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Abstract

Background

Non-alcoholic fatty liver disease (NAFLD) is highly prevalent and causes serious health

complications in individuals with and without type 2 diabetes (T2D). Early diagnosis of

NAFLD is important, as this can help prevent irreversible damage to the liver and, ultimately,

hepatocellular carcinomas. We sought to expand etiological understanding and develop a

diagnostic tool for NAFLD using machine learning.

Methods and findings

We utilized the baseline data from IMI DIRECT, a multicenter prospective cohort study of

3,029 European-ancestry adults recently diagnosed with T2D (n = 795) or at high risk of

developing the disease (n = 2,234). Multi-omics (genetic, transcriptomic, proteomic, and

metabolomic) and clinical (liver enzymes and other serological biomarkers, anthropometry,

measures of beta-cell function, insulin sensitivity, and lifestyle) data comprised the key input

variables. The models were trained on MRI-image-derived liver fat content (<5% or�5%)

available for 1,514 participants. We applied LASSO (least absolute shrinkage and selection

operator) to select features from the different layers of omics data and random forest analy-

sis to develop the models. The prediction models included clinical and omics variables sepa-

rately or in combination. A model including all omics and clinical variables yielded a cross-

validated receiver operating characteristic area under the curve (ROCAUC) of 0.84 (95% CI

0.82, 0.86; p < 0.001), which compared with a ROCAUC of 0.82 (95% CI 0.81, 0.83; p <
0.001) for a model including 9 clinically accessible variables. The IMI DIRECT prediction

models outperformed existing noninvasive NAFLD prediction tools. One limitation is that

these analyses were performed in adults of European ancestry residing in northern Europe,

and it is unknown how well these findings will translate to people of other ancestries and

exposed to environmental risk factors that differ from those of the present cohort. Another

key limitation of this study is that the prediction was done on a binary outcome of liver fat

quantity (<5% or�5%) rather than a continuous one.
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Conclusions

In this study, we developed several models with different combinations of clinical and omics

data and identified biological features that appear to be associated with liver fat accumula-

tion. In general, the clinical variables showed better prediction ability than the complex

omics variables. However, the combination of omics and clinical variables yielded the high-

est accuracy. We have incorporated the developed clinical models into a web interface (see:

https://www.predictliverfat.org/) and made it available to the community.

Trial registration

ClinicalTrials.gov NCT03814915.

Author summary

Why was this study done?

• Globally, about 1 in 4 adults have non-alcoholic fatty liver disease (NAFLD), which

adversely affects energy homeostasis (in particular blood glucose concentrations), blood

detoxification, drug metabolism, and food digestion.

• Although numerous noninvasive tests to detect NAFLD exist, these typically include

inaccurate blood-marker tests or expensive imaging methods.

• The purpose of this work was to develop accurate noninvasive methods to aid in the

clinical prediction of NAFLD.

What did the researchers do and find?

• The analyses applied machine learning methods to data from the deep-phenotyped IMI

DIRECT cohorts (n = 1,514) to identify sets of highly informative variables for the pre-

diction of NAFLD. The criterion measure was liver fat quantified from MRI.

• We developed a total of 18 prediction models that ranged from very inexpensive models

of modest accuracy to more expensive biochemistry- and/or omics-based models with

high accuracy.

• We found that models using measures commonly collected in either clinical settings or

research studies proved adequate for the prediction of NAFLD.

• The addition of detailed omics data significantly improved the predictive utility of these

models. We also found that of all omics markers, proteomic markers yielded the highest

predictive accuracy when appropriately combined.

What do these findings mean?

• We envisage that these new approaches to predicting fatty liver may be of clinical value

when screening at-risk populations for NAFLD.
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• The identification of specific molecular features that underlie the development of

NAFLD provides novel insights into the disease’s etiology, which may lead to the devel-

opment of new treatments.

Introduction

Non-alcoholic fatty liver disease (NAFLD) is characterized by the accumulation of fat in hepa-

tocytes in the absence of excessive alcohol consumption. NAFLD is a spectrum of liver dis-

eases, with its first stage, known as simple steatosis, defined as liver fat content�5% of total

liver weight. Simple steatosis can progress to non-alcoholic steatohepatitis (NASH), fibrosis,

cirrhosis, and eventually hepatocellular carcinoma. In NAFLD, triglycerides (TG) accumulate

in hepatocytes, and liver insulin sensitivity is diminished, promoting hepatic gluconeogenesis,

thereby raising the risk of type 2 diabetes (T2D) or exacerbating the disease pathology in those

with diabetes [1–5]. Growing evidence also links an increased risk of cardiovascular events

with NAFLD [6,7].

The prevalence of NAFLD is thought to be around 20%–40% in the general population in

high-income countries, with numbers growing worldwide, imposing a substantial economic

and public health burden [8–11]. However, the exact prevalence of NAFLD has not been clari-

fied, in part because liver fat is difficult to accurately assess. Liver biopsy, magnetic resonance

imaging (MRI), ultrasound, and liver enzyme tests are often used for NAFLD diagnosis, but

the invasive nature of biopsies, the high cost of MRI scans, the non-quantitative nature and

low sensitivity of conventional ultrasounds, and the low accuracy of liver enzyme tests are sig-

nificant limitations [12–14]. To address this gap, several liver fat prediction indices have been

developed, but none of these has sufficiently high predictive ability to be considered a gold

standard [12].

The purpose of this study was to use machine learning to identify novel molecular features

associated with NAFLD and combine these with conventional clinical variables to predict

NAFLD. Our models include variables that are likely to be informative of disease etiology,

some of which may be of use in clinical practice.

Methods

Participants (IMI DIRECT)

The primary data utilized in this study were generated within the IMI DIRECT consortium,

which includes persons with diabetes (n = 795) and without diabetes (n = 2,234). All partici-

pants provided informed written consent, and the study protocol was approved by the regional

research ethics committees for each clinical study center. Details of the study design and the

core characteristics are provided elsewhere [15,16].

Measures (IMI DIRECT)

A T2�-based multiecho technique was used to derive liver fat content from MRI [17,18], and

the percentage values were categorized as fatty (�5%) or non-fatty (<5%) to define the out-

come variable. We elected not to attempt quantitative prediction of liver fat content, as this

would require a much larger dataset to be adequately powered. A frequently-sampled 75-g oral

glucose tolerance test (OGTT) or a frequently sampled mixed-meal tolerance test (MMTT)

was performed, from which measures of glucose and insulin dynamics were calculated, as pre-

viously described [15,16]. Of 3,029 IMI DIRECT participants, 50% (n = 1,514) had the liver fat
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MRI data (503 with diabetes and 1,011 without diabetes). The distribution of the liver fat data

among different centers and cohorts is shown in S1 and S2 Figs.

The list of the clinical input (predictor) variables (n = 58), including anthropometric mea-

surements, plasma biomarkers, and lifestyle factors, are shown in S1 Table. These clinical

variables were controlled for center effect by deriving residuals from a linear model including

each clinical variable in each model; these residuals were then inverse normalized and used in

subsequent analyses. Inverse normal transformation is a nonparametric method that replaces

the data quantiles by quantiles from the standard normal distribution in order to reduce the

impact of outliers and deviation from a normal distribution.

A detailed overview of participant characteristics for the key variables is shown in Table 1

for all IMI DIRECT participants with MRI data. There were no substantial differences in char-

acteristics between these participants and those from IMI DIRECT who did not have MRI

data (see S2 Table).

Genetic, transcriptomic, proteomic, and metabolomic datasets were used as input omics

variables in the analyses. Buffy coat was separated from whole blood, and DNA was then

extracted and genotyped using the Illumina HumanCore array (HCE24 v1.0); genotype impu-

tation was performed using the Haplotype Reference Consortium (HRC) and 1000 Genomes

(1KG) reference panels. Details of the quality control (QC) steps for the genetic data are

Table 1. Characteristics of IMI DIRECT participants in the non-diabetes, diabetes, and combined cohorts separated for individuals with fatty liver versus non-fatty

liver.

Characteristics Non-diabetes cohort Diabetes cohort Combined cohort

Fatty liver Non-fatty liver Fatty liver Non-fatty liver Fatty liver Non-fatty liver

N (percent) 344 (34) 667 (66) 296 (59) 207 (41) 640 (42) 874 (58)

Age (years) 61 (56, 66) 62 (56, 66) 62 (55, 67) 63 (58, 69) 61 (56, 66) 62 (56, 67)

Sex, n (percent female) 62 (18) 134 (20) 130 (44) 86 (42) 192 (30) 220 (25)

Weight (kg) 90.75 (81.50,

100.25)

81.40 (75.67,

89.60)

92.85 (81.47,

103.75)

80.80 (73.00,

93.55)

91.20 (81.50,

102.00)

81.40 (74.03,

90.17)

Waist circumference (cm) 105 (98, 112) 97 (91, 103) 107 (97, 115) 97 (90, 107) 106 (98, 113) 97 (91, 103)

BMI (kg/m2) 29.23 (26.91,

32.05)

26.69 (24.75,

28.71)

31.47 (28.37,

35.35)

27.64 (25.53,

31.07)

30.05 (27.53,

33.52)

26.85 (24.91,

29.23)

SBP 134.70 (125.30,

143.00)

129.33 (120.00,

140.00)

131 (122.00,

139.33)

127.67 (117.67,

138.33)

132.67 (124.00,

142.00)

128.83 (119.33,

140.00)

DBP 83.50 (79.33,

89.83)

80.67 (75.67,

86.00)

76.67 (72.00,

84.00)

72.67 (67.17,

80.67)

81.33 (5.33, 87.33) 80.00 (73.33,

84.67)

HbA1c (mmol/mol) 38 (36, 40) 37 (35, 39) 47 (44, 51) 45 (42, 48) 41 (37, 46) 38 (36, 41)

Fasting glucose (mmol/l) 5.90 (5.60, 6.30) 5.70 (5.40, 6.00) 7.20 (6.30, 7.90) 6.70 (5.80, 7.60) 6.30 (5.80, 7.20) 5.80 (5.40, 6.30)

Fasting insulin (pmol/l) 75.60 (54.30,

104.40)

44.10 (27.75,

66.00)

115.80 (75.80,

167.80)

60.20 (40.85,

82.90)

90.90 (61.20,

133.90)

48.60 (30.00,

69.60)

2-hour glucose (mmol/l) 6.55 (5.37, 8.20) 5.70 (4.70, 6.80) 9.00 (6.90, 10.65) 7.90 (6.20, 9.90) 7.40 (5.90, 9.60) 6.00 (4.90, 7.50)

2-hour insulin (pmol/l) 345.60 (198.40,

566.20)

169.80 (100.20,

274.20)

489.30 (297.40,

700.50)

271.00 (166.40,

418.10)

403.20 (236.60,

643.50)

190.70 (110.80,

317.60)

Triglycerides (mmol/l) 1.49 (1.13, 2.09) 1.12 (0.86, 1.47) 1.49 (1.01, 1.99) 1.12 (0.86, 1.48) 1.49 (1.08, 2.02) 1.12 (0.86, 1.47)

ALT (units/l) 21 (14, 29) 15 (10, 20) 25 (19, 33) 20 (16, 24) 23 (16, 32) 16 (12, 22)

AST (units/l) 29 (24, 37) 25 (21, 30) 24 (20, 30) 22 (19, 27) 26 (22, 33) 24 (20, 29)

Alcohol intake, n for “never,”

“occasionally,” “regularly”

21, 68, 255 91, 133, 443 52, 81, 163 38, 45, 124 73, 149, 418 129, 178, 567

Liver fat 8.80 (6.60, 13.00) 2.20 (1.50, 3.30) 11.10 (7.30, 15.82) 2.70 (1.95, 4.00) 9.50 (6.80, 14.30) 2.40 (1.60, 3.50)

Values are median (interquartile range) unless otherwise specified.

ALT, alanine transaminase; AST, aspartate transaminase; BMI, body mass index; DBP, diastolic blood pressure; HbA1c, hemoglobin A1C; SBP, systolic blood pressure.

https://doi.org/10.1371/journal.pmed.1003149.t001
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described elsewhere [16]. Transcriptomic data were generated using RNA sequencing from

fasting whole blood. Only protein-coding genes were included in the analyses, as reads per

kilobase of transcript per million mapped reads (RPKM). The targeted metabolomic data of

fasting plasma samples were generated using the Biocrates AbsoluteIDQ p150 Kit. Addition-

ally, untargeted LC/MS-based metabolomics was used to cover a broader spectrum of metabo-

lites. A combination of technologies and quantitative panels of protein assays were used to

generate “targeted” proteomic data. This included Olink proximity extension assays [19],

sandwich immunoassay kits using Luminex technology (Merck Millipore and R&D Systems,

Sweden), microfluidic ELISA assays (ProteinSimple, US [20]), protein analysis by Myriad

RBM (Germany), and hsCRP analysis (MLM Medical Labs, Germany). In addition, protein

data were generated by single-binder assays using highly multiplexed suspension bead arrays

[21]. This approach (denoted “exploratory” proteomics) included a combination of antibodies

targeting proteins selected by the consortium given published and unpublished evidence for

association with glycemia-related traits. More information about data generation and QC of

the transcriptomic, proteomic, and metabolomic data is provided in S1 Text. Technical covari-

ates for transcriptomics include guanine-cytosine mean content, insert size, analysis lane and

RNA integrity number, cell composition, date, and center. Technical covariates for proteomics

were center, assay, plate number, and plate layout (n = 4), and for the targeted metabolites the

technical covariates were center and plate. These technical covariates were used to correct the

omics data, and the residuals were then extracted from these models and inverse normalized

prior to further analyses.

Feature selection (IMI DIRECT)

We developed a series of NAFLD prediction models composed of variables that are available

within clinical settings, as well as those not currently available in most clinics (see S3 Table).

We had 2 strategies for selecting the clinical variables. For models 1–3, we selected variables

based on clinical accessibility and their established association with fatty liver from existing

literature without applying statistical procedures for data reduction. For model 4, a pairwise

Pearson correlation matrix was used for feature selection of the clinical variables by placing

a pairwise correlation threshold of r> 0.8, and we then selected the variables we considered

most accessible among those that were collinear. Feature selection was undertaken in the

combined cohort (diabetes and non-diabetes) in order to maximize sample size and statistical

power. Of 1,514 participants with liver fat data, 1,049 had all necessary clinical and multi-

omics data for a complete case analysis. We used k-nearest neighbor [22] imputation with k
equal to 10 as a means to reduce the loss of sample size, but found that this did not materially

improve predictive power in subsequent analyses, so we decided not to include these imputed

data. An overview of the pairwise correlations among the clinical variables available in these

1,049 IMI DIRECT participants is presented in Fig 1.

The high-dimensionality nature of omics data also necessitated data reduction using the

feature selection tool LASSO prior to building the model. LASSO is a regression analysis

method that minimizes the sum of least squares in a linear regression model and shrinks

selected beta coefficients (βj) using penalties (Eq 1). Minimizing the value from Eq 1, LASSO

excludes the least informative variables and selects those features of most importance for the

outcome of interest (y) in a sample of n cases, each of which consists of m parameters. The

penalty applied by λ can be any value from 0 to positive infinity and is determined through a

cross-validation step [26].

Xn

i¼1
ðyi � ŷiÞ

2
þ l�

Xm

j¼1
jbjj ð1Þ
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Fig 1. Pearson pairwise correlation matrix of clinical variables (data are inverse normal transformed) in the cohort combining participants with

and without diabetes in IMI DIRECT (n = 1,049). The magnitude and direction of the correlation are reflected by the size (larger is stronger) and color

(red is positive and blue is negative) of the circles, respectively. ActGLP1min0, concentration of fasting active GLP-1 in plasma; ALT, alanine

transaminase; AST, aspartate transaminase; AST_ALT, AST to ALT ratio; BasalISR, insulin secretion at the beginning of the oral glucose tolerance test/

mixed-meal tolerance test; BMI, body mass index; CHOI, total daily intake of dietary carbohydrates; Chol, total cholesterol; Clins, mean insulin clearance

during the oral glucose tolerance test/mixed-meal tolerance test, calculated as (mean insulin secretion)/(mean insulin concentration); Clinsb, insulin

clearance calculated from basal values as (insulin secretion)/(insulin concentration); DBP, mean diastolic blood pressure; FatI, total daily intake of dietary

fats; FLI, fatty liver index; FibreI, total daily intake of dietary Association of Official Analytical Chemists (AOAC) fiber; GGTP, gamma-glutamyl

transpeptidase; Glucagonmin0, fasting glucagon concentration; Glucose, fasting glucose from venous plasma samples; GlucoseSens, glucose sensitivity,

slope of the dose–response relating insulin secretion to glucose concentration; HbA1c, hemoglobin A1C; HDL, fasting high-density lipoprotein

cholesterol; IncGLP1min60, 1-hour GLP-1 increment; IncGlucagonmin60, 1-hour glucagon increment; Insulin, fasting insulin from venous plasma

samples; LDL, fasting low-density lipoprotein cholesterol; Matsuda, insulin sensitivity index according to the method of Matsuda et al. [23];

MeanGlucose, mean glucose during the oral glucose tolerance test/mixed-meal tolerance test; MeanInsulin, mean insulin during the oral glucose

tolerance test/mixed-meal tolerance test; MUFatI, daily intake of dietary monounsaturated fats; OGIS, oral glucose insulin sensitivity index according to

the method of Mari et al. [24]; PA_intensity_0_48f, number of values in high-pass-filtered vector magnitude physical activity at�0 and�48;

PA_intensity_154_389f, number of values in high-pass-filtered vector magnitude physical activity at�154 and�389; PA_intensity_389_9999f, number of

values in high-pass-filtered vector magnitude physical activity at�389 and�9,999; PA_intensity_48_154f, number of values in high-pass-filtered vector

magnitude physical activity at�48 and�154; PA_intensity_mean, mean high-pass-filtered vector magnitude physical activity intensity; PFR, potentiation

factor ratio; ProteinI, total daily intake of dietary proteins; PUFatI, daily intake of dietary polyunsaturated fats; RateSens, rate sensitivity (parameter

characterizing early insulin secretion); SatFatI, daily intake of dietary saturated fats; SBP, mean systolic blood pressure; Stumvoll, insulin sensitivity index

according to the method of Stumvoll et al. [25]; SugarI, total daily intake of dietary; TEI, total daily energy intake based on validated multi-pass food habit

questionnaire; TG, fasting triglycerides; TotalISR, integral of insulin secretion during the whole oral glucose tolerance test/mixed-meal tolerance test;

TotGLP1min0, concentration of fasting total GLP-1 in plasma; TwoGlucose, 2-hour glucose after oral glucose tolerance test/mixed-meal tolerance test;

TwoInsulin, 2-hour insulin; Waist_Hip, waist to hip ratio.

https://doi.org/10.1371/journal.pmed.1003149.g001
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To minimize bias (for example by overfitting), we randomly divided the dataset and used

70% (n = 735) for feature selection and 30% (n = 314) for the model generation (see below).

We selected these thresholds for partitioning the dataset in order to maximize the power to

select the informative features. Stratified random sampling [27] based on the outcome variable

was undertaken in order to preserve the distribution of the liver fat categories in the 2 feature

selection and model generation sets. We selected LASSO, as a nonlinear data reduction tool

might lead to overfitting owing to the high dimensionality of omics data. LASSO was con-

ducted with package glmnet in R [28] with a 10-fold cross-validation step for defining the λ
parameter that resulted in the minimum value for the mean square error of the regression

model.

Feature selection using LASSO was undertaken in each omics dataset (genetic, transcrip-

tomic, proteomic, and metabolomic) using 70% of the available data (models 5–18). For the

genetic dataset, we first performed a genome-wide association study (GWAS) prior to LASSO

in order to identify single nucleotide polymorphisms (SNPs) tentatively associated with liver

fat accumulation (p< 5 × 10−6). LASSO was then applied to these index variants for feature

selection in 70% of the study sample. The individual SNP association analysis was conducted

with RVTESTS v2.0.2 [29], which applies a linear mixed model with an empirical kinship

matrix to account for familial relatedness, cryptic relatedness, and population stratification.

Only common variants with minor allele frequency (MAF) greater than 5% contributed to the

kinship matrix. Liver fat data were log-transformed and then adjusted for age, age2, sex, center,

body mass index (BMI), and alcohol consumption. These values were then inverse normal

transformed and used in the GWAS analyses. We limited our analysis to genetic MAF > 1%

and imputation quality score > 0.3. S3 and S4 Figs show the resulting Manhattan plot, depict-

ing each SNP’s association with liver fat percentage and the quantile–quantile (QQ) plot of the

GWAS results for liver fat. For the genetic data, 23 SNPs were selected out of the 108 SNPs

with p-values < 5 × 10−6. For the transcriptomics, 93 genes were selected out of 16,209 pro-

tein-coding genes. In the exploratory and targeted proteomics, 22 out of 377 and 48 out of 483

proteins were selected, respectively. In the targeted and untargeted metabolomic data, 25 out

of 116 and 39 out of 172 metabolites were selected by LASSO, respectively.

Model training and evaluation

The remaining 30% of the data was used to develop the binary prediction models for fatty liver

(yes/no) with selected features used as input variables. We utilized the random forest super-

vised machine learning method, which is an aggregation of decision trees built from boot-

strapped datasets (a process called “bagging”). Typically, two-thirds of the data are retained in

these bootstrapped datasets, and the remaining third is termed the out of bag (OOB) dataset,

which is used to validate the performance of the model. To avoid overfitting and improve gen-

eralizability, 5-fold cross-validation was done for resampling the training samples and was

repeated 5 times to create multiple versions of the folds. The number of trees was set to 1,000

to provide an accurate and stable prediction. Receiver operating characteristic (ROC) curves

were used to evaluate model performance by measuring the area under the curve (AUC). A

ROC curve uses a combination of sensitivity (true positive rate) and specificity (true negative

rate) to assess prediction performance. In our analysis, the random forest model is used to

derive probability estimates for the presence of fatty liver. In order to make a class prediction,

it is necessary to impose a cutoff above which fatty liver is deemed probable and below which

it is considered improbable. The choice of cutoff influences both sensitivity and specificity for

a given prediction model. We considered the effect of different cutoffs on these performance

measurements. Additionally, we calculated the F1 score, which is the harmonic mean of
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precision (positive predictive value) and sensitivity, derived as follows:

F1 score ¼
2� sensitivity � precision
ðsensitivity þ precisionÞ

ð2Þ

Balanced accuracy was also evaluated, which is the proportion of individuals correctly clas-

sified (true positives and true negatives) within each class individually. Measurements of sensi-

tivity, specificity, F1 score, and balanced accuracy were computed and compared at different

cutoffs for the diabetes, non-diabetes, and combined cohorts. The variable importance was

also determined via a “permutation accuracy importance” measure using random forest analy-

sis. In brief, for each tree, the prediction accuracy was calculated in the OOB test data. Each

predictor variable was then permuted, and the accuracy was recalculated. The difference in the

accuracies was averaged over all the trees and then normalized by the standard error. Thus, the

measure for variable importance is the difference in prediction accuracy before and after the

permutation for each variable [30]. In addition, we used the ensemble feature selection (EFS)

method to determine the normalized importance value of all features [31]. With this approach,

we do not rely on only random forest for the importance ranking, and we can build the cumu-

lative importance values from different methods including Spearman’s rank correlation test,

Pearson’s product moment correlation test, beta-values of logistic regression, the error-rate-

based variable importance measure, and the Gini-index-based variable importance measure.

Statistical analyses were undertaken using R software version 3.2.5 [32], and the random forest

models were built using the caret package [33]. Fig 2 shows an overview of the different stages

involved in the data processing and model training.

Comparison with other fatty liver indices

Given the accessible data within the IMI DIRECT cohorts, several existing fatty liver indices

could be calculated and compared with the IMI DIRECT prediction models. These included

Fig 2. Overview of the different stages involved in data processing and model training. Data sources: clinical (C), genetic (G), transcriptomic

(T), exploratory proteomic (E-P), targeted proteomic (T-P), targeted metabolomic (T-M), and untargeted metabolomic (U-M). The green and

blue dashed boxes illustrate the feature selection step, the details of which can be found in S5 Fig. ROCAUC, receiver operating characteristic

area under the curve.

https://doi.org/10.1371/journal.pmed.1003149.g002
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the fatty liver index (FLI) [34], hepatic steatosis index (HSI) [35], and the NAFLD liver fat

score (NAFLD-LFS) [36].

FLI. The FLI is commonly used to estimate the presence or absence of fatty liver (catego-

rized into fatty [�60 FLI units] or non-fatty liver [<60 FLI units]) [34]. The FLI uses data on

TG, waist circumference, BMI, and serum gamma-glutamyl transpeptidase (GGTP) and is cal-

culated as follows:

FLI ¼
eðð0:953�lnðTGÞÞþ ð0:139�BMIÞ þ ð0:718�lnðGGTPÞÞ þ ð0:053�WaistÞ � 15:745 Þ � 100

ð1 þ eðð0:953�ln TGÞÞþ ð0:139�BMIÞ þ ð0:718�lnðGGTPÞÞ þ ð0:053�WaistÞ � 15:745 ÞÞ
ð3Þ

NAFLD-FLS. NAFLD-FLS was calculated using fasting serum (fs) insulin, aspartate trans-

aminase (AST), alanine transaminase (ALT), T2D, and metabolic syndrome (MS) (defined

according to the International Diabetes Federation [37]) to provide an estimate of liver fat con-

tent. A NAFLD-FLS value above −0.64 is considered to indicate the presence of NAFLD:

NAFLD-LFS ¼ � 2:89þ 1:18�MS ðyes 1; no 0Þ þ 0:45� T2D ðyes 2; no 0Þ

þ 0:15� fs Insulin ð4Þ

HSI. The HSI uses BMI, sex, T2D diagnosis (yes/no), and the ratio of ALT to AST and is

calculated as follows:

HSI ¼ 8�
ALT
AST

þ BMI þ2 if T2D yes;þ2 if femaleð Þ ð5Þ

HSI values above 36 are deemed to indicate the presence of NAFLD.

External validation (UK Biobank cohort)

The UK Biobank cohort [38] was used to validate the clinical prediction models (models 1 and

2) derived using IMI DIRECT data (UK Biobank application ID: 18274). The same protocol

and procedure have been used to quantify MRI-derived liver fat in IMI DIRECT and UK Bio-

bank [18]. In addition, we validated the FLI and HSI using UK Biobank data. Field numbers

for the UK Biobank variables used in the validation step can be found in the S4 Table. The

data analysis procedures used for the UK Biobank validation analyses mirror those used in

IMI DIRECT (as described above).

This study is reported as per the Strengthening the Reporting of Observational Studies in

Epidemiology (STROBE) guideline (S1 STROBE Checklist) and the Transparent Reporting of

a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) guideline

(S1 TRIPOD Checklist).

Results

The following section describes fatty liver prediction models that are likely to suit different sce-

narios. We focus on a basic model (model 1), which includes variables that are widely available

in both clinical and research settings. Models 2 and 3 focus on variables that could in principle

be accessed within the clinical context, but that are not routinely available in the clinical setting

at this time. Model 4 includes clinical variables, more detailed measures of glucose and insulin

dynamics, and physical activity. Models 5 to 18 are more advanced models that include omics

predictor variables alone or in combination with clinical predictor variables. See S3 Table for a

full description of models.
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Clinical models 1–3

We developed models 1–3 for NAFLD prediction, graded by perceived data accessibility for

clinicians. These models were developed on the full dataset without applying any statistical

procedures for feature selection. Model 1 includes 6 non-serological input variables: waist cir-

cumference, BMI, systolic blood pressure (SBP), diastolic blood pressure (DBP), alcohol con-

sumption, and diabetes status. Model 2 includes 8 input variables: waist circumference, BMI,

TG, ALT, AST, fasting glucose (or hemoglobin A1C [HbA1c] if fasting glucose is not available),

alcohol consumption, and diabetes status. Model 3 includes 9 variables: waist circumference,

BMI, TG, ALT, AST, fasting glucose, fasting insulin, alcohol consumption, and diabetes status.

Clinical models 1–3 along with the FLI, HSI, and NAFLD-LFS were applied to the non-diabetes

and diabetes cohort datasets separately, as well as to the combined cohort dataset; the ROCAUC

results are presented in Fig 3. Model 1 yielded a ROCAUC of 0.73 (95% CI 0.72, 0.75; p<
0.001) in the combined cohort. Adding serological variables to model 2 (with either fasting glu-

cose or HbA1c) for the combined cohort yielded a ROCAUC of 0.79 (95% CI 0.78, 0.80; p<
0.001). Model 3 (fasting insulin added) yielded a ROCAUC of 0.82 (95% CI 0.81, 0.83; p<
0.001) in the combined cohort. The FLI, HSI, and NAFLD-LFS had ROCAUCs of 0.75 (95% CI

0.73, 0.78; p< 0.001), 0.75 (95% CI 0.72, 0.77; p< 0.001), and 0.79 (95% CI 0.76, 0.81; p<
0.001), respectively, in the combined cohort. The predictive performance of clinical models 1–3,

FLI, HSI, and NAFLD-LFS in the non-diabetes and diabetes cohorts is presented in S5 Table.

Performance metrics

We further investigated sensitivity, specificity, balanced accuracy, and F1 score (a score con-

sidering sensitivity and precision combined). These measurements were calculated for differ-

ent cutoffs applied to the output of the random forest model (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

and 0.9) using clinical models 1–3 in the diabetes, non-diabetes, and combined cohorts. The

performance metrics for models 1 and 2 are presented in S6 and S7 Figs, and the metrics for

model 3 are presented in Fig 4. We aimed to find the optimal cutoff for these models based on

the cross-validated balanced accuracy. The highest balanced accuracy for models 1–3 in the

non-diabetes, diabetes, and combined cohorts was observed at cutoffs of 0.4, 0.6, and 0.4,

respectively (see Table 2).

Measurements of sensitivity, specificity, F1 score, and balanced accuracy were computed

for the FLI, HSI, and NAFLD-LFS and compared with those of clinical models1–3. These

measurements were computed at the optimal cutoff values for these indices: −0.640 for

NAFLD-LFS, 60 for the FLI, and 36 for the HSI. A comprehensive overview of the predic-

tion models’ performance metrics for all of the fatty liver indices listed above is shown in

Table 2.

Validation in UK Biobank and IMI DIRECT

Liver fat data were available in 4,617 UK Biobank participants (1,011 with�5% liver fat and

3,606 with<5% liver fat). Of these individuals, 4,609 had all the required variables to replicate

clinical model 1. To perform model 2, with either fasting glucose or HbA1c, 3,807 participants

had data available for a complete case analysis. Given the limited availability of variables in

the UK Biobank dataset, only models 1 and 2 of the NAFLD prediction models we developed

could be externally validated. To facilitate this validation analysis, the random forest models

developed in the IMI DIRECT cohorts were used to predict the liver fat category (participants

with fatty liver versus non-fatty liver) for the UK Biobank participants. The performance of the

FLI and HSI was also tested in the UK Biobank cohort. We validated both models 1 and 2 in

the UK Biobank cohort with a similar ROCAUC as seen in the IMI DIRECT dataset. The
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ROCAUCs were 0.71 (95% CI 0.69, 0.73; p< 0.001), 0.79 (95% CI 0.77, 0.80; p< 0.001), and

0.78 (95% CI 0.76, 0.79; p< 0.001) for model 1, model 2 with fasting glucose, and model 2

with HbA1c, respectively. The FLI had a ROCAUC of 0.78 (95% CI 0.76, 0.80; p< 0.001),

which is similar to the ROCAUC of model 2. The HSI yielded a ROCAUC of 0.76 (95% CI

0.75, 0.78; p< 0.001).

Measurements of sensitivity, specificity, F1 score, and balanced accuracy were also com-

puted at the optimal cutoff values for these models: 0.4 for clinical models 1 and 2, 60 for the

FLI, and 36 for the HSI (see Table 2).

Fig 3. Receiver operating characteristic area under the curve (ROCAUC) with 95% confidence interval (error

bars) for clinical models 1–3, fatty liver index (FLI), hepatic steatosis index (HSI), and non-alcoholic fatty liver

disease liver fat score (NAFLD-LFS) in the IMI DIRECT cohorts. Model 1 includes 6 non-serological input

variables: waist circumference, body mass index(BMI), mean systolic blood pressure, mean diastolic blood pressure,

alcohol consumption, and diabetes status. Model 2 includes 8 input variables: waist circumference, BMI, fasting

triglycerides (TG), alanine transaminase (ALT), aspartate transaminase (AST), fasting glucose (or hemoglobin A1C if

fasting glucose is not available), alcohol consumption, and diabetes status. Model 3 includes 9 variables: waist

circumference, BMI, TG, ALT, AST, fasting glucose, fasting insulin, alcohol consumption, and diabetes status. The FLI

uses TG, waist circumference, BMI, and gamma-glutamyl transpeptidase. NAFLD-FLS was calculated using fasting

insulin, AST, ALT, type 2 diabetes (T2D), and metabolic syndrome defined according to the International Diabetes

Federation. The HSI uses BMI, sex, T2D diagnosis (yes/no), and the ratio of ALT to AST.

https://doi.org/10.1371/journal.pmed.1003149.g003
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Clinical model 4 and omics models 5–14

More advanced models using omics data were also developed. These models were generated

using the omics features selected by LASSO in the combined cohort. The models include only

omics or include omics plus 22 clinical variables as the input variables. Twenty-one of these

clinical variables were selected based on the pairwise Pearson correlation matrix: BMI, waist

circumference, SBP, DBP, alcohol consumption, ALT, AST, GGTP, HDL, TG, fasting glucose,

2-hour glucose, HbA1c, fasting insulin, 2-hour insulin, insulin secretion at the beginning of

the carbohydrate challenge test (OGTT or MMTT), 2-hour oral glucose insulin sensitivity

index (OGIS), mean insulin clearance during the OGTT/MTT, fasting glucagon concentra-

tion, fasting plasma total GLP-1 concentration, and mean physical activity intensity. Diabetes

status (non-diabetes/diabetes) was also included as a clinical predictor in the models, given

that analyses were undertaken in the combined diabetes and non-diabetes cohort. The

ROCAUCs for models 4–14 are shown in Fig 5. The clinical model with the 22 selected clinical

Fig 4. Measurements of sensitivity, specificity, F1 (a score considering sensitivity and precision combined), and

balanced accuracy at different cutoffs for model 3 in the diabetes, non-diabetes, and combined cohorts of

IMI-DIRECT. The measurements are calculated by defining the predicted probabilities of fatty liver equal to or above

these cutoffs as fatty liver, and below as non-fatty liver. Model 3 includes 9 variables: waist circumference, body mass

index, fasting triglycerides, alanine transaminase, aspartate transaminase, fasting glucose, fasting insulin, alcohol

consumption, and diabetes status.

https://doi.org/10.1371/journal.pmed.1003149.g004
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variables (model 4) yielded a ROCAUC of 0.79 (95% CI 0.76, 0.81; p< 0.001). Omics models

with only the genetic (model 5), transcriptomic (model 7), proteomic (model 9), and targeted

metabolomic (model 11) data as input variables resulted in ROCAUCs of 0.67 (95% CI 0.65,

0.70; p< 0.001), 0.72 (95% CI 0.69, 0.74; p< 0.001), 0.74 (95% CI 0.71, 0.76; p< 0.001), and

0.70 (95% CI 0.67, 0.72; p< 0.001), respectively. Including all the omics variables in one model

(model 13) resulted in a ROCAUC of 0.82 (95% CI 0.80, 0.84; p< 0.001). Adding the clinical

variables to each omics model improved the prediction ability; models with the clinical vari-

ables plus genetic (model 6), transcriptomic (model 8), exploratory proteomic (model 10), and

targeted metabolomic (model 12) data resulted in ROCAUCs of 0.82 (95% CI 0.80, 0.84; p<
0.001), 0.81 (95% CI 0.79, 0.83; p< 0.001), 0.80 (95% CI 0.78, 0.83; p< 0.001), and 0.80 (95%

CI 0.77, 0.82; p< 0.001), respectively. The highest performance was observed for model 14

(ROCAUC of 0.84; 95% CI 0.82, 0.86; p< 0.001). The variable importance for model 14 from

Table 2. An overview of the prediction models’ performance metrics for clinical models 1–3, fatty liver index (FLI), hepatic steatosis index (HIS), and non-alcoholic

fatty liver disease liver fat score (NAFLD-LFS) in the IMI DIRECT and UK Biobank datasets.

Cohort and model Cutoff Sensitivity Specificity F1 score Balanced accuracy

Non-diabetes (IMI DIRECT)

Model 1 0.4 0.51 0.75 0.51 0.63

Model 2 0.4 0.60 0.79 0.59 0.69

Model 3 0.4 0.64 0.80 0.63 0.72

FLI 60 0.89 0.41 0.58 0.65

HSI 36 0.62 0.68 0.55 0.65

NAFLD-LFS −0.64 1 0.04 0.51 0.52

Diabetes (IMI DIRECT)

Model 1 0.6 0.63 0.64 0.67 0.64

Model 2 0.6 0.65 0.68 0.69 0.67

Model 3 0.6 0.69 0.75 0.74 0.72

FLI 60 0.77 0.54 0.73 0.66

HSI 36 0.83 0.48 0.75 0.65

NAFLD-LFS −0.64 1 0.01 0.73 0.50

Combined (IMI DIRECT)

Model 1 0.4 0.67 0.65 0.62 0.66

Model 2 0.4 0.72 0.69 0.67 0.71

Model 3 0.4 0.74 0.73 0.70 0.74

FLI 60 0.84 0.44 0.64 0.64

HSI 36 0.71 0.63 0.64 0.67

NAFLD-LFS −0.64 1 0 0.58 0.50

UK Biobank

Model 1 0.4 0.49 0.78 0.43 0.63

Model 2 0.4 0.67 0.74 0.52 0.71

FLI 60 0.62 0.76 0.50 0.69

HSI 36 0.66 0.72 0.50 0.69

Model 1 includes 6 non-serological input variables: waist circumference, body mass index (BMI), mean systolic blood pressure, mean diastolic blood pressure, alcohol

consumption, and diabetes status. Model 2 includes 8 input variables: waist circumference, BMI, fasting triglycerides (TG), alanine transaminase (ALT), aspartate

transaminase (AST), fasting glucose (or hemoglobin A1C if fasting glucose is not available), alcohol consumption, and diabetes status. Model 3 includes 9 variables:

waist circumference, BMI, TG, ALT, AST, fasting glucose, fasting insulin, alcohol consumption, and diabetes status. The FLI uses TG, waist circumference, BMI, and

gamma-glutamyl transpeptidase. NAFLD-FLS was calculated using fasting insulin, AST, ALT, type 2 diabetes (T2D), and metabolic syndrome defined according to the

International Diabetes Federation. The HSI uses BMI, sex, T2D diagnosis (yes/no), and the ratio of ALT to AST.

https://doi.org/10.1371/journal.pmed.1003149.t002
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the permutation accuracy importance measure, presented in Fig 6, shows that measures of

insulin secretion rank amongst those having the highest variable importance of all input vari-

ables. Moreover, the importance list derived from EFS, shown in S20 Fig, is highly consistent

with that derived from the random forest analysis. Rankings for the individual clinical and

omics variables from the permutation accuracy importance measure and EFS are presented in

S8–S19 Figs. The minor inconsistencies in results from the 2 approaches are likely to reflect

the ability of the random forest analysis to detect variables that interact with others, which the

linear methods are not designed to detect.

Additional proteomic and metabolomic analyses (models 15–18)

Data from targeted proteomic and untargeted metabolomic data were further utilized to

develop the omics models separately or in combination with the clinical data. However,

Fig 5. Receiver operating characteristic area under the curve (ROCAUC) with 95% confidence interval for the

clinical model and the omics separately or in combination with the clinical model in the IMI DIRECT combined

cohort. Clinical (C), model 4, with the 22 selected clinical variables. Genetic (G), model 5, with 23 SNPs. C+G, model

6, with clinical plus genetic variables. Transcriptomic (T), model 7, with 93 protein-coding genes. T+C, model 8, with

transcriptomic plus clinical variables. Proteomic (P), model 9, with 22 proteins from exploratory proteomics. P+C,

model 10, with proteomic plus clinical variables. Metabolomic (M), model 11, with 25 metabolites from targeted

metabolomics. M+C, model 12, with metabolomic plus clinical variables. G+T+M+P, model 13, with all omics

together. C+G+T+M+P, model 14, with all the omics combined with the clinical model.

https://doi.org/10.1371/journal.pmed.1003149.g005
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as some participants lacked these omics data, their models were developed using a smaller

data subset and were, hence, not included in the advanced (model 14) analyses. The complete

case analysis was primarily defined on the availability of the 22 selected clinical variables

(n = 1,049). Within this complete case set, 511 had a complete set of untargeted metabolomic

data, and 686 had a complete set of targeted proteomic data. The models with targeted proteo-

mic data only and with proteomic and clinical variables combined resulted in ROCAUCs of

0.81 (95% CI 0.78, 0.84; p< 0.001) and 0.84 (95% CI 0.81, 0.87; p< 0.001), respectively. The

untargeted metabolomic model alone had a ROCAUC of 0.66 (95% CI 0.63, 0.69; p< 0.001),

which increased to 0.78 (95% CI 0.75, 0.80; p< 0.001) when the 22 clinical variables were

added.

Fig 6. Variable importance for the advanced model 14 with 185 omics and clinical input variables (clinical = 22,

genetic = 23, transcriptomic = 93, exploratory proteomic = 22, and targeted metabolomic = 25). The y-axis shows

the top 20 predictors in the model. The x-axis shows the variable importance calculated, via a permutation accuracy

importance measure using random forest analysis, as the difference in prediction accuracy before and after the

permutation for each variable scaled by the standard error. ALT, alanine transaminase; AST, aspartate transaminase;

BasalISR, insulin secretion at the beginning of the oral glucose tolerance test/mixed-meal tolerance test; BMI, body

mass index; Clins, mean insulin clearance during the oral glucose tolerance test/mixed-meal tolerance test calculated as

(mean insulin secretion)/(mean insulin concentration); FLT3, fetal liver tyrosine kinase-3; Insulin, fasting insulin from

venous plasma samples; MYLIP, myosin regulatory light chain interacting protein; OGIS, oral glucose insulin

sensitivity index according to the method of Mari et al. [24]; TG, fasting triglycerides; TotGLP1min0, concentration of

fasting total GLP-1 in plasma; TwoInsulin, 2-hour insulin after oral glucose tolerance test/mixed meal tolerance test.

https://doi.org/10.1371/journal.pmed.1003149.g006
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Discussion

Using data from the IMI DIRECT consortium, we developed 18 diagnostic models for early-

stage NAFLD. These models were developed to reflect different scenarios within which they

might be used: These included both clinical and research settings, with the more complex (and

less accessible) models having the greatest predictive ability. The models were successfully vali-

dated in the UK Biobank where data permitted such analysis (clinical models 1 and 2). Overall,

the basic clinical variables proved to be stronger predictors of fatty liver than more complex

omics data, although adding omics data yielded the most powerful model, with very good

cross-validated predictive ability (ROCAUC = 0.84).

NAFLD is etiologically complex, rendering its prevention and treatment difficult, and diag-

nosis can require invasive and/or relatively expensive procedures. Thus, noninvasive and cost-

effective prediction models with good sensitivity and specificity are much needed. This is espe-

cially important because if NAFLD is detected early, treatment through lifestyle interventions

can be highly effective [39]. However, simple steatosis is usually asymptomatic, and many

patients only come to the attention of hepatologists when serious complications arise [40].

To date, several prediction models have been developed to facilitate the diagnosis of steato-

sis (thoroughly reviewed elsewhere [13]). The FLI is one of the most well-established and com-

monly used fatty liver indices, initially developed using ultrasound-derived hepatic steatosis

data [34]. The FLI yielded similar predictive performance in the diabetes and non-diabetes

cohorts of IMI DIRECT (both ROCAUCs approximately 0.75).

Though commonly used for liver fat prediction, the FLI has a similar discriminative ability

as waist circumference alone [41]. Better discrimination can be obtained by incorporating

additional serological and hemostatic measures, which is the case with NAFLD-LFS [14], the

SteatoTest [42], and the HSI [35], for example. Notwithstanding the added complexity and

cost of these scores, the FLI, HSI, and NAFLD-LFS yielded similar predictive ability in a series

of liver-biopsy-diagnosed NAFLD cases (n = 324) [36].

Omics technologies have been used in a small number of studies to identify molecular bio-

markers of NAFLD [43–45]. These include tests utilizing genetic data such as FibroGENE for

staging liver fibrosis [46], and tests using metabolomic data derived from liver tissue to differ-

entiate simple hepatitis from NASH [47], as well as a multi-component NAFLD classifier

using genomic, proteomic, and phenomic data [45]. Machine learning models based on lipido-

mic, glycomic, and free fatty acid data were also developed for the diagnosis of NASH and

liver fibrosis [48,49]. In a recent retrospective case series of patients with obesity, EFS was

applied for feature selection, using a set of sociodemographic and serum variables to predict

the presence or absence of NASH [50].

Using data from IMI DIRECT, we explored the predictive ability of genetic, transcriptomic,

proteomic, and metabolomic data from blood in the diagnosis of NAFLD. The top 20 features

of each omics model are presented in S9–S14 Figs. The details of the LASSO selected features

are summarized in S7 Table. Reassuringly, several of the features that ranked highest have

been previously described for their association with liver fat content or closely related traits;

these include PNPLA3 gene variants [44,51], fetal liver tyrosine kinase-3 (FLT3) transcripts

[52], IGFBP1 [53–55] and lipoprotein lipase (Lpl) [56] proteins, and the metabolite glutamate

[57]. In the analysis of the targeted metabolites, phosphatidylcholines (including PC.aa.C32,

PC.aa.C38, PC.aa.C40, and PC.aa.C42), glycerophospholipids, and valine were amongst the

highest-ranked metabolites that are known for their correlation with NAFLD and metabolic

disorders [58,59]. For exploratory proteomics, the most important variables were proteins

secreted into the blood, expressed by the liver as well as those leaking from the blood cells [60].

The prediction model that only included targeted proteomic data (model 15) performed well
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(ROCAUC = 0.81), rendering it an interesting candidate biomarker for future clinical tests.

Among the top 20 most important proteins were many secreted into the blood or leaked by

the liver, as well as the pancreas, fat, or muscle tissue [61].

Our intention by including all features in the same model (model 14) was to maximize pre-

dictive power by leveraging interactions between features. Moreover, we explored the value of

boosting ensemble algorithms for each data source. The purpose of this was to enhance predic-

tions. We trained a stochastic gradient boosting algorithm for each data source separately and

then applied a weighted averaging on the probabilities of observations. The optimal weighting

was observed at 0.5 for the clinical data and 0.125 for each omics data layer (i.e., genetic, tran-

scriptomic, exploratory proteomic, and targeted metabolomic). The ensemble prediction

model of omics and clinical datasets resulted in a ROCAUC of 0.83 (95% CI 0.78, 0.87; p<
0.001), which is not materially different from the ROCAUC derived for the advanced model

14 (described in the Results), which includes all the omics and clinical features in a single

model (ROCAUC of 0.84; 95% CI 0.82, 0.86; p< 0.001). The models developed here may be

useful for screening for NAFLD, and this should be evaluated in future clinical studies.

In order to stratify people into groups of those unlikely and likely to have NAFLD, the latter

of whom might subsequently undergo more invasive and/or costly clinical assessments, it

would be important for the prediction model to have high sensitivity. However, the predictive

utility of a given model can be further improved by selecting model cutoffs that optimize sensi-

tivity or specificity, as the 2 metrics rarely perform optimally at the same cutoff. This issue was

apparent for models 1–3 in the current analyses, where we selected cutoffs that maximized

balanced accuracy (considering both sensitivity and specificity); these features are especially

important in screening algorithms, where the cost of false negatives can be high. Models 1–3

resulted in higher sensitivity in the diabetes cohort than the non-diabetes cohort, whereas the

specificity was higher in the non-diabetes and combined cohorts than in the diabetes cohort.

The linear LASSO method was used to minimize overfitting that can occur with high-

dimensionality data, while random forest analysis was used to identify nonlinear associations

where data structure allowed. We also considered several other machine learning approaches

including generalized linear model, stochastic gradient boosting, support vector machines,

and k-nearest neighbor, and the random forest analysis yielded similar or better results com-

pared with any of these other approaches (see S6 Table).

A limitation of the analytical approach used here is that the methods required a complete

case analysis, which diminishes sample size considerably; although imputing missing data here

helped preserve sample size, it did not improve the prediction ability of the models, and we

hence elected to use the complete case analysis. Heavy alcohol consumption is a key determi-

nant of fatty liver, but is unlikely to be a major etiological factor in IMI DIRECT owing to the

demographics of this cohort. Nevertheless, a further limitation of this analysis is that alcohol

intake was self-reported and may lack validity. To address this limitation, we removed all self-

reported heavy alcohol consumers from the UK Biobank cohort and undertook sensitivity

analyses, but this did not materially affect the results.

Here we considered lifestyle variables, but not medications. The use of medicines affecting

liver fat is likely to be less in the non-diabetes than in the diabetes cohort, yet the models fit

better in the latter, suggesting that glucose-lowering medication use in the IMI DIRECT

cohorts did not have a major detrimental impact on prediction model performance.

A further consideration for future work is the impact lifestyle and medications are likely to

have on the prediction of NAFLD. Furthermore, this study was undertaken in people of Euro-

pean ancestry, and the extent to which the results will generalize to other ethnic groups is

unknown. Moreover, the prediction is for a binary liver fat outcome (<5% or�5%), and
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neither fully quantifies liver fat volume nor elucidates the degree of liver damage (cirrhosis).

These key limitations of the current work will be the focus of future research.

Our finding that a model focused on proteomic data yielded high predictive utility may

warrant further investigation. Our analysis also suggests that insulin sensitivity and beta-cell

dysfunction may be involved in liver fat accumulation, which are at present not considered as

features of conventional NAFLD risk models.

In summary, we have developed prediction models for NAFLD that may have utility for

clinical diagnosis and research investigations alike. A web interface for the diagnosis of

NAFLD was developed using the findings described above (https://www.predictliverfat.org),

which renders clinical models 1–3 developed here accessible for the wider community of clini-

cians and researchers.

Supporting information

S1 Fig. Violin plot showing the distribution of liver fat percentage for the diabetes and

non-diabetes cohorts of IMI DIRECT.

(TIFF)

S2 Fig. Distribution of liver fat percentage among the different centers contributing to the

IMI DIRECT cohorts.

(TIFF)

S3 Fig. Manhattan plot showing SNPs associated with liver fat level (approximately 18 mil-

lion imputed SNPs) in the IMI DIRECT cohorts. The chromosomal position is plotted on

the x-axis, and the statistical significance of association for each SNP is plotted on the y-axis.

Red line indicates genome-wide significance level (5 × 10−8).

(TIFF)

S4 Fig. Quantile–quantile (QQ) plot showing results of genome-wide association study

(GWAS) for liver fat content in the IMI DIRECT consortium (1,514 individuals). The x-

axis illustrates the expected distribution of p-values from the association test across all SNPs,

and the y-axis shows the observed p-values.

(TIFF)

S5 Fig. Details of the feature selection step for models 4–14 and models 15–18 using the

IMI DIRECT data. Models 4–14 (blue box); models 15–18 (green box).

(TIFF)

S6 Fig. Measurements of sensitivity, specificity, F1 score (a score considering sensitivity

and precision combined), and balanced accuracy at different cutoffs for model 1 in the dia-

betes, non-diabetes, and combined cohorts of IMI DIRECT.

(TIFF)

S7 Fig. Measurements of sensitivity, specificity, F1 score (a score considering sensitivity

and precision combined), and balanced accuracy at different cutoffs for model 2 in the dia-

betes, non-diabetes, and combined cohorts of IMI DIRECT.

(TIFF)

S8 Fig. Variable importance for the clinical model via a permutation accuracy importance

measure. The y-axis shows the top 20 predictors in the model. The x-axis shows the variable

importance, calculated using random forest analysis as the difference in prediction accuracy

before and after the permutation for each variable scaled by the standard error. ALT, alanine

transaminase; AST, aspartate transaminase; BasalISR, insulin secretion at the beginning of the
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OGTT/MMTT; BMI, body mass index; Clins, mean insulin clearance during the OGTT/MMTT

calculated as (mean insulin secretion)/(mean insulin concentration); DBP, diastolic blood pres-

sure; Diabetes_status2, non-diabetes/diabetes; GGTP, gamma-glutamyl transpeptidase; Gluca-

gonmin0, fasting glucagon concentration; Glucose, fasting glucose from venous plasma samples;

HbA1c, hemoglobin A1C; HDL, fasting high-density lipoprotein cholesterol; Insulin, fasting

insulin from venous plasma samples; OGIS, oral glucose insulin sensitivity index according to

the method of Mari et al. [24]; PA_intensity_mean, mean high-pass-filtered vector magnitude

physical activity intensity; SBP, systolic blood pressure; TG, fasting triglycerides; TotGLP1min0,

concentration of fasting total GLP-1 in plasma; TwoGlucose, 2-hour glucose after OGTT/

MMTT; TwoInsulin, 2-hour insulin.

(TIFF)

S9 Fig. Variable importance for the genetic model via a permutation accuracy importance

measure. The y-axis shows the top 20 predictors in the model. The x-axis shows the variable

importance, calculated using random forest analysis as the difference in prediction accuracy

before and after the permutation for each variable scaled by the standard error.

(TIFF)

S10 Fig. Variable importance for the transcriptomic model via a permutation accuracy

importance measure. The y-axis shows the top 20 predictors in the model. The x-axis shows

the variable importance, calculated using random forest analysis as the difference in prediction

accuracy before and after the permutation for each variable scaled by the standard error.

(TIFF)

S11 Fig. Variable importance for the exploratory proteomic model via a “permutation

accuracy importance” measure. The y-axis shows the top 20 predictors in the model. The x-

axis shows the variable importance, calculated using random forest as the difference in predic-

tion accuracy before and after the permutation for each variable scaled by the standard error.

(TIFF)

S12 Fig. Variable importance for the targeted metabolomic model via a permutation accu-

racy importance measure. The y-axis shows the top 20 predictors in the model. The x-axis

shows the variable importance, calculated using random forest analysis as the difference in

prediction accuracy before and after the permutation for each variable scaled by the standard

error.

(TIFF)

S13 Fig. Variable importance for the targeted proteomic model via a permutation accuracy

importance measure. The y-axis shows the top 20 predictors in the model. The x-axis shows

the variable importance, calculated using random forest analysis as the difference in prediction

accuracy before and after the permutation for each variable scaled by the standard error.

(TIFF)

S14 Fig. Variable importance for the untargeted metabolomic model via a permutation

accuracy importance measure. The y-axis shows the top 20 predictors in the model. The x-

axis shows the variable importance, calculated using random forest analysis as the difference

in prediction accuracy before and after the permutation for each variable scaled by the stan-

dard error.

(TIFF)

S15 Fig. Variable importance for the clinical model derived from ensemble feature selection

(EFS). The y-axis shows the 22 clinical variables ordered by importance value. The x-axis shows
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the cumulative importance values, calculated via an ensemble of feature selection methods

including Spearman’s rank correlation test (S_cor), Pearson’s product moment correlation test

(P_cor), beta-values of logistic regression (LogReg), error-rate-based variable importance mea-

sure (ER_RF), and Gini-index-based variable importance measure (Gini_RF). ALT, alanine

transaminase; AST, aspartate transaminase; BasalISR, insulin secretion at the beginning of

the OGTT/MMTT; BMI, body mass index; Clins, mean insulin clearance during the OGTT/

MMTT calculated as (mean insulin secretion)/(mean insulin concentration); DBP, diastolic

blood pressure; Diabetes status, non-diabetes/diabetes; GGTP, gamma-glutamyl transpeptidase;

Glucagonmin0, fasting glucagon concentration; Glucose, fasting glucose from venous plasma

samples; HbA1c, hemoglobin A1C; HDL, fasting high-density lipoprotein cholesterol; Insulin,

fasting insulin from venous plasma samples; OGIS, oral glucose insulin sensitivity index accord-

ing to the method of Mari et al. [24]; PA_intensity_mean, mean high-pass-filtered vector

magnitude physical activity intensity; SBP, systolic blood pressure; TG, fasting triglycerides;

TotGLP1min0, concentration of fasting total GLP-1 in plasma; TwoGlucose, 2-hour glucose

after OGTT/MMTT; TwoInsulin, 2-hour insulin.

(TIF)

S16 Fig. Variable importance for the genetic model derived from EFS. The y-axis shows the

23 genetic variables ordered by importance value. The x-axis shows the cumulative importance

values, calculated via an ensemble of feature selection methods including Spearman’s rank cor-

relation test (S_cor), Pearson’s product moment correlation test (P_cor), beta-values of logistic

regression (LogReg), error-rate-based variable importance measure (ER_RF), and Gini-index-

based variable importance measure (Gini_RF).

(TIFF)

S17 Fig. Variable importance for the transcriptomic model derived from EFS. The

y-axis shows the 93 transcriptomic variables ordered by importance value. The x-axis

shows the cumulative importance values, calculated via an ensemble of feature selection

methods including Spearman’s rank correlation test (S_cor), Pearson’s product moment

correlation test (P_cor), beta-values of logistic regression (LogReg), error-rate-based vari-

able importance measure (ER_RF), and Gini-index-based variable importance measure

(Gini_RF).

(TIFF)

S18 Fig. Variable importance for the exploratory proteomic model derived from EFS. The

y-axis shows the 22 exploratory proteomic variables ordered by importance value. The x-axis

shows the cumulative importance values, calculated via an ensemble of feature selection meth-

ods including Spearman’s rank correlation test (S_cor), Pearson’s product moment correlation

test (P_cor), beta-values of logistic regression (LogReg), error-rate-based variable importance

measure (ER_RF), and Gini-index-based variable importance measure (Gini_RF).

(TIFF)

S19 Fig. Variable importance for the targeted metabolomic model derived from EFS.

The y-axis shows the 25 targeted metabolomic variables ordered by importance value.

The x-axis shows the cumulative importance values, calculated via an ensemble of feature

selection methods including Spearman’s rank correlation test (S_cor), Pearson’s product

moment correlation test (P_cor), beta-values of logistic regression (LogReg), error-rate-

based variable importance measure (ER_RF), and Gini-index-based variable importance

measure (Gini_RF).

(TIFF)
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S20 Fig. Variable importance for the clinical plus multi-omics model (clinical = 22,

genetic = 23, transcriptomic = 93, exploratory proteomic = 22, and targeted metabolo-

mic = 25) derived from EFS. The y-axis shows the top 20 predictors in the model. The x-axis

shows the cumulative importance values, calculated via an ensemble of feature selection meth-

ods including Spearman’s rank correlation test (S_cor), Pearson’s product moment correlation

test (P_cor), beta-values of logistic regression (LogReg), error-rate-based variable importance

measure (ER_RF), and Gini-index-based variable importance measure (Gini_RF). ALT, ala-

nine transaminase; AST, aspartate transaminase; BasalISR, insulin secretion at the beginning

of the OGTT/MMTT; Clins, mean insulin clearance during the OGTT/MMTT calculated as

(mean insulin secretion)/(mean insulin concentration); Insulin, fasting insulin from venous

plasma samples; OGIS, oral glucose insulin sensitivity index according to the method of Mari

et al. [24]; TG, fasting triglycerides; TotGLP1min0, concentration of fasting total GLP-1 in

plasma; TwoInsulin, 2-hour insulin after OGTT/MMTT.

(TIFF)

S1 STROBE Checklist. The STROBE (Strengthening the Reporting of Observational Stud-

ies in Epidemiology) checklist.

(DOCX)

S1 Table. The list of the clinical input variables with the abbreviation used in the analyses

and their meaning.

(XLSX)

S2 Table. Characteristics of the study in the non-diabetes, diabetes, and combined cohorts

separated for participants from IMI DIRECT who had MRI data versus those who did not

have MRI data. Values are median (interquartile range) unless otherwise specified. ALT, ala-

nine transaminase; AST, aspartate transaminase; BMI, body mass index; DBP, diastolic blood

pressure; HbA1c, hemoglobin A1C; SBP, systolic blood pressure.

(XLSX)

S3 Table. Variables used to construct each of the NAFLD prediction models developed

in IMI DIRECT. ALT, alanine transaminase; AST, aspartate transaminase; BMI, body mass

index; DBP, diastolic blood pressure; GGTP, gamma-glutamyl transpeptidase; Glucagonmin0,

fasting glucagon concentration; HbA1c, hemoglobin A1C; HDL, fasting high-density lipopro-

tein cholesterol; MMTT, mixed meal tolerance test; OGIS, oral glucose insulin sensitivity

index according to the method of Mari et al. [24]; OGTT, oral glucose tolerance test; PA_in-

tensity_mean, mean high-pass-filtered vector magnitude physical activity intensity; SBP, sys-

tolic blood pressure; TotGLP1min0, concentration of fasting total GLP-1 in plasma.

(XLSX)

S4 Table. UK Biobank field number with the description used in the analyses.

(XLSX)

S5 Table. Receiver operating characteristic area under the curve (ROCAUC) with 95%

confidence interval for clinical models 1–3, fatty liver index (FLI), hepatic steatosis index

(HSI), and NAFLD liver fat score (NAFLD-LFS) in the non-diabetes and diabetes cohorts

of the IMI DIRECT separately.

(XLSX)

S6 Table. Receiver operating characteristic area under the curve (ROCAUC) with 95% con-

fidence interval of each separate dataset obtained from random forest (RF), generalized

linear model (GLM), stochastic gradient boosting (GBM), support vector machine (SVM),

PLOS MEDICINE Machine learning-based tools for the diagnosis of fatty liver disease

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1003149 June 19, 2020 22 / 27

http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1003149.s020
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1003149.s021
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1003149.s022
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1003149.s023
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1003149.s024
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1003149.s025
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1003149.s026
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1003149.s027
https://doi.org/10.1371/journal.pmed.1003149


and k-nearest neighbor (KNN) analyses in the cross-validated test data of the IMI DIRECT

combined cohort.

(XLSX)

S7 Table. The details of the LASSO (least absolute shrinkage and selection operator)–

selected features of the omics layers in separate sheets (genetic, transcriptomic, explor-

atory proteomic, targeted proteomic, targeted Metabolomic, and untargeted metabolo-

mic).

(XLSX)

S1 Text. QC of the transcriptomic, proteomic, and metabolomic variables in the IMI

DIRECT datasets.

(DOCX)

S1 TRIPOD Checklist. The TRIPOD (Transparent Reporting of a Multivariable Prediction

Model for Individual Prognosis or Diagnosis) checklist.

(DOCX)

Acknowledgments

We thank Mattias Borell for developing, logistical support, and advice related to the web

interface. We thank all the participants and study center staff in IMI DIRECT for their con-

tribution to the study. We thank all the participants in the UK Biobank. This research was

conducted using the UK Biobank resource (application ID: 18274). For the proteomic analy-

ses, we thank the entire staff of the Human Protein Atlas, the Plasma Profiling Facility at

Science for Life Laboratory, and in particular Elin Birgersson, Annika Bendes, and Eni

Andersson for technical assistance. We thank C. Prehn (HMGU) for laboratory work related

to the metabolomic data.

Author Contributions

Conceptualization: Naeimeh Atabaki-Pasdar, Mattias Ohlsson, Jimmy D. Bell, Imre Pavo,

Paul W. Franks.

Data curation: Naeimeh Atabaki-Pasdar, Ana Viñuela, Mark Haid, Angus G. Jones, E. Louise

Thomas, Robert W. Koivula, Azra Kurbasic, Juan Fernandez, Adem Y. Dawed, Ian M. For-

gie, Timothy J. McDonald, Matilda Dale, Federico De Masi, Mun-Gwan Hong, Tarja Kok-

kola, Helle Krogh Pedersen, Anubha Mahajan, Sapna Sharma, Jerzy Adamski, Soren Brage,

Søren Brunak, Emmanouil Dermitzakis, Gary Frost, Andrea Mari, Jochen M. Schwenk,

Ramneek Gupta, Jimmy D. Bell.

Formal analysis: Naeimeh Atabaki-Pasdar, Ana Viñuela, Francesca Frau, Hugo Pomares-

Millan.

Funding acquisition: Jerzy Adamski, Søren Brunak, Torben Hansen, Markku Laakso, Oluf

Pedersen, Martin Ridderstråle, Hartmut Ruetten, Andrew T. Hattersley, Mark Walker,

Mark I. McCarthy, Ewan R. Pearson, Imre Pavo, Paul W. Franks.

Investigation: Robert W. Koivula, Timothy J. McDonald, Femke Rutters, Henna Cederberg,

Kristine H. Allin, Alison Heggie, Gwen Kennedy, Henrik Vestergaard, Soren Brage, Søren

Brunak, Torben Hansen, Markku Laakso, Oluf Pedersen, Martin Ridderstråle, Hartmut

Ruetten, Andrew T. Hattersley, Mark Walker, Joline W. J. Beulens, Ramneek Gupta, Mark

I. McCarthy, Ewan R. Pearson, Imre Pavo, Paul W. Franks.

PLOS MEDICINE Machine learning-based tools for the diagnosis of fatty liver disease

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1003149 June 19, 2020 23 / 27

http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1003149.s028
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1003149.s029
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1003149.s030
https://doi.org/10.1371/journal.pmed.1003149


Methodology: Naeimeh Atabaki-Pasdar, Mattias Ohlsson, Ana Viñuela, Pascal M. Mutie,

Hugo Fitipaldi, Giuseppe N. Giordano, Elizaveta Chabanova, Cecilia Engel Thomas, Tue H.

Hansen, Petra J. M. Elders, Donna McEvoy, Francois Pattou, Violeta Raverdy, Ragna S.
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