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A B S T R A C T

Rapid detection of microbes is crucial for eliciting an effective immune response. Innate immune receptors
survey the intracellular and extracellular environment for signs of a microbial infection. When they detect a
pathogen-associated molecular pattern (PAMP), such as viral DNA, they alarm the cell about the ongoing in-
fection. The central signaling hub in sensing of viral DNA is the stimulator of interferon genes (STING). Upon
activation, STING induces downstream signaling events that ultimately result in the production of type I in-
terferons (IFN I), important cytokines in antimicrobial defense, in particular towards viruses. In this review, we
describe the molecular features of STING, including its upstream sensors and ligands, its sequence and structural
conservation, common polymorphisms, and its localization. We further highlight how STING activation requires
a careful balance: its activity is essential for antiviral defense, but unwanted activation through mutations or
accidental recognition of self-derived DNA causes autoinflammatory diseases. Several mechanisms, such as post-
translational modifications, ensure this balance by fine-tuning STING activation. Finally, we discuss how viruses
evade detection of their genomes by either exploiting cells that lack a functional DNA sensing pathway as a niche
or by interfering with STING activation through viral evasion molecules. Insight into STING’s exact mechanisms
in health and disease will guide the development of novel clinical interventions for microbial infections, auto-
inflammatory diseases, and beyond.

1. Introduction

The innate immune system provides the first line of host defense
against microbial infection and is essential to initiate adaptive immune
responses. Pattern recognition receptors (PRRs) sense pathogen-asso-
ciated molecular patterns (PAMPs) of invading microbes [1]. Amongst
these PRRs are DNA and RNA sensors, which detect foreign nucleic
acids and activate downstream signaling pathways, leading to the
production and secretion of pro-inflammatory cytokines, chemokines,
and type I interferons (IFN I: 13 IFNα subtypes, IFNβ, -ε, -κ, and -ω) [2].
Secreted IFN I engages the IFN I receptor (in cis or in trans), activating
the JAK/STAT pathway and thereby inducing the transcription of in-
terferon-stimulated genes (ISGs) [3] (Fig. 1). The protein products of
ISGs establish an antiviral state in host cells, stimulate adaptive im-
munity, and aid the elimination of the pathogen. Many components of
the nucleic acid sensing machinery are ISGs themselves, ensuring a
positive feedback loop [4]. Most PAMPs are exclusive to (groups of)
pathogens, yet nucleic acids can originate from host cells as well. For
example, DNA localized outside the nucleus or mitochondria can trigger

strong innate immune responses [5]. This creates a paradox: undesired
recognition of nucleic acids by PRRs can cause autoinflammatory and
autoimmune disorders [6], yet detection of nucleic acids forms an in-
dispensable mechanism of host defense against pathogens. Hence, there
is a need to carefully balance activation and inactivation of innate
immune responses following sensing of PAMPs or their host-derived
equivalents.

Key DNA and RNA sensors survey various cellular compartments
and induce different downstream responses. The recognition of viral or
host RNA by the RNA sensing machinery has been expertly reviewed
elsewhere and will not be discussed here [7,8]. Of the known DNA
sensors, Toll-like receptor (TLR) 9 is localized to endosomal compart-
ments where it detects DNA that contains unmethylated CpG motifs
originating from pathogens and dying cells and triggers IFN I produc-
tion [9]. Absent in melanoma 2 (AIM2) and interferon-γ inducible
protein 16 (IFI16) detect cytosolic and nuclear DNA and activate the
inflammasome, leading to the maturation and secretion of interleukin
(IL)-1β and/or IL-18, and pyroptosis [10]. How cytosolic DNA triggers
IFN I production was unknown until 2008 when the groups of Barber
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and Zhong discovered it to rely primarily on the adaptor stimulator of
interferon genes (STING; also termed MITA, ERIS, MPYS, TMEM173)
[11–13]. The discovery of STING led to the challenging search for up-
stream sensor(s) and numerous candidates have been proposed over the
years (Supplementary Table 1) [14–31]. In 2013, Chen and colleagues
identified cyclic GMP-AMP synthase (cGAS) as the main cytosolic
sensor for double stranded (ds) DNA upstream of STING [14]. IFI16
cooperates with cGAS in this pathway in keratinocytes and macro-
phages [29,30]. How other candidate DNA sensors (Supplementary
Table 1) contribute to STING-dependent IFN I signaling requires further
investigation. Perhaps they function as co-sensors for cGAS that fine-
tune the magnitude and duration of IFN I production following detec-
tion of cytosolic DNA.

Activation of STING (Fig. 1) is induced upon binding of cyclic di-
nucleotides (CDNs), such as the non-canonical second messenger cyclic
[G(2′-5′)pA(3′-5′)p] (2′3′cGAMP, here referred to as cGAMP), produced
by cGAS [14,32]. Subsequent conformational changes in the STING
homodimers permit their relocation from the endoplasmic reticulum
(ER) to perinuclear Golgi compartments. Subsequently, Tank-binding
kinase 1 (TBK1) associates with STING and recruits interferon reg-
ulatory factor 3 (IRF3) [33–35]. Various phosphorylation events cul-
minate in the translocation of IRF3 dimers into the nucleus to stimulate
IFN I transcription. In addition, the transcription factors nuclear factor-
κB (NF-κB) and STAT6 are also activated downstream of STING, indu-
cing pro-inflammatory cytokine and chemokine production [36,37].
Besides innate immune responses, other processes regulated by STING
include autophagy, senescence, and cell death pathways, reviewed
elsewhere [38].

Here, we will zoom in on the characteristics, activation, and reg-
ulation of STING signaling in the IFN I response. Where relevant, we
will discuss aspects of cGAS in relation to STING’s function. We will
consider how STING-deficient cells provide a niche for viruses that
would otherwise activate the cGAS-STING pathway and how viruses
evade activation of STING in STING-expressing cells. In addition, we
review how erroneous STING activation leads to autoinflammatory
disorders and how cells ensure STING activation remains balanced. The
role of STING in tumor biology and anti-tumor immunity will not be
covered here, in light of recent reviews on this topic [39,40].

2. STING, a central hub in cytosolic DNA sensing

2.1. Importance of STING

Evidence from knock-out models has highlighted STING’s im-
portance during microbial infection in vitro and in vivo. Fibroblasts and
myeloid cells from STING knockout mice were greatly affected in their
ability to produce IFN I following infection with the DNA viruses herpes
simplex virus 1 (HSV-1), vaccinia virus (VACV), cytomegalovirus
(HCMV), and baculovirus [12,33]. These cells were also deficient in
their protection against other microbes, including Listeria mono-
cytogenes [33]. In vivo, STING-deficient mice are more susceptible to
lethal infection by HSV-1, but not the RNA virus Encephalomyocarditis
virus (EMCV) [33]. Surprisingly, STING-deficient mice also demon-
strated increased susceptibility to the negative-stranded RNA virus ve-
sicular stomatitis virus (VSV) [33]. Although not formally tested, this
may result from decreased tonic IFN I signaling in the absence of STING
and hence reduced expression of ISGs, including the RNA sensing ma-
chinery. Through IFN I induction, STING also promotes adaptive im-
mune responses, e.g. STING-deficient mice show diminished cytotoxic
T-cell activation upon plasmid DNA vaccination, indicating that STING
facilitates the adjuvant activity of DNA-based vaccines [33]. Besides
targeted STING knockout mice, the mutagen-induced mouse strain
‘Goldenticket’ has a T596A substitution in STING resulting in a loss-of-
function phenotype [41]. These mice also succumb more readily to
lethal infection by HSV-1 and fail to produce IFN I upon infection with
Listeria [41,42]. In vitro studies have also implicated STING in the de-
tection of adenovirus (AdV), human immunodeficiency virus (HIV), the
RNA viruses Dengue virus (DENV) and Zika virus (ZIKV), many bac-
terial species such as Mycobacteria tuberculosis, Legionella pneumophila,
Streptococcus pneumonia, Chlamydia, Neisseria, and Francisella, and the
malaria parasite Plasmodium falciparum [43–53]. With regard to these
examples, it is not clear to what extent STING is essential for host
survival, although STING clearly impacts on IFN I production and pa-
thogen burden. For instance, while Goldenticket mice are more per-
missive to mycobacterial infection, their overall survival upon chronic
mycobacterial infection is unaltered [46].

Loss-of-function mutations in STING have not been reported in
humans. Nonetheless, various human STING variants are associated

Fig. 1. cGAS/STING-dependent innate im-
mune signaling. Microbial infections in-
troduce pathogen-derived DNA in the cytosol.
Self-DNA can also be sensed by cytosolic DNA
sensors following leakage from mitochondria
or the cell nucleus or localization in micro-
nuclei. Upon encountering stimulatory DNA,
cGAS utilizes GTP and ATP to produce the
second messenger cGAMP. This cellular CDN
as well as bacterial CDNs, such as c-di-AMP/
GMP, or synthetic STING ligands bind and ac-
tivate STING, inducing trafficking of STING
from the ER towards the Golgi compartments.
As a next step, TBK1 associates with and
phosphorylates STING, allowing recruitment of
IRF3. The activated transcription factors IRF3
(and NFκB) are translocated into the nucleus as
dimers, where they initiate the production of
IFN I (and pro-inflammatory cytokines). In
turn, secreted IFN I binds to the IFNAR and
activates the JAK/STAT pathway in an auto-
crine or paracrine fashion, inducing the tran-
scription of ISGs.
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with susceptibility to infection or autoinflammatory diseases (discussed
below) [41,54–57]. Also in human cancers, STING signaling is fre-
quently suppressed [58–62] pointing to a prominent role in antitumor
immunity (reviewed elsewhere [39,40]). Finally, the identification of
immune evasion molecules targeting the cGAS-STING pathway encoded
by pathogens, e.g. HSV-1 and DENV, further underscores the im-
portance of this pathway in antimicrobial defense (see below and
[63,64]).

2.2. Activation of STING

Signals that lead to activation of STING can be divided into three

groups: cellular cGAMP, bacterial CDNs, and synthetic STING ligands
(Fig. 1).

The second messenger cGAMP is produced by the upstream sensor
cGAS upon recognition of non-self (microbial) DNA or self DNA [44].
The length of DNA, rather than its sequence, determines its im-
munostimulatory properties: DNA sequences of at least 45bp enable
multiple cGAS dimers to bind alongside each other [65,66]. The re-
sulting phase transition (or liquid condensation) of DNA-cGAS com-
plexes effectuates cGAS’ enzymatic activity [65]. As endogenous DNA
fragments are short in size (< 100 nt) and viral and bacterial DNA
genomes are generally longer (> 100 kb), the length of microbial-de-
rived DNA may thus permit discrimination between self and non-self

Fig. 2. STING structure and sequence information. (A) Structure of a human STING dimer in complex with cGAMP (PDB: 4loh) and schematic representation of
the functional domains in hSTING (TM1-4, DD, CBD, and CTT). Domains not included in the crystal structure are added schematically. The STING monomers are
indicated in red and blue. (B) Alignment of human (NP_938023.1), murine (NP_082537.1), and chicken (XP_001232171.2) STING protein sequences (Clustal Omega,
multiple sequence alignment). Positions of amino acid substitutions arising from common or rare - disease-associated - SNPs are indicated in green or red, re-
spectively. Of the common STING variants, reference STING has an R232H substitution compared to wild-type STING (R231 in murine and R237 in chicken STING),
indicated in blue. (C) Top (left) and side (right) views illustrate overlap of the crystal structures of human (red) and murine (blue) STING molecules, when inactive
(upper panel; apo human (PDB: 4 emu) and murine (PDB: 4kc0) STING) or active (lower panel; cGAMP-bound human (PDB: 4loh) and murine (PDB: 4loj) STING).
(D) Overview of STING residues for which PTMs have been described. The STING domains in which the relevant residues are located are indicated on the left.
Information from mouse studies is indicated in red. PDB: protein data bank.
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DNA by cGAS. Self-derived danger signals that activate cGAS frequently
result from mislocalization of DNA outside the nucleus or mitochondria.
cGAS gains access to self-DNA when localized to micronuclei, which are
small nuclear vesicles containing (damaged) chromosomal DNA that
has not been properly incorporated into daughter nuclei during mitosis
due to errors in chromosome segregation, induction of DNA damage
through radiotherapy, or senescence [67–72]. For example, cGAS as-
sociates with micronuclei in human cancer cells and in irradiated
mouse embryonic fibroblasts, resulting in ISG production [73]. During
senescence, cGAS activation induces a proinflammatory response,
known as the senescence-associated secretory phenotype [72]. More
detailed information on the role of DNA sensing in cancer and senes-
cence can be found elsewhere [74,75]. Besides direct STING activation,
cGAMP can also be transmitted to neighboring cells via gap junctions
[76] and volume regulated anion channels [77] or through incorpora-
tion into viral particles during encapsidation [78,79], to accelerate
STING activation in neighboring cells.

CDNs similar to cGAMP are produced by bacteria such as Listeria
and bypass cGAS to directly bind and activate STING [80]. Bacterial
CDNs include cyclic [G(3′-5′)pA(3′-5′)p] (3′3′cGAMP), cyclic diguany-
late monophosphate (c-di-GMP), and cyclic diadenylate monopho-
sphate (c-di-AMP) [81]. They are synthesized in bacterially infected
cells or, when secreted by extracellular bacteria, enter the host cell
cytoplasm through the reduced folate carrier SLC19A1 in the plasma
membrane [82,83]. Besides canonical activation of STING through
CDNs, Influenza A virus (IAV) infection may activate STING directly by
a non-canonical mechanism involving lipid membrane alterations [84].
It is unclear how widespread such alternative routes of STING activa-
tion are.

Given the importance of STING in innate immunity, efforts to de-
velop synthetic ligands of STING have rapidly increased [85], for in-
stance to be used as (cancer) vaccine adjuvants. Intratumoral injection
of STING agonists induced tumor regression in mice and the nucleotidic
STING agonist MK-1454 (Merck) and ADU-S100 (Aduro Biotech) are
currently under evaluation in phase I clinical trials, administered to
patients with advanced/metastatic solid tumors or lymphomas, either
alone or as a combination therapy with checkpoint inhibitors (Clin-
icalTrials.gov) [85,86]. The first non-nucleotidic compound tested as a
clinical STING agonist was dimethyloxoxanthenyl acetic acid
(DMXAA), but it failed in phase III clinical trials, despite promising
results in mouse models [85,87,88]. Species-dependent differences in
STING responsiveness were also observed for the chemical STING
agonist carboxymethyl-acridanone: it induced murine (m)STING sig-
naling, but did not efficiently activate human (h)STING [89,90]. This
finding was later explained by differences in amino acid sequence and
protein structure between murine and human STING (discussed below)
[57,91,92].

2.3. Molecular characteristics of STING

Human STING is a 379-amino acid (aa) protein (encoded by the 8-
exon TMEM173 gene) and has several functional domains (Fig. 2A). Its
N-terminal region (aa 1–139) contains four transmembrane (TM) do-
mains responsible for membrane anchoring [11–13,93]. The C-terminal
region of STING (aa 139–379) protrudes into the cytosol and harbors
the CDN-binding domain (CBD, aa 155–340). Within this CBD, residues
155–180 form a dimerization domain (DD) involved in the formation of
STING homodimers [94] and aa 163, 167, and 238–267 contribute to
the CDN binding pocket located at the center of the homodimers [93]
(Fig. 2A). Finally, residues 340–379 form STING’s C-terminal tail (CTT),
which functions as a platform for interaction with TBK1 and IRF3 [95].

2.3.1. Isoforms of hSTING
Two alternative transcripts encode shorter isoforms of hSTING that

differ in some of the above-described functional domains [96,97]:
MITA-related protein (MRP; 283 aa) has a unique 30 aa C-terminal tail

due to a frameshift resulting from aberrant splicing of exon 7 [97] and
STING-β (231 aa) lacks STING’s transmembrane domains due to tran-
scription from an alternative start site in intron 5 [96]. MRP and STING-
β transcripts were found in multiple human tissues and MRP protein
expression was detected in the human hepatoma cell line Huh7 [96,97].
Overexpression of MRP or STING-β interfered with IFN I induction by
full-length STING [96,97]. Thus, both variants inhibit STING signaling
in vitro, but further studies need to determine their role in vivo.

2.3.2. Sequence conservation and structural features of STING
Many species encode STING homologs, yet its domain involved in

IFN I induction is more recently acquired in evolution [98]. Sequence
alignments show marked conservation in STING protein sequence
across species (Fig. 2B: human, mouse, and chicken). Chicken STING
has 39 % and 44 % aa sequence identity with murine and human
STING, respectively. Human and murine STING display 69 % sequence
identity (81 % homology). Particularly STING’s CBDs are highly con-
served amongst vertebrates [98]. The aa sequence of functional regions
such as the TBK1 binding site and the STING dimerization domain are
also almost identical (Fig. 2B) [99].

Structural models of the CBD of human, murine, and porcine STING
(crystallography) and full-length human and chicken STING (cryo-
electron microscopy) are currently available (Fig. 2C) [57,93,99–102].
In accordance with sequence homology, full-length structural models
using cryo-EM (apo or in complex with CDNs or TBK1) show highly
similar conformations between species and reveal the conformational
changes in STING involved in ligand binding, multimerization, and
TBK1-induced phosphorylation events [99,101]. Most notably the
structure of cGAMP-bound STING is nearly identical between species,
illustrating the evolutionary conservation of STING activation ([101];
and Fig. 2C, lower panel).

A few structural differences in apo-STING have been observed be-
tween species, causing differential sensitivity towards CDNs and che-
mical ligands. Crystal structures of several human CBDs in the absence
or presence of cGAMP or bacterial c-di-GMP revealed a symmetrical
ligand-binding pocket located deep in a cleft at the dimer interface of
STING homodimers [57,94]. Unlike hSTING, the CBD of porcine STING
has an asymmetrical ligand binding pocket, which – even stronger than
its human and murine homologs – preferably accommodates the
asymmetrical cellular CDN 2′3′ cGAMP over symmetrical 3′3′ CDNs of
bacterial origin [100]. In addition, apo-hSTING has an open and in-
active conformation, whereas mSTING prefers a closed and active
conformation aided by the presence of an isoleucine at position 229
(G230 in hSTING) (Fig. 2C, upper panel) [92,103]. This difference
likely creates a higher conformational energy barrier for CDNs and
small molecules to overcome in hSTING compared to mSTING con-
tributing to their differential response to CDNs and synthetic ligands,
such as DMXAA [92]. Indeed, substitution of hSTING G230 for an iso-
leucine enables DMXAA to activate hSTING [103].

2.3.3. Polymorphisms in human STING
Several non-synonymous single nucleotide polymorphisms (SNPs)

have been identified in the TMEM173 coding sequence that affect
STING’s function (Fig. 2B). Some SNPs yield gain-of-function mutations
rendering STING overactive and causing severe autoinflammatory dis-
eases [54]. These SNPs are rare and usually not inherited due to severe
health problems at young age; they are discussed below. Other - more
common - SNPs lead to reduced STING function and a decreased sen-
sitivity towards CDNs. These STING variants are more widely prevalent
amongst humans, with regional distribution. Five common TMEM173
alleles (each present in> 1 % of the human population) were identified
from the 1000 Genome Project database [81]. These encode the most
common, wild type, STING molecule (WT; R71-G230-R232-R293,
found in 58 % of the allelic products analyzed) and four variants that
harbor one or more substitutions: R71H-G230A-R293Q (abbreviated as
HAQ, occurring in 20 % of humans), R232H (14 %), G230A-R293Q

S.L. Landman, et al. Cytokine and Growth Factor Reviews 55 (2020) 1–14

4



(AQ, 5 %), and R293Q (1.5 %) (Fig. 2B, highlighted in green and blue)
[81]. Please note that the NCBI reference sequence for hSTING re-
presents the R232H variant, encoded by the first TMEM173 gene
cloned, rather than WT hSTING, encoded by the most frequent
TMEM173 allele.

When introduced into (STING-negative) HEK293T cells, WT hSTING
was responsive to all CDNs tested (cGAMP, 3′3′cGAMP, c-di-AMP, and
c-di-GMP) [81]. While STING variant HAQ is responsive to all CDNs
and only slightly reduces IFN I induction compared to WT STING [81],
fibroblasts and macrophages expressing the HAQ variant had strongly
reduced IFNβ production upon Listeria infection [56]. In vivo, it remains
to be resolved how HAQ/HAQ homozygosity affects susceptibility to
(pathogen-induced) diseases. One study shows that individuals carrying
the HAQ variant were more susceptible to infection with Legionella
pneumophila, while others suggest that the HAQ variant may have a
protective effect during HIV infection, as long-term non-progressors
were more often HAQ/HAQ homozygous [104,105]. Such differences
of course also relate to the role of IFN I in pathogen-specific pathology.

The R232H hSTING variant displays reduced responsiveness to c-di-
GMP or cGAMP and fails to respond to c-di-AMP or 3′3′cGAMP [81].
This difference with WT hSTING is important to keep in mind given the
use of the R232H variant in many (overexpression) studies. Like WT
hSTING, murine and chicken STING carry an arginine (R) at the cor-
responding positions 231 and 237, respectively (NCBI reference se-
quences). WT mSTING responds to all CDNs [91], however, substitution
of R231 by an alanine residue (R231A) abolishes responsiveness to
bacterial CDNs, but not to cGAMP [32]. Carrying an arginine at position
232 (hSTING) could thus favor the induction of an innate immune re-
sponse, in particular against bacterial infections when bacterial CDNs
are a major route of STING activation.

3. What if STING fails?

3.1. STING signaling-deficient cells, a niche for viruses

Viral infection triggers a cGAS-STING-dependent antiviral immune
response. During co-evolution, viruses have evolved sophisticated
strategies to manipulate their hosts’ immune responses, for instance by
interfering with signal transduction ([64,106]; and see below). Myeloid
cells express all components of the cGAS-STING pathway and in these
cells many cellular restriction factors and viral immune evasion stra-
tegies have been delineated. Additionally, viruses appear to have
adapted to infect cell types that do not respond to cytosolic DNA, po-
tentially providing an immune-privileged niche for viruses to replicate
and/or persist.

3.1.1. Human B lymphocytes and Epstein-Barr virus (EBV)
Human B cells are the primary site of persistence for Epstein-Barr

virus (EBV). Although infections with this human herpesvirus generally
remain asymptomatic due to effective host immunity, EBV-induced
pathologies comprise infectious mononucleosis and EBV-associated
lymphoid or epithelial malignancies [107]. EBV is an enveloped DNA
virus and its life cycle consists of a lytic phase, supporting viral re-
plication [107], and a latent phase, during which no progeny is pro-
duced and the viral genomes reside in memory B cells [108]. How does
EBV hide in these immune cells without overtly activating (innate)
immunity? We found that human B lymphocytes fail to produce IFN I in
response to cytoplasmic DNA exposure [109]. This is likely explained
by the absence of STING transcripts and proteins in primary human B
cells and in EBV-negative B cell lines. Other DNA sensing and signaling
proteins (cGAS, IFI16, TBK1, IRF3) were detected [109]. In contrast to
human B cells, murine B cells appear to have intact STING signaling and
express IFNα and IFNβ upon cytosolic DNA stimulation [110]. STING
was in fact first identified in murine B cells, as a molecule inducing
apoptosis [111].

Surprisingly, EBV transformation of human B cells is accompanied

by substantial expression of STING protein [109]. Since STING itself is
an ISG, a potential explanation is that STING levels are increased in
these cells as a consequence of activation of the RNA sensing machinery
upon exposure to EBV [112,113]. Despite this, EBV-transformed B cells
do not secrete IFN I upon cytoplasmic DNA exposure [109]. These EBV-
positive lymphoblastoid cells (LCL) are in latency stage III and produce
9 viral proteins, several viral miRNAs, and two viral long non-coding
RNAs [114]. How these EBV gene product(s) contribute(s) to creating a
cellular milieu, where the virus could benefit from STING expression
while preventing the antiviral effects of IFN I induction, is unknown.

Thus, EBV has developed intricate mechanisms to exploit the human
B cell niche. Other viruses that infect human B cells, such as KSHV, may
similarly exploit STING dysfunction within these cells.

3.1.2. Human T lymphocytes and HIV
HIV is a retrovirus that infects human CD4+ helper T cells, mac-

rophages, and dendritic cells. When left untreated, it can cause acquired
immunodeficiency syndrome [114]. Combined antiretroviral therapy is
highly effective in reducing patient viral loads to undetectable levels –
i.e. suppressing HIV replication – but latent virus persists for life in a
reservoir of resting CD4+ T cells [115]. These latently infected T cells
contain HIV as stably integrated proviral DNA, generated upon reverse
transcription of the RNA genome of incoming viruses [114]. Why would
HIV exploit a critical immune cell for its replication and persistence?
Defective cytosolic DNA sensing in human T cells would contribute to
their permissiveness for HIV-1. Introduction of DNA into the cytosol of
activated human T cells prior to or after HIV-1 infection did not reduce
viral replication, in contrast to pretreatment of the cells with IFNβ
[116]. Activated human CD4+ T cells did not upregulate IFN I or ISG
expression upon DNA transfection or HIV-1 infection [116]. The me-
chanistic details underlying this non-responsiveness are not completely
clear. Key components of the DNA sensing machinery were expressed in
activated T cells, including STING itself. Besides, the IFN I/IFNAR sig-
naling pathway downstream of the RNA sensor RIG-I was functional in
activated CD4+ T cells, since infection with the RNA virus Sendai (SeV)
induced an IFN I response [116]. Less is understood about human
resting CD4+ T cells. They do not mount an IFN I response upon DNA
transfection or SeV infection, but mechanistic details were not ex-
plored. When cGAMP was used to complement HDAC inhibitors as a
novel approach for reactivation and clearance of the latent HIV re-
servoir, the synergistic effect of cGAMP addition relied mostly on NF-
κB-signaling [117]. This is consistent with resting CD4+ T cells - of
which part harbor HIV - being defective in STING-dependent IFN I
production [116]. Of note, in vivo, cGAMP may also act on STING-
proficient, neighboring cells and additionally induce an IFN I response
to aid the clearance of virus-infected T cells.

Besides HIV, a defective STING pathway may similarly render
human T cells vulnerable to other pathogens, including DNA viruses
(e.g. varicella-zoster virus and human herpes virus 6) or retroviruses
(e.g. human T-lymphotropic virus type 1), that replicate through a DNA
intermediate. Novel anti-HIV approaches that rely on STING activation
may thus also be applicable for the treatment of infections with other
pathogens.

3.1.3. Hepatocytes and hepatitis B virus (HBV)
The double stranded DNA virus hepatitis B virus (HBV) causes

chronic liver infections, which can lead to liver failure and hepatocel-
lular carcinoma [118]. HBV has a tropism for human hepatocytes,
which have undetectable levels of STING protein [119]. In line with
this, human hepatocytes did not upregulate ISGs in response to DNA
transfection and this coincided with permissiveness to HBV infection
and replication [119]. Likewise, murine hepatocytes are STING defi-
cient and have a dysfunctional DNA sensing pathway. In vivo, selective
mSTING expression in hepatocytes of STING-deficient mice rescued the
IFN I response to a DNA stimulus and enhanced control of HBV in a
mouse-adapted AdV-HBV infection model [119]. Reconstitution of IFN I
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signaling in cGAS-STING-defective cells may thus be of therapeutic
value for viruses that exploit loopholes in DNA sensing to establish
(persistent) infections.

In summary, these findings substantiate that certain cell types fail to
mount a full-blown IFN I response downstream of cGAS-STING
(Supplementary Table 2) and imply that not all (primary) cells possess a
functional DNA sensing pathway. Different mechanisms underlie the
unresponsiveness in hepatocytes, B cells, and T cells, ranging from loss
of STING protein to diminished IFN I induction even when STING is
present. The latter points to the existence of additional, unknown factor
(s) important for regulation of cGAS-STING signaling. Future experi-
ments should investigate the effects of STING deficiency in B and T
lymphocytes upon exposure to DNA- or retroviruses, i.e. when multiple
PRRs are activated and various evasive strategies are operative.
Selective depletion of individual sensing/signaling molecules will allow
dissection of their contributions to the antiviral response in various cell
(sub)types and differentiation stages. EBV, HIV, or HBV persist in cells
with a defective IFN I response to cytosolic DNA exposure suggesting
that it provides a niche for viral replication and/or persistence. Many
(tumor) cell lines also have defects in STING signaling, indicative of a
selective advantage for survival and growth [120]. Why primary he-
patocytes, B and T cells have dysfunctional STING responses is un-
known at present, but may relate to the risks associated with excessive
IFN I production or other functions of STING, such as NF-κB signaling
and apoptotic cell death [121].

3.2. Uncontrolled STING activation in type I interferonopathies

While certain cell types fail to activate STING-dependent IFN I
signaling, there are no patients known with homozygous loss-of-func-
tion hSTING variants (gnomAD:ENSG00000184584), suggesting that
STING signaling is essential for human survival. Yet, STING knockout
mice are viable, further emphasizing the species differences in STING
signaling [12,41]. Human cases have been described with pathological
overproduction of IFN I, termed type I interferonopathies [122], and
these patients suffer from autoinflammatory and autoimmune dis-
orders. Some of these can arise due to defects upstream of STING, for
instance Aicardi-Goutières syndrome (AGS) [123].

In 2014, six patients were reported with symptoms similar to AGS
[54]. They failed to thrive, developed peripheral vascular inflammation
with vascular and tissue damage, and suffered from pulmonary mani-
festations, such as interstitial lung disease, which were fatal for two
patients. As all six patients had nonsynonymous SNPs in TMEM173
leading to gain-of-function mutations in STING (V147L, V155M, and 4x
N154S), the disease was termed STING-associated vasculopathy with
onset in infancy (SAVI) [54]. Since then, additional SAVI-associated
STING variants have been described (V147M, C206Y, G207E, R281Q,
R284G/S, and S102P+279L) [54,55,124–139]. Another STING variant
(G166E) was found in patients with a related interferonopathy, familial
chilblain lupus (FCL) [140]. These gain-of-function STING variants are
encoded by rare SNPs, which have mostly arisen de novo. Exceptions
include the inherited FCL mutation and SNPs in three families with
multiple SAVI patients (2x V155M, G207E) [55,127,136,140]. Inter-
estingly, between these family members the disease severity frequently
differs, which implies that there are other genetic or environmental
factors involved in disease progression. Indeed, within one family some
members have a risk allele of the RNA sensor IFIH1 (MDA5) [127].
Disease severity differs between SNPs, both in humans and in mouse
models [127,129,138]. For example, patients with the C206Y or G207E
SNPs develop less pulmonary complications than patients with other
SNPs and FCL disease progression is in general less severe than SAVI
[54,127,138,140]. Of note: mouse models show that some but not all
immunopathology can be attributed to constitutive IFN I production,
pointing to roles for STING beyond IFN I signaling [141–143].

How these SNPs cause hyperactivation of STING is not clear, but can
be speculated about based on the structural models described above

(Fig. 2). In WT STING, C148 is important for polymerization through
the formation of disulfide bonds [144]. In view of its proximity to C148,
SAVI mutations at position 147 could enhance or stabilize STING
polymerization. Two STING residues that are substituted in SAVI, N154
and V155, are located next to the dimerization domain of STING
(Fig. 2B). The V155M alteration stabilizes the binding of one monomer
(involving aa M155, L268, M271, and F279) to another STING
monomer (involving W161), thereby mimicking ligand binding [55].
The V147L, N154S, and V155M mutations in SAVI-associated STING
variants result in reduced interaction with the Ca2+ sensor stromal
interaction molecule 1 (STIM1), which ensures correct localization of
STING at the ER [145]. As overexpression of STIM1 still suppressed the
IFN I production downstream of these STING variants, their interaction
with STIM1 is probably partially but not fully disturbed [145]. Located
within the CBD (Fig. 2B), residue R284 plays a role in the binding of the
CTT to the polymerization interface, which prevents untimely STING
polymerization and activation [144]. This autoinhibition is lost in SAVI
STING variants with SNPs at position 284 (and possibly 281), leading to
unbalanced IFN I production and autoinflammation.

4. Regulation of STING

To prevent the damaging effects of constitutive STING activation,
tight regulatory mechanisms are in place. For example, STING expres-
sion levels are regulated by microRNAs (miRNAs) like miR-576−3p,
which suppresses STING translation [146]. When STING is activated by
CDNs, miR-576−3p is upregulated to prevent overproduction of cyto-
kines [146]. STING expression and/or activity is also carefully balanced
post-translationally to maintain homeostasis. Here, we will discuss
mechanisms that ensure balanced STING signaling and how viruses tip
this balance in their favor.

4.1. Intracellular localization of cGAS and STING

To initiate IFN I induction, each component of the DNA sensing
pathway must be localized properly. The localization of cGAS is much
debated. While originally thought to be exclusively cytosolic, cGAS may
also reside in the nucleus, where it is likely retained following mitosis
and nuclear membrane remodeling, or at the plasma membrane
[72,147–150]. The N-terminal region of cGAS retains cGAS in the cy-
tosol, possibly through interaction with undefined proteins [148].
Conversely, interactions with nuclear proteins, e.g. NONO, may favor a
nuclear localization of cGAS [151]. Whether the localization of cGAS
has an effect on STING activation remains to be elucidated.

Inactive STING localizes exclusively to the ER membrane, where it
is retained by the Ca2+ sensor STIM1 [145]. Of note, whether STING
reciprocally impacts on calcium flux through its interaction with STIM1
has not been investigated [152]. Once activated, inactive rhomboid
protein 2 (iRhom2) facilitates STING’s translocation from the ER to the
ER-Golgi intermediate compartment (ERGIC) and Golgi compartments
[153]. Additional factors that are required for translocation of STING
are the cytoplasmic coat protein complex II (COPII) and ADP-ribosy-
lation factor (ARF) GTPases [154,155]. Together, these molecules
regulate the signaling output of STING. At the Golgi complex, STING
interacts with TBK1, which in turn recruits and phosphorylates IRF3.
When STING is retained in the ER, it can no longer activate IRF3 sig-
naling [156].

4.2. STING degradation

STING signaling can be terminated by protein degradation. At
steady state, Toll-Interacting Protein (TOLLIP) (partially) prevents de-
gradation of STING in mouse embryonic fibroblasts (MEFs) [157]. To
ensure proper STING expression levels before, during, and after acti-
vation, the protein is degraded in different organelles (proteasomes,
autophagosomes, lysosomes). Proteasomal degradation of STING occurs
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either in a ubiquitin-dependent (see below under ubiquitination) or
-independent manner [158]. Data are conflicting regarding the role of
autophagy in STING regulation. MEFs lacking one of the proteins of the
autophagy machinery (Atg3, Atg5, Atg7 Atg9, or p62/SQSTM1) show
reduced STING degradation and enhanced phosphorylation of TBK1
when stimulated with DNA or cGAMP [34,159,160]. However, others
have found that loss of Atg7 in MEFs has no effect or even a negative
effect on STING expression and signaling [159,161]. A QEVLR motif is
present in mSTING (aa 326–330) and hSTING (aa 327–331) that - when
recognized by the heat shock cognate 71 kDa protein (Hsc70) - targets
proteins for chaperone-mediated autophagy (CMA) [161]. Finally, the
lysosomal inhibitors bafilomycin A1 and chloroquine were most effec-
tive at preventing STING proteolysis, when compared to 3-MA and
MG132, which block autophagosomal and proteasomal degradation,
respectively [157,159,162,163], suggesting that lysosomal degradation
is the main route of STING degradation.

4.3. Post-translational modifications

Post-translational modifications (PTMs) on STING provide a pow-
erful means for cells to quickly adapt cytosolic DNA responsiveness to
altered needs. Multiple types of PTMs have been found for STING, as
listed below and summarized in Fig. 2D.

4.3.1. Phosphorylation of serines and tyrosines
Two serines of STING, S358 and S366, are phosphorylated by TBK1,

which is essential for the activation of both STING and IRF3 [11,164].
Phosphorylation of S358 enables TBK1 to bind STING. TBK1 then trans-
phosphorylates S366 of neighboring STING complexes, allowing the
recruitment, phosphorylation, and dimerization of IRF3 [99]. Alanine
substitutions of STING S358 or S366 abolish IRF3 activation [11,164],
even in the constitutively active SAVI-associated STING variants [138].
Paradoxically, introduction of the phospho-mimic S366D also strongly
reduces IRF3 dimerization and IFN I production [163,164]. This may be
due to clearance of phosphorylated STING through autophagy, re-
sulting in low levels of remaining STING that can signal to IFN I [163].
Similarly, phosphorylation at S366 by the serine/threonine kinases
ULK1 and ULK2 increases STING degradation, without IRF3 activation
[163]. The phosphatase PPM1A dephosphorylates STING at S358, to
reverse STING activation by TBK1 [165].

Phosphorylation at tyrosine residues also contributes to the reg-
ulation of STING. SRC kinase-mediated phosphorylation at Y245 is
upregulated during viral infection in vitro and prevents ubiquitin-in-
dependent 20S proteasomal degradation of STING [158,166]. This is
balanced by the tyrosine-protein phosphatase nonreceptors (PTPN)
types 1 and 2 [158].

4.3.2. Palmitoylation and oxidative modification of cysteines
Several cysteines in the transmembrane domain of STING (C64,

C88, C91, C148, C292, and C309) are indispensable for IFN I induction
[167]. STING is palmitoylated at C88 and C91 and mutating both re-
sidues or treating cells with the palmitoylation inhibitor 2-BP renders
cells unable to induce an IFN I response upon stimulation with exo-
genous DNA [168]. In COS-1 cells stably expressing mSTING, palmi-
toylation of STING occurs after STING has been translocated from the
ER to the Golgi [168]. Mechanistically, palmitoylation of STING at
C88/91 may favor clustering of STING into lipid rafts through inter-
molecular disulfide bonds, which improves interactions with TBK1 and
IRF3 [168]. Targeting of C91 with nitro-fatty acids or covalent small-
molecule inhibitors might be a promising strategy to treat autoin-
flammatory diseases caused by excessive activation of IFN I through
STING [90,169]. Cysteine residues C64 and C148 in STING are oxidized
by reactive oxygen species upon chemically induced ER and mi-
tochondrial stress and this causes STING to form intermolecular dis-
ulfide bonds, blocking IFN I induction [167]. C148 of STING may also
form intermolecular disulfide bonds upon ligand binding [144]. It is

unclear whether these amino acids reside in the cytosol or the ER/Golgi
lumen [101,167].

4.3.3. Ubiquitination
Ubiquitin adduction by E3 ligases and removal by deubiquitinases

(DUBs) provide powerful tools to regulate protein degradation, traf-
ficking, and signaling. Ring Finger Protein (RNF) 5 and RNF90 target
K150 in STING for K48-linked ubiquitination and proteasomal de-
gradation, while RNF26 adds a K11-linked ubiquitin chain at the same
lysine, presumably protecting STING from K48-dependent degradation
[170–172]. Both RNF5 and RNF26 ubiquitinate K150 of STING early (6
h) after infection with HSV-1 or SeV. TRIM29 is upregulated upon cy-
toplasmic dsDNA accumulation and targets K288 and K337 of mSTING
(equivalents of K289 and K338 in hSTING, respectively) for K48-de-
pendent proteasomal degradation [173]. K275 in mSTING is ubiquiti-
nated by TRIM30α leading to K48-dependent proteasomal degradation
of the protein [174]; hSTING lacks a lysine at the corresponding posi-
tion. The DUBs CYLD, USP20, and USP44 block proteasomal degrada-
tion of STING by removing K48-linked ubiquitin chains and mice
lacking either of these genes display increased lethality upon challenge
with HSV-1 [175–178]. USP18 acts as a platform for the interaction
between STING and USP20, without the need of the catalytic domain of
USP18 [176].

Ubiquitination of STING contributes to other regulatory processes,
besides K48-dependent protein degradation. When overexpressed,
TRIM56, Ubxn3b, MUL1, and TRIM32 each add K63-linked ubiquitin to
STING at various sites (K20, K150, K224, and K236), thereby promoting
TBK1 binding to STING and subsequent IRF3 phosphorylation and IFNβ
gene activation [69,179–181]. USP49 removes K63-linked ubiquitin
from STING, which halts the recruitment of TBK1 without affecting
STING protein levels [182]. AMFR, an ER-associated E3 ubiquitin li-
gase, also binds STING and catalyzes K27-linked ubiquitination at
multiple sites (K137, K150, K224, and K236), which facilitates the re-
cruitment of TBK1 [183]. Binding of AMFR to STING is mediated by the
insulin-induced gene 1 (INSIG1) product [183]. K27-linked ubiquiti-
nation of STING is reversed by the DUB USP13, which, like AMFR,
interacts with STING at the ER membrane [184]. How these K27 ubi-
quitin modifications that facilitate recruitment of TBK1 are intertwined
with localization of STING needs further study.

4.3.4. SUMOylation
Post-translational modification with the ubiquitin-like molecule

SUMO stabilizes STING. Sumoylation of mSTING at K337 (K338 in
hSTING) precludes recognition of the nearby QEVLR motif by Hsc70
and consequently blocks CMA-dependent degradation [161]. In line
with this, during the early phase of HSV-1 infection, sumoylation of
K337 by the E3 ligase TRIM38 prevents degradation of STING, resulting
in enhanced STING activation and decreased viral titers [161]. During
the late phase of HSV-1 infection (∼12 h post-infection), however,
STING is de-SUMOylated by Senp2, which binds to mSTING that is
phosphorylated at S365 (equivalent to S366 in hSTING) [161].

In summary, STING is extensively regulated in a post-translational
manner and likely even more PTMs of STING await identification.
Analogous to cell-based regulation, viruses have evolved their own
strategies to modulate STING signaling to promote their own survival
and replication.

4.4. Viral regulation and evasion of STING by DNA viruses

Viruses acquired immune evasive gene products to counteract the
cytosolic DNA sensing machinery and the antiviral effects of IFN I
[64,106]. Here, we highlight how viral evasion molecules (de)regulate
STING-dependent signaling (Fig. 3); viral evasion upstream or down-
stream of STING is reviewed elsewhere [63,185–188]. E1A from human
AdV 5 and E7 from human papilloma virus 18 (HPV18) bind STING via
their LXCXE motif and block downstream signaling [189]. Additionally,
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E7 from the more prevalent HPV16 strain increases autophagy-medi-
ated turnover of STING [190]. ICP27 from HSV-1 binds to TBK1 and
STING in human macrophages and prevents activation of IRF3 [191].
Other HSV-1 gene products also associate with STING and block
downstream responses (UL46) or interfere with STING trafficking
(γ134.5) [192]. Similarly, M152 from murine cytomegalovirus (MCMV)
delays the trafficking of STING from the ER to the Golgi, thereby in-
terfering with IRF signaling and antiviral IFN I responses, but, inter-
estingly, not with NF-κB responses [156]. Conversely, Vpx and the re-
lated Vpr gene products from HIV-2/SIV bind to a domain of STING that
is important for the activation of NF-κB, but not IRF3, and thereby
selectively suppress NF-κB signaling [193]. An alternative viral evasion
strategy is employed by VACV strains, which encode nucleases (poxins)
that cleave cGAMP and consequently prevent STING activation. Dele-
tion of the poxin gene or expression of a catalytically inactive variant
enhances the IFN I response and limits VACV replication [194]. Ad-
ditionally, virulent, but not attenuated VACV strains block dimerization
and phosphorylation of STING [195]. Several viral evasion strategies
interfere with STING’s function by preventing its proper post-transla-
tional modification. For example, vIRF1 of KSHV prevents binding of
STING to TBK1 and thereby interferes with phosphorylation and acti-
vation of STING [196]. The viral polymerase of HBV prevents K63-
linked polyubiquitination of STING, which blocks IFN-β induction and
antiviral immunity in hepatocytes [197]. Finally, K63-linked ubiquiti-
nation of STING and consequently its interaction with TBK1 was de-
creased by the human T lymphotropic virus type 1 (HTLV-1) transac-
tivator Tax [198,199]. As STING’s stability and activity is heavily
regulated by many PTMs, more viral proteins targeting these mod-
ifications to evade STING signaling are likely to be discovered.

4.5. Viral regulation and evasion of STING by RNA viruses

The increased susceptibility of STING-deficient mice to some RNA
viruses (e.g. VSV) hints at an additional role for cGAS-STING signaling
in combatting RNA virus infections [33]. This may be due to co-reg-
ulation of the expression of components of DNA and RNA sensing ma-
chinery, most of which are IFN-inducible themselves, by baseline IFN I
levels. Hence, loss of one or the other pathway will indirectly reduce
the expression and functionality of the other pathway [112]. However,
the observation that multiple RNA viruses encode proteins that sup-
press the cGAS-STING pathway strongly suggests a direct contribution
of this pathway in defense against RNA virus infection. Multiple Fla-
viviridae, including ZIKV, DENV, West Nile virus (WNV), Japanese
encephalitis virus (JEV), and Hepatitis C virus (HCV) encode proteins

that cleave STING (DENV, ZIKV, WNV, JEV) or cGAS (DENV), or in-
terfere with the STING-TBK1 interaction (HCV) to inhibit IFN I induc-
tion [200–203]. For example, NS2B3 from DENV cleaves human (but
not mouse) STING and mutation of the cleavage site yields higher IFN I
levels upon DENV infection [200]. How cGAS-STING contributes to
defense against RNA virus infection is unclear, but may involve the
detection of host mitochondrial DNA that is released in the cytosol upon
mitochondrial damage, as demonstrated in DENV-infected cells [203].
Finally, the hemagglutinin fusion peptide (FP) of IAV also directly binds
STING and limits STING-dependent IFN I production upon membrane
fusion [84].

5. Conclusions and outstanding questions

As a central signaling hub in innate immunity, STING is essential for
mounting protective antimicrobial responses, with IFN I as a particu-
larly powerful antiviral effector. However, its activity needs to be
tightly controlled to prevent autoinflammatory diseases including type I
interferonopathies. Much insight has been obtained into the structure
and activation of STING, including the order of events and conforma-
tional changes that occur. This helps us understand how STING is
regulated in space and time and how SNPs affect its function.

Regulation of STING activity takes place at many levels, such as
trafficking, degradation, miRNA-mediated repression, and post-trans-
lational modifications. An outstanding question remains where and
when DNA is sensed that, via cGAS or other DNA sensors, leads to
STING activation and IFN I production. For instance, how is viral DNA
exposed to cGAS when capsids protect the viral genome during its
trafficking from the cytosol to the nucleus? Or does sensing occur inside
the nucleus, as suggested by recent studies that find significant cGAS
expression in the nucleus [148,151]? And what - apart from subcellular
localization - determines whether cGAS-STING activation by host-de-
rived DNA is desired or should be avoided (for example during cell
division when compartmentalization within the cell is temporarily
lost)?

Certain primary cells, such as human B and T lymphocytes and
hepatocytes, display defects in DNA sensing. These loopholes in innate
immunity can be exploited by persistent viruses, such as EBV, HIV-1,
and HBV. It is not clear why these cell types lack an IFN I response
downstream of STING. A parallel can be drawn with cancer cells, which
frequently have lost STING expression and/or functionality to gain
immune escape, proliferation, and survival [58–62]. Perhaps a fully
functional DNA sensing pathway would lead to continuous IFN I pro-
duction in such highly proliferative cells, due to accumulation of

Fig. 3. Overview of viral evasion strategies
that affect STING. Proteins encoded by viruses
with DNA (black) or RNA (blue) genomes
prevent antiviral IFN I responses at the level of
STING activation, regulation, signaling, or de-
gradation. Names of the viruses from which the
evasion molecules arise are indicated in
brackets.
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replication-associated DNA by-products. Loss of STING signaling could
thus represent a trade-off between attenuating the detrimental effects of
IFN I and reduced antimicrobial potential. Alternatively, cells may
avoid other STING-mediated processes. While beyond the scope of this
review, it is clear that STING is involved in a plethora of processes
within and beyond innate immunity, including NF-κB-mediated re-
sponses, autophagy, cell death, and senescence [204]. Additional
functions of STING may be discovered soon. For example, its interaction
with STIM1 may implicate STING in calcium homeostasis [152]. These
processes jointly determine the overall outcome of STING signaling and
the quality of the (antimicrobial) response. Future studies will reveal if
the reported defects in DNA sensing in certain cell types are evolu-
tionary conserved and extend to other cell types as well.

Aside from dysfunctional STING signaling, there is increasing evi-
dence for cell type-specific regulation of STING-mediated responses. For
optimal IFN I production, IFI16 cooperates with cGAS in human kera-
tinocytes, fibroblasts, and macrophages [29,30,149], but not in human
lung epithelial cells, which lack IFI16 expression [205]. The expression
of co-sensors or regulators may also differ between differentiation
states, in particular during embryonic development. For example, the
regulatory protein NLRP14 is expressed by mammalian oocytes to
suppress STING activation during fertilization, when sperm cell DNA
reaches the oocyte cytosol [206]. The continuous identification of new
factors that impact on STING function illustrates that not all elements in
DNA sensing have been discovered yet.

In cells with a fully operative DNA sensing pathway, viruses may es-
cape DNA sensing through immunomodulatory strategies to facilitate in-
fection, persistence, and/or replication. A better understanding of the
strategies used by microbes to manipulate, evade, and exploit the cell’s
innate immune defense will teach us how to (re-)activate STING signaling
in infected cells and protect the host. All-in-all, these are intere
STING times!
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