochastic inflation formalism [27–44]. The authors of [45] have argued that
the interaction between ζ and a light field ψ can introduce non-Gaussian corrections that
modify the shape of tails of the probability density function of ζ(~x), valid at the end of
inflation. Here we confirm this scenario and we show that the joint PDF describing the
statistic of ζ and ψ in two-field models of inflation with canonical kinetic terms is given by

P (ζ, ψ) ∼ exp

− ψ2

2σ2
ψ

− 1
2σ2

ζ

(
ζ − κ ψ

2

2σ2
ψ

)2

+ · · ·

 , (1.3)

where κ is related to the strength of the coupling between ζ and ψ, and the ellipses stand
for additional subleading contributions that we calculate in some specific examples. The
non-perturbative nature of (1.3) is not obvious, but it becomes apparent after integrating
over ψ to reveal the tail of the distribution for ζ, which becomes strongly non-Gaussian

P (ζ) ∼ exp(−ζ/κ). (1.4)

The dependence on κ makes manifest the non-perturbative sensitivity of tails to non-linear
interactions between ζ and other degrees of freedom. Similar non-Gaussian tails have
been found in other single-field scenarios where the background is non trivial [46–49], and
quantum diffusion plays an important role. And in [45], for a sudden, transient coupling
between the curvature field and a light spectator field. Instead, in our calculation, slow-roll
is preserved throughout and all interactions and couplings are constant in time. In multi-
field models of slow-roll inflation with non-canonical kinetic terms we expect corrections
in (1.3) that would change the details on how (1.4) is obtained, leading to a different profile
for the tail.

An important advantage of the analysis presented here, based on the fluctuations, is
that we are able to show that such non-Gaussian tails are a generic consequence of multifield
inflation, and also that they do not require the interruption of slow roll. The leading
non-Gaussian contribution to the PDF can be traced back to an ever-present quadratic
derivative coupling2 ζ̇ψ between the curvature and the isocurvature perturbations [50, 51].
In minimal multifield scenarios the coupling κ is related to the angular velocity Ω of the
inflationary trajectory in field space. However, our results apply to any model where this
derivative coupling is present.

1More precisely, the statistical properties of PBHs is sensitive to the distribution of the field ∇2ζ [26],
which requires knowledge of the full functional distribution of ζ(~x). In this work we limit our discussion to
1-point statistics, but our methods can be appropriately extended.

2This term is always present unless the inflationary trajectory follows a geodesic in field space.
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We will be particularly interested in the case of a very light or even massless (ultra-
light) isocurvature fluctuation [52, 53]. This provides an alternative inflationary scenario
–potentially relevant to string compactifications– with predictions currently indistinguish-
able from those of single-field inflation but where light fields do not need to be stabilized.
We consider the background to be quasi de Sitter during the whole duration of inflation.
The UV completion of such systems in terms of an effective field space metric and an
effective multifield potential has been discussed in [11, 53–55].

To derive (1.3), we start from the effective action for the perturbations of a two field
model of inflation [50, 51]. From the action, we will coarse grain the equations of motion
to obtain a Fokker-Planck equation for the long wavelength modes. In order to introduce
derivative interactions we write the equation in phase space. Because the time scale associ-
ated with the approach to equilibrium of the velocity field vζ is much shorter than the one
of the other fields, we can integrate out vζ directly from the Fokker-Planck equation. This
leads to eq. (4.47) which involves only ψ and ζ. This equation assumes that the entropy
mass of the second field is light, that the coupling Ω2 < H2 and that the curvature power
spectrum is smaller that one, and to our knowledge has not been previously derived. Sur-
prisingly enough, it will be possible to solve the time dependent Fokker-Planck equation
on a myriad of cases, which among other consequences show that the derivative coupling
Ω, both enhances the Gaussian variance and modifies the PDF introducing a coupling
κ ∼ Ω2/H2.

The structure of the paper is as follows. In section 2 we study the statistics of primor-
dial curvature perturbations and we show how to integrate out vζ . We also review some
known results in the case of spectator fields on fixed de Sitter. In section 3 we present the
linear Fokker-Planck equation for the curvature perturbation coupled to another light field.
Since the distribution is Gaussian it is possible to obtain exact expressions for the vari-
ances of the fields, that as we will show, match known results using standard techniques.
Section 4 contains the main results of this paper, where we study the full non linear Fokker-
Planck equation. After integrating out vζ we will show how one obtains (1.3) and under
which assumptions it holds. Finally, in section 5 we conclude and present different ideas to
explore in the future. There are a series of appendices where we present technical details
of the calculations.

2 Statistics of primordial curvature perturbations

Before studying the effects of isocurvature fields on the statistics of ζ, we first review the use
of the stochastic formalism, showing how it allows a derivation of the probability density
function describing the statistics of single fields in quasi-de Sitter backgrounds.

2.1 Primordial curvature perturbation

We start by considering the task of deriving the probability distribution of the primordial
curvature perturbation ζ. First, let us recall that the canonical quadratic action for ζ
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describing its dynamics during inflation is given by

S = M2
Pl

∫
d4xa3ε

[
ζ̇2 − 1

a2 (∇ζ)2
]
, (2.1)

where MPl is the reduced Planck mass. In the previous expression, a = a(t) is the usual
scale factor, and ε is the first slow-roll parameter, determined by the Hubble parameter
H = ȧ/a as ε = −Ḣ/H2, and required to be much smaller than 1 throughout inflation.
For simplicity, we will disregard slow-roll corrections and take both H and ε as constants.
Then, the equation of motion for the long wavelength modes (with wavelengths much larger
than the Hubble radius H−1) is given by

ζ̈ + 3Hζ̇ = 0. (2.2)

One can modify this equation to quantify the influence of short wavelength fluctuations
on the evolution of ζ by introducing a source term representing noise [56]. The resulting
equation takes the form

ζ̈ + 3Hζ̇ = 3Hηζ , (2.3)

where ηζ = ηζ(t) is a time-dependent Gaussian noise with a two-point correlator given by:

〈ηζ(t)ηζ(t′)〉 = H3

8π2εMPl
2 δ(t− t

′). (2.4)

Equation (2.3) allows one to obtain a Fokker-Planck equation satisfied by the probability
density function (PDF) P (ζ) describing the statistics of long wavelength modes. In order
to see this, it is useful to rewrite (2.3) in terms of the following two first order differential
equations

φ̇i =
∑
j

Aij(t)φj + fi(t), (2.5)

where we have identified φ1 = ζ, and φ2 = ζ̇. Equation (2.5) is a Langevin equation with
a drift matrix Aij and noise vector fi given by

Aij =
(

0 1
0 −3H

)
, fi = 3Hηζ

(
0
1

)
. (2.6)

From (2.4) it follows that the noise vector fi must satisfy 〈fi(t)fj(t′)〉 = Dijδ(t− t′), where
Dij is the diffusion matrix, given by

Dij =
(

0 0
0 Dζ

)
, Dζ ≡

9H5

8επ2 . (2.7)

In general, one might be interested in computing correlation functions of the stochastic
fields φi of eq. (2.5). These can be computed with the help of a probability density func-
tion P (φi, t) derived from the associated Fokker-Planck equation [57]. The Fokker-Planck
equation is determined by Aij and Dij as

∂P

∂t
+Aij

∂

∂φi
(φjP )− 1

2Dij
∂2

∂φi∂φj
P = 0. (2.8)
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Using (2.6) and (2.7), we re-express the Fokker-Planck equation in terms of φ1 = ζ and
φ2 = vζ ≡ ζ̇ as

∂P

∂t
+ ∂

∂ζ
(vζP )− 3H ∂

∂vζ
(vζP )− Dζ

2
∂2

∂v2
ζ

P = 0. (2.9)

To solve this equation, let us assume a general Gaussian profile of the form

P (ζ, vζ , t) = 1
2π
√

detS−1
exp

(
− 1

2
∑
ij

S−1
ij φiφj

)
, (2.10)

where S−1
ij are the elements of the (symmetric) covariance matrix, whose inverse Sij is

constituted by two-point moments as

Sij(t) =
(
〈ζ2〉(t) 〈ζv〉(t)
〈ζv〉(t) 〈v2〉(t)

)
. (2.11)

The time dependence of S is determined by (2.9) together with initial conditions. To
determine S we can take the fields ζ and vζ to be coordinates with Fourier transforms p
and q respectively. Then, the Fourier transformed version of (2.9) is

∂P̃

∂t
− p ∂

∂q
P̃ + 3Hq ∂

∂q
P̃ + Dζ

2 q2P̃ = 0, (2.12)

where P̃ represents the Fourier transform of P . The ansatz given in eq. (2.10) then implies
the following form for P̃ :

P̃ (p, q, t) = exp
(
−1

2
[
Sζζp

2 + 2Sζvpq + Svvq
2
])
. (2.13)

Replacing this expression back into (2.12) we get the following set of equations satisfied by
the elements of the matrix S:

1
2 Ṡζζ = Sζv, (2.14)

Ṡζv + 3HSζv = Svv, (2.15)

Ṡvv + 6HSvv = Dζ . (2.16)

To solve these equations, we need to impose initial conditions at a given time t0. For
instance, consider an initial Gaussian distribution (2.10) such that at t = t0 the matrix S
contains initial values

Sij(t0) =

S(0)
ζζ S

(0)
ζv

S
(0)
vζ S

(0)
vv

 . (2.17)
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Solving eqs. (2.14)–(2.16) with these initial conditions, we then arrive at:

Sζζ(t) = − 2
3H

(
S

(0)
ζv −

Dζ

9H2

)
(e−3H(t−t0) − 1) + 1

9H2

(
S(0)
vv −

Dζ

6H

)
(e−6H(t−t0) − 1)

+
( 2

3HS(0)
vv + Dζ

9H2

)
(t− t0) + S

(0)
ζζ , (2.18)

Sζv(t) =
(
S

(0)
ζv −

Dζ

9H2

)
e−3H(t−t0) − 1

3H

(
S(0)
vv −

Dζ

6H

)
e−6H(t−t0),

+ 1
3HS(0)

vv + Dζ

18H2 , (2.19)

Svv(t) =
(
S(0)
vv −

Dζ

6H

)
e−6H(t−t0) + Dζ

6H . (2.20)

The initial values S(0)
ζζ , S

(0)
ζv and S

(0)
vv are the variances associated with long wavelength

fluctuations that have already crossed the horizon prior to t0. If we are interested only in
the statistics of those modes that cross the horizon starting at t0, we can set the initial
values of Sij to 0. This corresponds to a distribution where the position ζ and rapidity vζ
of the fluctuation are exactly localized at the origin of the field phase space P (ζ, vζ , t0) =
δ(ζ)δ(vζ). Then, the solutions take the form:

Sζζ(t) = Dζ

54H3

(
−3 + 6H(t− t0) + 4e−3H(t−t0) − e−6H(t−t0)

)
, (2.21)

Sζv(t) = Dζ

18H2

(
1− e−3H(t−t0)

)2
, (2.22)

Svv(z) = Dζ

6H (1− e−6H(t−t0)). (2.23)

Replacing these expressions back into (2.10) we obtain the desired expression for the distri-
bution P . The coefficients Sζζ , Sζv and Svv depend on time with a characteristic timescale
determined by H−1. In the limit t− t0 � H−1 the distribution simplifies to an asymptotic
expression given by

P (ζ, v, t) = 1
2π

(
54H3

D2
ζ (t− t0)

)1/2

exp
[
− 9H2

2Dζ(t− t0)ζ
2 + 3H

Dζ(t− t0)ζvζ −
6H
2Dζ

v2
ζ

]
. (2.24)

Notice that the widths associated with ζ and vζ differ in their time dependence, with vζ
sharply localized around 0 (signaling that vζ decays quickly after it becomes super-horizon).
In fact, we may marginalize vζ by integrating it from the distribution (2.24), in which case
we obtain

P (ζ, t) = 1√
2πσζ

exp
(
− 1

2σ2
ζ

ζ2
)
, (2.25)

which is a Gaussian distribution for ζ with variance σ2
ζ given by

σ2
ζ = Dζ

9H2 (t− t0) = H3

8επ2 (t− t0). (2.26)

Recall that this expression is valid for t � H−1, provided the initial condition Sij = 0
at t0 = 0. The time dependence of the variance σ2

ζ just reflects the fact that as time
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progresses, more and more modes populate the long wavelength regime. In this way, at a
given time t, the probability distribution P (ζ, t) describes the statistics of long-wavelengths
that crossed the horizon between t0 and t.

2.2 Integrating out vζ
Although ζ and vζ had the same status in the treatment leading to (2.24) we are ultimately
interested only in the statistics of ζ (after all, vζ decays quickly on super-horizon scales).
This led us to derive (2.25) after marginalizing vζ . Alternatively, we can integrate out vζ at
an early stage, and obtain a Fokker-Planck equation only for ζ. For instance, if we neglect
the second derivative of ζ in (2.5), the system reduces to a single Langevin equation ζ̇ = ηζ ,
yielding the following Fokker-Planck equation

∂P

∂t
= Dζ

18H2
∂2P

∂ζ2 , (2.27)

whose solution is precisely given by eq. (2.25). Notice that (2.9) included a term involving
a second derivative with respect to vζ , and only a first derivative with respect to ζ. In
contrast, eq. (2.27) contains a second derivative with respect to ζ. This can be understood
as the effect of integrating out vζ over the Fokker-Planck equation (2.9) with the ideas of
refs. [57, 58], which go as follows: first, by noticing that the time scale in which vζ becomes
time independent is given by tv = 1/3H, we can rewrite eq. (2.9) as:

∂

∂vζ

(
vζ + tvDζ

2
∂

∂vζ

)
P = tv

(
∂

∂t
+ vζ

∂

∂ζ

)
P. (2.28)

Here, the terms on the right hand side (r.h.s. ) are much smaller than those on the left hand
side (l.h.s. ). Indeed if we assume that the fields are given by their typical values ζ ∼

√
σ2
ζ

then we have that the term containing the time derivative is of order tvσ̇2
ζP ∼ ∆2

ζP while
the second term is of order 1/

√
HtP . On the other hand the terms on the l.h.s. are both of

order O(1)×P . We can make use of this hierarchy if we expand the PDF in powers of Htv:

P (ζ, vζ , t) = P (0) +HtvP
(1) + (Htv)2P (2) + . . . . (2.29)

Then, by replacing this expression back into (2.28) we find that at leading order in tv the
equation for the first term P (0) is simply given by

∂

∂vζ

(
vζ + tv2Dζ

2
∂

∂vζ

)
P (0) = 0, (2.30)

whose solution can be written as

P (0)(ζ, vζ ; t) = e
− 6H

2Dζ
v2
ζφ0(ζ, t), (2.31)

where φ0 is a function of ζ and t that can be determined by considering the equation
for P (1):

∂

∂vζ

(
vζ + tvDζ

2
∂

∂vζ

)
HP (1) =

(
∂φ0
∂t

+ vζ
∂φ0
∂ζ

)
e
− 6H

2Dζ
v2
ζ . (2.32)

– 8 –



J
H
E
P
0
5
(
2
0
2
2
)
0
5
2

Now, notice that in this last equation the l.h.s. corresponds to a total derivative of vζ ,
whereas the r.h.s. is proportional to Gaussian function of vζ . Hence we can integrate it
with respect to vζ and obtain the constraint equation ∂φ0

∂t = 0. This in turns allows us to
write a solution for P1 given by

P (1)(ζ, vζ ; t) = −vζ
H

∂φ0
∂ζ

e
− 6H
Dζ

v2
ζ + φ1(ζ, t)

H
e
− 6H

2Dζ
v2
ζ , (2.33)

which now depends on another function φ1(ζ, t). Repeating the same step we can find, at
the next order in tv, the following equation for P (2):

∂

∂vζ

(
vζ + tvDζ

2
∂

∂vζ

)
H2P (2)(ζ, vζ , ψ; t) =

(
∂φ1
∂t

+ vζ
∂φ1
∂ζ

+ v2
ζ

∂2φ0
∂2
ζ

)
e
− 6H

2Dζ
v2
ζ . (2.34)

Given that this equation has the same structure as (2.32), we immediately infer, after
integrating over vζ , that

∂φ1
∂t

= Dζ

6H
∂2φ0
∂2
ζ

. (2.35)

Collecting the terms for the PDF we obtain,

P (ζ, vζ , t) =
[
φ0(ζ) + tvvζ

∂φ0
∂ζ

+ tvφ1(ζ, t)
]
e
− 6H

2Dζ
v2
ζ . (2.36)

After integrating over vζ , this result reduces to

P (ζ; t) = φ0(ζ) + tvφ1(ζ, t). (2.37)

Finally, using the constraint equations for φ0 and φ1 we find, up to first order in tv, that
P (ζ; t) must satisfy

∂

∂t
P (ζ, t) = Dζ

18H2
∂2P (ζ, t)
∂ζ2 , (2.38)

which is the Fokker-Planck equation (2.27) obtained by ignoring the ζ̈ term in the Langevin
equation. Going beyond second order in tv does not add any further correction as the
equations obtained for the other terms in the PDF expansion are the same as those in (2.34).

2.3 Spectator fields in de Sitter

To complement the previous discussions, we now study the statistics of a light spectator
field on a de Sitter background. The light scalar field ψ has potential V (ψ) and its equation
of motion is given by

ψ̈ + 3Hψ̇ + k2

a2ψ + V ′(ψ) = 0. (2.39)

We take V ′′(ψ)� H2 since the field is light. As we did with ζ, the statistical properties of
ψ can be studied by dividing the field into long and short wavelength modes. In this way,
the long wavelength field ψ, satisfies the Langevin equation

ψ̇ = −V
′(ψ)
3H + ηψ(t), (2.40)
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where ηψ is a Gaussian noise representing the effects of the short wavelength modes. The
correlation function of the noise term is given by

〈ηψ(t)ηψ(t′)〉 = H3

4π2 δ(t− t
′). (2.41)

Notice that we have chosen to disregard the role of ψ̈ in the Langevin equation, which can be
justified with the same arguments given in section 2.2. From the Langevin equation (2.40)
it is possible to compute the one point probability distribution function P (ψ, t) by writing
the associated Fokker-Planck equation:

∂P

∂t
= 1

3H
∂

∂ψ

(
V ′(ψ)P

)
+ H3

8π2
∂2P

∂ψ2 . (2.42)

This equation is highly non linear since the drift −V ′(ψ)
3H is an arbitrary function of ψ.

Nevertheless it is possible to find an exact solution. This is done by first noticing that (2.42)
has an equilibrium solution

lim
t→∞

P (ψ, t) = exp
(
−8π2V (ψ)

3H4

)
, (2.43)

which is obtained by imposing that P is time independent. To obtain solutions to (2.42)
we can now write P (ψ, t) as

P (ψ, t) = exp
(
−4π2V (ψ)

3H4

) ∞∑
n=0

anΦn(ψ)e−Λn(t−t0), (2.44)

where the coefficients Λn and the functions Φn satisfy the following eigenvalue problem(
−1

2
∂2

∂ψ2 + 1
2(v′(ψ)2 − v′′(ψ))

)
Φn(ψ) = 4π2Λn

H3 Φn(ψ), v(φ) ≡ 4π2

3H4V (ψ). (2.45)

The time dependence of P (ψ, t) is controlled by the eigenvalues Λn, which are positive and,
for general potentials V (ψ), their value increase with n (with Λ0 = 0). This implies that
the decay rate to the equilibrium distribution is given by 1/Λ1. For instance, when the
potential is quadratic (V (ψ) = 1

2m
2ψ2) one finds the solution of (2.45) is given by Hermite

polynomials with eigenvalues given by Λn = m2

3H2 × n. In this case, the solution reaches
equilibrium for ∆N � H2/m2 � 1.

Using the decomposition (2.44) it is also possible to deduce the statistical properties
of the equal time correlation function G(R), where R is the distance between two points,
found as

G(R) = N
∑
n

|An|2e−2 log(RH)Λn/H , (2.46)

where the coefficients An are given by

An = N−1
∫
dψψe−

4π2
3H4 V (ψ)Φn(ψ). (2.47)
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From this result, we may conclude that the stochastic approach is valid for a patch of size
R ∼ H−1eH/Λ1 . For a quadratic potential this is of order R ∼ H−1eH

2/m2 � H−1, which
implies that the statistical average occurs over a large number of Hubble patches. This
quantity has to be compared with the correlation length of the observed universe, given by
∼ H−1e∆N . This implies that a field fits inside the observed universe if ∆N < H2/m2.

The present analysis assumed a fixed de Sitter background, but it can be generalised
to the case of quasi-de Sitter backgrounds, as required to study slow-roll inflation. In this
case there are added difficulties. One problem involves the role of gauge transformations on
Hamiltonian constraints satisfied at the level of the Langevin equations. In the following
discussion we will avoid this issue by assuming that the graviton is decoupled from scalar
fields (i.e. we consider the decoupling limit, in which the mixing with gravity is negligible
for energies larger than

√
εH). Furthermore we will assume that the time dependence of

the couplings is negligible over the time scales we will consider (typically an e-fold). Within
this regime, the dynamics reduces to a study of the action for the curvature perturbation
ζ coupled to an isocurvature field ψ via derivative couplings. In this way the problem is
analogous to studying two coupled spectator fields, evolving on de Sitter.

3 Statistics for two-field inflation

In this section we use the tools introduced in the previous section to derive the probability
density function describing the statistics of fluctuations in multifield theories. For now, we
shall restrict our treatment to the case of two-field models, and focus on the case of theories
with linear interactions. In section 4 we consider the role of non-linear interactions.

Our starting point is to consider the two-field action (background plus perturbations)
describing inflation:

S = SEH −
1
2

∫
d4x
√
−g

[
γab(φ)∂φa∂φb + V (φ)

]
. (3.1)

where SEH is the Einstein-Hilbert action, γab(φ) is a sigma model metric describing the
geometry of the scalar field target space and V (φ) is the scalar potential driving inflation.
Deviations from a geodesic trajectory are parametrised by the angular velocity Ω. The
action for the curvature field ζ and the isocurvature field ψ is obtained by decomposing the
fields along tangent and normal directions to the inflationary trajectory (see [6, 50, 51, 59]
for a more detailed explanation). The quadratic action is given by [52]

S = 1
2

∫
d4xa3

f2
ζ

(
ζ̇ − 2Ω

fζ
ψ

)2

− fζ
a2 (∇ζ)2 + ψ̇2 + 1

a2 (∇ψ)2 + µ2ψ2

 , (3.2)

where Ω is the coupling between the two fields, and µ is the so called entropy mass of ψ.
In addition, we use f2

ζ ≡ 2MPl
2|Ḣ|/H2 = 2εMPl

2. The equations of motion resulting from
the variation of the previous action are

ζ̈ + 3Hζ̇ + k2

a2 ζ = −2Ω
fζ

(ψ̇ + 3Hψ), (3.3)

ψ̈ + 3Hψ̇ + k2

a2ψ +m2ψ = 2Ωfζ ζ̇, (3.4)
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where3 m2 = µ2−4Ω2. Notice that the coupling Ω mixes both fields, but these equations can
still be solved using perturbation theory if we assume that the coupling satisfies Ω/H � 1.
In this case we have that the two point functions for ζ and ψ at horizon crossing, are
given by

∆2
ζ = 1

8π2MPl
2
H2

ε
, ∆2

ψ = H2

4π2 . (3.5)

Since ψ is a light field, it can continue evolving after crossing the horizon. When the
coupling Ω 6= 0, ψ seeds the perturbations of ζ which could lead to its correlation func-
tions growing on superhorizon scales [52]. As we will see all these effects can be properly
incorporated by studying the linearised Langevin equations.

In order to analyse the stochastic dynamics let us note that ψ couples to vζ . In order
to include these terms it is more convenient to use the phase space formulation of the
Langevin equations. As explained in section 2 this is achieved by introducing the time
derivatives of the fields in the Langevin equations. For (3.4) these correspond to

ζ̇ = vζ ,

v̇ζ = −3Hvζ − 2 Ω
fζ
vψ −

6ΩH
fζ

ψ + ηζ ,

ψ̇ = vψ,

v̇ψ = −3Hvψ −m2ψ + 2Ωfζvζ + ηψ, (3.6)

where ηζ and ηψ are Gaussian noise terms with correlation functions given by

〈ηζ(t)ηζ(t′)〉 = H2∆2
ζδ(t− t′), 〈ηψ(t)ηψ(t′)〉 = H3

4π2 δ(t− t
′). (3.7)

Notice that the Langevin equations are coupled, hence the PDF do not factorise into
P ∝ Pζ(ζ, vζ)P (ψ, vψ). This adds some complications due to the fact that ζ does not reach
equilibrium, and so it is not possible to a priori make use of the decomposition (2.44) to
find the PDF.

Nevertheless, since the Langevin equations are linear it is possible to find an exact
Gaussian solution. In this case all we need to do is to compute the covariance matrix, as
explained in appendix C. Since we have the drift and the noise matrices given by

A =


0 0 1 0
0 0 0 1
0 −6HΩ

fζ
−3H −2Ω

fζ

0 −m2 2fζΩ −3H

 , D =


0 0 0 0
0 0 0 0
0 0 Dζ 0
0 0 0 9H5

4π2

 , (3.8)

3As discussed in refs. [8, 11], µ is the physical mass that identifies the rest energy of one of the quanta in
the spectrum of the theory on subhorizon scales, whereas m is just a mass parameter entering the equation
of motion (3.4). The quantity m2 can be large and negative without affecting the stability of the system,
as long as µ2 ≥ 0.
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the covariance matrix is given by

C(t) =
∫ t

0
exp((t− t′)A)D exp((t− t′)At)dt′ , (3.9)

where we have assumed initial conditions given by P = δ(ζ)δ(vζ)δ(ψ)δ(vψ) and we have
set the initial time to zero. Notice that it is not necessary to write the explicit PDF since
the variances are given by

σ2
φa = Cφaφa , (3.10)

where φa is one of the fields and also the corresponding element on the diagonal of C.
Off diagonal elements of C are cross correlations between different fields. Before writing
explicit expressions for C(t) let us notice that the coupled dynamics imply that there are
several time scales over which the field decays. A useful way of understanding this is by
noticing that the time dependence is encoded in the exponential of the drift matrix A.
Since for µ 6= 0, A is diagonalisable it can be written as A = UDU−1 with D a diagonal
matrix containing the eigenvalues λi of A. Using this decomposition, the exponential of
the drift matrix can be written as exp(At) = U exp(Dt)U−1 which implies that the time
dependence will appear in terms containing eλit.

For the drift matrix A given in (3.8) the eigenvalues λi are, 0,−3H, −3H(1 + µ2/H2)
and −µ2/3H. Since the integrand will contain factors of exp t(λi + λj) there are three
main cases. First if λi = λj = 0 after integrating implies the appearance of terms linear
in t, which are due to the variance of ζ always growing with time. The others cases arise
when one of the eigenvalues is different from zero. When the sum of the eigenvalues is
proportional to 3H(1 + µ2/H2) the term decays after a time t ∼ 1/(3H) analogous to vζ
in the single field case. After integrating this term will generate two pieces, one is constant
because it is evaluated at t′ = t and the other one decays. The third case is when the sum of
the eigenvalues is proportional to µ2/H. These terms decay on a longer time scale dictated
by the isocurvature mass tψ ∼ H/µ2. Notice, moreover, that the decay depends on the
isocurvature mass, not on m. As an example let us look at the variance of ζ. From (3.9),
this quantity is found to be given by

σ2
ζ = Cζζ ≈ Ht∆2

ζ

(
1 + 36H2Ω2

µ4

)
− 54∆2

ζ

H4Ω2

µ6

(
3− 4e−

µ2
3H t + e−

2µ2
3H t

)
, (3.11)

where we have kept only leading order terms and we have assumed Ht� 1. As anticipated,
the time dependence appears both linearly in t and in powers of exp(−µ2t/H). The first
dependence is due to the modes entering the comoving horizon as we discussed in section 1.
Notice, however, that there is a new piece which depends on the mass and the coupling of
the extra field. The second term is due to the superhorizon evolution of the light scalar
field which takes a longer time to decay. At very large times t � tψ this contribution is
suppressed and the time dependence is as usual. However, at intermediate times 1� Ht ≤
H2/µ2 the time dependence from the exponential can dominate. To see this, let us expand
the variance in small µ

σ2
ζ = Cζζ ≈ ∆2

ζHt

(
1 + 4

3(Ht)2 Ω2

H2

)
+ ∆2

ζΩ2/H2 ×O((Ht)4µ2/H2). (3.12)
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There are now cubic terms in Ht, which do not depend on the entropy mass but only on
the factor Ω/H. This effect is due to the light field behaving as a massless (ultralight) field
before it settles into an equilibrium distribution. This can be seen more directly if we look
at the variance of ψ for Ht� 1

σ2
ψ = Cσσ ≈

3H4

8π2µ2

(
1− e−

2µ2
3H t

)
. (3.13)

At late times the exponential can be neglected and one recovers the equilibrium value.
Interestingly at intermediate times 1� Ht ≤ H2/µ2 , expanding in small µ we find

σ2
ψ ≈

H3t

4π2 −
H2t2

12π2 µ
2, (3.14)

which implies that for small (Ht)µ2/H2 the field behaves as a massless field. Later, when
the second piece becomes of order (Ht)µ2/H2 ∼ 1 or larger this expansion stops being valid
and we need to consider the full expression. It is also interesting to rewrite the variances
in terms of the scale invariant power spectrum. This can be done by writing time in terms
of the number of efolds after horizon crossing. If a mode with wavenumber k leaves the
horizon at a time tk we can then write H(tk + t∗) = log(k/k∗) where k∗ and t∗ are the
longest scale and time measured. Since the variance of a field φ is computed as

σ2
φ =

∫
dk

k
∆2
φ, (3.15)

it is possible to invert this relation and write ∆φ as the logarithmic derivative of the variance
with respect to k. It is also convenient to express all quantities in terms of e-folds using
∆N = H(tk + t∗). Finally we find that

∆2
ζ(t) = H2

8π2MPl
2ε

(
1 + 36H

2Ω2

µ4

(
1− e−

µ2

3H2 ∆N
)2)

, (3.16)

∆2
ψ(t) = H2

4π2 e
− 2µ2

3H2 ∆N . (3.17)

Notice that at t = 0 we have ∆2
ζ(0) = ∆2

ζ , where ∆2
ζ is defined in (3.5). That is, the value of

∆2
ζ at horizon crossing acts as an initial condition for ∆2

ζ(t), which continues to evolve since
the light field has not yet reached equilibrium. Notice that similar formulae were obtained
by using the in-in formalism in [55]. From the last formulae we also see that, in general,
light fields behave as massless fields during a time 1� ∆N � 3H2/µ2. Expanding again
in small µ we find that

∆2
ζ(t) = H2

8π2MPl
2ε

(
1 + 4(∆N)2 Ω2

H2

)
. (3.18)

Notice that this is same superhorizon growth described in the case of ultralight fields [52];
this is the case when the entropy mass is exactly zero. We plot (3.16) and (3.17) in figure 1.
We see that for curvature field there is an initial ultralight phase which will last as long
as µ2∆N/3H2 � 1. Notice that if this inequality holds until the end of inflation then
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Figure 1. We plot the scale invariant power spectra (3.16) amd (3.17). We set ∆0
ζ = 2 × 10−9.

The parameters for the black line are µ = 0.2H, Ω = .05, the orange line µ = 0.2H, Ω = .2H and
for the gray line µ = .05H, Ω = .2H

H2/µ2 � ∆N , the ultralight phase is all there is, since the field does not have time to
start moving away from a massless distribution. Another feature which we have previously
discussed is that the coupling changes the final amplitude of the primordial fluctuation. In
the case of the light field we see that the power spectrum eventually decays to zero

3.1 Probability distribution function

Having understood the time dependence of the variances, now we would like to derive the
PDF of the two-field model. To start with, let us notice that the time scales associated
with the velocity fields tvψ and tvζ are much smaller than the scale of ζ and ψ. Using this
it is possible to integrate out vψ and vζ from the Fokker-Planck equation. We will explain
in detail how this is done in section 4.1.1. The resulting Fokker-Planck equation is

∂P

∂t
= −2Ω

fζ

∂

∂ζ
(ψP ) +

2∆2
ζΩ
H

∂2

∂ζ∂ψ
(ψP ) +

H∆2
ζ

2
∂2P

∂ζ2 + ∂

∂ψ

(
t−1
ψ ψP + Dψ

2
∂P

∂ψ

)
, (3.19)

where

Dψ ≡ H3

4π2 , tψ ≡
3H
µ2 . (3.20)

This Fokker-Planck equation is still linear, even though it has a mixed noise term, and it
can be solved with the techniques of appendix C. Further simplification is possible if we
consider the following: as explained in appendix C, the noise term is computed by using
the two-point function of the field at horizon crossing. Nevertheless, we have seen that the
value of the variance grows with time on superhorizon scales. On the other hand, a direct
computation of the two point function also shows a superhorizon growth [52, 53]

∆2
ζ(t) = H2

8π2MPl
2ε

(
1 + 36H

2Ω2

µ4 (1− e−t/tψ)2
)
, (3.21)

which, of course, is the same result we obtained in (3.16). This can be understood as
follows. As it has been previously pointed out in refs. [52, 53], in the long wavelength limit
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the equations of motion for ζ decouple if they are written in terms of vζ = ζ̇ − 2Ω
fζ
ψ

v̇ζ + 3Hvζ + k2

a2 = 0, (3.22)

ψ̈ + 3Hψ̇ + k2

a2ψ + µ2ψ = 2Ωfζvζ . (3.23)

Notice that in the long wavelength limit the first equation admits as a solution vζ = v0
ζa
−3.

Plugging this solution back into the second equation implies that the last source term
vanishes for t � 3H, hence both equations are decoupled. Nonetheless, the fact that vζ
also depends on ψ explains the superhorizon growth since the curvature mode will depend
on integrals of ψ which does not immediately decay on superhorizon scales.

We can make use of the fact that the equation of motion of vζ is free if we define it as
vζ = ˙̃ζ instead of the usual definition. In order to do this consistently we also require the
noise of the field vζ to include the superhorizon growth. This can be done by shifting Dζ

to be

Dζ → 9H3∆2
ζ(t) ≡ 9H4∆2

ζ

(
1 + 36H

2Ω2

µ4 (1− e−t/tψ)2
)
, (3.24)

where ∆2
ζ(t) is the same as that given in (3.16). The Langevin equations are now,

˙̃ζ = vζ ,

v̇ζ = −3Hvζ + ηζ̃(t),

ψ̇ = vψ,

vψ = −3Hvψ − µ2ψ + 2Ωfζvζ + ηψ(t) (3.25)

where ηζ̃ now includes the superhorizon growth of the fluctuations. We defer a more
detailed analysis on how to modify the noise term to appendix D. Since the variable that
appears in the equations of motion is vζ there is no difference between which variable we
use, which implies that the statistics of ζ̃ are the same than for ζ. We can check explicitly
by solving the Fokker-Planck equation, which now becomes

∂P

∂t
= +

2∆2
ζ(t)Ω
H

∂2

∂ζ̃∂ψ
(ψP ) +

H∆2
ζ(t)

2
∂2P

∂ζ̃2 + ∂

∂ψ

(
t−1
ψ ψP + Dψ

2
∂P

∂ψ

)
. (3.26)

This equation can be solved using the techniques described in appendix C. The solution is
found to be given by

P (ζ, ψ, t) ∼ exp
(
− ψ2

σ2
ψ

− 1
2σ2

ζ − 2κ2/σ2
ψ

(
ζ̃ − κ

2σ2
ψ

ψ

)2)
, (3.27)

where the variances are defined in (3.11) and (3.13), and

κ ≡ 2
3 tψ∆2

ζfζΩ(1− e−t/tψ), (3.28)
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is the off-diagonal variance which grows from an initial value κ ∼ HtΩ/fζ in the ultralight
phase to a value of κ ∼ HtψΩ/fζ when the distribution for ψ reaches equilibrium. Notice
that the combination κ/σ2

ψ is almost constant and is related to the size of the coupling
between the two fields. Also we have that σ2

ζσ
2
ψ � κ2 and so the denominator of the second

term in the PDF is always positive.
After marginalising over ψ we find that the variance of ζ̃ is given by (3.11), as an-

ticipated, hence the Gaussian statistics of this field are independent on how we define vζ .
Clearly the same happens for ψ. Moreover, since all couplings are linear, the variances do
not change but the minima of ψ is displaced. By minimizing the PDF with respect to ψ
we find that the minima ψ̄ is at

ψ̄ = κ

2σ2
ζ

ζ ∼ Ω
H
fζ ζ̃, (3.29)

which implies that the classical trajectory of ψ is shifted by the interaction. Of course,
this does not mean that the statistical fluctuations are modified, since they are still simply
given by σ2

ψ. From now on, for simplicity, we will remove the tilde from ζ.

4 Non linear interactions in a two-field model

So far we have focused our attention on the second order action (3.2) where it was possible
to find an exact solution of the Fokker-Planck equation. Now we would like to consider the
role of non linear terms and study how they modify the probability distribution (3.27). As
already stated, for a spectator field there are well known techniques which allow us to find
non-perturbative solutions. However these techniques are not useful to uncover the PDF
for the curvature field ζ since, as we have discussed, there is no equilibrium distribution for
ζ. Despite this shortcoming, we will be able to uncover precise non-perturbative effects on
the joint distribution P (ζ, ψ), based on the Gaussian distribution we found in the previous
section. To do so, our strategy will be to ignore non linear terms in vζ , while keeping higher
order terms in ψ.

Let us start this discussion by writing down the action for perturbations in the case
of a canonical two-field model of inflation [60, 61]. Up to leading order in slow-roll the
action is

S = 1
2

∫
d4xa3

{(
fζ + Ω

H
ψ

)2
(
ζ̇2 − (∇ζ)2

a2

)
− 2 Ω

H
(2fζH + Ωψ)ψζ̇

+ψ̇2 − (∇ψ)2

a2 − V (ψ)
}

+ . . . . (4.1)

For simplicity we consider the first few powers of the potential V (ψ) = m2ψ2+ λ
3ψ

3+ g
12ψ

4+
· · · . A crucial point is that the action contains non linear interactions between ζ and ψ,
which are due to the non geodesic motion of the background trajectory. Apart from those
appearing explicitly in (4.1), there are no further interactions between the two fields, which
can be understood as arising from the original canonical kinetic term in the action. Non
canonical kinetic terms will generate higher order interactions between ζ̇ and ψ which we
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are assuming to be suppressed. Furthermore, notice that we have not written interactions
including gradients coming from gravitational couplings, as they will be negligible for the
stochastic dynamics. Finally, as in the linear case, it will be convenient to write the action
in terms of vζ = ζ̇ − 2Ω

fζ
ψ. Doing this, the action becomes

S = 1
2

∫
d4xa3

f2
ζ

(
ζ̇ − 2Ω

fζ
ψ

)2

− f2
ζ

(∇ζ)2

a2 + ψ̇2 − (∇ψ)2

a2 − µ2ψ2

+6Ω2

H
ψ2
(
ζ̇ − 2Ω

fζ
ψ

)
+ 2fζΩ

H
ψ

(
ζ̇ − 2Ω

fζ
ψ

)2

− λ̃

3ψ
3 + · · ·

 , (4.2)

where we have kept terms up to cubic order with respect to ψ. Higher interactions are
suppressed by further powers of Ω/H (which we take as a small parameter) although mixed
terms are only up to fourth order and they can be reincorporated without trouble. Notice
that in the same way as the mass term of ψ becomes the entropic mass µ, other self
interaction couplings are also modified, g̃ = g − 12Ω3

fζH
and λ̃ = λ− 48 Ω4

H2f2
ζ
.

For simplicity, let us examine the case when there is a large cubic interaction for ψ
but the equation for ζ can be considered as free. The equations of motion are

d

dt
vζ + 3Hvζ + k2

a2 ζ = −6 Ω
fζ
vζψ −

6Ω2

Hf2
ζ

(3Hψ2 + 2ψ̇ψ) , (4.3)

ψ̈ + 3Hψ̇ + k2

a2ψ + µ2ψ = −2Ωfζvζ + 2Ω2

H
ψvζ + Ωfζ

H
v2
ζ , (4.4)

where we have disregarded higher order self interactions of ψ (which can be included back
at any point of our analysis). In order to apply the stochastic approximation for ζ we have
to demand that higher order interactions are suppressed. The first term on the r.h.s. of
eq. 4.4 is suppressed for typical fluctuations, since Ω� fζ . We will assume that the third
term is at most of the size of the second one. For the second term on the r.h.s. we have that

6Ω2

f2
ζ

ψ2

Hvζ
� 1 , (4.5)

which follows from the fact that Ω � fζ and that the variance of ζ is much larger than
the one for ψ for Ω 6= 0. For larger fluctuations of ζ the inequality (4.5) still holds. Since
at leading order eq. (4.3) is free then vζ decays after leaving the horizon and the l.h.s. of
eq. (4.4) is negligible.

4.1 Fokker-Planck equation

In order to study the effect of vζ over ψ more systematically we will analyse the stochastic
dynamics of the two-field system. For this, we use the strategy employed for the linear
case, that is, we coarse grain the fields directly from the equation of motion for the per-
turbations (4.4). Leading non linearities come only from long-wavelength modes, with
interactions involving short-wavelength modes being subdominant. In the end, the effects
of short wavelength modes reduce to the same linear noise terms as in the linear Langevin
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equations [32]. Moreover, we will consider the couplings to be small with respect to H so
it is possible to treat interactions using perturbation theory. This implies that the noise
terms are as in the linear case considered in (3.6). Another simplification comes from the
fact that there are no interactions involving ψ̇ (as they are gravitationally suppressed).
Because of this, we can neglect all terms with time derivatives of ψ except for the leading
friction term. Indeed this is related to the fact that for typical fluctuations ψ̈ � H2ψ,
since in the long wavelength limit we have that

ψ̇

Hψ
∼ 2µ2

3H2 � 1 , (4.6)

where the last inequality follows from the fact that we are considering light fields. By the
same argument we may ignore the second derivative of ψ in the first equation. Of course
this can be understood as integrating out ψ̇ from the Fokker-Planck equation and the
details will be analogous to those examined in the case of the curvature field in section 2.2.
Finally, after separating the equations into long- and short-wavelength modes, we find that
the Langevin equations for the long-wavelength mode are

dvζ
dt

+ 3Hvζ + 6Ω
fζ
vζψ + 18Ω2

f2
ζ

ψ2 = 3Hηζ , (4.7)

3Hψ̇ + µ2ψ + 2Ωfζvζ −
2Ω2

H
ψvζ −

Ωfζ
H

v2
ζ = ηψ. (4.8)

As previously discussed, there are two ways of introducing ζ to the Langevin equations.
We follow the simpler one, whereby we consider an extra Langevin equation for the field
ζ̇ = vζ . As we described in section 3.1, this means that we need to include a time dependent
noise for vζ . After considering these steps, we finally find that the associated Fokker-Planck
equation is given by

∂P

∂t
=− ∂

∂ζ
(vζP ) + ∂

∂vζ

((
3Hvζ + 18Ω2

f2
ζ

ψ2 + 6Ω
fζ
vζψ

)
P

)

+ ∂

∂ψ

((
µ2

3Hψ + 2Ωfζ
3H vζ −

2Ω2

3H2ψvζ −
Ωfζ
3H2 v

2
ζ

)
P

)

+ Dψ

2
∂2

∂ψ2P + 9
2H

3∆2
ζ(t)

∂2P

∂v2
ζ

, (4.9)

where ∆2
ζ(t) is the same quantity found in eq. (3.16), Dψ = H3/4π2, and where the

variances are given by

σ2
ζ (t) = ∆2

ζHt

(
1 + 36H2Ω2

µ2

)
− 54∆2

ζ

H4Ω2

µ6

(
3− 4e−t/tψ + e−2t/tψ

)
, (4.10)

σ2
ψ(t) = 3H4

8π2µ2

(
1− e−2t/tψ

)
. (4.11)

Before continuing, let us comment on the fact that drift terms including powers of vζ will
become ζ derivatives. This can be understood as a consequence of the shift symmetry

– 19 –



J
H
E
P
0
5
(
2
0
2
2
)
0
5
2

of the curvature mode (see also [62]). Using this we can deduce that terms including two
derivatives of ζ will change the variance of the ζ distribution, and the tail of the distribution
of ψ. Since we are interested in the tail of the distribution of ζ we can ignore them for now
and include them later. This is achieved by imposing that the quadratic terms in the drift
for ψ is larger than the quadratic terms in the drift in vζ or, equivalently, that

Ω
H

fζζ

ψ
� 1 , (4.12)

where we have used the fact that vζ ∼ Hζ. Notice that this is achieved only for Ω relatively
large, although not necessarily larger than H. A non zero Ω increases the variance of ζ
making it much larger than that of ψ, which otherwise will be very similar. Besides that,
if Ω/H is very suppressed, it will make the inequality in (4.12) impracticable. In what
follows we will assume that (4.12) holds, and we will comment on its effect on the PDF
later. Similarly as we saw in section 2.2, terms in the drift containing powers of vζ transform
into derivatives of ζ, vζ → ∆2

ζ
∂
∂ζ
, which we will show is due to the shift symmetry of ζ.

Using this property, we can neglect the term proportional to v2
ζ in the drift of ψ since is

subleading with respect to the term proportional to ψvζ .

4.1.1 Adiabatic elimination of vζ
We have used the variable vζ since it was a convenient way of studying the derivative
couplings that appear in the action. Nevertheless, we are not interested in the statistical
properties of vζ and moreover it decays faster than the other fields. It is then useful to
eliminate vζ from the Fokker-Planck equation and obtain P (ζ, σ) directly. The way of
doing this systematically is called adiabatic elimination of fast variables [57, 58]. We made
a similar computation in section 2.2, which we now generalise to include the coupling with
another field. The idea is to expand the probability density function in powers of the time
scale of the fast variable. Then replacing order by order it will be possible to factorise the
dependence on the fast variable from the slow variables. For our case, it is convenient to
expand the probability distribution function as,

P (ζ, vζ , ψ; t) = P (0)(ζ, vζ , ψ; t) + (Htv)P (1)(ζ, vζ , ψ; t)
+(Htv)2P (2)(ζ, vζ , ψ; t) + · · · . (4.13)

This expansion becomes useful if we write the Fokker-Planck equation as

d

dvζ

(
vζ + 3

2H
2∆2

ζ(t)
d

dvζ

)
P

= tv

(
d

dt
+ vζ

d

dζ
− ∂

∂ψ

(
t−1
ψ ψ + 2Ωfζ

3H vζ −
2Ω2

3H2ψvζ

)
− Dψ

2
∂2

∂ψ2

)
P , (4.14)

where we have written the mass in terms of the time scale t−1
ψ = µ2/3H. Notice that

the operator on the r.h.s. of eq. (4.14) is of order tv/tψ � 1 whereas the operator on the
l.h.s. is of order one, which is the reason why the approximation is well justified. After

– 20 –



J
H
E
P
0
5
(
2
0
2
2
)
0
5
2

replacing (4.13) into the Fokker-Planck equation this can also be written as a series in
powers of tv. At zeroth order in tv we find the following equation

∂

∂vζ
(vζP (0)) + 3

2H
2∆2

ζ(t)
∂2P (0)

∂v2
ζ

= 0. (4.15)

Notice that this equation only specifies the vζ dependence of P (0). Since this is a first order
ODE we can solve it and write P (0) as

P (0)(ζ, vζ , ψ; t) = e
−

v2
ζ

3H2∆2
ζ

(t)
φ0(ζ, ψ; t) , (4.16)

which is a Gaussian distribution of vζ with variance given by (3/2)H2∆2
ζ(t) in line with

the linear solution for P . Of course, had we included higher order terms in vζ , they
would have entered into the l.h.s. of (4.14), and the solution (4.16) would have had to be
modified accordingly. To figure out what the restrictions are for P (1) we plug (4.16) into
the expansion for P . We find that at order tv

∂

∂vζ

(
vζ + 3

2H
2∆2

ζ(t)
∂

∂vζ

)
HP (1)

=
(
∂

∂ψ
(t−1
ψ ψφ0) + Dψ

2
∂2φ0
∂ψ2 −

∂φ0
∂t

+
(

2Ωfζ
3H

∂φ0
∂ψ
− 2Ω2

3H2
∂

∂ψ
(ψφ0)− ∂φ0

∂ζ

)
v −

∆̇2
ζ(t)

3H2∆4
ζ(t)

φ0v
2
ζ

)
e
−

v2
ζ

3H2∆2
ζ

(t)
. (4.17)

Which has a similar structure to (4.15) but with a more complicated r.h.s. . Due to this, it
is not possible to immediately solve for P (1). Yet, it is possible to simplify the last equation
by noticing that the l.h.s. is a total derivative and that the r.h.s. is multiplied by a Gaussian
function. After integrating over vζ the l.h.s. vanishes while on the r.h.s. only some terms
with even powers of vζ remain. Since these have to add up to zero, we finally find

∂

∂ψ
(t−1
ψ ψφ0) + Dψ

2
∂2φ0
∂ψ2 −

∂φ0
∂t
−

∆̇2
ζ(t)

2∆2
ζ(t)

φ0 = 0. (4.18)

Notice that the first three terms form a Fokker-Planck equation for φ0(ψ, t) and hence are
of order 1/tψ. The last term is of order t−1

v so we can neglect it. We can in principle solve
for the ψ dependence of φ0, which is just given by a Gaussian with variance σ2

ψ, although
the explicit solution will not be important. Instead, we can now find the solution for P1
by using the above condition. Equation (4.17) then reduces to

∂

∂vζ

(
vζ + 3

2H
2∆2

ζ(t)
∂

∂vζ

)
HP (1)

= −
(
−2Ωfζ

3H
∂φ0
∂ψ

+ 2Ω2

3H2
∂

∂ψ
(ψφ0) + ∂φ0

∂ζ

)
vζe
−

v2
ζ

3H2∆2
ζ

(t)
, (4.19)
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whose solution can be written as

P (1) = −vζ
H

(
−2Ωfζ

3H
∂φ0
∂ψ

+ 2Ω2

3H2
∂

∂ψ
(ψφ0) + ∂φ0

∂ζ

)
e
−

v2
ζ

3H2∆2
ζ

(t) + φ1(ζ, ψ, t)
H

e
−

v2
ζ

3H2∆2
ζ

(t)
.

(4.20)

If we now plug this solution into the terms of order t2v, we find that

∂

∂vζ

(
vζ + 3

2H
2∆2

ζ(t)
∂

∂vζ

)
H2P (2)

=
[
∂

∂ψ
(t−1
ψ ψφ1) + Dψ

2
∂2φ1
∂ψ2 −

∂φ1
∂t

+ (. . . )vζ + (. . . )v3
ζ

+
(
− 4Ωfζ

3H
∂2φ0
∂ψ∂ζ

+ 4Ω2

3H2
∂2

∂ψ∂ζ
(ψφ0)

+∂2φ0
∂ζ2 −

4Ω4

H4

(
φ0 + ψ

(
3∂φ0
∂ψ

+ ψ
∂φ0
∂ψ

)))
v2
ζ

]
e
−

v2
ζ

3H2∆2
ζ

(t)
. (4.21)

This equation is similar to the constraint for P (1), thus we can again integrate over vζ . We
find that

∂

∂ψ
(t−1
ψ ψφ1) + Dψ

2
∂2φ1
∂ψ2 −

∂φ1
∂t
− 2Ωfζ∆2

ζ

∂2φ0
∂ψ∂ζ

+2Ω2∆2
ζ(t)

∂2

∂ψ∂ζ
(ψφ0) +

3H2∆2
ζ(t)

2
∂2φ0
∂ζ2 = 0, (4.22)

where we have neglected sub leading terms. Notice that the terms proportional to Ω4 can
be recast as subleading corrections to the noise of ζ of the form Ω2ζ2. These terms have
been recently studied [41, 62, 63] and we will leave their analysis to future work. Instead
of finding a solution for P2, let us collect the terms in the PDF up to order tv

P (ζ, vζ , ψ; t) =
(
φ0(ζ, ψ; t) + tv

(
vζ

(
2Ω2

H2
∂

∂ψ
(ψφ0) + ∂φ0

∂ζ

)
+ φ1(ζ, ψ; t)

))
e
−

v2
ζ

3H2∆2
ζ

(t)
.

(4.23)

Since we are not interested in the full distribution, but only on the one on configuration
space, we can integrate out vζ , which leads to P (ζ, ψ, t) =

√
3πH2∆2

ζ(t)(φ0 + tvφ1). Fi-
nally collecting all the ingredients, taking the time derivative of P (ζ, ψ, t) and using (4.18)
and (4.23) we find that

∂P

∂t
= ∂

∂ψ

(
ψP

tψ
+ Dψ

2
∂P

∂ψ

)
+ 2Ω

3 ∆2
ζ(t)

∂2

∂ψ∂ζ

(Ω
H
ψP − fζP

)
+
H∆2

ζ(t)
2

∂2P

∂2ζ
, (4.24)

which is a Fokker-Planck equation for ζ and ψ after integrating out vζ . Notice that the
couplings between vζ and ψ now translate into mixed derivatives between ψ and ζ. Of
course in the absence of such couplings, the system reduces to two linear Fokker-Planck
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equations. We can find an analytical solution if we Fourier transform ζ and ψ to p and q.
The resulting equation can be solved by looking for solutions of the form

P (p, k; t) = e−
σ2
ζ

(t)
2 p2

e−M(p,t)k2−L(p,t)k, (4.25)

which translates into two independent ODEs for M and L:

dM(t)
dt

+ 2
3H2tψ

(3H2 + 2iptψΩ2H∆2
ζ(t))M(t)− Dψ

2 = 0, (4.26)

dL(t)
dt

+ 1
3H2tψ

(3H2 + 2iptψΩ2H∆2
ζ(t))L(t)−

2fζΩ∆2
ζ(t)

3 p = 0. (4.27)

Imposing that at t = 0, M = 0, we find

M(t) = 1
2Dψe

− 2t
tψ
−

4ipΩ2σ2
ζ

(t)

3H2
∫ t

0
dt′e

2t
tψ

+
4ipΩ2σ2

ζ
(t)

3H2 . (4.28)

We can approximate the integral using a saddle point approximation to find

M(t) = 3Dψtψ
4(3H + 2iptψΩ2∆2

ζ(0))
e
− 2t
tψ
−

4ipΩ2σ2
ζ

(t)

3H2

−1 + e
2t
tψ

+
4iptΩ2∆2

ζ
(0)

3H

 . (4.29)

This approximation works well for early times 1 � Ht � Htψ times, when ψ has not
reached its equilibrium distribution. At later times a better approximation is obtained by
considering that M(t) is time independent and we will comment on this later. Following
the same method a straightforward computation shows that L(t) is

L(t) = − i2fζHtψp
(3H + 2iptψΩ2∆2

ζ(0))
e
− t
tψ
−

2ipΩ2σ2
ζ

3H2

1− e
t
tψ

+
2ipΩ2∆2

ζ
(0)

3H

 . (4.30)

Using the solution (4.29) and (4.30) we can immediately compute the Fourier transform
in k since the PDF is Gaussian. Computing the Fourier transform in p is non trivial,
since p appears in the exponents. In order to Fourier transform we expand M(t) and L(t)
in powers of ∆2

ζ(0). Notice that this requires ζ � ∆2
ζ(0)Ω2/µ2 which we will assume to

hold true and indeed it does for typical values of ζ and small amplitude of the density
perturbations. Retaining terms only up to second order in p and Fourier transforming
back, we finally obtain:

P (ζ, ψ) = exp
[
− ψ2

2σ2
ψ

− 1
2σ2

ζ

(
ζ + 2fζΩ

3H
σ2
ζ

σ2
ψ

ψ − Ω2

3H2
σ2
ζ

σ2
ψ

ψ2
)2 ]

. (4.31)

which is valid for 1� Ht� Htψ.

4.2 Non Gaussian tails

In order to understand the effect of the non linear interactions in the PDF it is useful to
ignore first the linear mixing term. This is not well justified since it means that we are
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ignoring a ψζ interaction that is important for large ζ. Nevertheless its addition does not
change the qualitative effect of adding the non linear derivative interaction. As we discuss
in section 3.1, this is because the effect of the linear mixing term is shifting the trajectory
of ψ but not its variance. Due to this let us ignore this term for the moment. Furthermore,
we see that by doing this, it becomes possible to integrate over ψ analytically which greatly
simplifies the analysis. After these considerations let us study the following PDF

P (ζ, ψ) = exp

− ψ2

2σ2
ψ

− 1
2σ2

ζ

(
ζ − κ̄ ψ

2

2σ2
ψ

)2
 , (4.32)

where we have defined

κ̄ ≡ 2Ω2

3H2σ
2
ζ , (4.33)

which is a time independent parameter. Notice that this coupling is related to (3.28)
through the relation

κ̄ = κ2

σ2
ψ

, (4.34)

by which it should be clear that κ is related to the size of the interactions. We are interested
in the distribution for ζ which we obtain after integrating over ψ. The integral can be done
analytically and expressed in term of Bessel functions:

P (ζ) ∝



exp
(

(ζκ̄− σ2
ζ )2

4κ̄2σ2
ζ

− ζ2

2σ2
ζ

)
K1/4

(
(ζκ̄− σ2

ζ )2

4κ̄2σ2
ζ

)
for ζ <

σ2
ζ

κ̄

exp
(

(ζκ̄− σ2
ζ )2

4κ̄2σ2
ζ

− ζ2

4σ2
ζ

)

×
(
I−1/4

(
(ζκ̄− σ2

ζ )2

4κ̄2σ2
ζ

)
+ I1/4

(
(ζκ̄− σ2

ζ )2

4κ̄2σ2
ζ

))
for ζ >

σ2
ζ

κ̄

.

To appreciate the distribution we plot it in figure 2. From there we see that it is a displaced
Gaussian around the centre but it becomes strongly non Gaussian for ζ > ζcr ≡

σ2
ζ

κ̄ . We
can understand the asymptotic behavior of P (ζ) as emerging from a change on the saddle
points in (4.32). Let us notice from it, that the shifted distribution of ζ has the overall
effect of changing the coefficient in front of ψ2, which becomes negative for large values of
ζ > ζcr. This implies that there are three saddle points for ψ, one at ψ = 0, and other
two at

ψ̄ = ±

√
2σ2

ψ

κ̄

√
ζ −

σ2
ζ

κ̄
. (4.35)

The behaviour for the asymptotics of P (ζ) are then similar to the Stokes phenomena, in
the sense that for large values of ζ the saddle point changes from 0 to ψ̄. If we expand
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⇣

Figure 2. Toy model of the distribution described in eqs. (4.35). The black region is the when
ζ < σ2

ζ/κ̄ while the orange line is otherwise. The dotted line is a Gaussian distribution that fits the
region in the left of the plot. The parameters are made up to highlight the fact that the distribution
on the right has a very non Gaussian tail.

around 0 we find a Gaussian distribution for ζ, whereas if we expand (4.32) around ψ̄ after
integrating over ψ, we find that

P (ζ) ∼ exp
(
− ζ
κ̄

)
, (4.36)

valid for ζ � ζcr and that it coincides with the large ζ limit of (4.35). This effect is non
perturbative in nature since κ̄� 1 and so typically ζ/κ̄ ≥ 1. Let us now comment on the
regime of validity of κ̄. As we mentioned before eq. (4.29) was only valid for intermediate
times tv � t � tψ, whereas for later t ≥ tψ it is more accurate to consider that M(t) is
time independent. Solving for M and L we find that the PDF is given by,

P (ζ, ψ) = exp

− ψ2

2σ2
0ψ
− 1

2σ2
ζ

(
ζ − κ̄′ ψ

2

2σ2
0ψ

)2
 , κ̄′ = 2

3 tψH∆2
ζ(t)

Ω2

H2 , (4.37)

with κ̄ replaced by κ̄′ and σ2
0ψ = 3H4/(8π2µ2) the equilibrium distribution for ψ. In absence

of ζ, the PDF in (4.37) reduces to the equilibrium distribution of ψ, in accordance with
the fact the we are considering the distribution at late times t ≥ tψ. In this sense, (4.37)
is the distribution when the field ψ has settled into its equilibrium distribution. Of course
if the field is ultralight then tψ → ∞ and the transition between κ̄ and κ̄′ does not take
place during inflation.

Furthermore, we see that for t� tψ, κ̄ < κ̄′ but otherwise κ̄ > κ̄′ since κ̄ keeps growing.
Expanding in powers of tψ we find that

κ̄ = 2Ω2

3H2Ht∆
2
ζ(t) , κ̄′ = 2Ω2

3H2Htψ∆2
ζ(t) , (4.38)

from where we can see that κ̄ grows until it reaches the equilibrium value κ̄′. Anyhow since
at equilibrium σζ ≈ Htψ∆2

ζ , we can write κ′ ∼ Ω2/H2σ2
ζ to see that the coupling does not
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Figure 3. a) The figure is the PDF of (4.35). The orange line is for N = 30 and the black line is
for N = 40. The other parameters are Ω = .2H and ∆ζ = 10−3. The dotted lines are the region
where ζ ≥ σ2

ζ/κ̄ b) Both curves are at N = 40 but the green line has Ω = 0.3H.

change its dependence on the parameters. In any case is worth mentioning that κ̄′ is a
limiting value where the time dependence has become negligible.

All of this implies that initially the tail of the distribution becomes non Gaussian at
smaller values of ζ until it settles down on σ2

ζ/κ̄
′. When this happens the coupling of the

tail becomes constant

P (ζ) ∼ exp
(
− ζ
κ̄

)
= exp

(
− µ2

2Ω2∆2
ζ(t)

ζ

)
. (4.39)

Still at early times the distribution is more localised, hence the values at which the tail
becomes non-Gaussian are smaller, as can be seen in figure 3. In the end, even though the
saddle point changes at larger ζ, larger values of ζ are more likely due to the growth of σ2

ζ .
Finally, let us pay attention to the fact that the tail is typically very suppressed since we
have that

ζ/κ̄� σ2
ζ/κ̄

2 � 1 , (4.40)

since κ̄−1 � 1. In order to have a larger effect the power spectrum has to be several orders
of magnitude larger than the CMB values. Furthermore, let us note that the critical value
for ζ does not depend on the amplitude of the fluctuations ∆2

ζ(t), which in the end implies
that for smaller values of ∆2

ζ(t) the probability for the regions where the tail changes is
very suppressed. In any case the tail we have found is always larger than a Gaussian tail,
which is due to the fact that κ̄ζ/σ2

ζ > 1 is equivalent to ζ/κ̄ > ζ2/σ2
ζ .

To conclude let us stress the point that changing Ω has a large effect, as can be seen
in figure 3b, where the overall effect is flattening and shifting the PDF.

Local non-Gaussianity. In order to understand how the tail is related to usual pertur-
bation theory, we can estimate the size of the non-Gaussianities produced by the interaction
∼ v2

ζψ we are considering. From the Langrangian (4.2), we have that fNL can be estimated
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to be of order

fNLζ ∼
L3
L2
∼ 6Ω2

H2f2
ζ

ψ2

ζ
∼ Ω2

H2f2
ζ

σ2
ψ

σ2
ζ

ζ , (4.41)

where the last term corresponds to the off diagonal coupling parameter. Indeed, using (3.28)
the last relation can be recast as

fNLζ ∼
Ω2

H2 ζ , (4.42)

which implies the following: perturbation theory is usually under control when fNLζ � 1
which in our case corresponds to expanding around the Gaussian saddle point. Observables
can be computed by expanding them in powers of the power spectrum since it is always
suppressed. On the other hand, when fNLζ ∼ 1 perturbation theory fails since the distri-
bution is non Gaussian, which means that the expansion in powers of the power spectrum
cannot be justified. We can see this explicitly now since ζcr ∼ 1/fNL. Naively one should
expect that for ζ ≥ ζcr perturbation theory fails which we now see translates into the tail
becoming strongly non-Gaussian. Clearly if fNL � 1 one might be worried about correc-
tions from other interactions becoming important for large values of the tail. Nevertheless,
since there is a finite number of interactions in the EFT we are considering we can still
deduce the behaviour of the tail up to certain (large) values of ζ when other interactions
become important. In order to estimate the validity of our results we need to include the
terms we have been neglecting so far, which is what we are going to discuss now.

Including the linear mixing. In the previous section we ignored the linear mixing term,
since we argued it does not affect the appearance of non-Gaussian tails. When adding it,
it turns out that it is not possible to integrate over ψ analytically but it is still possible to
obtain the saddle points and check how the tail changes for large ζ. Firstly, let us notice
that the point where the saddle point changes is not modified significantly. To see this we
can expand the PDF and notice that the terms proportional to ψ2 in eq. (4.31) are

ψ2

2σ2
ζ

(
1− 4Ω2

3H2

(
ζ − 1

3

))
, (4.43)

which implies that for small ζ < 1/3 the saddle point does not change even when Ω2/H2

is very large. Since we are interested in small Ω2/H2 this does not significantly change our
results. Next, if we ignore suppressed terms we find that the displaced saddle points are
now at

ψ̄ = 3fζH
Ω ± 3fζH2

Ω2

√
−1/2 + (1 + 24ζ) Ω2

36H2 . (4.44)

The fact that the saddle point now contains a constant piece is reflected in the tail. Indeed,
expanding around ψ̄ we find that for large ζ

P (ζ) ∼ exp
(
−3ζ ±

√
6ζ

4σ2
ζ

H2

Ω2

)
, (4.45)
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where the different signs correspond to different saddle points. In general there is one
correct saddle point which can be picked based on the analytical properties of the PDF,
a task which we leave for future work.4 In any case, if we assume that the fluctuation
in ζ is large we find that the tail gets a small correction. Finally let us notice that the
effects of the linear mixing term can also be understood as fNLζ becoming large. In this
case it corresponds to the interaction L3 ∼ 2fζΩ/Hψv2

ζ , and so the constant piece of the
saddle point, which appears for smaller ζ, appears as long as Ω/Hζ ∼ 1. Nevertheless,
the tail of the distribution will not change until Ω2/H2ζ ∼ 1 where the other saddle point
becomes real.

As a side comment let us notice that the coupling does not grow unbounded but it
settles into a constant value at approximately t ∼ tψ, given by

2fζΩ
3H2

tψ∆2
ζ(t)

σ2
ψ

ψ ∼ Ωtψ
fζ

, (4.46)

as explained in eq. (3.28).

4.3 Adding more interactions

Having understood the leading interaction effect we can now add the rest of the terms to
the system. In particular, let us consider a general potential V (ψ). Since the new terms
do not add any new shorter time scale than tv we can eliminate vζ from the Fokker-Plank
equation following the same steps we described in section 4.1.1. This results in the following
Fokker-Plank equation

∂P

∂t
= ∂

∂ψ

(
V ′(ψ)

3H P + Dψ

2
∂P

∂ψ

)
+H∆2

ζ(t)
∂2

∂ψ∂ζ

((
2Ω2

H2 ψ + 2fζΩ
3H

)
P

)
(4.47)

+ H∆ζ(t)2

2
∂2P

∂ζ2 + 6Ω2

f2
ζH

∂

∂ζ

(
ψ2P

)
−

Ω∆2
ζ(t)
fζ

∂2

∂ζ2 (ψP )− 1
4Ωfζ∆4

ζ(t)
∂3P

∂2ζ∂ψ
,

where we have ignored sub leading terms in the noise, and expanded to cubic order in tv in
order to obtain the last two terms. Before solving the Fokker-Planck equation let us pay
attention to the fact that ζ appears only through derivatives of the PDF. This stems from
the fact that ζ posses a shift symmetry, by which the only allowed interaction contains
time derivatives or gradients. As for the stochastic dynamics, this result in the drift being
an explicit function of vζ . Now, at leading order in tv, we see that this translates into
derivatives of ζ. Indeed allowing higher powers of vζ in the drift, translates into higher
derivatives of ζ in the Fokker-Planck equation [35, 67]. Another important feature of
eq. (4.47) is that, as expected, in the absence of the coupling Ω the equation reduces to
uncoupled Fokker-Plank equations whose solution factorises as P ∼ Pψ(ψ, t)Pζ(ζ, t).

Finally let us stress that in order to obtain eq. (4.47) we only need to assume that
f2
ζ � H2, Ω2 � H2, and µ2 � H2. The assumption about Ω can be relaxed, but doing
that will modify the value of the two point function which will modify the noise function.

4See refs. [64–66] for related attempts in dealing with complex saddle points.
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Including higher ζ derivatives. Let us now study the last two terms in (4.47) and
restrict to V (ψ) = µ2ψ2/2. These contain two derivatives of ζ, and as expected will modify
the variance of the distribution for ζ. As we will see they restrict the range of the Gaussian
fluctuations for ψ. Indeed we can find the solution for the PDF at equilibrium to be

logP (ζ, ψ) ∝ − ψ2

2σ2
ψ

−

(
ζ + 2Ωfζ

3H
σ2
ζ

σ2
ψ
ψ − Ω2

3H2
σ2
ζ

σ2
ψ
ψ2
)2

σ2
ζ (1 + 3Ωfζ

tψH

σ2
ζ

2σ2
ψ
ψ)

, (4.48)

where we have neglected other terms that appear in the denominator which are suppressed
by additional powers of ∆2

ζ . We see from (4.48) that the variance gets shifted for larger
values of ψ. Notice, moreover, that for typical values of ψ this effect is very suppressed
since Ω � fζ . In any case, at that point the distribution is not valid and other terms
will become dominant. This effect would modify the tail of ψ, and as long as we consider
small fluctuations around the new trajectory of ψ the description we have given for the
distribution in ζ remains valid. If we expand in small ψ we find that there are new terms
proportional to ψ2ζ2. These terms would actually change the saddle point moving it back
to ψ = 0 at larger values of ζ. This effect is related to the condition we impose in (4.12).
In the end we find that a violation of (4.12) is related to the fact that there is no change in
the saddle points due to the quadratic term in ψ. In general we found that for late times
and larger Ω2/H2 the effect of these new terms is suppressed. The reason behind this is
that for late times t & tψ the variance of σψ stops growing whereas the variance of ζ grows
until the end of inflation.

General V (ψ). We have focused only on quadratic potentials for ψ but it possible to
study a general potential. To start with, let us neglect the linear coupling and focus only on
the leading order interactions. If we Fourier transform in p and write P = exp(−σ2

ζ/2p2)P̃
we obtain a Fokker-Planck equation with only derivatives of ψ and with a corrected
drift term

∂P̃

∂t
= ∂

∂ψ

((
V ′(ψ)

3H + ip
2Ω2∆2

ζ(t)
H

ψ

)
P̃

)
− Dψ

2
∂2P̃

∂ψ2 . (4.49)

We can rewrite this equation using the replacement

P̃ (ζ, ψ, t) = e−v/2
∞∑
n=0

anΦne
Λnt, v(ζ, ψ, t) = 8π2

3H

(
V (ψ) + 3ipΩ2

H2 ∆2
ζ(t)ψ2

)
, (4.50)

by which the Fokker-Planck equation becomes an eigenvalue problem of the form

1
2

(
− ∂

∂ψ
+ ∂v

∂ψ

)(
∂

∂ψ
+ ∂v

∂ψ

)
Φn(ψ) = 8π2Λn

H3 Φn(ψ) , (4.51)

which is similar to eq. (2.45) with the particular difference that the equilibrium distribution
exp(−v) in this case is time independent. Solving this equation in general lies beyond the
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scope of this paper, but we can still comment on the case that ψ reaches the equilibrium
PDF. Fourier transforming in p we find that the PDF is given by

P (ζ, ψ) ∼ exp

−8π2V (ψ)
3H2 − 1

2σ2
ζ

(
ζ − κ̄′

2σ2
0ψ
ψ2
)2
 , (4.52)

which is a generalisation of (4.37), including general potentials. Let us consider the example
V (ψ) = µ2ψ2/2+λψ4/4 which allows us to integrate ψ out of the equilibrium distribution.
This leads to

P (ζ) ∝



exp

 1
4σ2

ζ

(ζ − σ2
ζ/κ̄
′)2

1 + 6λtψσ2
ψ
σ2
ζ

Hκ̄′2

− ζ2

2σ2
ζ

K1/4

 1
4σ2

ζ

(ζ − σ2
ζ/κ̄
′)2

1 + 6λtψσ2
ψ
σ2
ζ

Hκ̄′2

2

 for ζ < σ2
ζ

κ̄′ ,

exp

 1
4σ2

ζ

(ζ − σ2
ζ/κ̄
′)2

1 + 6λtψσ2
ψ
σ2
ζ

Hκ̄′2

− ζ2

2σ2
ζ


×

I−1/4

 1
4σ2
ζ

(ζ−σ2
ζ/κ̄
′)2

1+
6λtψσ

2
ψ
σ2
ζ

Hκ̄′2

+ I1/4

 1
4σ2
ζ

(ζ−σ2
ζ/κ̄
′)2

1+
6λtψσ

2
ψ
σ2
ζ

Hκ̄′2

 for ζ > σ2
ζ

κ̄′ .

This expression is a bit complicated but we can see that a quartic self interaction reduces
the amplitude of the tail. This has an overall effect of making the distribution Gaussian for
larger values of ζ. We plot (4.53) in figure 4 where it is noticeable how the non Gaussian
effects diminish by increasing λ. This can be shown by expanding around the non trivial
saddle point. In this case after integrating out ψ we find that

P (ζ) ∼ exp

− ζ2

Hκ̄2

3tψλσζσ2
ψ

+ 2σ2
ζ

− ζ

κ̄+ 6tψλσ2
ψ
σ2
ζ

Hκ̄

 . (4.53)

Notice that the tail contains a quadratic term, whose variance has a correction which
is the inverse of the correction of the coefficient of the tail. This means that increasing
λ makes the correction of the quadratic term smaller while the correction for the linear
term becomes larger. The effect can be understood by estimating the sizes of the non
Gaussianites. Indeed we have that for the quartic interaction f (λ)

NL , is of order

f
(λ)
NL ζ ∼ λ

H2f2
ζ

σ4
ψ

σ2
ζ

× ζ. (4.54)

If we compare the ratio between f (λ)
NL and fNL we find that it coincides with the ratio that

controls whether the Gaussian term dominates

f
(λ)
NL
fNL

∼ λ

Ω2σ
2
ψ. (4.55)

Let us first detail the case in which the ratio is much larger than one. When this happens,
since perturbation theory breaks down for f (λ)

NL ζ ∼ 1, the action cannot be trusted anymore
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Figure 4. We plot the log of the ζ distribution given by (4.53) for three different values of g. The
black line corresponds to λ = 0, the red line to λ = 10−5 and the orange line to λ = 10−2. The
dotted lines are the regions where 3ζ > Ht µ

2

Ω2 .

and the effect of the cubic coupling between ζ and Ω is not seen. Clearly at this point
other self interactions have to be taken into account and the PDF at large ζ might become
dominated by other higher order terms. On the other hand when the ratio in (4.55) becomes
smaller than one the saddle point changes before f (λ)

NL ζ ∼ 1 and so the tail becomes non
Gaussian. For any non zero λ there it will be a point when f (λ)

NL ζ ∼ 1. At that stage the
computations of the tail in are not valid. Nevertheless this will produce an exponentially
small effect on the whole PDF.

5 Conclusions

We have studied the statistics of large but rare fluctuations within the multi-field inflation
paradigm using the stochastic inflation formalism. In the simplest class of two-field models,
the primordial curvature fluctuation ζ interacts with an isocurvature field ψ as a result of
turns of the background trajectory in the target space of scalar fields. This translates into a
derivative coupling proportional to Ω, the rate of turn of the trajectory, appearing at both
linear and non-linear level in the evolution of perturbations. We found that the non-linear
interactions induced by Ω imply non-Gaussian deformations affecting the tails of the joint
probability distribution of the perturbations.

By assuming that the evolution of the background is close to de Sitter, we derived the
Fokker-Planck equation that is satisfied by the probability density function characterising
both fields ζ and ψ. When only the linear evolution of the fields is considered, we find that
a non vanishing Ω enhances the growth of the variance of ζ. This matches with results
obtained previously using perturbation theory. A particular case of this scenario is when
the entropy mass is exactly zero (the ultralight limit), studied recently in ref. [52]. We
showed that initially all spectator fields behave as ultralight fields after horizon crossing
but after some time, that depends on their mass, the fields decay. If the entropy mass is
zero, we recover the exact ultralight case.
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On the other hand, when non linearities are taken into account, we find that after
integrating out ψ the tail of the PDF of ζ becomes non-Gaussian for values of ζ & H2/Ω2.
This can be understood as the Stokes phenomenon, whereby a Gaussian saddle point leads
to non-Gaussian saddle points for large values of a parameter. Crucially the coupling makes
the exponential tail to be larger than the Gaussian tail. Such a result has important conse-
quences. For instance the abundance of PBHs formed during inflation depends strongly on
the tail of the PDF. In this way a non-Gaussian tail implies that the abundance of PBHs
can be substantially enhanced in models with derivative couplings. Another consequence
would be a possible modification on the clustering of galaxies which depend on rare large
fluctuations, whose probability would now be enhanced.

There are several paths along which our work can be expanded. For instance, here we
considered a simple EFT of multi field inflation in which the number of interaction terms
with derivatives couplings is limited. There are other known examples with a larger number
of interaction terms which might become relevant for large values of ζ. In those cases one
might need to resum the implied corrections to obtain accurate expressions for the tail.
Another interesting topic would be to understand how corrections to the Fokker-Planck
equation are related to resummation of loops. This has been well understood for light
spectator fields on pure de Sitter [21, 30, 41, 68], and a similar result should follow from
the Fokker-Planck equation arising from our two field model. Also, it would be interesting
to compare our results to other derivations of the Fokker-Planck equations within the multi-
field paradigm [29, 44, 69, 70] and its relation with the Hamilton-Jacobi formalism [53, 71].
On these examples the derivation of the Fokker-Planck equation was done directly from the
background equations, whereas in this article we obtained the stochastic dynamics directly
from perturbations.

Our results suggest that the abundance of PBHs in multifield models can be much
larger than that obtained when the Gaussian approximation is used to study the production
of PBHs through the enhancement of the power spectrum. It would be interesting to apply
our results to models such us those of refs. [72, 73] to reassess the production of PBHs. To
do this one would need to go beyond the assumption that Ω� H, implying that some of
the terms that in our analysis were suppressed would now become dominant. Finally we see
that stochastic inflation might allow one to go beyond perturbation theory. In that sense
it will be interesting to understand our results in the light of recent works such as [13, 62]
(see [74, 75] for a discussion on the importance of this for PBHs). For instance it has been
suggested that when there is a non perturbative tail there is an exponential enhancement
of the large N point correlation function [76]. Whether those result apply to the case we
study here, we leave for future work.
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A Langevin equations

In this appendix we give details on how to obtain the Langevin equation (2.3). Starting
from the action

S =
∫
d4xdta3ε

[
ζ̇2 − 1

a2 (∇ζ)2
]
, (A.1)

the equations of motion are

ζ̈ + 3Hζ̇ + k2

a2 ζ = 0 . (A.2)

We can split the solution to this equation into long- and short-wavelengths

ζ(x) = ζl(x) + ζs

= ζl +
∫

d3k

(2π)3 θ(k − εa(t)H)
[
akζk(t)e−i

~k·~x + a†kζ
∗
ke
i~k·~x
]
, (A.3)

with ε� 1 and where ζk is the solution of (A.2)

ζk = z

√
π

4H(−τ)3/2H
(1)
3/2(−kτ) , (A.4)

where a, a† are the corresponding creation and annihilation operators and τ is conformal
time. Notice that picking a different window function might change the result of the
correlation function (see [77] for a discussion) although in this work we are only interested
in equal-time correlation functions. Clearly the definition of the long wavelength modes
implies that we neglect the gradient term in the equation of motion. Moreover, since
horizon crossing happens at k/aH ' 1, it also implies that the leading piece from the
equation of motion is 3Hζ̇l. Due to this we can write the equation of motion as

ζ̈l + 3Hζ̇l = ηζ(t, x) , (A.5)

where ηζ(t, x) is the contribution from the short wavelength perturbations.

A.1 Computing the noise terms

In order to compute the noise term let us consider a light scalar field φ in de Sitter space
of mass m2 � H2 . Going back to ζ can be done by rescaling our results. Following [27],
let us split the field into long and short wavelengths by writing it as

φ(x) = φl(x) + φs

≡ φ̄+
∫

d3k

(2π)3 θ(k − εa(t)H)
[
akφk(t)e−i

~k·~x + a†kφ−ke
i~k·~x
]
, (A.6)
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where we have introduced the time dependent cut-off kc = εa(t)H, with ε a small parameter,
and where the mode function φk is given by

φk =
√
π

4H(−τ)3/2H(1)
ν (−kτ), (A.7)

where τ is conformal time and ν =
√

9/4−m2/H2 . The noise term comes from averaging
over the time derivative of the second term. Indeed defining

f ≡ εa(t)H2
∫

d3k

(2π)3 δ(k − εa(t)H)
[
akφk(t)e−i

~k·~x + a†kφ−ke
i~k·~x
]
, (A.8)

we then have that

〈f(x, t)f(x′, t′)〉 = ε2H4
∫

d3k

(2π)3φkφ
∗
ke
−i~k·(~x−~x′)δ(k − εa(t)H)a(t)δ(k − εa(t′)H)a(t′)

= ε2H4
∫
k2dk

2π2 φkφ
∗
k

sin(k|~x− ~x′|)
k|~x− ~x′|

δ(k − εa(t)H)a(t)δ(k − εa(t′)H)a(t′).

(A.9)

Now for a massless field we have that

φk = H√
2k

(
τ − i

k

)
e−ikτ , (A.10)

so instead we obtain

〈f(x, t)f(x′, t′)〉 = ε2H4

4π2
sin(εa(t)H|~x− ~x′|)
εa(t)H|~x− ~x′|

a(t)2

εa(t)H
δ(t− t′)
εH2a(t)

= H3

4π2
sin(εa(t)H|~x− ~x′|)
εa(t)H|~x− ~x′| δ(t− t′), (A.11)

which implies that at coincident points we have

〈f(x, t)f(x, t′)〉 = H3

4π2 δ(t− t
′). (A.12)

In general we should expand φkφ∗k in small ε after replacing the cut-off in the mode func-
tions. At leading order in ε we find that

φkφ
∗
k = Γ(ν)24ν−1

π

ε−2ν

Ha3 . (A.13)

Replacing into (A.9) we get

〈f(x, t)f(x′, t′)〉 = ε2H4

2π2
sin(εa(t)H|~x− ~x′|)
εa(t)H|~x− ~x′| ε2a(t)2H2 Γ(ν)24ν−1

π

ε−2ν

Ha3
a(t)2δ(t− t′)
εH2a(t)

= H3

4π2
sin(εa(t)H|~x− ~x′|)
εa(t)H|~x− ~x′|

Γ(ν)24ν−1/2

π
ε3−2νδ(t− t′), (A.14)

Expanding in powers of m/H we get,

〈f(x, t)f(x′, t′)〉 = H3

4π2
sin(εa(t)H|~x− ~x′|)
εa(t)H|~x− ~x′|

×
(

1 + 2 (−2 + γE + log(2ε)) m
2

H2 +O
(
m2/H2

))
δ(t− t′). (A.15)
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B Secular growth of σ2
ζ

In this appendix we will relate the variances of the stochastic fields to the correlation
functions in real space. First let us recall that the field perturbation in inflation can be
written approximately as

δφk =
√
π

4H(−τ)3/2H
(1)
3/2(−kτ), (B.1)

where τ is conformal time and a(τ) = −1/(Hτ). From this it is possible to write the two
point function in momentum space 〈δφ2

k〉 = H2

2k3 (1 + k2τ2). Since we would like to compare
this to the result obtained through the Langevin equation let us Fourier transform the two
point function. We have that

〈δφ(~x, t)δφ(~y, t)〉 =
∫

d3k

(2π)3 e
i~k·|~x−~y|〈δφ2

k〉

= H2

4π2

∫
k2dkeik|~x−~y|

1
k3 (1 + k2τ2)

= 1
(2π)2

1
|~x− ~y|2a(t)2 −

H

(2π)2 log
( |~x− ~y|

L

)
, (B.2)

where the infrared cut-off L ≡ a0H0 is the largest scale during inflation. This is related to
the end of inflation as we can write (a0H0)−1 = −τ0 > 0 where τ0 < 0 is the time when
inflation ends. Notice also that during eternal inflation τ0 → 0 [78].

Eq. (B.2) can be understood as follows, the first piece corresponds to the flat space two
point function in physical coordinates. As we move deeper into the bulk this expression
dominates. This is expected as we have picked a vacuum that reproduces the Minkowski
vacuum. This term dilutes as we approach the horizon. The second term does not depend
explicitly on time and it corresponds to the two point function on a scale invariant theory.
This is due to the symmetries of inflation at horizon crossing.

In order to compare to the stochastic result let us compute the correlation functions
at coincident points. This corresponds to the variance of δφ. Since the expression diverges
let us introduce a time dependent cut-off such that

|~x− ~y|eHt � Λ−1. (B.3)

For shorter distances we evaluate the two point at the cut-off, which schematically im-
plies that

〈δφ(t)2〉 = aΛ2 + b log Λ + H3t

(2π)2 = H3t

(2π)2 + const, (B.4)

which is the result we have obtained by solving the Fokker-Planck equation. Notice that
the time dependence comes from the fact that at each time more modes are included in
the region below the cut off. A similar computation shows that at coincident points the φ̇
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correlation function goes as

〈δφ̇(~x, t)δφ̇(~x, t′)〉vac = 1
2π2

∫ ∞
0

d3k|δφ̇k(τ)δφ̇k(τ ′)|

= 6H4

4π2
τ2τ ′2

(τ − τ ′)4

= 3H4

32π2
(
sinh(H|t− t′|

)−4
, (B.5)

where we have pointed out that these are vacuum fluctuations, to distinguish them from
the statistically averaged two point functions. To compute this, let us note that after
smearing the field the noise function is directly proportional to the smeared speed, as can
be seen after taking the time derivative from (A.6). Then, we have that the correlation
function is given by

〈δφ̇(~x, t)δφ̇(~x, t′)〉av = H4

8π2 δ(t− t
′). (B.6)

Notice that, while at separate time both decay to zero, at equal times the correlation
function diverges while the statistical average is finite. This is an effect of smearing out
over a region where there are statistical fluctuations, which in the end translates into the
correlation function for the speed being finite at equal time.

C General solution for linear coefficients

In this appendix we will follow [57] to derive general solutions of the Fokker-Planck equa-
tion. Let us start by considering the following equation

∂P

∂t
= −Aij

∂

∂φi
(φjP ) + 1

2Dij
∂2

∂φiφj
P , (C.1)

where both Aij and Dij are n× n constant matrices and in addition Dij is symmetric and
semipositive definite. Subject to initial conditions

P (φ, 0) =
∏
i

δ(φi − φi0). (C.2)

The solution of this equation is Gaussian which we will show. First if we multiply the
equation for φi and integrate over φ we find after integration by parts

∂t〈φi〉 = Akj〈φj〉 , (C.3)

whose solution is given by
〈φi〉 = etAy0 , (C.4)

in matrix notation. Now if we insert φiφj into the Fokker-Planck equation we find

∂t〈φiφj〉 = Aik〈φkφj〉+Ajk〈φ
kφi〉+Dij . (C.5)
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It is more convenient to use the covariance matrix Cij = 〈φiφj〉 − 〈φi〉〈φj〉. In which case
the above equation reduces to

∂tC = AC + CAt +D , (C.6)

in matrix notation. Now if we write the covariance matrix as C = etAC̄etA
t then we get

∂tC̄ = e−tADe−tA
t
, (C.7)

where assuming that C̄(0) = 0 has a solution given by

C(t) =
∫ t

0
e(t−t′)ADe(t−t′)Atdt′ . (C.8)

Even though this expression looks abstract it can be easily computed . To conclude given
that we assume that the distribution was Gaussian then it is fully determined by the
covariance matrix, hence we have

P (φ, t) = 1
(2π)n/2

1√
detC

exp
(1

2(φ− 〈φ〉)t〉C−1(φ− 〈φ〉)
)
. (C.9)

Let us check now that the expression for C agrees with what we found before. We first
have that

A =
(

0 1
0 −3H

)
, D =

(
0 0
0 Dζ

)
. (C.10)

The eigenvalues of A are 0 and 3H, and we can compute the exponential of A

exp(−tA) =
(

1 1−e−3Ht

3H
0 e−3Ht

)
. (C.11)

We then have that

e(t−t′)ADe(t−t′)At =


D

(
e3H(t′−t)−1

)2

9H2

De6H(t′−t)
(
e3H(t−t′)−1

)
3H

De6H(t′−t)
(
e3H(t−t′)−1

)
3H De6H(t′−t)

 . (C.12)

Performing the integral we find

C(t) =

 −D(−6Ht+e−6Ht−4e−3Ht+3)
54H3

De−6Ht(e3Ht−1)2

18H2

De−6Ht(e3Ht−1)2

18H2 −D(e−6Ht−1)
6H

 , (C.13)

which coincides with the expression we found before. Taking the limit t� 1/H we have

C(t)→
(

Dt
9H2

D
18H2

D
18H2

D
6H

)
, (C.14)

so we find that

P = 1
2π

√√√√54H3

D2
ζ t

exp
(
− 9H2

2Dζt
ζ2 + 3H

Dζt
vζζ −

3H
Dζ

v2
ζ

)
. (C.15)
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D Ultralight field

In this appendix we show how to modify the noise term in the Fokker-Planck equation
to take into account the superhorizon time dependence of the curvature power spectrum.
This can be done in general but in this case we will focus on the case of an ultralight
field [52]. Let us start from the Langevin eqs. (3.6), specialised to the case of µ2 = 0. For
convenience we will define a new variable ζ̃ such that the Langevin equations are now

˙̃ζ = vζ ,

v̇ζ = −3Hvζ + ηζ̃(t),

ψ̇ = vψ,

vψ = −3Hvψ + 2Ωfζvζ + ηψ(t). (D.1)

Notice that in this case ζ̃ grows outside the horizon due to the interactions with ψ. This
implies that the noise term ηζ̃(t), which is computed by coarse graining ζ̃, should also grow
on superhorizon scales. To do so, let us first recall that for an ultralight field, the two point
function for the curvature mode is given by [52]

〈ζ2〉 = 1
2εa2

1
2k3τ2

(
1 + λ2

[
A1 −A2 log(−kτ) + log2(−kτ)

])
, (D.2)

where λ ≡ 2Ω
H , and A1, A2 are given by

A1 = −π
2

6 + (3− ln 2)(1− ln 2)− γE(4− γ − 2 log 2) ' −2.11 ,

A2 = 4− 2γ − 2 ln 2 ' 1.46 . (D.3)

Notice that it diverges in the limit kτ → 0. However, since inflation will last for a finite
amount of time, there is an natural cut-off for the power spectrum. A more systematic way
to deal with this IR behaviour is to regularise the growing logs by introducing boundary
counterterms as in [79]. Doing so results in the following regularised expression

〈ζ2〉 = 1
2εa2

1
2k3τ2

(
1 + λ2

[
A1 −A2 log(k/µIR) + log2(k/µIR)

])
, (D.4)

where µIR is an infrared cut-off. If we set µIR = εH the diffusion coefficient for ζ changes to

Dζ → Dζ

(
1 + λ2

[
A1 −A2 log(a) + log2(a)

])
. (D.5)

To compute the covariance matrix we can use the results from appendix C, which are
compatible with a time dependent diffusion matrix. At leading order in λ2∆N2, and for
t� 1/H, we have that

C =



Dt(3+H2t2λ2)
27H2 −

√
2εDt(3+H2t2λ2)

81H2
D

18H2 0

−
√

2εDt(3+H2t2λ2)
81H2

H3t
4π2 0 H3

8π2

D
18H2 0 D

6H 0

0 H3

8π2 0 3H4

8π2


, (D.6)
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where we have kept terms at order
√
ελ∆N2. Notice that this steady state is reached

within a couple of efolds. If we drop the slow roll terms, the PDF is given by

P = 6
√

3√
D2
ζH

6t4λ

× exp
[
− 27H2

2Dζt3λ2 ζ̃
2 + 9

DζHt3λ2 ζ̃vζ −
3H
D
v2
ζ −

2π2

H3t
ψ2 + 4π2

3H4t
vψψ −

4π2

3H4 v
2
ψ

]
.

(D.7)

It is possible to compute the correlation function directly from the distribution by inte-
grating over all the fields

〈φaφb〉 =
∫ ∏

i

DφiφaφbP , (D.8)

doing so we get

〈ζ̃2〉 = Dζt
3λ2

27 , 〈ψ2〉 = H3t

4π2 . (D.9)

These are real space correlation functions, to compare them with the power spectrum we
have to use the relation

〈φ2〉 =
∫
d log k∆2

φ. (D.10)

Taking derivatives on both sides implies that
d

d log k∗
(〈φ2〉) = ∆2

φ, (D.11)

where k∗ is the horizon crossing wavenumber. Since for modes that have crossed the
horizon, t can be written as t∗ = 1

H log(k∗/H), we have that

∆2
ζ̃

= Dζ∆N2λ2

9H = H2

4π2α
2∆N2, ∆2

ψ = H2

4π2 , (D.12)

where we have used that 1
H log(k∗/H) = ∆N , is the number of efolds until the end of

inflation and where Dζ = 9H5/(8επ2) and λ =
√

2εα/H. This result coincide with the
power spectrum computed in [52]. Finally let us notice that the faster growth in the
variance avoids inflation becoming eternal. This can be seen by the following argument. In
general inflation becomes eternal if during an interval t ∼ H−1 the quantum fluctuations
〈δφ2〉1/2 is larger than the classical change of the field ∆φ = φ̇/H. From (D.9) we have
that this is avoid if

φ̇

H

√
Dζλ2

27H3 = Hλ√
12π
≤ φ̇

H
. (D.13)

where we have used that at horizon crossing ζ = −H
φ̇
δφ. The last inequality implies that

the condition for eternal inflation is more strict than in single fields inflation (which is that√
∆2
ζ ≤ 1). Indeed (D.13) can be written as√

∆2
ζ√

3∆N
�
√

∆2
ζ ≤ 1 . (D.14)
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Notice that this assumes that the power spectrum didn’t vary significantly during the whole
inflation. If there is a momentarily increase of the power spectrum, such that λ� 1 then
the last inequality will not hold.

E Computing further corrections to the PDF

In this appendix we will include higher order corrections to the solution of the Fokker-
Planck equation in (4.31). First, let us solve the following,

dP

dt
= ∂

∂ψ

(
t−1
ψ ψP + Dψ

2
∂P

∂ψ

)
+
H∆2

ζ

2
∂2P

∂ζ2

+H2∆2
ζ

∂2

∂ζ∂ψ

((
2Ω2

H2 ψ + 2fΩ
3H

)
P

)
+ 6Ω2

f2
ζH

∂

∂ζ
(ψ2P ) . (E.1)

Our task will be to add the last term to the PDF (4.31). To simplify we will look for late
time solutions such as ψ has reached its equilibrium distribution. We can eliminate some of
the terms in the equation by Fourier transforming ζ to p, and look for solutions of the form

P (p, ψ, t) ∼ exp(−σ2
ζp

2/2)F (p, ψ). (E.2)

After replacing into the Fokker-Planck equation (E.1) we obtain

0 =F ′′(k) +
f2
ζH

3Dψtψ
(6ψ + 4ifHtψ∆2

ζΩp+ 4itψ∆2
ζΩ2ψp)F ′(ψ)

+ 1
3Dψtψ

(36iptψψ2Ω2 + 2f2H(3 + 2iptψ∆2
ζΩ2))F (ψ). (E.3)

Ignoring the linear mixing term the solution is given by,

F (p, ψ) ∝ exp
(
− ψ2

2σ2
ψ

(
1 +

2iptψΩ2∆2
ζ

3 − i

2

√
f(p)

))

×Hn

√√√√ ψ2

2σ2
ψ

(
−f(p)

4

)1/4
 , (E.4)

n = 1
2 −
−3i+ 2ptψ∆2

ζΩ2√
f(p)

, (E.5)

f(p, q) = 108
tψΩ2σ2

ψ

f2
ζH

p+ (3i− 2ptψ∆2
ζΩ2)2, (E.6)

where we have discarded the second solution since it grows for large √pψ. In order to
obtain a simplified expression let us notice that a typical fluctuation of p ∼ 1/

√
σ2
ζ . Using

this we can deduce that the at leading order f(p) is constant, as the ratio between the two
leading order terms is given by

108tψ
Ω2σ2

ψ

fζH

1
9 =

12t2ψΩ2∆2
ζ√

σ2
ζ

� 1. (E.7)
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This inequality still holds for larger values of the ζ. If we write f(p) at leading order we
find that the Hermite function reduces to one and we recover the usual distribution (4.32).
When adding the linear mixing term the distribution is more complicated but still depends
on f(p). If we ignore this term, we find that at leading order the PDF contains further
corrections at order p2. The effect of those add up to the quadratic terms that appeared
in the drift for vζ . In the end this will modify the value of the tail for very large values of
ζ, acting as exponetentially suppressed corrections as expected.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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