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ABSTRACT

Cancers are characterized by extensive heterogeneity that occurs intratumorally, between 

lesions, and across patients. To study cancer as a complex biological system, multidimensional 

analyses of the tumor microenvironment are paramount. Single-cell technologies such 

as flow cytometry, mass cytometry, or single-cell RNA-sequencing have revolutionized 

our ability to characterize individual cells in great detail and, with that, shed light on the 

complexity of cancer microenvironments. However, a key limitation of these single-cell 

technologies is the lack of information on spatial context and multicellular interactions. 

Investigating spatial contexts of cells requires the incorporation of tissue-based techniques 

such as multiparameter immunofluorescence, imaging mass cytometry, or in situ detection of 

transcripts. In this Review, we describe the rise of multidimensional single-cell technologies 

and provide an overview of their strengths and weaknesses. In addition, we discuss the 

integration of transcriptomic, genomic, epigenomic, proteomic, and spatially-resolved data 

in the context of human cancers. Lastly, we will deliberate on how the integration of multi-

omics data will help to shed light on the complex role of cell types present within the human 

tumor microenvironment, and how such system-wide approaches may pave the way toward 

more effective therapies for the treatment of cancer.
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INTRODUCTION 

Heterogeneity of cancer and need for multidimensional approaches
A genetic basis for cancer development was first proposed by the German zoologist Theodor 

Boveri who speculated that malignant tumors might be the result of abnormal chromosome 

alterations in cells.1 By then, a cancer cell-centric vision dominated, where tumorigenesis 

was thought to be exclusively driven by multistep alterations in cellular genomes. During 

the last decades, however, it has become increasingly apparent that the study of cancers 

must also encompass other constituents of the cancer microenvironment including immune 

cells, fibroblasts, and other stromal components, to capture all aspects of cancer biology.2 

The immune system, for example, plays a dichotomous role in cancer development and 

progression, as different cells can antagonize or promote tumorigenesis.3 The mapping and 

understanding of the interplay between cancer cells and other constituents of the cancer 

microenvironment is thus fundamental for the clinical management of this disease.

The study of cancers as complex systems is further complicated by cancer heterogeneity that 

can occur at different levels; intratumorally, between lesions, and across patients. Intratumoral 

heterogeneity involves the near-stochastic generation of both genetic (e.g. mutations, 

chromosomal aberrations) and epigenetic (e.g. DNA methylation, chromatin remodeling, 

post-translational modification of histones) modifications. Within tumors, distinct niches can 

favor the outgrowth of different cancer cell clones that acquired characteristics compatible 

with regional microenvironments (e.g. nutrient and oxygen availability, exposure to immune 

cells). Other intrinsic sources of heterogeneity such as self-renewal of cancer cells and cell 

differentiation processes contribute further to intratumoral heterogeneity.4,5 In addition, the 

immune system is a major part of the tumor microenvironment and contains many different 

types of adaptive (e.g. CD4+ and CD8+ T lymphocytes) and innate (e.g. macrophages and 

innate lymphoid cells) immune cells that also contribute to cancer heterogeneity.6 Their location 

within a tumor has been shown to significantly impact their anti- or pro-tumorigenic effects.7 In 

addition, the density of immune cell infiltration in tumors is a well-known determinant for the 

prognosis of cancer patients.8 Inter-lesional heterogeneity can be observed between multiple 

primary tumors at time of diagnosis, between a primary tumor and metastasis, and between 

different metastatic niches in individual patients. They can be a result of the outgrowth of 

subclones that can be (epi)genetically distinguished by mutations or structural variations.9 

Moreover, the structure and composition of the cancer microenvironment can vary between 

the primary tumor and metastases. Upon extravasation, cancer cells from primary tumors are 

exposed to different types of immune cells, stromal cells, platelets, and metabolic stress, and 

have to adapt to the new tissue microenvironment. As such, the metastatic tissue (“soil”) plays a 

critical role in regulating the growth of metastases (“seed”).10 Finally, interpatient heterogeneity 

is, on top of the aforementioned variables, also fueled by distinct germline genetic backgrounds 

and environmental and stochastic factors that can affect cancer progression but also immunity.

Major challenges in the field of cancer research are the identification of predictive biomarkers 

to select patients that are likely to respond to specific treatments, detection of mechanisms 

of resistance to therapy, and the development of novel treatments to improve cancer survival. 
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Here, we review the rise of cutting-edge multidimensional technologies such as spectral flow 

cytometry, multiparameter immunofluorescence, (imaging) mass cytometry, single-cell RNA-

sequencing (scRNA-seq), and RNA spatial profiling that may play a crucial role to address 

the former problems. We will discuss how multi-omics data of dissociated cells as well as of 

spatial data can be obtained (Figure 1A) and the importance of integrating them to reveal 

the full cellular landscape of the cancer microenvironment (Figure 1B,C). For example, single-

cell data of dissociated cells can be used as guide for cell type identification in spatial data11 

and, vice versa, spatial data can be used to predict the location of dissociated cells based on 

the similarity of their expression profiles to spatially-mapped data12-14 (Figure 1B). In addition, 

mapping can be used to predict the spatial profile of genes or proteins which have not been 

experimentally measured to expand the coverage of spatial data15-17 (Figure 1C).

Multidimensional single-cell technologies and their strengths and weaknesses
Single-cell DNA- and RNA-sequencing
Next-generation sequencing (NGS) approaches have revolutionized our ability to generate 

high-throughput genomic data where individual RNA and DNA molecules are represented 

by sequencing reads thereby retaining information on genotypes, phenotypes, cellular 

states, and sub-clonal alterations. Traditional molecular profiling has, until recently, largely 

relied on the analysis of bulk cell populations. Deep sequencing of DNA and RNA from 

tissues enabled reconstruction of “average” genomes and “average” transcriptomes that 

could then be deconstructed by employing bioinformatic algorithms to perform clonal 

evolution analysis or determine the composition of cancer microenvironments.18-21 For 

an unbiased and systematic characterization of cells, high-throughput single-cell DNA- 

and RNA-sequencing have emerged as powerful tools. With single-cell DNA-sequencing, 

the genomic heterogeneity of tissues can be explored in detail. It can be used to detect 

nucleotide variations and chromosomal copy number alterations as well as more complex 

genomic rearrangements and cellular fractions. Single-cell genome sequencing involves 

whole-genome amplification of single cells, of which the three main methods are MDA22, 

MALBAC23, and DOP-PCR24. In 2011, the first study of DNA-sequencing of human breast 

cancer single cells was published25, which was followed by many single-cell studies charting 

genetic heterogeneity within individual tumors as well as between primary tumors and 

their metastases, thereby allowing for a detailed understanding of the evolution processes 

occurring in a tumor. Single-cell DNA-sequencing has myriad applications in cancer research 

including examining intratumoral heterogeneity26-28, investigating clonal evolution during 

tumorigenic processes25,29-32, tracing metastatic dissemination33, genomic profiling of 

circulating tumor cells34-36, measuring mutation rates37, and gain insight into resistance 

to therapy38. By defining, in detail, the genetic composition of tumors, the rationalization 

of targeted cancer therapies is made possible. However, drawbacks of single-cell DNA-

sequencing methods are non-uniform coverage and allelic dropout events as well as artifacts 

introduced during genomic amplification, all of which contribute to a high rate of false 

negative and false positive findings.39
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Figure 1. Overview of the pipeline for the integration of single-cell data of dissociated cells and spatially-
resolved data.
A. Single-cell data can be obtained by flow and mass cytometry that make use of antibodies coupled to fluorochromes 

or heavy metal isotopes, respectively, for the immunodetection of dissociated cells. For single-cell RNA-sequencing, 

antibodies coupled to oligonucleotides can be used to simultaneously retrieve information on protein and RNA 

expression of single cells. Spatially-resolved data can be obtained by multiplexed imaging or spatial transcriptomics by 

immunodetection of tissue sections with antibodies coupled to fluorochromes, heavy metal isotopes or oligonucleotides. 

Integration of single-cell data of dissociated cells with spatially-resolved data will reveal the full cellular landscape of 

the cancer microenvironment. B and C. Integration approaches for single-cell data of dissociated cells and spatially-

resolved data. Single-cell data of dissociated cells can be used as guide for cell type identification in spatial data and, 

vice versa, spatially-resolved data can be used to predict the location of dissociated cells based on the similarity of their 

expression profiles to spatially-mapped data (B). In addition, single-cell data can be used to predict the spatial profile 

of genes or proteins in the samples that have not been measured to expand the coverage of spatial data (C). Based 

on samples that have been measured (i.e. sample 1, 2, and 3), the expression of genes or proteins in sample 4, 5, and 

6 can be predicted.
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The first single-cell RNA-sequencing (scRNA-seq) experiment was published in 2009 by Tang and 

colleagues who profiled the transcriptome of a single cell from early embryonic development.40 

Rapid technological advances resulted in an exponential increase in the number of cells that 

can be studied by scRNA-seq analyses.41 Just eight years later, 10x Genomics published a 

scRNA-seq dataset of more than one million individual cells from embryonic mice brains.42 

There are many different scRNA-seq library preparation platforms, which can be categorized 

into plate-based, droplet-based, and microwell-based.41 The selection of the method depends 

on the research question, the number of input cells, the sequencing depth, the need for full-

length coverage of transcriptomes, and costs, among others (reviewed by 43,44). ScRNA-seq 

has demonstrated to be a powerful technique to decipher cancer biology. In 2012, Ramskold 

and colleagues applied scRNA-seq to study circulating tumor cells in melanoma, and could 

identify potential biomarkers for melanoma as well as SNPs and mutations in this relatively 

rare circulating tumor cell population.45 Thereafter, scRNA-seq has been used to study the 

microenvironment of several cancer types including prostate cancer46, breast cancer47, 

glioma48-50, renal cancer51, lung cancer52, melanoma53-56, colorectal cancer57-59, pancreatic 

ductal adenocarcinoma60, liver cancer61, head and neck cancer62, leukemia63, and glioma64. 

A pioneering study that applied scRNA-seq to primary glioblastomas uncovered inherent 

variability in oncogenic signaling, proliferation, immune responses, and regulators of stemness 

across cells sorted from five tumors.48 However, this study was restricted to cancer cells and did 

not further investigate other cell types of the cancer microenvironment. Subsequently, another 

scRNA-seq study examined distinct genotypic and phenotypic states of malignant, immune, 

stromal, and endothelial cells of melanomas from 19 patients.53 They identified cell states 

linked to resistance to targeted therapy, interactions between stromal factors and immune cell 

abundance, and potential biomarkers for distinguishing dysfunctional and cytotoxic T cells. A 

recent study in colorectal cancer broadened such scRNA-seq analysis by including a comparison 

of primary tumors to matched normal mucosa samples.58 By projecting their scRNA-seq data to 

a large reference panel, the authors identified distinct subtypes of cancer-associated fibroblasts 

and new expression signatures that were predictive of prognosis in colorectal cancer. Further, 

scRNA-seq has been applied to investigate changes in the tumor microenvironment of cancer 

patients treated with immune checkpoint blockade to find signatures associated with positive 

responses to this therapy.65,66

Currently scRNA-seq can be combined with sequencing of T cell receptor and immunoglobulin 

repertoires thereby allowing to connect information of B and T cell specificity and phenotype. 

High-throughput single-cell B cell receptor sequencing of more than 250,000 B cells from 

different species has recently been pioneered to obtain paired antibody heavy- and light 

chain information at the single-cell level, and revealed a rapid discovery of antigen-reactive 

antibody candidates.67 By a novel approach called RAGE-seq (Repertoire and Gene Expression 

by Sequencing), gene expression profiles can be paired with targeted full-length mRNA 

transcripts providing BCR and TCR sequences.68 This method has been applied to study cells 

from the primary tumor and tumor-associated lymph node of a breast cancer patient and 

demonstrated the ability to track clonally related lymphocytes across tissues and link TCR 

and BCR clonotypes with gene-expression features.68 A limitation of scRNA-seq is that RNA 
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levels are not fully representative of protein amounts. The advent of CITE-seq, REAP-seq, 

and Abseq overcame this limitation by enabling simultaneous detection of gene expression 

and protein levels in single cells by combining oligonucleotide-labeled antibodies against 

cell surface proteins with transcriptome profiling of thousands of single cells in parallel.69-71 

scRNA-seq, when employed in a discovery setting, can inform on the best markers to be 

used for the study of specific populations by complementary technologies such as flow or 

mass cytometry. However, aspects of sample preparation and handling have been shown to 

induce significant alterations in the transcriptome.72 Furthermore, throughput is limited by 

cost, protocol complexity, available sequencing depth, and dropout events. Together, this 

can affect the downstream analysis pipeline such as clustering of cell populations and the 

inference of cellular relationships.

Computational analysis of scRNA-seq data is challenging and involves multiple steps, e.g. 

quality control, normalization, clustering, and identification of differentially expressed genes 

and/or trajectory inferences. Multiple unsupervised clustering analyses are available to identify 

putative cell types, of which graph-based clustering is most widely used.73 For each of these 

steps, numerous computational tools are available, but in addition software packages have 

implemented the entire clustering workflow such as Seurat16, scanpy74, and SINCERA75. 

Single-cell epigenetic characterization
Although most high-throughput profiling studies to date have focused on DNA, RNA, 

and protein expression, recent progress in studying the epigenetic regulation of gene 

expression, at single-cell level, has been made. Over the last decades, methods have been 

developed including ATAC-seq to measure chromatin accessibility76, bisulfite sequencing 

to measure DNA methylation77, ChIC-sequencing to measure histone modifications78, and 

chromosome conformation capture (3C) to analyze the spatial organization of chromatin in 

a cell79. Several studies revealed epigenetic programs that regulate T cell differentiation and 

dysfunction in tumors. Analysis of chromatin accessibility by ATAC-seq revealed that CD8+ 

T cell dysfunction is accompanied with a broad remodeling of the enhancer landscape and 

transcription factor binding as compared to functional CD8+ T cells in tumors.80-83 Also, an 

increased chromatin accessibility at the enhancer site of the PDCD1 gene (encoding for PD-

1) has been found in the context of dysfunctional CD8+ T cells.82 In addition, studies have 

applied epigenetics to determine mechanisms of resistance to cancer immunotherapies by 

characterizing chromatin regulators of intratumoral T cell dysfunction before and after PD-

1, PD-L1, or CTLA-4 blockade therapy.84,85 Lastly, DNA hypermethylation may result in the 

inactivation of genes, such as mismatch repair gene MLH1 associated with microsatellite 

instability in colorectal cancer.86 Until recently, studies on epigenetic modifications depended 

on correlations between bulk cell populations. Since 2013, with the development of single-

cell technologies, epigenomic techniques have been modified for application to single 

cells to study cell-to-cell variability in for instance chromatin organization in hundreds or 

thousands of single cells simultaneously. Several single-cell epigenomic techniques have 

been reported on recently, including measurements of DNA methylation patterns (scRRBS, 

scBS-seq, scWHBS)87-89, chromatin accessibility (scATAC-seq)90, chromosomal conformations 
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(scHi-C)91, and histone modifications (scChIC-seq)92. A recent study applied scATAC-seq to 

characterize chromatin profiles of more than 200,000 single cells in peripheral blood and 

basal cell carcinoma. By analyzing tumor biopsies before and after PD-1 blockade therapy, 

Satpathy et al. could identify chromatin regulators of therapy-responsive T cell subsets at the 

level of individual genes and regulatory DNA elements in single cells.93 Interestingly, variability 

in histone modification patterns in single cells have also been studied by mass cytometry, 

which was denominated EpiTOF94. In this way, Cheung et al. identified a variety of different 

cell-type and lineage-specific profiles of chromatin marks that could predict the identity of 

immune cells in humans. Lastly, scATAC-seq has been combined with scRNA-seq and CITE-

seq analyses to find distinct and shared molecular mechanisms of leukemia.95 These single-

cell strategies will allow to further understand how the epigenome drives differentiation 

at the single-cell level and unravel drivers of epigenetic states that could be used as target 

for the treatment of cancer. Additionally, these methods may be used to measure genome 

structure in single cells to define the 3D structure of the genome. However, for many of 

these single-cell epigenetic techniques, disadvantages are the low coverage of regulatory 

regions such as enhancers (scRRBS), low coverage of sequencing reads (scChiP-seq, scATAC-

seq), and low sequencing resolution (scHi-C).96,97

Single-cell protein measurements
Flow cytometry has been, in the past decades, the method of choice for high-throughput 

analysis of protein expression in single cells. The number of markers that can be 

simultaneously assayed was limited to approximately 14 markers due to the broad emission 

spectra of the fluorescent dyes. Recent developments with spectral flow cytometer machines 

enable the detection of up to 34 markers in a single experiment by measuring the full 

spectra from each cell, which are unmixed by reference spectra of the fluorescent dyes and 

the autofluorescence spectrum.98 Fluorescence emission is registered by detectors consisting 

of avalanche photodiodes instead of photomultiplier tubes used in conventional flow 

cytometry. A variety of cellular features can be detected by flow cytometry including DNA 

and RNA content, cell cycle stage, detailed immunophenotypes, apoptotic states, activation 

of signaling pathways, and others (reviewed by 99). This technique has thus been paramount 

in characterizing cell types, revealing the existence of previously unrecognized cell subsets, 

and for the isolation of functionally distinct cell subsets for the characterization of tumors. 

However, the design of multiparameter flow cytometry antibody panels is a challenging and 

laborious task, and most flow cytometry studies have so far focused on the in-depth analysis 

of specific cellular lineages, instead of a broad and system-wide approach. 

In 2009, the advent of a new cytometry methodology, mass cytometry (CyTOF, cytometry by 

time-of-flight), overcame the limitation of spectral overlap by using metal-isotope-conjugated 

antibodies to detect antigens.100 The metal isotopes attached to each cell are distinguished by 

mass and quantified in a quadrupole time-of-flight mass spectrometer. A mass cytometer is 

theoretically capable of detecting over 100 parameters per cell, but current chemical methods 

limit its use to approximately 40-50 parameters, simultaneously. Mass cytometry has expanded 

the breadth of single-cell data in each experiment, making it highly suitable for systems-
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level analyses such as immunophenotyping of cancer microenvironments. By allowing the 

examination of large datasets at single-cell resolution, mass cytometry can be applied for the 

discovery of novel cell subsets as well as for the detection and identification of rare cells. Further 

advantages of mass cytometry are the irrelevance of autofluorescence, the low biological 

background as heavy metals are not naturally present in biological systems, and limited signal 

spillover between heavy metals, thereby reducing the complexity of panel design. Conversely, as 

compared to flow cytometry, mass cytometry suffers from a higher cell loss during acquisition, 

is more expensive, and is low-throughput, with a flow rate of up to 500 cells per second as 

compared to thousands of cells per second in flow cytometry. In addition, cells cannot be sorted 

for further analysis and forward and side scattered light is not detected.

Several studies have applied mass cytometry to further characterize immune cell profiles 

in peripheral blood or tissues from patients with breast cancer101, renal cancer102, 

melanoma55,56,103-105, lung cancer52,106,107, glioma49,50, colorectal cancer57,106,108,109, liver 

cancer61,110, ovarian cancer111, and myeloma112-115, among others. In addition to characterizing 

immune cell profiles of different tissue types, mass cytometry has also been used to characterize 

immunophenotypes in tumors and monitor changes during immunotherapy.56,103-105,114 In this 

way, factors that influence response to immunotherapy can be investigated and mechanisms 

at play during treatment can be characterized. This information can be used to understand 

and facilitate the identification and classification of responder versus non-responders to 

cancer immunotherapy. Most of the studies so far have focused on the CTLA-4 and PD-1/

PD-L1 axis of cancer immunotherapy, but novel immunotherapeutic targets such as co-

inhibitory molecules LAG-3 or TIM-3 or co-stimulatory molecules such as OX40 and GITR 

are currently being explored in mice models and clinical trials.116 Moreover, mass cytometry 

has been employed to study antigen-specific T cells with a multiplex MHC class I tetramer 

staining approach, which has led to the identification of phenotypes associated with tumor 

antigen-specific T cells.106 Most studies applied mass cytometry for measuring cell surface 

or intracellular markers, but it can also be used to evaluate cell signaling processes relying 

on the analysis of protein phosphorylation.117 Altogether, these studies showed that immune 

responses in cancer are extremely diverse, within tumors from individual patients as well as 

between patients with equivalent tumor types. Hence, finding clinically-relevant characteristics 

based on overall differences can be challenging because of inter-patient variability; differences 

between cancer patients can be so large that they compromise the discovery of biomarkers. 

Because the number of potential phenotypes (resulting from the combination of different 

markers) increases exponentially with the rise in number of antibodies being measured 

simultaneously, computational tools for the analysis and visualization of multidimensional 

data have become key in this field. Traditional workflows for analyzing flow cytometry 

datasets by manual gating are not efficient to capture the phenotypic differences in mass 

cytometry and complex flow cytometry data and suffer from individual user bias. In addition, 

flow and mass cytometry datasets can easily contain millions of cells, illustrating the need for 

scalable clustering algorithms for efficient analysis. Current single-cell computational tools 

employed for complex flow cytometry and mass cytometry datasets include unsupervised 
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clustering-based algorithms such as SPADE118, Phenograph119, and FlowSOM120. However, 

these clustering-based tools do not provide single-cell resolution of the data. On the other 

hand, non-linear dimensionality-reduction-based algorithms such as t-SNE121 are widely used 

tools but limited by the number of cells that they can analyze simultaneously, resulting in 

down-sampled datasets and non-classified cells. Recently, a hierarchical approach of the 

t-SNE dimensionality-reduction-based technique, HSNE, was described to be scalable to 

tens of millions of cells.122,123 In addition, a novel algorithm has recently been implemented 

in the single-cell analysis field as a dimensionality reduction tool, called uniform manifold 

approximation and projection (UMAP).124

Spatially-resolved data
Most of the multidimensional single-cell techniques such as flow cytometry, mass cytometry, 

and scRNA-seq require cellular dissociation to obtain cell suspensions prior to measuring the 

individual cells. Different dissociation methods are used, both mechanical and enzymatic, 

and may result in the loss of certain cell types and affect the expression of specific cell 

surface markers. Moreover, tissue specimens are often contaminated with blood or other 

tissues that are processed along with the tissue of interest. As such, not all subsets identified 

in single-cell data may be representative of the sample of interest. Another key limitation 

is the lack of information on spatial localization and cellular interactions within a tissue. 

Analysis of tissue sections by traditional IHC- and immunofluorescence-based methods are 

useful in providing spatial information125, but are severely limited in the number of markers 

that can be measured simultaneously. Recent technological advances have greatly expanded 

the number of markers that can be captured on tissue slides. For instance, by applying the 

principles of secondary ion mass spectrometry to image antibodies conjugated to heavy 

metal isotopes in tissue sections with imaging mass cytometry (IMC)126 and multiplexed ion 

beam imaging by time-of-flight (MIBI-TOF)127. In both imaging approaches, conventional 

IHC workflows are used but with metal-isotope-conjugated antibodies that are detected 

through a time-of-flight mass spectrometer. In IMC, a pulsed laser is used to ablate a tissue 

section by rasterizing over a selected region of interest. The liberated antibody-bound 

ions are subsequently introduced into the inductively coupled plasma time-of-flight mass 

spectrometer. IMC can currently image up to 40 proteins with a subcellular resolution 

of 1 μm. The principle of MIBI-TOF is similar, but it makes use of a time-of-flight mass 

spectrometer equipped with a duoplasmatron primary oxygen ion beam rather than a laser. 

It currently enables simultaneous imaging of 36 proteins at resolutions down to 260 nm.128 

Both techniques are, however, low-throughput due to the relatively long imaging time of 

two hours per field of 1 mm2 in IMC and 1 hour 12 minutes per field of 1 mm2 in MIBI-

TOF.129 IMC has been applied to study tumor heterogeneity in several types of cancers, 

such as pancreatic cancer130, biliary tract cancer131, breast cancer126,132,133, and colorectal 

cancer108,134. MIBI-TOF has been used to study the tumor-immune microenvironment of 

breast cancer127,128,135,136 and the metabolic state of T cells in colorectal cancer109. These 

spatially-resolved, single-cell analyses have great potential to characterize the spatial inter- 

and intratumoral phenotypic heterogeneity, which can guide cancer diagnosis, prognosis 

and the selection of treatment. A recent study was able to extend IMC data by integration 
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with genomic characterization of breast tumors and could, in this way, investigate the effect 

of genomic alterations on multidimensional tumor phenotypes of breast cancer.137

Other multiplexed imaging techniques such as the Digital Spatial Profiling (DSP) system from 

NanoString and co-detection by indexing (CODEX) make use of DNA oligonucleotides. In DSP, 

antibodies or probes are tagged with unique ultraviolet-photocleavable DNA oligos that are 

released after ultraviolet exposure in specific ROIs and quantified.138 It enables simultaneous 

detection of up to 40 proteins or over 90 RNA targets from a tissue section and theoretically 

allows unlimited multiplexing using the NGS readout, but is time-consuming, does not allow 

for a reconstruction of the image, and has a lower resolution (10 μm).129 In CODEX, antibodies 

conjugated to unique oligonucleotide sequences are detected in a cyclic manner by sequential 

primer extension with fluorescent dye-labeled nucleotides. CODEX currently allows the 

detection of over 50 markers with an automated fluidic setup platform including a three-color 

fluorescence microscope.139 Of note, throughput is limited by sequential detection of antibody 

binding. A disadvantage of CODEX, but also of IMC, is the lack of signal amplification which 

hampers the detection of lowly abundant antigens. A novel imaging technique, called Immuno-

SABER, overcame this limitation by implementing a signal amplification step using primer 

exchange reactions. Immuno-SABER makes use of multiple DNA-barcoded primary antibodies 

that are hybridized to orthogonal single-stranded DNA concatemers, generated via primer 

exchange reactions.140 These primer exchange reactions allow multiplexed signal amplification 

with rapid exchange cycles of fluorophore-bearing imager strands. The Nanostring DSP 

platform has been used to study the tumor microenvironment and the outcome of various 

clinical trials of combination therapy for melanoma141-144, interactions between macrophages 

and lymphocytes in metastatic uveal melanoma145, immune cell subsets in lung cancer129,143, 

and tumor microenvironments of different metastases in prostate cancer146. CODEX has been 

applied to study the immune tumor microenvironment of colorectal cancer patients with 56 

protein markers simultaneously.147

These multiplexed imaging techniques can be applied to snap-frozen as well as FFPE 

samples that are usually stored in clinical repositories. However, they raise new analysis 

challenges such as the visualization of 40 markers simultaneously, the image segmentation 

for cell determination, and algorithms for image-based expression profiles. To understand 

the tissue architecture, it is necessary to have prior knowledge on which cell types can be 

present and what their physical relationship to one another could be. Several computational 

approaches have been developed to enable data analysis of spatially-resolved multiplexed 

tissue measurements including HistoCAT148 and ImaCytE149. These approaches apply cell 

segmentation masks (using a combination of Ilastik150 and CellProfiler151) to extract single-

cell data from each image, which allow for deep characterization using multidimensional 

reduction tools such as t-SNE combined with the assessment of spatial localization and 

cellular interactions. In addition to cell-based analysis such imaging technologies also allow 

the employment of pixel-based analysis that do not depend on cell segmentation.

Integration of single cell transcriptome profiles with their spatial position in tissue context can 
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be achieved by labeling of DNA, RNA, or probes using in situ hybridization (ISH). Traditional 

ISH techniques have been improved to allow the detection of single molecules, named single-

molecule fluorescence ISH (smFISH) that can be used to quantitate RNA transcripts at single-cell 

resolution within a tissue context.152,153 However, only a small number of genes can be measured 

simultaneously and a main limitation is the lack of cellular resolution to hundreds of micrometers. 

To improve the throughput, several highly multiplex methods of in situ RNA visualization have 

been developed such as osmFISH154, sequential FISH (seqFISH155 and seqFISH+156) and error-

robust FISH (MERFISH157). These allow the subcellular detection of up to a few hundred to 

ten thousand transcripts simultaneously in single cells in situ by using sequential rounds of 

hybridization with temporal barcodes for each transcript, but require a high number of probes 

and are time-consuming. Furthermore, ISH can suffer from probe-specific noise due to sequence 

specificity and background binding. Another approach which may be more applicable for 

tumors is in situ RNA sequencing on tissue sections. STARmap158 and FISSEQ159 can profile a few 

hundreds to thousands of transcripts by using enzymatic amplification methods, but at lower 

resolution and sensitivity compared to seqFISH and MERFISH. Spatial Transcriptomics160 and 

Slide-seq161 can profile whole transcriptomes by using spatially barcoded oligo-dT microarrays. 

The spatial transcriptomics method has been used to study and visualize the distribution of 

mRNAs within tissue sections of breast cancer160,162, metastatic melanoma56,163, prostate 

cancer164, and pancreatic cancer165. These studies highlight the potential of gene expression 

profiling of cancer tissue sections to reveal the complex transcriptional landscape in its spatial 

context to gain insight into tumor progression and therapy outcome.

Integration of transcriptomic, (epi)genomic, proteomic, and spatially-resolved 
single-cell data
Traditionally, each type of single-cell data has been considered independently to investigate 

a biological system. However, cancer is a spatially-organized system composed of many 

distinct cell types (Figure 2A). These different cell types including immune cells, stromal cells, 

and malignant cells can be visualized and investigated in an interactive manner (Figure 2B). 

By applying multi-omics to individual cells in the cancer microenvironment, the molecular 

landscape of every cell44 can be defined with its proteome (proteins), transcriptome (RNA 

sequence), genome (DNA sequence), epigenome (DNA methylation, chromatin accessibility), 

and spatial localization (x, y, z-coordinates) (Figure 2C). Integrating these different molecular 

layers for each cell will allow a detailed profiling of cancer as a complex biological system 

(Figure 2D). Data integration approaches have classically been categorized in three groups: 

early (concatenation-based), intermediate (transformation-based), and late (model-based) 

stage integration.166 Early or intermediate stage integration approaches are more powerful 

than late stage integration since they can capture interactions between different molecular 

data-types. However, such approaches are also more challenging methodologically given the 

different data distributions across data types.
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Figure 2. An integrated multicellular model of cancer.
A and B. From (A) cells in a spatially-organized cancer microenvironment to (B) a three-dimensional view of individual 

cells. C. From each individual cell in the cancer microenvironment, protein expression can be measured by single-cell 

protein analysis, RNA expression by single-cell RNA analysis, DNA and chromatin expression by single-cell (epi)genome 

analysis, and the x, y, z-coordinates with spatially-resolved analysis. D. Integrating all four molecular layers for each cell 

will allow a detailed profiling from individual cell-to-cell interactions to whole tissue context.

A number of studies have used complementary forms of multidimensional analysis on the 

same sample type in the context of cancer. We have performed a search strategy in PubMed, 

Web of Science, and Embase databases to find studies that have used mass cytometry in 

concert with scRNA-seq in the context of human cancer (Table S1). An overview of the 

eight relevant studies that applied mass cytometry together with scRNA-seq to study human 

cancer and their integration stage is shown in Table 1. In addition, we performed a search 

strategy in PubMed, Web of Science, and Embase databases on studies that applied single-

cell mass cytometry in concert with spatially-resolved data obtained by IMC or MIBI-TOF in 

human cancer (Table S1). An overview of the two relevant studies and their integration 

stage is shown in Table 2. Notably, all different multidimensional datasets in these studies 

were analyzed separately and follow a late (model-based) stage integration. Only Goveia 

and colleagues applied an integration of clustered mass cytometry and scRNA-seq data.107 
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They merged scaled average gene expression data for each scRNA-seq cluster with scaled 

average protein expression data for each CyTOF cluster, an approach based on a recently 

described method from Giordani and colleagues.167 As they integrated the data only after 

clustering each modality separately, it is still considered late stage integration.

Table 1. Overview of studies applying mass cytometry together with single-cell RNA-sequencing to study 
human cancer heterogeneity.

Reference Methods for single-cell profiling Cancer type Integration stage

Lavin et al. 201752 Mass cytometry and scRNA-seq Lung cancer Late

De Vries et al. 201957 Mass cytometry and scRNA-seq Colorectal cancer Late

Zhang et al. 201961 Mass cytometry and scRNA-seq Liver cancer Late

Sankowski et al. 201949 Mass cytometry and scRNA-seq Glioma Late

Halaby et al. 201955 Mass cytometry and scRNA-seq Melanoma Late

Goswami et al. 202050 Mass cytometry and scRNA-seq Glioblastoma Late

Goveia et al. 2020107 Mass cytometry and scRNA-seq Lung cancer Late

Helmink et al. 202056 Mass cytometry and scRNA-seq Melanoma Late

Abbreviations: scRNA-seq; single-cell RNA-sequencing.

Table 2. Overview of studies applying mass cytometry together with imaging mass cytometry or MIBI-TOF 
to study human cancer heterogeneity.

Reference Methods for single-cell profiling Cancer type Integration stage

Zhang et al. 2019108 Mass cytometry and IMC Colon cancer Late

Hartmann et al. 2020109 Mass cytometry and MIBI-TOF Colorectal cancer Late

Abbreviations: IMC; imaging mass cytometry, MIBI-TOF; multiplexed ion beam imaging by time-of-flight.

Integrating multiple single-cell datasets is a challenging task because of the inherently high 

levels of noise and the large amount of missing data. Furthermore, the ever-expanding scale 

of single-cell experiments to millions of cells poses additional challenges. Several methods 

have been proposed to integrate multimodal single-cell data. State-of-the-art methods focus 

on embedding both spatial and standard datasets into a latent space using dimensionality 

reduction, such as Seurat16, LIGER17, and Harmony168, or by employing factor analysis, such 

as MOFA169, MOFA+170, scMerge171, and scCoGAPS172. In addition, a recent study introduced 

gimVI as a model for integrating spatial transcriptomics data with scRNA-seq data to impute 

missing gene expression measurements.15 Of note, most of the methods so far follow an 

intermediate or late integration approach.166 As such, these methods overcome challenges 

due to the different data distributions across data types, but they are less powerful in 

capturing interactions between different molecular data types.

Several methodologies have been developed to simultaneously acquire multiple 

measurements from the same cell (Box 1). Although obtaining simultaneous measurements 

from the same cell is becoming more feasible, it is still more common to perform subsequent 

measurements from the same sample (different sets of cells). Integrating spatial-based assays 
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with mRNA or protein expression measurements can be beneficial for several reasons. For 

instance, spatial measurements are often limited in terms of the number of features they 

can assess simultaneously, although the latest generations of MERFISH and seqFISH(+) can 

measure around 10,000 transcripts per cell. By integrating these imaging techniques with 

scRNA-seq, the amount of biologically-relevant information can be enhanced. Moncada 

and colleagues presented an integration of scRNA-seq with the spatial transcriptomics 

method generated from the same sample to study pancreatic cancer.165 A clear challenge 

when integrating spatial protein (e.g. IMC, MIBI-TOF, CODEX) with scRNA-seq data is the 

need to model relationships between mRNA and protein expression levels, thus adding an 

extra layer of complexity. The advent of CITE-seq, combining antibody-based detection of 

protein markers with transcriptome profiling, could be used to bridge this gap since it allows 

simultaneous measurement of both mRNA and surface protein marker expression. We 

foresee an important role for CITE-seq data in the integration of IMC, MIBI-TOF, and CODEX 

spatial data with scRNA-seq data. Recently, the integration of CITE-seq with CODEX as well 

as with IMC has been pioneered by Govek et al.173.

Box 1. Methods for the integration of transcriptomic, (epi)genomic, and proteomic single-cell data.

The analysis of protein expression has been extended to include transcript measurements at the 
single-cell level. CITE-seq69, REAP-seq174, and PLAYR175 can be used to detect mRNA and protein 
levels simultaneously in single-cells. In CITE-seq and REAP-seq, oligonucleotide-labeled antibodies 
are used to integrate cellular protein and transcriptome measurements. In PLAYR, mass spectrometry 
is used to simultaneously analyze the transcriptome and protein expression levels. The analysis of 
mRNA expression and methylation status in single cells can be achieved by scM&Tseq176. In addition, 
mRNA expression and chromatin accessibility of single cells can be analyzed by sci-CAR177, SNARE-
seq178, and Paired-seq179. Chromatin organization and DNA methylation from a single nucleus can 
jointly be profiled by snm3C-seq180. DR-seq181 and G&T-seq182 can assay genomic DNA and mRNA 
expression simultaneously in single cells, allowing correlations between genomic aberrations and 
transcriptional levels. Moreover, recent studies have reported on the development of single-cell triple-
omics sequencing techniques, such as scTrio-seq183 and scNMT-seq184. In scTrio-seq, the transcriptome, 
genome, and DNA methylome of individual cells are jointly captured. Lastly, scNMT-seq jointly profiles 
transcription, DNA methylation, and chromatin accessibility, allowing for a thorough investigation of 
different epigenomic layers with transcriptional status.

Potential avenues of how the integrated data will help to shed light on the complex 
role of the microenvironment in cancer
Cancer heterogeneity has long been recognized as a factor complicating the study and 

treatment of cancer but, until recently, it was difficult to account for in cancer research. The 

advent of multidimensional single-cell technologies has shed light on the tremendous cellular 

diversity that exists in cancer tissues and heterogeneity across patients. Moving forward, it will 

be important to work on the integration of available (spectral) flow cytometry, mass cytometry, 

scRNA-seq, and spatially-resolved datasets to investigate commonalities and differences in 

cellular landscapes between cancer tissues. Multiple flow and mass cytometry datasets can be 

matched if they include a shared marker set between panels, thereby extending the number 
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of markers per cell and allowing meta-analysis of different mass cytometry datasets with a 

common core of markers.185 In addition, cell-type references from different single-cell datasets 

can improve the functional characterization of cells.186 Such a system-wide approach will 

improve insights into how different components of the cancer microenvironment interact in 

a tissue context. This requires an extensive collaboration between multi-disciplinary research 

fields such as oncology, immunology, pathology, and bioinformatics. 

Nevertheless, the development and widespread use of innovative methodologies also 

implies the development of analytical tools for the interpretation of complex datasets and 

their standardization across laboratories. Furthermore, systems-level analyses challenge a 

researcher’s capacity to reconnect findings to their biological relevance. Studies should focus 

on the removal of unwanted variation and experimental noise in high-throughput single-cell 

technologies as well as the development of cell-type references, such as the Human Cell Atlas187 

and the Allen Brain Atlas188 principles. We need to further develop algorithms to integrate data 

from different imaging and non-imaging single-cell technologies. Alternatively, technological 

developments should allow the acquisition of molecular profiles from single cells without 

the need of dissociating them from their tissue context. Lastly, it would be of great value to 

correlate multi-omics techniques with cell-to-cell signaling networks such as CellPhoneDB189 

and NicheNet190. We expect that this integrated and comprehensive data can be used to create 

a multicellular model of cancer, from single cells to its tissue context, to understand and exploit 

cancer heterogeneity for improved precision medicine for cancer patients. 

How will such system-wide approaches contribute toward more effective therapies for the 

treatment of cancer? With the advent of targeted therapy and immunotherapy, remarkable 

advances have been made that changed the management of oncologic treatment for a 

significant number of patients. However, still only a minority of cancer patients benefit from 

these therapies, and resistance to treatment remains a major complication in the clinical 

management of advanced cancer patients. Integrated multi-omics data can help to improve 

our understanding of the variability in treatment response and resistance mechanisms. By 

linking detailed molecular and immunological profiles of cells in the cancer microenvironment 

with sensitivity to specific therapies, potential targets for cancer treatments and associated 

biomarkers can be identified. This would also support a rational selection of patients that 

are most likely to benefit from specific treatments. Furthermore, integrated multi-omics data 

has the potential to guide the development of alternative therapies, for instance through 

the identification of resistance mechanisms. We expect that such system-wide approaches, 

with technologies that include spatial information, will become standard methodologies in 

cancer research in the coming years.
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