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Abstract
Aims/hypothesis The aims of this study were to identify all published prognostic models predicting retinopathy risk applicable to
people with type 2 diabetes, to assess their quality and accuracy, and to validate their predictive accuracy in a head-to-head
comparison using an independent type 2 diabetes cohort.
Methods A systematic search was performed in PubMed and Embase in December 2019. Studies that met the following criteria
were included: (1) the model was applicable in type 2 diabetes; (2) the outcomewas retinopathy; and (3) follow-up was more than
1 year. Screening, data extraction (using the checklist for critical appraisal and data extraction for systemic reviews of prediction
modelling studies [CHARMS]) and risk of bias assessment (by prediction model risk of bias assessment tool [PROBAST]) were
performed independently by two reviewers. Selected models were externally validated in the large Hoorn Diabetes Care System
(DCS) cohort in the Netherlands. Retinopathy risk was calculated using baseline data and compared with retinopathy incidence
over 5 years. Calibration after intercept adjustment and discrimination (Harrell’s C statistic) were assessed.
Results Twelve studies were included in the systematic review, reporting on 16 models. Outcomes ranged from referable
retinopathy to blindness. Discrimination was reported in seven studies with C statistics ranging from 0.55 (95% CI 0.54, 0.56)
to 0.84 (95% CI 0.78, 0.88). Five studies reported on calibration. Eight models could be compared head-to-head in the DCS
cohort (N = 10,715). Most of the models underestimated retinopathy risk. Validating the models against different severities of
retinopathy, C statistics ranged from 0.51 (95% CI 0.49, 0.53) to 0.89 (95% CI 0.88, 0.91).
Conclusions/interpretation Several prognostic models can accurately predict retinopathy risk in a population-based type 2
diabetes cohort. Most of the models include easy-to-measure predictors enhancing their applicability. Tailoring retinopathy
screening frequency based on accurate risk predictions may increase the efficiency and cost-effectiveness of diabetic retinopathy
care.
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Abbreviations
CHARMS Checklist for critical appraisal and data

extraction for systemic reviews of prediction
modelling studies

DCS Diabetes Care System
O/E Ratio of the observed and expected retinopathy

events
PROBAST Prediction model risk of bias assessment tool
TRIPOD Transparent reporting of a multivariable

prediction model for individual prognosis
or diagnosis

Introduction

Diabetic retinopathy is a common complication of type 2
diabetes, affecting approximately one-quarter of the type 2
diabetes population [1, 2]. Progression to sight-threatening
retinopathy may cause vision loss or blindness, delivering a
significant impact on quality of life [3] and high economic
burden [4], although this severe end stage occurs in a small
fraction of the type 2 diabetes population [2, 5]. Detecting
diabetic retinopathy in its early stages through screening

efforts allows for medical treatment to prevent or delay loss
of vision [6]. Many countries have adopted annual or two-
yearly retinopathy screening programmes for people with type
2 diabetes to ensure early diagnosis; these have been effective
in reducing progression to severe stages of diabetic retinopa-
thy [7, 8]. However, this frequency of retinopathy screening is
often more than needed; most people with type 2 diabetes
show no signs of retinopathy at their screening visit and do
not require treatment at that time. Because of the growing
prevalence of type 2 diabetes, and increased longevity of those
with the disease, current annual or two-yearly retinopathy
screening frequency is unsustainable, and it becomes increas-
ingly important to manage this complication of type 2 diabetes
more efficiently.

Known risk factors for the incidence or progression of
diabetic retinopathy include poorly controlled HbA1c, high
BP and already displaying an early stage of retinopathy [9,
10]. Based on clinical characteristics that are associated with
the incidence or progression of retinopathy, several prediction
models for retinopathy have been developed [11–13]. These
models can be used to estimate the individual retinopathy risk
and tailor the screening frequency accordingly, without
compromising patient safety [11, 12, 14–16]. Adoption of
tailored programmes based on these models could mitigate
the burden and costs of over-screening while avoiding the
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risks from under-screening, thereby providing more effective
and cost-effective programmes. Before adopting a prediction
model into clinical practice, its accuracy must be ascertained
through validation of the model in a population other than the
one in which it was developed. This essential step, although
often omitted, demonstrates whether the model can be gener-
alised to other populations.

The aim of this study was to systematically review the
literature to identify all studies on the development of prog-
nostic predictionmodels for the risk of developing retinopathy
applicable to persons with type 2 diabetes and to determine
their quality and predictive accuracy. Subsequently, the select-
ed prediction models were compared head-to-head by validat-
ing them in the same large independent population-based
cohort of people with type 2 diabetes.

Methods

We performed a systematic review and an external validation
study. The protocol of the systematic review was registered
with the International Prospective Register of Systematic
Reviews (PROSPERO) on 21 February 2018 (registration
no. CRD42018089122), and the review was performed
according to the PRISMA-P guideline [17]. The external vali-
dation study was reported in line with the transparent
reporting of a multivariable prediction model for individual
prognosis or diagnosis (TRIPOD) guideline (see electronic
supplementary material [ESM] Table 1) [18, 19].

Systematic review

Data sources and searches The literature was systematically
searched for all studies reporting on the development of a
prediction model for the risk of developing retinopathy appli-
cable to people with type 2 diabetes. PubMed and Embase
were searched from inception to 10 December 2019 using
the search string presented in ESM Table 2. Any additional
relevant studies were identified by screening the references of
the included studies by hand, and related articles were includ-
ed in the screening process.

Study selection for the review Following the guidance provid-
ed in the checklist for critical appraisal and data extraction for
systematic reviews of prediction modelling studies
(CHARMS) [20]) for defining the review question and study
eligibility criteria, studies were eligible for inclusion when
meeting the following criteria: (1) the prediction model was
developed in people with type 2 diabetes or the general popu-
lation including diabetes as a predictor; (2) the outcome of the
prognostic model was any stage of retinopathy; and (3) the
time horizon of the outcome prediction was at least 1 year. A
study was excluded when meeting the following criteria: (1) it

was performed in animals; (2) it was written in languages
other than English or Dutch; (3) it did not address the devel-
opment of a prediction model; or (4) the prediction model
consisted of only one predictor.

Data extraction and quality assessment For the included stud-
ies, data extraction was performed using CHARMS [20]. Risk
of bias was assessed to identify shortcomings in study design
and applicability using the prediction model risk of bias
assessment tool (PROBAST) [21, 22]. A combination of
two reviewers (of a group of three; A. A. van der Heijden, F.
Badloe and J. W. Beulens) independently reviewed each title,
abstract and full text and subsequently extracted data and
assessed risk of bias and applicability of the included studies.

External validation

Cohort For external validation of the selected (from the
review) prediction models, we used data from the Hoorn
Diabetes Care System (DCS) cohort. The DCS cohort is an
ongoing population-based cohort including almost all people
with type 2 diabetes in the catchment area of the DCS, a
primary care setting in the West-Friesland area of the
Netherlands [23]. As part of routine diabetes care, participants
receive a standardised annual assessment including measure-
ment of diabetes-related risk factors and complications. The
resulting database included 13,955 people with type 2 diabe-
tes in 2017, with follow-up ranging from 1 year to 19 years.
The study has been approved by the Medical Ethical Review
Committee of the VUUniversityMedical Center, Amsterdam.
Individuals were informed about the use of their data and were
offered the opportunity to opt out. Data were used anony-
mously. For each individual, year of entry into the cohort
was considered baseline. After exclusion of people with insuf-
ficient follow-up data on retinopathy status and exclusion of
people with the specific outcome of interest at baseline,
10,715 people remained for the prediction of referable diabetic
retinopathy, 10,820 for the prediction of sight-threatening reti-
nopathy and 10,874 for the prediction of photocoagulated or
proliferative retinopathy. More details can be found in the
flowchart shown in ESM Fig. 1.

Predictors According to centrally standardised protocols,
examinations and clinical measurements were performed
annually. Weight and height were measured when the partic-
ipant was barefoot and wearing light clothes and BMI was
calculated as weight (kg) / height (m2). BP was measured
twice (3 min apart) after 5 min of rest in a seated position on
the right arm using a random-zero sphygmomanometer
(Hawksley-Gelman, Lancing, Sussex, UK); from 2003
onwards, an oscillometric device was used (Colin Press-
Mate BP-8800 [Komaki City, Japan] and from 2011 onwards,
a Welch Allyn ProBP 3400 [Skaneateles Falls, NY, USA]).
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Using fasting blood, HbA1c was assessed based on the turbi-
dimetric inhibition immunoassay for haemolysed whole
EDTA blood, blood glucose level was assessed in fluorinated
plasma with the UV test using hexokinase, and levels of triac-
ylglycerols, total cholesterol and HDL-cholesterol were deter-
mined enzymatically (Cobas c501; Roche Diagnostics,
Mannheim, Germany). LDL-cholesterol concentration was
calculated. From an overnight first-voided urine sample, albu-
min was determined by the reaction of the antigen with anti-
albumin antibodies and measured turbidimetrically, and the
creatinine concentration in heparinised plasma and urine was
determined enzymatically (Cobas c501; Roche Diagnostics).
The presence of CVD was based on self-report. Information
on medication use was registered yearly by checking the
dispensing labels of the medication brought to the monitoring
visit. Age at diagnosis was based on registry data. Information
on smoking status and ethnic background was obtained by
self-report.

Retinopathy (outcome) To determine the presence and stage
of retinopathy, participants underwent a 45° fundus photo-
graph of two retinal fields according to the EURODIAB
protocol. Retinopathy stage was based on the grading of the
worst eye as determined by an experienced ophthalmologist.
The grading of retinopathy was performed according to the
EURODIAB 0–5 scale as follows: grade 0, no retinopathy;
grade 1, minimal non-proliferative retinopathy; grade 2,
moderate non-proliferative retinopathy; grade 3, severe non-
proliferative or pre-proliferative retinopathy; grade 4,
photocoagulated retinopathy; and grade 5, proliferative reti-
nopathy [24]. The ophthalmologist who graded the retinal
images did not have access to any other clinical data from
the participants. Outcomes used for validation were referable
diabetic retinopathy (EURODIAB grade ≥2), sight-
threatening diabetic retinopathy (EURODIAB grade ≥3) and
photocoagulated or proliferative diabetic retinopathy
(EURODIAB grade ≥4).

Prediction models selected for validation Prediction models
that were reported in the studies included in the systematic
review were all considered for validation. The predictors and
outcomes of the models were matched to the variables in the
DCS cohort. When the included predictors were not available
in the DCS, the predictor was replaced by a suitable proxy
variable. When a proxy could not replace the predictor, the
model was excluded from validation.

Statistical analysis In the validation cohort, missing data on
predictors were imputed using multiple imputation by predic-
tive mean matching, generating five imputed datasets that
were pooled using Rubin’s rules. Missing values varied from
0.4% for BMI to 4.0% for albumin/creatinine ratio; 1028
participants (9.6%) had missing data for at least one of the

predictors. Baseline characteristics of the study population
were presented as proportions or means with SD; variables
with a skewed distribution were presented as medians with
an interquartile range. For each model that could be applied
to the DCS cohort, predicted retinopathy risk was calculated
and compared with the incidence of each of the three retinop-
athy severity outcomes using a 5 year horizon. Performance of
the models was estimated using calibration (agreement
between predicted and observed retinopathy risk) and discrim-
ination (the ability of the model to distinguish between those
who will develop retinopathy and those who will not).
Calibration was assessed by visual inspection of calibration
plots, the ratio of the observed and expected retinopathy
events (O/E), and the Hosmer–Lemeshow χ2 test.
Calibration plots were created by plotting the observed mean
retinopathy risk against the predicted mean retinopathy risk
within quintiles of the predicted risk. For a well-calibrated
risk, the predicted risk would be similar to the observed risk,
resulting in an O/E close to 1 and the calibration slope
approaching the 45° line of the plot. As most of the intercepts
of the models were not reported, and recalibration of models
based on the incidence of the outcome of interest in the vali-
dation population is recommended, we presented only
recalibrated models based on retinopathy incidence in the
DCS cohort. For each model, the mean 5 year retinopathy-
free survival rate of the DCS cohort was used. Discrimination
was assessed for each model using Harrell’s C statistic,
accounting for the censored nature of the data. Sensitivity
analyses were performed by testing model performance in
people without signs of diabetic retinopathy at baseline.
Furthermore, the performance of the models was tested apply-
ing a 10 year prediction horizon. All analyses were performed
with the statistical software package R (version 3.6.1) (www.r-
project.org) in combination with the R packages MICE
(version 3.8.0) and RMS (version5.1-4).

Results

Systematic review

From the 6907 records, 103 were selected for review of the
full text. Of these, 12 met our inclusion criteria, describing the
development of 16 prediction models for retinopathy. The
flowchart on study inclusion is presented in ESM Fig. 1.

Characteristics of the models, risk of bias,
and applicability

The size of the samples used for model development of the
studies included in the systematic review ranged from 295 to
454,575 (ESM Table 3). Two models used blindness as the
predicted outcome while the other studies included a less
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severe form of retinopathy as outcome. The most commonly
used prediction time horizons were 5 years and 10 years. The
number of events ranged from 61 to 8063. Most of the studies
used predictors routinely assessed in people with type 2 diabe-
tes, with HbA1c as the most commonly used predictor (ESM
Table 4, ESM Fig. 2).

The majority of the studies scored a high or unclear risk of
bias on the analysis domain, with most models not informing
or performing on the correct handling of missing data or
adjustment for overfitting in model performance (ESM
Table 5). The other domains were rated as low risk of bias in
75–100% of the models (ESM Fig. 3). In three studies, high
concerns for applicability to our objective were scored due to
selective sampling of the participants in the original studies.
High applicability was scored for five of the ten studies
including participants, predictors and outcomes relevant for
a general type 2 diabetes population in a routine care setting.

Apparent model performance

Information on calibration in the form of a plot or test was
reported by four studies based on internal validation and by
five studies based on external validation, all showing close
agreement between predicted and observed outcomes. Six
studies reported C statistics in the derivation cohorts, ranging
from 0.55 (95% CI 0.54, 0.56) in Basu et al [25] to 0.90 (95%
CI 0.86, 0.92) in Garcia-Finana et al [26] (Fig. 1). In four
studies, discriminatory ability in an external population was
reported and ranged from 0.57 (95% CI 0.51, 0.63) in Basu
et al [25] to 0.84 (95% CI 0.78, 0.88) in Scanlon et al [13].
Four studies lacked information on discrimination and
calibration.

External validation

Selection of models for external validation Of the 12 studies
reporting on 16 models, included in the review, eight models
were excluded for external validation as the algorithm could
not be extracted from the original model or the model mainly
included predictors that were not available in the validation
cohort and could not be approximated (ESM Table 6). For
some models, predictors were approximated to enable valida-
tion. For the predictor albuminuria included in the model by
Semeraro et al [27], the mean value reported for the derivation
cohort was used (12 g/day). Townsend deprivation score,
included in the model of Hippisley-Cox and Coupland [28],
was not available in the DCS cohort and the reported sex-
specific mean value of the deprivation score was used (men
0.5; women 0.8). To predict retinopathy, the model by Scanlon
et al [13] used a similar linear predictor but different intercepts
in people in whom none, one or two eyes were affected. We
estimated the baseline hazard for developing diabetic

retinopathy separately for people with and without baseline
retinopathy.

Characteristics of the external validation cohortOf the 10,874
people with type 2 diabetes at baseline who were at risk of
photocoagulated or proliferative retinopathy, 83 (0.8%)
reached this stage of retinopathy during the 5 year prediction
horizon. Of the 10,820 people free of sight-threatening reti-
nopathy at baseline, 144 (1.3%) developed sight-threatening
retinopathy during follow-up and of the 10,715 people at risk
of referable diabetic retinopathy at baseline, 237 (2.2%) devel-
oped this condition. In a population free from referable diabet-
ic retinopathy, 493 participants (4.6%) presented with mild
retinopathy at baseline. Details of the population are shown
in Table 1.

CalibrationConsidering the performance of the models specif-
ically for predicting the retinopathy outcome (as they were
developed for), the calibration plots display the relationship
between the predicted risk and observed retinopathy incidence
of the eight prediction models after recalibration based on
retinopathy incidence in the DCS cohort (ESM Fig. 4, ESM
Table 7). In most of the models, the first quintiles showed
agreement between the predicted risk and observed retinopa-
thy incidence, and an underestimation of retinopathy risk in
people in the highest risk quintile. The calibration plots of
Semeraro et al [27] and Scanlon et al [13] showed better cali-
bration. The model of Dagliati et al [29] showed less agree-
ment between the predicted and observed risks within lower
quintiles. The O/E ratios that showed the most substantial
deviation from 1 were from the models of Aspelund et al
[11] and Dagliati et al [29], mainly underestimating retinopa-
thy risk. All models showed p values <0.05 for the Hosmer–
Lemeshow χ2 test.

Discrimination In Fig. 2, the discriminatory ability of the
models selected for validation is presented for each of the
three retinopathy outcome measures. Considering the specific
retinopathy stage used in model development, C statistics
ranged from 0.51 (95% CI: 0.49, −0.53) to 0.83 (95% CI:
0.81, −0.84). Applying each model to all three retinopathy
outcomes improved discriminatory power for higher severities
of retinopathy in most models, and C statistics ranged from
0.51 (95% CI 0.49, 0.53) to 0.89 (95% CI 0.88, 0.91). For all
three retinopathy outcomes, the models by Tanaka et al [30]
Semeraro et al [27] and Aspelund et al [11] showed the highest
C indices (Fig. 2).

Sensitivity analyses When the prediction horizon used for the
external validation was extended to 10 years, a slight decrease
in performance was seen in most of the models (ESM
Table 8). Applying the model in people without any signs of
retinopathy at baseline resulted in the largest decrease in C
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statistics in the models that include baseline presence of
diabetic retinopathy as a predictor (ESM Table 9).

Discussion

The current study provides a comprehensive overview of the
available prognostic prediction models for developing reti-
nopathy (beyond 1 year) in people with type 2 diabetes. We
identified 12 studies describing the development of 16 predic-
tion models with outcomes ranging from any form of retinop-
athy to blindness. Eight of the 16 models could be validated
and directly compared head-to-head in a large independent
validation cohort. Notably, we found that four models (i.e.
Semeraro et al [27], Scanlon et al [13], Aspelund et al [11]
and Tanaka et al [30]) showed a better calibration plus
discrimination than the other four.

This systematic review demonstrated that most of the
models used predictors that were obtained in routine diabetes
care settings, increasing their applicability to daily practice.
According to the recently published PROBAST tool, most
of the models showed an overall high or unclear risk of bias,
mainly caused by vague reporting on model development

(domain 4). This might be due to the fact that the TRIPOD
guideline for transparent reporting of prediction model studies
is relatively new and was not available during the develop-
ment of most of the models included in the review.

Considering the calibration of the models, even after recal-
ibration to retinopathy incidence in the DCS cohort, most
models still showed overestimation for individuals in the
highest risk quintile for retinopathy. Calibration seemed best
in the model of Semeraro et al [27] and Scanlon et al [13]
When comparing the results of several previous external vali-
dation studies of the model of Aspelund et al [11, 14, 15],
similar or slightly better discrimination was observed in the
DCS cohort. External validation in the DCS cohort yielded
similar results for discriminative performance after internal
validation of the model of Semeraro et al [27]. For the model
of Tanaka et al, better discrimination was found in the external
validation compared with the models’ internal validation [30].
In this validation study, we found lower discriminatory power
for the models of Scanlon et al and Hippisley-Cox and
Coupland, which presented slightly lower C statistics
compared with the external validation of these two models
in different cohorts [13, 28]. Reasons for this lower discrimi-
nation may be the absence of some of the models’ predictor
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Fig. 1 Performance of the models expressed as C statistics resulting from the derivation cohorts (internal validation) (a) and external populations
(external validation) (b) as reported in the model development studies
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Table 1 Baseline characteristics
of the Hoorn DCS cohort at risk
of any form of referable diabetic
retinopathy according to retinop-
athy status at baseline

Characteristic No retinopathy Mild retinopathya

N 10,222 493

Age, years 61.7 ± 11.7 63.1 ± 11.9

Men 5516 (54.0) 267 (54.2)

Age at diabetes diagnosis, years 59.2 ± 12.0 57.9 ± 12.6

Time since detection of diabetes, years 0.7 (0.2–7.5) 2.2 (0.4–7.5)

BMI, kg/m2 30.4 ± 5.4 29.4 ± 5.2

Systolic BP, mmHg 142 ± 20 146 ± 22

Diastolic BP, mmHg 81 ± 10 83 ± 11

Total cholesterol, mmol/l 5.0 ± 1.2 5.2 ± 1.1

LDL-cholesterol, mmol/l 2.9 ± 1.1 3.1 ± 1.0

HDL-cholesterol, mmol/l 1.2 ± 0.3 1.2 ± 0.3

Triacylglycerol, mmol/l 1.9 ± 1.4 1.9 ± 1.0

Fasting glucose, mol/l 8.3 ± 2.2 9.1 ± 2.7

HbA1c, mmol/mol 49.7 (44.3–59.6) 55.2 (46.5–69.4)

HbA1c, % 6.7 (6.2–7.6) 7.2 (6.4–8.5)

Currently smoking 2165 (21.2) 111 (22.5)

European descent 9460 (92.6) 439 (89.1)

Antihypertensive medication use 5831 (57.0) 271 (55.0)

Lipid-lowering medication use 4388 (42.9) 163 (33.1)

Glucose-lowering medication use

None 3211 (31.4) 84 (17.0)

Oral 6244 (61.1) 320 (64.9)

Oral and insulin 417 (4.1) 48 (9.7)

Insulin only 350 (3.4) 41 (8.3)

Kidney failureb

Moderate 1033 (10.1) 68

Severe 29 (0.3) 1 (0.2)

History of CVDc 973 (9.5) 41 (8.3)

Data are presented as means±SD, median (interquartile range) or n (%)
aMild retinopathy, EURODIAB grade 1
bModerate kidney failure, eGFR 30–60 ml min−1 [1.73 m]2 ; severe kidney failure, eGFR ≤30 ml min−1

[1.73 m]2

c History of CVD includes myocardial infarction, heart failure and stroke
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Fig. 2 Discriminative ability of the models for prediction of referable
diabetic retinopathy (EURODIAB grade ≥2) (a), sight-threatening diabet-
ic retinopathy (EURODIAB grade ≥3) (b) and photocoagulated or prolif-
erative diabetic retinopathy (EURODIAB grade ≥4) (c) in the DCS

cohort. Results are presented as C statistics (95% CI). The grey boxes
indicate themodels intended to predict the retinopathy stage shown in that
figure part
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variables in the DCS cohort. The model of Scanlon et al [13]
distinguishes for the presence of mild retinopathy in one or
two eyes in the baseline hazard. Whether one or both eyes
were affected at baseline was not recorded in the DCS data.
Additionally, the discriminatory ability of Scanlon’s model
improved after the exclusion of people with signs of retinop-
athy at baseline. The model of Hippisley-Cox and Coupland
[28] used blindness as the predicted outcome; this information
was not available in the DSC cohort. Photocoagulated or
proliferative retinopathy was used as a proxy for this outcome.
Townsend deprivation score was also not available in the DCS
cohort, leaving cholesterol/HDL-cholesterol ratio, diabetes
duration and presence of chronic renal disease as the predictor
variables, which may have affected model performance. The
model of Basu et al showed better discriminatory power after
external validation in the DCS cohort, compared with previ-
ous external validation studies [25, 31]. The model of Basu
et al had the highest number of predictors. Besides common
predictors such as HbA1c, lipids and BP, the model includes
predictors on glucose-lowering medication use, history of
CVD, and renal function [25]. The model was developed
using data from people with type 2 diabetes selected based
on their unfavourable risk profile. Application of the model in
our relatively well-controlled population showed that the
model was capable of discriminating between low and high
risk. For the model of Dagliati et al [29], a substantial decrease
in discriminative ability was seen between the model’s inter-
nal validation and the DCS cohort. The small sample size in
the original population and the low number of events might
have resulted in an overfitted model that performed less well
in our large cohort.

A limitation of the systematic review is that some predic-
tion models may have been missed due to language restric-
tions. A limitation of the external validation study is the low
incidence of retinopathy in the DCS cohort. Recent publica-
tions indicate that studies aiming to test model performance
require at least 100 events [32, 33]. For referable and sight-
threatening retinopathy, this criterion is fulfilled. For the more
severe stages, the analysis might have been underpowered.
However, we observed a stable trend in the discriminatory
power with increasing severity of retinopathy, possibly indi-
cating that the results would not be affected largely by the
lower number of end-stage retinopathy events. Another limi-
tation is that the study population was primarily of European
descent, hindering the extrapolation to populations with a
different migration background. The model of Scanlon et al
was previously validated in cohorts with people with African
Caribbean and South Asian backgrounds and showed similar
accuracy as in white populations [13]. An additional limitation
is that not all predictors used by the models were available in
the DCS cohort.

Several study strengths should be noted. First, the results of
the validation study apply to routine clinical practice settings

for people with type 2 diabetes. Second, the use of a large,
unselected cohort of people with type 2 diabetes, including
almost all people with type 2 diabetes in the catchment area
of the DCS, enhances this external validation study. Third, all
predictor and outcome measurements in the cohort were
performed according to centrally standardised protocols,
including consistency in measuring and defining the presence
and grade of retinopathy; this enhanced the reliability of the
data and resulted in a low number of missing variables.

In recent literature, approaches have been suggested for
reducing the frequency of unneeded retinopathy screening;
these include extending the screening interval from 1 year to
2 years for people who are at low risk of retinopathy, defined
by two subsequent retinopathy examinations without signs of
retinopathy [34]. However, prediction models for retinopathy
more efficiently use available clinical data to identify people at
low risk, by providing an individual risk estimation. This
study showed that several models are capable of
distinguishing between those at low risk and those at high risk
for retinopathy and can be used to tailor the screening frequen-
cy. Adequate performance of a model based on calibration as
well as discrimination is a prerequisite for its clinical rele-
vance. When using a model to tailor screening intervals,
overestimating or underestimating the absolute risk may lead
to a too frequent or infrequent screening respectively, which
may be overcome by model recalibration. Once this is evalu-
ated, clinical applicability is leading for the choice of a suit-
able model. Based on the results on discrimination and cali-
bration after external validation of the models in the DCS
cohort, four models performed well enough and can help facil-
itate tailored retinopathy care for people with type 2 diabetes.
Two of these models do not include current retinopathy status
as a predictor, which might seem counterintuitive from a clin-
ical perspective. The models by Scanlon et al [13] and
Aspelund et al [11] include information on current retinopathy
in addition to routinely collected risk factors and predict earli-
er stages of retinopathy, enhancing their applicability. In the
DCS we already have experience tailoring retinopathy care
after implementation of the model developed by Aspelund
et al. This model additionally provides a tailored screening
interval ranging from 6 months to a maximum of 5 years
based on the estimated retinopathy risk and hence is instru-
mental in adapting imaging frequency to personal risk,
enhancing efficient use of medical resources. Previous studies
showed that this method for personalising screening frequen-
cy is safe and reduces the average screening frequency
[14–16].

To conclude, this comprehensive systematic review and
head-to-head comparison of all existing prognostic models
predicting the risk of developing retinopathy in individuals
with type 2 diabetes, shows that several existing prediction
models can accurately predict retinopathy risk in a
population-based cohort of people with type 2 diabetes. The

Diabetologia (2020) 63:1110–1119 1117



models of Scanlon et al [13] and Aspelund et al [11]
performed best overall and contain easy-to-measure predic-
tors, increasing their suitability for clinical practice.
Tailoring retinopathy screening frequency based on individual
risk predictions by these models may highly increase the effi-
ciency of diabetic retinopathy care.
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