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Rheumatoid arthritis (RA) is a chronic, systemic, autoimmune disease characterized by pain, 

multiple joint swelling, and stiffness.1,2 Untreated RA results in severe joint destruction, 

dysfunctionality, and eventually bone erosion.3,4 Furthermore, RA leads to an increased 

prevalence of comorbidities such as cardiovascular diseases, depression, and pulmonary 

diseases and a threefold elevated risk of cardiovascular and respiratory mortality.5–8 RA 

is an incurable disease, whereby the goals of drug treatment are to relieve pain, reduce 

inflammation and to reach a low-disease activity (“remission”), and prevent joint damage. 

Therefore, it is crucial for delaying the development of the disease by prompt diagnosis 

with early (aggressive) treatment.

The classification criteria of RA were first developed in 1987 (ACR 1987 criteria)9 and 

updated in 2010 (ACR/EULAR 2010 criteria),10 see Figure 1-1. Particularly, the 2010 

criteria identified RA patients that present the first signs and symptoms of the disease. 

Consequently, RA patients with recent-onset inflammatory arthritis will be identified earlier 

and receive treatment at an earlier stage. The ACR/EULAR 2010 classification criteria consist 

of joint involvement, serology testing, acute-phase reactants, and symptom duration. The 

classification criteria of RA are well accepted by rheumatologists and are used as inclusion 

criteria in clinical trials.

MEASUREMENTS OF THE DISEASE ACTIVITY 

Several standardized measurements for the assessment of the disease activity are available. 

The variety of disease subsets results in the use of multiple measurements to evaluate the 

status and activity of RA. A commonly used index that measures RA activity is the Disease 

Activity Score (DAS) or the DAS in 28 joints (DAS28). This measurement assesses the number of 

tender and swollen joints, general health status, and the erythrocyte sedimentation rate (ESR). 

The DAS indicates the activity of RA by providing a score, in which a higher score indicates 

higher disease activity.11,12 The DAS measures 44 joints, while the DAS28 measures 28 joints. 

The DAS28 is a validated simplified measurement tool, which makes it in practice more 

feasible (Formula 1-1). However, a combination of both measurements is used to support 

clinical decision-making. 

DAS28 = 0.56 x √(TJC28) + 0.28 x √(SJC28) + 0.70 x ln (ESR) + 0.014 x VASGH

Formula 1-1. DAS28 formula. 
Abbreviations: tender joint count (TJC28), swollen joint count (SJC28), erythrocyte sedimentation rate 
(ESR) and the patient’s assessment of global general health (VASGH).
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ACR 1987 criteria ACR/EULAR 2010 criteria

1. Morning stiffness
Morning stiffness in and around the joints, 
lasting at least 1 hour before maximal 
improvement

A. Join involvement (tender/swollen)
1 large joint
2–10 large joints
1–3 small joints (with or without large joints)
4–10 small joints (with or without large joints)
>10 joints (at least one small joint)

0
1
2
3
5

2. Arthritis of ≥3 joint areas
At least 3 joint areas simultaneously have 
had soft tissue swelling or fl uid (not bony 
overgrowth alone) observed by a physician. 
The 14 possible areas are right or left PIP, 
MCP, wrist, elbow, knee, ankle, and MTP joints

B. Serology
Negative RF and ACPA
Low-positive RF or low-positive ACPA
High-positive RF or high-positive ACPA

0
2
3

3. Arthritis of hand joints
At least 1 area swollen (as defi ned above) in a 
wrist, MCP, or PIP joint

C. Acute phase reactants
Normal CRP and ESR
Abnormal CRP or abnormal ESR

0
1

4. Symmetric arthritis
Simultaneous involvement of the same joint 
areas (as defi ned in 2) on both sides of the 
body (bilateral involvement of PIPs, MCPs, 
or MTPs is acceptable without absolute 
symmetry)

D. Duration of symptoms
<6 weeks
≥6 weeks

0
1

5. Rheumatoid nodules
Subcutaneous nodules, over bony 
prominences, or extensor surfaces, or in 
juxtaarticular regions, observed by a physician

6. Serum RF 
Demonstration of abnormal amounts of 
serum RF by any method for which the result 
has been positive in <5% of normal control 
subjects

7. Radiographic changes
Radiographic changes typical of rheumatoid 
arthritis on posteroanterior hand and wrist 
radiographs, which must include erosions or 
unequivocal bony decalcifi cation localized in 
or most marked adjacent to the involved joints 
(osteoarthritis changes alone do not qualify)

For classifi cation purposes, a patient shall be 
said to have rheumatoid arthritis if he/she has 
satisfi ed at least 4 or these 7 criteria. Criteria 1 
through 4 must have been present for at least 
6 weeks. Patients with 2 clinical diagnoses are 
not excluded. Designation as classic, defi nite, 
or probable rheumatoid arthritis is not to be 
made.

The criteria are meant to be applied in patients 
with at least one swollen joint, after the exclusion 
of the other causes of synovitis. Patients with a 
score ≥6 are classifi ed as having RA. Also subjects 
with typical bone erosions can be classifi ed as RA 
regardless of the score. 

Figure 1-1. Classifi cation criteria for RA.
Abbreviations: ACPA: anti-cyclic citrullinated peptide antibodies, ACR: American College of Rheumatology, 
CRP: C-reactive protein, ESR: erythrocyte sedimentation rate, EULAR: European League against Rheumatism, 
MCP: metacarpophalangeal, MTP: metatarsophalangeal, PIP: proximal interphalangeal, RF: rheumatoid factor.
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Disease activity is interpreted as low (DAS≤2.4), moderate (DAS2.4 to ≤3.7), or high 

(DAS>3.7).12 Based on the DAS, the EULAR response criteria have been developed. The 

EULAR response criteria combined the change and the level of the DAS. Responders are 

classified when they have a significant change in the DAS (of at least 1.2 DAS points) and 

have a low disease activity (DAS≤2.4). Remission, with the absence of disease activity and with 

the possibility of the recurrence of the disease activity predicts the best clinical, functional, 

and structural outcomes and is therefore frequently used in both clinical trials and clinical 

practice. The American Rheumatism Association (ACR) has a strict definition of remission: 

patients must have at least five or more fulfilled criteria for at least two consecutive months 

of either; morning stiffness not exceeding 15 minutes; no fatigue; no joint pain (by history); 

no joint tenderness or pain on motion; no soft tissue swelling in joints or tendon sheaths; 

erythrocyte sedimentation rate <30 mm/h (female) or <20 mm/h (male).13 Due to the strict 

definition, attainment is very rare in RA trials, and therefore, the DAS or DAS28 are used, 

whereas the DAS28<2.6 or DAS<1.6 represents remission.12

Improvement in RA can also be determined by the ACR response criteria. Here, improvement 

is 20, 50 or 70% or more, referred as ACR20, ACR 50, or ACR70 respectively. The ACR20 

improvement criteria are standard for DMARD trials, that consisted of ≥20% of improvement 

in the tender joint count and swollen joint count plus ≥20% improvement in three of the 

following: patient pain, patient global disease activity, physician global disease activity, 

physical function, e.g., HAQ-DI and acute-phase reactants, ESR, or C-reactive protein 

(CRP).14 Different endpoints can be used, but using the ACR or EULAR response criteria 

are almost equal with a discrepancy of less than 5%.

PREDICTIVE BIOMARKERS IN RA  

Biomarkers in RA are molecules of the immune system that can be used to measure the 

level of inflammation, the presence or progress of the disease, or the responsiveness of a 

patient to drug treatment. The first biomarker found in RA was rheumatoid factor (RF). RF 

is detectable in the blood of circa 80% of adults with RA and is mainly an IgM antibody 

directed against the FC portion of IgG. Higher RF titers suggest more severe disease 

manifested as radiographic joint damage, poorer functional status (DAS), and developing 

extra-articular manifestations, such as rheumatoid nodules or rheumatoid lung disease. 

There are, however, exceptions, particularly among patients with chronic inflammatory 

disorders, such as systemic lupus erythematosus, Sjögren syndrome, and bacterial diseases 

like bacterial endocarditis, leprosy, tuberculosis, syphilis, and malaria.15
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Another predictive biomarker for RA is the immune regulator C-reactive protein (CRP). CRP 

is an acute-phase protein, that will rise in the circulation in the presence of an infection, an 

injury, or a chronic disease. CRP measurements are used in the management and prognosis of 

RA because patients with persistently high levels of CRP are at high risk of joint degradation 

and require more intensive drug treatment. Acceptable levels of CRP offer rheumatologists 

an indication of the therapeutic efficacy of the medication. Although CRP is commonly used 

as a diagnostic and predictive biomarker, it has the limitation that circa 40% of RA patients 

have normal levels of CRP, and elevated levels have been found in other conditions than 

RA such as infections and inflammatory bowel disease.16–18

The most commonly available biomarker in RA is the anti-cyclic citrullinated peptide 

(anti-CCP). Anti-CCPs, also known as anti-citrullinated protein antibodies (ACPA), are 

autoantibodies that are directed against peptides and proteins that are citrullinated (e.g. 

proteins with a conversion of the amino acid arginine into the amino acid citrulline). The 

advantage of anti-CCP over RF is that the specificity of anti-CCP is higher than RF (95% vs. 

70%) because other inflammation or infections can raise the RF titers, while both have the 

same sensitivity (~50%). Also, both biomarkers may be present before symptoms of RA, 

but anti-CCP can be measured at an earlier stage of RA. Notable, 35% of patients with a 

negative RF may test positive for the anti-CCP antibody. Additionally, elevated ESR or CRP 

in early RA can be used as a predictor of greater radiographic joint damage and poorer 

functional status.19

TREATMENT OF RA

The disease-modifying anti-rheumatic drugs (DMARDs) suppress the inflammation and 

reduce joint swelling and erosion. DMARDs are divided into conventional (cDMARDs), 

targeted synthetic (tsDMARDs) and biological (bDMARDs), whereas the latter can be 

separated into original and biosimilar (boDMARDs and bsDMARDs, respectively).20 In 

general, the precise mechanisms of action of the cDMARDs are only partially understood. 

Unlike bDMARDs and tsDMARD that selectively inhibit a pro-inflammatory cytokine or 

block its receptor, cDMARDs interfere with combinations of pathways in the inflammatory 

cascade. Among the cDMARDs, several are cytotoxic causing either cell death or impaired 

proliferation, such as azathioprine, cyclophosphamide, and methotrexate (MTX). 

Treatment guidelines are based on the therapeutic benefits, the drug costs, and experience 

with the drug. The choice of drug treatment depends on the severity of the disease, the 

response to prior treatment, and contraindications. Because of the cost issues involved in 

the use of biological therapies and JAK inhibitors, rheumatologists initiate the treatment with 
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a csDMARD, mostly MTX. MTX is the most prescribed drug to treat RA, due to the efficacy, 

low costs, and multiple decades of experience. However, MTX and other csDMARDs are 

slow acting and take several weeks to exert their full effect. Therefore, anti-inflammatory 

agents, such as non-steroidal anti-inflammatory drugs and glucocorticosteroids, are added as 

concomitant therapy to rapidly suppress inflammation. When RA patients have an insufficient 

response to MTX, another DMARD will be used or will be combined with MTX.21,22

In recent years, tsDMARDS (JAK inhibitors) are introduced and applied in clinical trials and 

clinical practice. Compared to bDMARDs, tsDMARDs have the advantage that they are small 

molecules and thereby can be orally administered, while bDMARDs are large molecules and 

can only be given by injection (subcutaneously or intravenously). Moreover, not only the 

availability of a wide range of new drugs, such as TNF or JAK inhibitors leads to a better 

prognosis, but also the treat-to-target principle with the assessment of the disease activity. 

The disadvantage of the tsDMARDs and bDMARDs are the high cost and the increased 

susceptibility of infections or reactivation of tuberculosis or hepatitis B, and therefore, it is a 

necessity to screen for tuberculosis, hepatitis B and C, and HIV before starting drug therapy.23

PHARMACOGENETICS

Over the last decades, considerable progress has been made in addressing the role of genes 

in drug response or drug-related toxicity in RA. The results of pharmacogenetic testing 

may be used to predict therapeutic failure or (severe) adverse drug reactions, and therefore 

could be used to optimize the drug dose or choice, avoid adverse effects and decrease 

medical costs. MTX for instance is a good candidate for pre-treatment pharmacogenetic 

testing, because it is a highly toxic drug and the treatment effect can only be assessed 

after a substantial treatment time. Unfortunately, so far, pharmacogenetic tests in RA led to 

limited success with still unpredictable effectiveness or drug-related side effects.

The candidate gene approach has been widely applied to identify risk alleles and their 

association with the clinical response of drugs. This approach focuses on associations 

between pre-specified genes of interest, e.g. based upon the mechanism of action of the 

drug, and the disease state or a typical phenotype. In contrast to the hypothesis-free driven 

methods of the genome-wide association study (GWAS) and whole genome sequencing, 

that investigate the genome for common variants (Minor Allele Frequency [MAF] >5%) or 

the entire genome respectively. Still, there is a considerable amount of pharmacogenetic 

results that were not validated, due to lack of replication, or were not associated with a 

functional phenotype.
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SCOPE OF THIS THESIS

This thesis aims at identifying and validating genetic variants related to the efficacy or 

toxicity of MTX or biological DMARDs in the treatment of RA. Ultimately, those findings 

benefit the patient, whereas adequate drug treatment without unnecessary toxicity could 

be achieved faster. 

Chapter 2 gives an overview of known genetic variants associated with MTX efficacy and 

results are divided into eight different pathways related to the mechanism of action of MTX. 

All previously associated significance results (p-values) are adjusted for multiple testing by 

Bonferroni correction. The goal of this systematic review is to explore which SNPs related 

to MTX pharmacology are associated with efficacy in RA by selecting only studies with the 

validated endpoints DAS(28), EULAR, or ACR response criteria. 

The transporter solute carrier (SLC) is responsible for transporting MTX from the blood 

into the cell, where MTX exerts its function after polyglutamation. The focus in Chapter 3 

is on four genetic variants in the SLC gene, that might be associated with the efficacy or 

toxicity of MTX. 

In Chapter 4 an earlier developed pharmacogenetic model, including four genes in the folate 

pathway in combination with the variables gender, baseline DAS, smoking status, and RF 

positivity is validated in patients treated with combination therapies. While the initial model 

is applied in an MTX monotherapy cohort, nowadays, patients are increasingly treated with 

combination therapies. Therefore, this study aimed to test the performance of the model 

in patients treated according to daily clinical practice (MTX combination therapies). 

In Chapter 5 a genome-wide association study (GWAS) with over 600,000 common genetic 

variants is performed to identify genetic loci associated with MTX-induced hepatotoxicity 

injury (ALT level of ≥3X upper level of normal). For this study, cases and controls were 

collected from seven international research groups. 

In Chapter 6, 223 genetic variants are tested with the efficacy (EULAR good response and 

EULAR remission) of adalimumab. This pathway selection method contained 223 genetic 

variants in 124 genes related to the mechanism of action of adalimumab. 

A general discussion about genetic testing in RA and future perspectives is presented in 

Chapter 7. Finally, an English and Dutch summary of this thesis are described in Chapter 8.
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Multiple pharmacogenetic studies investigated the effectiveness of methotrexate. 

However, due to the use of non-validated outcomes, lack of validation or conflicting 

results it remains unclear if genetic markers can help to predict response to MTX 

treatment. Therefore, a systematic review was performed. PubMed was searched 

for articles reporting potential pharmacogenetic biomarkers associated (p<0.05) 

with MTX efficacy using the validated endpoints DAS(28), EULAR, or ACR response 

criteria. The PICO method was used for study selection, and PRISMA guidelines to 

prepare the report. Thirty-five studies met the inclusion criteria, providing 39 potential 

genetic biomarkers in 19 genes. After Bonferroni correction, six genetic biomarkers 

were associated with the efficacy of MTX: ATIC rs7563206; SLC19A1 rs1051266; 

DHFR rs836788; TYMS rs2244500, rs2847153, and rs3786362 in at least one study. 

Only SLC19A1 rs1051266 was replicated in an independent cohort and promising 

for predicting methotrexate efficacy.
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INTRODUCTION

Low-dose methotrexate (MTX) is considered the “anchor drug” for the treatment of 

rheumatoid arthritis (RA). The precise mechanism of action of MTX remains to be elucidated, 

but it is known that MTX is transported over the membrane by multiple solute carriers (SLC) 

and that intracellular MTX has to be bound to polyglutames molecules by folylpolyglutamate 

synthase (FPGS) to exert its function. As illustrated in Figure 2-1, the polyglutamated 

MTX affects multiple cellular pathways, e.g., adenosine, de novo purine synthesis, folate, 

methionine, and de novo pyrimidine synthesis.

In particular, an essential function of the folate pathway is to provide cofactors for key 

enzymes, such as dihydrofolate reductase (DHFR) that converts dihydrofolate into the 

folic acid derivative tetrahydrofolate (THF). THF and other derivatives are required for the 

purine and pyrimidine synthesis, which are important for cell proliferation and cell growth.1 

The methionine pathway is responsible for the synthesis of adenosine, which is an anti-

inflammatory agent, alterated by methionine synthase and methionine synthase reductase 

(MTRR). Further, methionine is a precursor for S-adenosyl-methionine, which is a methyl 

donor that serves a variety of cellular functions, including DNA methylation.2 The ubiquitin 

pathway is not directly related to the other pathways, but has an essential function in 

homeostasis and recognition of MHC class 1 for the cytotoxic T cells.3

Approximately one-third of RA patients experience insufficient clinical response to 

MTX. Pharmacogenetics studies the impact of genetic variation to drug response and 

genetic variants in the MTX pathways described above may affect the potential effects of 

methotrexate on inflammation in RA. Indeed, multiple studies reported associations between 

single nucleotide polymorphisms (SNPs) and the efficacy of MTX. However, to date, none of 

the proposed markers are applied in clinical practice due to lack of validation or conflicting 

results. In addition, previous systematic reviews4–10 described the effect of SNPs on the 

efficacy of MTX, but some included studies with MTX in different diseases such as juvenile 

idiopathic arthritis10 or leukemia5 or applied non-validated endpoints, such as red blood 

cell MTX polyglutamate concentrations5,11 or physicians’ assessment of patient’s response.9 

The goal of this review is to systematically explore which SNPs related to MTX pharmacology 

are associated with efficacy in RA by selecting only studies with the validated endpoints 

DAS(28), European League Against Rheumatism (EULAR), or American College of Rheu-

matology (ACR) response criteria.12,13 
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METHODS

Data extraction and identification of eligible studies Identification and selection of studies 

were performed according to the PICO method.14 Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) guidelines were used to prepare the report.15 PubMed 

was used to identify and extract all relevant articles published between April 2002 and March 

2017. Search terms consisted of rheumatoid arthritis, methotrexate, pharmacogenetics, 

and SNP. The full search string is provided in Supplementary File S2-1. Also, we manually 

checked reference lists from reviews to identify relevant cross-references.

Records were screened on title and abstract. Comments, editorials, narrative reviews, letters 

(without original data), abstracts, and publications in languages other than English were 

excluded. Only studies utilizing the DAS(28), the response criteria of the ACR or the EULAR 

were eligible for inclusion. Included SNPs were analyzed under the additive, allelic, genotypic 

or haploid genetic model, and had at least one association with either DAS(28), ACR or 

EULAR response (p<0.05, uncorrected for multiple testing). SNPs were divided into MTX-

related pathways: adenosine, de novo purine synthesis, transporters, polyglutamation, folate, 

methionine, de novo pyrimidine synthesis, and ubiquitin. Results from included studies were 

summarized, and reported odds ratio (OR) with 95% confidence interval (CI), p-value, type of 

association and SNP ID were collected. Finally, SNPs were checked on linkage disequilibrium 

by SNP Annotation and Proxy Search (SNAP, Broad Institute),16 with the LD threshold of R2>0.8. 

To control the risk of false positive findings, Bonferroni correction was applied when no 

correction for multiple testing was performed in the original study by calculating a significant 

cutoff p-value at /n (p=0.05 divided by the number of tested SNPs within each study). 

SNPs were significantly associated if the p-value was <0.05 after Bonferroni correction. 

Ultimately meta-analyses were used to support our findings of potential significant SNPs. 

RESULTS

Study selection 

Figure 2-2 shows the results of the study selection. Initially, 115 publications were identified. 

We excluded 30 comments, editorials, letters, narrative reviews, and seven non-English 

written publications. Of the remaining 78 studies, 41 were excluded because none of our 

defined endpoints was reported and one because the report of the study could not be 

obtained. By cross-references, three more studies were included. In total, 35 original studies 

were available for analysis in this systematic review and seven meta-analyses were used to 

support our findings.
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Study characteristics

Most studies (34 out of 35) were candidate gene studies investigating 1–35 polymorphisms. 

There was one genome-wide association study (GWAS) investigating 559,007 polymor-

phisms.17 The mean study population of the studies was 197 patients (ranging from 48 

to 422 patients). Most studies used the EULAR good response criteria (32%), tested <10 

SNPs (76%), were conducted in Europe with RA patients of (self-)reported Caucasian origin. 

The average rate of good EULAR response to MTX monotherapy at t=6 months was 55%, 

ranging from 2318 to 85%.19

Figure 2-2. Study flow diagram of the systematic review inclusion.15 
Abbreviations: MTX: methotrexate, MAF: minimum allele frequency, ACR: American College of 
Rheumatology, DAS: Disease Activity Score, EULAR: European League Against Rheumatism.
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The included studies reported 39 SNPs in 20 genes associated with either DAS(28), EULAR, 

or ACR response with a p<0.05. After Bonferroni correction, 16 SNPs in 10 genes remained 

significantly associated with MTX efficacy.

Adenosine pathway – ADA, ADORA2A, AMPD1, and ITPA

AMPD1 rs17602729 (allelic T) showed a significant association with DAS28≤3.2 (OR: 6.73, 

95% CI: 1.74–26.01) between t=3 and 6 months.20 However, this was not confirmed with the 

genotypic CC model at t=6 months.21 None of the other SNPs in the adenosine pathways – 

ADA (rs244076), ADORA2A (rs5751876), and ITPA (rs1127354) – were significantly associated 

with the MTX response at t=6 months using allelic or genotypic genetic models.

De novo purine synthesis – ATIC

Four SNPs in ATIC (rs2372536,22 rs4673993,23 rs7563206,1 and rs129955261) had at least 

one study reporting a significant association with MTX efficacy. ATIC rs7563206 (allelic 

T-carrier) was tested in one study, and showed an association with MTX non-response with 

the endpoint DAS28≤3.2 at t=6 months (OR: 0.20, 95% CI: 0.09–0.46).1 At t=6 months, 

ATIC rs4673993 (genotypic TT) showed a significant association with a better response 

(DAS28≤3.2, OR: 3.86 95% CI:1.50–9.91), while rs12995526 (allelic T-carriers) showed a 

significant association with a worse response (DAS28≤3.2, OR: 0.23, 95% CI: 0.10–0.53) 

to MTX.23 

ATIC (rs2372536, genotype CC) was significantly associated with DAS≤2.4 at t=6 months, 

with an OR of 2.5 (95% CI: 1.3–4.8).22 Three other studies – using ATIC rs2372536 genotypic 

CC at t=6 months – reported no significant association, of which one study reported that 

the CC genotype was related to MTX non-response with a OR below 1.0 (OR: 0.27, 95% 

CI: 0.08–0.92).1,20,24

Transporters – ABCB1C1, ABCC1, SLC19A1 (RFC1), and SLC22A11

None of the SNPs in ABCB1 (rs1045642), ABCC1 (rs246240 and rs3784864), and SLC22A11 

(rs11231809) were significantly associated with DAS28≤3.2 or EULAR good response at t=6 

months. The most studied genetic SLC19A1 SNP was rs1051266, which was investigated in 

11 studies. Three studies reported a significant association with MTX efficacy at t=6 months 

using ACR20 or DAS28 and different genetic models (either allelic A-carriers, genotypic 

GG or genotypic AA). Other studies did not investigate the same genetic models, using 

the same efficacy endpoints with the same time evaluation point for SLC19A1 rs1051266.
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Polyglutamation – FPGS and GGH

FPGS rs4451422 (allelic C-carriers) was associated with MTX efficacy using EULAR good 

response at t=6 months, with an OR of 0.73 (0.54–0.98).17 FPGS SNPs (rs1544105, rs10106, 

and rs10987742) and GGH SNPs (rs2305558 and rs1800909) were not significantly associated 

with MTX efficacy.

Folate pathway – DHFR, MTHFR, and SHMT

Both MTHFR rs1801131 (A1298C) and rs1801133 (C677T) have frequently been studied (>10 

studies). One study showed a significant association with MTHFR rs1801133 CC genotype 

with DAS28 ≤.2 at t=6 months, with an OR of 3.4.25 Three other studies investigated the 

association of MTHFR genotypic CC at t=6 months, and did not find an association using 

other endpoints (EULAR GR, ΔDAS44 <0.6, and ACR20).26–28 For two other SNPs in MTHFR 

(rs17421511 and rs1476413) there was no significant association with MTX response. Also, 

no association was found between MTHFD1 rs17850560 or SHMT-1 rs1979277 with MTX 

response using DAS28 (≤3.2) or EULAR GR. DHFR rs836788 was associated in one study 

with EULAR response at t=6 months, with an OR of 1.44 (95% CI: 1.09–1.93) and 1.47 (95% 

CI: 1.09–1.96), respectively for the allelic A-carriers and the genotypic AA.17

Methionine pathway – MTR and MTRR

Six studies investigated the role of the MTR A2756G (rs1805087), of which one study 

reported a significant association.19 Here, MTR rs1805087 was associated with MTX efficacy 

at t=12 month, and the use of the endpoint EULAR good response with the genotypic AA 

(OR was not available). Other studies could not confirm the association with rs1805087, 

using the DAS28 with genotypic AA on t=4 months,29 EULAR GR with the allelic G-carriers 

on t=4 months,30 or with the DAS28≤3.2 allelic G-carriers on t=6 months.31 No significant 

association was reported with MTRR rs162040 and rs1801394.

De novo pyrimidine pathway – TYMS

TYMS rs2244500, rs2847153, and rs3786362 were all significantly associated with EULAR 

good response at t=6 months and had OR of resp. 1.48, 0.68, and 0.51.17 No other studies 

investigated the effect of TYMS with MTX response.
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Ubiquitin pathway – CUL1

Negi et al. investigated the association of CUL1 haplotypes with MTX efficacy using the 

DAS28≤3.2 at t=6 months.32 Here, CUL1 rs122571 haplotype A-T-T (OR: 2.83, 95% CI: 

1.33–6.04) and rs243480 haplotype G-T-T (OR: 0.16, 95% CI 0.04–0.67) were significant.

KIR – gene

One study tested multiple length variants of the KIR gene and showed that the full-length 

KIR2DS4 gene was significantly associated with DAS28≤2.5 (OR: 0.4344, 95% CI: 0.215, 

0.987) at t=6 months.33 Here, possessing the KIRSDS4 gene had a lower chance of respond-

ing to MTX treatment. 

Most promising genetic variants related to MTX effi cacy

Table 2-1 lists the most promising SNPs that were significantly associated with MTX efficacy 

after Bonferroni correction without having conflicting results from other studies. For instance, 

it is ATIC rs467393 genotypic TT with better response, while allelic T-carriers results in worse 

response or lacks validation. 

The most promising SNPs were derived from the pathways de novo purine (ATIC), de novo 

pyrimidine (TYMS), and transporters (SLC19A1). The SNPs have a minor allele frequency 

>0.2, except TYMS rs3786362 (MAF<0.2 for all races). ATIC rs7563206 and TYMS rs2244500 

were found significantly associated with an OR below 1.0, while the other eight SNPs had an 

OR between 1.42 and 2.83. The used genetic models were with either allelic, genotypic or 

haplotype. No linkage disequilibrium (R2>0.8) was observed for any of the SNPs in Table 2-2. 

SLC19A1 rs1051266 was tested in multiple studies and positively associated in three studies. 

Of the six promising SNPs, ATIC rs7563206, TYMS rs2847153, and rs3786362 were associated 

with non-response to MTX, while SLC19A1 rs1051266, DHFR rs836788, and TYMS rs2244500 

were associated with response to MTX. ORs range from 0.2 to 0.68 for MTX non-response 

and 1.42–2.76 for MTX response. The six SNPs had a MAF of >0.2 in all races except for 

TYMS rs3786362 which is sparse and even does not occurred in the European population. 

Despite the findings of one significant association of ATIC rs473993 and rs12995526, AMPD1 

rs17602729, MTHFR rs1801133, and MTR rs180508, and FPGS rs4451422, we did not mark 

those as promising genetic variants due to conflicting results. Also, we did not include the 

full-length KIR2DS4 gene as a promising genetic marker for the response to MTX, due to 

the complexity of the determination of the whole KIR2DS4 gene (with 15,894 bases) and the 

fact that it is not one SNP. This was also the case of CUL1 that was significantly associated 

with MTX response for two haplotypes; A-T-T (rs122571) and G-T-T (rs243480).



28

Chapter 2

Ta
b

le
 2

-1
. G

en
et

ic
 b

io
m

ar
ke

rs
 r

el
at

ed
 t

o
 M

TX
 e

ff
ic

ac
y

G
en

e
SN

Ps
G

en
et

ic
 m

od
el

En
d

p
oi

nt

Ti
m

e 
of

 
re

sp
on

se
 

ev
al

ua
tio

n 
(m

on
th

s)
N

 
Re

p
or

te
d

P-
va

lu
e 

O
R 

(9
5%

C
I)

St
ud

y

A
d

en
os

in
e 

p
at

hw
ay

A
D

A
rs

24
40

76
A

lle
lic

 A
 c

ar
rie

rs
EU

LA
R 

G
R

6
28

1 
0.

02
1.

66
 (1

.0
1–

2.
75

)
Sh

ar
m

a 
(2

00
9)

21

G
en

ot
yp

ic
 A

A
EU

LA
R 

G
R

6
28

1 
0.

17
-

Sh
ar

m
a 

(2
00

9)
21

A
D

O
RA

2A
rs

57
51

87
6

A
lle

lic
 C

 c
ar

rie
rs

EU
LA

R 
G

R
6

28
1 

0.
04

1.
55

 (1
.0

1–
2.

37
)

Sh
ar

m
a 

(2
00

9)
21

G
en

ot
yp

ic
 T

T 
EU

LA
R 

G
R

6
28

1 
0.

12
-

Sh
ar

m
a 

(2
00

9)
21

A
M

PD
1

rs
17

60
27

29
A

lle
lic

 T
 c

ar
rie

rs
D

A
S≤

2.
4

6
20

4
<

0.
05

2.
1 

(1
.0

–4
.5

)
W

es
se

ls
 (2

00
6-

2)
22

(C
34

T)
 

A
lle

lic
 T

 c
ar

rie
rs

D
A

S2
8≤

3.
2

3–
6

20
5

0.
00

6*
6.

73
 (1

.7
4–

26
.0

1)
G

ra
b

ar
 (2

01
0)

20

A
lle

lic
 C

 c
ar

rie
rs

EU
LA

R 
G

R
6

28
1

0.
39

-
Sh

ar
m

a 
(2

00
9)

21

G
en

ot
yp

ic
 C

C
EU

LA
R 

G
R

6
28

1
0.

38
-

Sh
ar

m
a 

(2
00

9)
21

IT
PA

rs
11

27
35

4
G

en
ot

yp
ic

 C
C

D
A

S≤
2.

4
6

20
4

<
0.

05
2.

7 
(1

.1
–8

.1
)

W
es

se
ls

 2
00

6-
222

(C
94

A
)

A
lle

lic
 A

 c
ar

rie
rs

EU
LA

R 
G

R
4

25
5

0.
00

6
2.

95
 (1

.3
6–

6.
38

)
D

er
vi

eu
x 

(2
00

9)
30



29

Systematic review of predictive genetic biomarkers for the efficacy of MTX

2

D
e 

no
vo

 p
ur

in
e 

sy
nt

he
si

s 
p

at
hw

ay
A

TI
C

rs
23

72
53

6 
(C

34
7G

) 
A

lle
lic

 C
 c

ar
rie

rs
D

A
S2

8≤
3.

2
6

23
3

0.
57

0.
83

 (0
.4

3–
1.

69
)

Li
m

a 
(2

01
6)

1  
A

lle
lic

 C
 c

ar
rie

rs
EU

LA
R 

G
R

6
28

1
0.

96
-

Sh
ar

m
a 

(2
00

9)
21

A
lle

lic
 C

 c
ar

rie
rs

EU
LA

R 
G

R
12

98
0.

56
-

Ja
m

es
 (2

00
8)

19

A
lle

lic
 C

 c
ar

rie
rs

EU
LA

R 
G

R
6

31
9

0.
94

0.
98

 (0
.6

7–
1.

43
)

M
ur

al
id

ha
ra

n 
(2

01
6-

1)
36

 
A

lle
lic

 C
 c

ar
rie

rs
A

C
R 

20
 &

 5
0

12
21

7
N

S
-

G
ho

d
ke

-P
ur

an
ik

 (2
01

5)
18

A
lle

lic
 C

 c
ar

rie
rs

D
A

S2
8≤

2.
4

6
42

2
0.

23
1.

29
 (0

.8
7–

1.
91

)
K

ur
za

w
sk

i (
20

16
)24

A
lle

lic
 G

 c
ar

rie
rs

EU
LA

R 
G

R
4

25
5

0.
71

1.
09

 (0
.6

6–
1.

80
)

D
er

vi
eu

x 
(2

00
9)

30

G
en

ot
yp

ic
 G

G
D

A
S2

8 
6

17
0

N
S

-
H

ay
as

hi
 (2

01
3)

37

G
en

ot
yp

ic
 G

G
D

A
S2

8≤
2.

4
6

42
2

0.
00

5
2.

40
 (1

.3
0–

4.
42

)
K

ur
za

w
sk

i (
20

16
)24

G
en

ot
yp

ic
 C

C
EU

LA
R 

G
R

6
28

1
0.

17
-

Sh
ar

m
a 

(2
00

9)
21

G
en

ot
yp

ic
 C

C
EU

LA
R 

G
R

12
98

0.
85

-
Ja

m
es

 (2
00

8)
19

G
en

ot
yp

ic
 C

C
D

A
S2

8≤
3.

2
6

23
3

0.
03

6
0.

27
 (0

.0
8–

0.
92

)
Li

m
a 

(2
01

6)
1

G
en

ot
yp

ic
 C

C
D

A
S2

8≤
3.

2
3–

6
20

8
N

S
-

G
ra

b
ar

 (2
01

0)
20

G
en

ot
yp

ic
 C

C
D

A
S≤

2.
4

6
20

5
0.

00
7*

2.
5 

(1
.3

–4
.8

)
W

es
se

ls
 2

00
6-

222

G
en

ot
yp

ic
 C

C
EU

LA
R 

G
R

6
61

0.
12

1.
95

 (0
.8

3–
4.

56
)

Sa
la

za
r 

(2
01

4)
38

rs
46

73
99

3
A

lle
lic

 C
 c

ar
rie

rs
D

A
S2

8≤
3.

2
6

23
3

0.
03

6
0.

27
 (0

.0
8–

0.
92

)
Li

m
a 

(2
01

6)
1

G
en

ot
yp

ic
 T

T
D

A
S2

8≤
3.

2
6

12
0

0.
00

6*
3.

86
 (1

.5
0–

9.
91

)
Le

e 
(2

00
9)

23

G
en

ot
yp

ic
 T

T
D

A
S2

8≤
3.

2
6

23
3

0.
95

0.
98

 (0
.5

1–
1.

89
)

Li
m

a 
(2

01
6)

1

rs
75

63
20

6
A

lle
lic

 T
 c

ar
rie

rs
D

A
S2

8≤
3.

2
6

23
3

<
0.

00
1*

0.
20

 (0
.0

9–
0.

46
)

Li
m

a 
(2

01
6)

1

G
en

ot
yp

ic
 T

T
D

A
S2

8≤
3.

2
6

23
3

0.
56

0.
81

 (0
.4

0–
1.

65
)

Li
m

a 
(2

01
6)

1

rs
12

99
55

26
A

lle
lic

 T
 c

ar
rie

rs
EU

LA
R 

G
R

6
23

3
0.

00
1*

0.
23

 (0
.1

0–
0.

53
)

Li
m

a 
(2

01
6)

1

A
lle

lic
 T

 c
ar

rie
rs

D
A

S2
8≤

2.
4

6
42

2
0.

11
0.

71
 (0

.4
7–

1.
07

)
K

ur
za

w
sk

i (
20

16
)24

G
en

ot
yp

ic
 T

T
D

A
S2

8≤
2.

4
6

42
2

0.
14

0.
65

 (0
.3

8–
1.

10
)

K
ur

za
w

sk
i (

20
16

)24

G
en

ot
yp

ic
 T

T
EU

LA
R 

G
R

6
23

3
0.

41
0.

74
 (0

.3
7–

1.
51

)
Li

m
a 

(2
01

6)
1

G
en

ot
yp

ic
 C

C
EU

LA
R 

G
R

6
61

0.
22

1.
78

 (0
.7

0–
4.

52
)

Sa
la

za
r 

(2
01

4)
38

Ta
b

le
 2

-1
 c

on
tin

ue
s 

on
 n

ex
t 

p
ag

e.



30

Chapter 2

Ta
b

le
 2

-1
. C

o
nt

in
ue

d

G
en

e
SN

Ps
G

en
et

ic
 m

od
el

En
d

p
oi

nt

Ti
m

e 
of

 
re

sp
on

se
 

ev
al

ua
tio

n 
(m

on
th

s)
N

 
Re

p
or

te
d

P-
va

lu
e 

O
R 

(9
5%

C
I)

St
ud

y

Tr
an

sp
or

te
rs

 
A

B
C

B
1

rs
10

45
64

2
G

en
ot

yp
ic

 C
T

D
A

S2
8≤

3.
2

6
28

1
0.

01
1.

97
 (1

.1
3–

3.
42

)
Sh

ar
m

a 
(2

00
8)

39

(C
34

35
T)

G
en

ot
yp

ic
 C

C
D

A
S2

8≤
3.

2
6

28
1

0.
01

0.
32

 (0
.1

3–
0.

80
)

Sh
ar

m
a 

(2
00

8)
39

G
en

ot
yp

ic
 C

C
D

A
S<

2.
4

6
18

6
0.

77
-

K
oo

lo
os

 (2
01

0)
40

 
A

lle
lic

 C
 c

ar
rie

rs
D

A
S<

2.
4

6
18

6
0.

08
2

-
K

oo
lo

os
 (2

01
0)

40

A
B

C
C

1
rs

24
62

40
A

lle
lic

 G
 c

ar
rie

rs
D

A
S2

8≤
3.

2
6

23
3

0.
00

8
5.

47
 (1

.5
6–

19
.2

5)
Li

m
a 

(2
01

5)
31

G
en

ot
yp

ic
 G

G
D

A
S2

8≤
3.

2
6

23
3

0.
85

0.
76

 (0
.0

5–
11

.4
6)

Li
m

a 
(2

01
5)

31

rs
37

84
86

4
A

lle
lic

 A
 c

ar
rie

rs
EU

LA
R 

G
R

6
23

3
0.

40
0.

64
 (0

.2
3–

1.
80

)
Li

m
a 

(2
01

5)
31

G
en

ot
yp

ic
 A

A
EU

LA
R 

G
R

6
23

3
0.

01
5

4.
24

 (1
.3

2–
13

.6
5)

Li
m

a 
(2

01
5)

31

SL
C

19
A

1 
/ 

RF
C

1
rs

10
51

26
6

(G
80

A
)

A
lle

lic
 A

 c
ar

rie
rs

A
C

R 
20

 &
 5

0
12

21
7

0.
03

0
2.

20
 (1

.1
–4

.4
)

G
ho

d
ke

-P
ur

an
ik

 (2
01

5)
18

A
lle

lic
 A

 c
ar

rie
rs

EU
LA

R 
G

R
12

98
0.

00
9

-
Ja

m
es

 (2
00

8)
19

A
lle

lic
 A

 c
ar

rie
rs

A
C

R 
20

6
17

4
0.

02
1*

3.
32

 (1
.2

6–
8.

79
)

D
ro

zd
zi

k 
(2

00
7)

41

A
lle

lic
 A

 c
ar

rie
rs

D
A

S2
8≤

3.
2

6
23

3
0.

67
1.

23
 (0

.4
7–

3.
18

)
Li

m
a 

(2
01

5)
31

A
lle

lic
 A

 c
ar

rie
rs

D
A

S2
8≤

3.
2

6
28

1
N

S
-

Sh
ar

m
a 

(2
00

8)
39

A
lle

lic
 A

 c
ar

rie
rs

EU
LA

R 
G

R
6

22
5

0.
28

1.
24

 (0
.8

5–
1.

81
)

M
ur

al
id

ha
ra

n 
(2

01
6-

2)
42

A
lle

lic
 A

 c
ar

rie
rs

EU
LA

R 
G

R
4

25
5

0.
07

1.
63

 (0
.9

5–
2.

79
)

D
er

vi
eu

x 
(2

00
9)

30

G
en

ot
yp

ic
 A

A
EU

LA
R 

G
R

12
98

0.
03

6
-

Ja
m

es
 (2

00
8)

19

G
en

ot
yp

ic
 A

A
A

C
R 

20
%

6
17

4
0.

01
3*

1.
78

 (1
.1

3–
2.

81
)

D
ro

zd
zi

k 
(2

00
7)

41

G
en

ot
yp

ic
 A

A
D

A
S2

8≤
3.

2
6

23
3

0.
92

1.
05

 (0
.3

6–
3.

09
)

Li
m

a 
(2

01
5)

31

G
en

ot
yp

ic
 A

A
D

A
S2

8≤
3.

2
6

28
1

N
S

-
Sh

ar
m

a 
(2

00
8)

39

G
en

ot
yp

ic
 G

G
D

A
S2

8
4

25
5

0.
27

-
D

er
vi

eu
x 

(2
00

9)
30

G
en

ot
yp

ic
 G

G
D

A
S2

8 
6

17
0

0.
00

18
*

2.
27

 (1
.3

6–
3.

80
)

H
ay

as
hi

 (2
01

3)
37

G
en

ot
yp

ic
 G

G
EU

LA
R 

G
R

6
76

0.
60

-
M

oy
a 

(2
01

6)
43



31

Systematic review of predictive genetic biomarkers for the efficacy of MTX

2

G
en

ot
yp

ic
 G

G
EU

LA
R 

G
R

6
54

N
S

-
C

ha
tz

ik
yr

ia
ki

d
ou

 (2
00

7)
44

G
en

ot
yp

ic
 G

G
D

A
S2

8≤
3.

2
6

24
0

N
S

-
Św

ie
rk

ot
 (2

01
5)

25

G
en

ot
yp

ic
 G

G
EU

LA
R 

G
R

6
22

5
0.

56
0.

81
 (0

.4
6–

1.
43

)
M

ur
al

id
ha

ra
n 

(2
01

6-
2)

42

SL
C

22
A

11
rs

11
23

18
09

G
en

ot
yp

ic
 A

A
D

A
S2

8≤
3.

2
6

23
3

0.
03

1
0.

19
 (0

.0
4–

0.
86

)
Li

m
a 

(2
01

5)
31

A
lle

lic
 A

 c
ar

rie
rs

D
A

S2
8≤

3.
2

6
23

3
0.

12
0.

44
 (0

.1
6–

1.
22

)
Li

m
a 

(2
01

5)
31

Po
ly

g
lu

ta
m

at
io

n
FP

G
S

rs
44

51
42

2 
A

lle
lic

 A
 c

ar
rie

rs
D

A
S2

8≤
3.

2
6

23
2

0.
07

7
0.

52
 (0

.0
25

–1
.0

7)
Li

m
a 

(2
01

6)
1

A
lle

lic
 C

 c
ar

rie
rs

EU
LA

R 
G

R
6

45
7

0.
03

5*
#

0.
73

 (0
.5

4–
0.

98
)

Se
na

p
at

i (
20

14
)17

G
en

ot
yp

ic
 A

A
D

A
S2

8≤
3.

2
6

23
2

0.
27

1.
57

 (0
.7

0–
3.

49
)

Li
m

a 
(2

01
6)

1

G
en

ot
yp

ic
 C

C
EU

LA
R 

G
R

6
45

7
0.

05
#

0.
72

 (0
.5

2–
1.

00
)

Se
na

p
at

i (
20

14
)17

rs
15

44
10

5
A

lle
lic

 A
 c

ar
rie

rs
EU

LA
R 

G
R

6
28

1
0.

00
8

3.
47

 (1
.1

9–
10

.1
2)

Sh
ar

m
a 

(2
00

8)
21

A
lle

lic
 G

 c
ar

rie
rs

D
A

S2
8≤

3.
2

6
23

3
0.

32
1.

53
 (0

.6
8–

3.
60

)
Li

m
a 

(2
01

6)
1

A
lle

lic
 G

 c
ar

rie
rs

D
A

S2
8≤

3.
2

6
28

1
0.

04
3

1.
55

 (1
.0

1–
2.

37
)

Sh
ar

m
a 

(2
00

8)
39

A
lle

lic
 A

 c
ar

rie
rs

D
A

S2
8≤

2.
4

6
42

2
0.

92
0.

96
 (0

.6
5–

1.
43

)
K

ur
za

w
sk

i (
20

16
)24

G
en

ot
yp

ic
 G

G
D

A
S2

8≤
3.

2
6

23
3

0.
12

0.
56

 (0
.2

7–
1.

15
)

Li
m

a 
(2

01
6)

1

G
en

ot
yp

ic
 A

A
D

A
S2

8≤
2.

4
6

42
2

0.
40

0.
77

 (0
.4

4–
1.

36
)

K
ur

za
w

sk
i (

20
16

)24

rs
10

10
6 

(A
19

94
G

)
A

lle
lic

 C
 c

ar
rie

rs
D

A
S2

8≤
2.

4
6

42
2

0.
84

0.
94

 (0
.6

4–
1.

40
)

K
ur

za
w

sk
i (

20
16

)24

A
lle

lic
 C

 c
ar

rie
rs

D
A

S<
2.

4
6

35
2

0.
9

2.
90

 (1
.5

0–
5.

40
)

va
n 

d
er

 S
tr

aa
te

n 
(2

00
7)

45

A
lle

lic
 A

 c
ar

rie
rs

D
A

S2
8≤

3.
2

6
23

3
0.

32
1.

50
 (0

.6
8–

3.
29

)
Li

m
a 

(2
01

6)
1

A
lle

lic
 A

 c
ar

rie
rs

D
A

S≤
2.

4
6

18
6

0.
64

-
W

es
se

ls
 (2

00
7)

46

A
lle

lic
 A

 c
ar

rie
rs

D
A

S≤
2.

4
6

35
2

N
S

-
va

n 
d

er
 S

tr
aa

te
n 

(2
00

7)
45

G
en

ot
yp

ic
 A

A
D

A
S≤

2.
4

6
18

6
0.

13
-

W
es

se
ls

 (2
00

7)
46

G
en

ot
yp

ic
 A

A
D

A
S2

8≤
3.

2
6

23
3

0.
07

0.
51

 (0
.2

5–
1.

06
)

Li
m

a 
(2

01
6)

1

G
en

ot
yp

ic
 T

T
EU

LA
R 

G
R

6
76

0.
04

1
-

M
oy

a 
(2

01
6)

43

G
en

ot
yp

ic
 C

C
D

A
S2

8<
2.

4
6

42
2

0.
25

0.
70

 (0
.6

9–
1.

24
)

K
ur

za
w

sk
i (

20
16

)24

rs
10

98
77

42
G

en
ot

yp
ic

 G
G

EU
LA

R 
G

R
6

76
0.

03
3

-
M

oy
a 

(2
01

6)
43

Ta
b

le
 2

-1
 c

on
tin

ue
s 

on
 n

ex
t 

p
ag

e.



32

Chapter 2

Ta
b

le
 2

-1
. C

o
nt

in
ue

d

G
en

e
SN

Ps
G

en
et

ic
 m

od
el

En
d

p
oi

nt

Ti
m

e 
of

 
re

sp
on

se
 

ev
al

ua
tio

n 
(m

on
th

s)
N

 
Re

p
or

te
d

P-
va

lu
e 

O
R 

(9
5%

C
I)

St
ud

y

G
G

H
rs

23
05

55
8

A
lle

lic
 A

 c
ar

rie
rs

EU
LA

R 
G

R
6

45
7

0.
05

#
1.

46
 (0

.9
8–

2.
17

)
Se

na
p

at
i (

20
14

)17

G
en

ot
yp

ic
 A

A
EU

LA
R 

G
R

6
45

7
0.

23
#

1.
51

 (0
.7

4–
3.

08
)

Se
na

p
at

i (
20

14
)17

rs
18

00
90

9
(C

16
T)

A
lle

lic
 C

 c
ar

rie
rs

A
lle

lic
 C

 c
ar

rie
rs

D
A

S≤
2.

4
D

A
S≤

2.
4

3 6
35

2
35

2
0.

03
6

N
S

2.
1 

(1
.0

–4
.7

)
-

va
n 

d
er

 S
tr

aa
te

n 
(2

00
7)

45

va
n 

d
er

 S
tr

aa
te

n 
(2

00
7)

45

A
lle

lic
 C

 c
ar

rie
rs

EU
LA

R 
G

R
4

25
5

0.
66

1.
11

 (0
.6

8–
1.

83
)

D
er

vi
eu

x 
(2

00
9)

30

A
lle

lic
 T

 c
ar

rie
rs

G
en

ot
yp

ic
 T

T
D

A
S≤

2.
4 

D
A

S≤
2.

4
6 6

18
6

18
6

0.
71

0.
31

- -
W

es
se

ls
 (2

00
7)

46

W
es

se
ls

 (2
00

7)
46

Fo
la

te
 p

at
hw

ay
D

H
FR

rs
83

67
88

A
lle

lic
 A

 c
ar

rie
rs

EU
LA

R 
G

R
6

45
7

0.
01

4*
#

1.
44

 (1
.0

8–
1.

93
)

Se
na

p
at

i (
20

14
)17

G
en

ot
yp

ic
 A

A
EU

LA
R 

G
R

6
45

7
0.

01
1*

#
1.

47
 (1

.0
9–

1.
96

)
Se

na
p

at
i (

20
14

)17

rs
12

51
74

51
A

lle
lic

 A
 c

ar
rie

rs
EU

LA
R 

G
R

6
45

7
0.

05
#

1.
35

 (0
.9

9–
1.

85
)

Se
na

p
at

i (
20

14
)17

G
en

ot
yp

ic
 A

A
EU

LA
R 

G
R

6
45

7
0.

01
6#

1.
56

 (1
.0

7–
2.

26
)

Se
na

p
at

i (
20

14
)17

rs
40

86
26

 
G

en
ot

yp
ic

 A
A

Δ
D

A
S

6
12

5
0.

05
0

-
M

ili
c 

(2
01

2)
47

(-3
17

)
G

en
ot

yp
ic

 A
A

EU
LA

R 
G

R
6

12
5

0.
2

-
M

ili
c 

(2
01

2)
47

rs
16

43
65

0
A

d
d

iti
ve

EU
LA

R 
G

R
6

61
0.

02
6

0.
31

 (0
.1

0–
0.

96
)

Sa
la

za
r 

(2
01

4)
38



33

Systematic review of predictive genetic biomarkers for the efficacy of MTX

2

M
TH

FR
 

rs
17

42
15

11
A

d
d

iti
ve

EU
LA

R 
G

R
6

61
0.

02
4

3.
35

 (1
.1

0–
10

.2
4)

Sa
la

za
r 

(2
01

4)
38

rs
18

01
13

1 
(A

12
98

C
)

A
d

d
iti

ve
EU

LA
R 

G
R

6
61

0.
08

2.
19

 (0
.8

9–
5.

37
)

Sa
la

za
r 

(2
01

4)
38

A
lle

lic
 A

 c
ar

rie
rs

A
C

R 
20

 &
 5

0
12

21
7

0.
02

0
2.

6 
(1

.1
–5

.8
)

G
ho

d
ke

-P
ur

an
ik

 (2
01

5)
18

A
lle

lic
 A

 c
ar

rie
rs

EU
LA

R 
G

R
12

98
1.

00
-

Ja
m

es
 (2

00
8)

19

A
lle

lic
 A

 c
ar

rie
rs

A
C

R2
0

6
69

0.
56

-
Ta

ra
b

or
el

li 
(2

00
9)

28

A
lle

lic
 C

 c
ar

rie
rs

D
A

S2
8≤

3.
2

6
23

3
0.

04
5

0.
51

 (0
.2

6–
0.

98
)

Li
m

a 
(2

01
5)

31

A
lle

lic
 C

 c
ar

rie
rs

EU
LA

R 
G

R
4

25
5

0.
66

0.
89

 (0
.5

4–
1.

46
)

D
er

vi
eu

x 
(2

00
9)

30

G
en

ot
yp

ic
 A

A
Δ

D
A

S4
4<

1.
2

6
18

6
0.

01
4

2.
30

 (1
.1

8–
4.

41
)

W
es

se
ls

 (2
00

6-
1)

27

G
en

ot
yp

ic
 A

A
A

C
R2

0
6

69
0.

35
-

Ta
ra

b
or

el
li 

(2
00

9)
28

G
en

ot
yp

ic
 A

A
EU

LA
R 

G
R

12
98

0.
92

-
Ja

m
es

 (2
00

8)
19

G
en

ot
yp

ic
 A

A
D

A
S2

8≤
3.

2
6

24
0

N
S

-
Św

ie
rk

ot
 (2

01
5)

25

G
en

ot
yp

ic
 A

A
D

A
S2

8
4

48
N

S
-

D
er

vi
eu

x 
(2

00
6)

29

G
en

ot
yp

ic
 C

C
D

A
S2

8≤
3.

2
6

12
0

0.
84

0.
90

 (0
.4

0–
2.

02
)

Le
e 

(2
00

9)
23

G
en

ot
yp

ic
 C

C
D

A
S2

8≤
3.

2
6

23
3

0.
91

1.
07

 (0
.3

5–
3.

28
)

Li
m

a 
(2

01
5)

31

G
en

ot
yp

ic
 A

A
 

EU
LA

R 
G

R
6

12
0

0.
23

-
So

uk
up

 (2
01

5)
48

rs
14

76
41

3
A

d
d

iti
ve

EU
LA

R 
G

R
6

61
0.

00
86

3.
56

 (1
.2

8–
9.

91
)

Sa
la

za
r 

(2
01

4)
38

Ta
b

le
 2

-1
 c

on
tin

ue
s 

on
 n

ex
t 

p
ag

e.



34

Chapter 2

Ta
b

le
 2

-1
. C

o
nt

in
ue

d

G
en

e
SN

Ps
G

en
et

ic
 m

od
el

En
d

p
oi

nt

Ti
m

e 
of

 
re

sp
on

se
 

ev
al

ua
tio

n 
(m

on
th

s)
N

 
Re

p
or

te
d

P-
va

lu
e 

O
R 

(9
5%

C
I)

St
ud

y

rs
18

01
13

3 
(C

67
7T

)
A

d
d

iti
ve

EU
LA

R 
G

R
6

61
0.

53
0.

73
 (0

.2
7–

1.
98

)
Sa

la
za

r 
(2

01
4)

38

A
lle

lic
 T

 c
ar

rie
rs

A
C

R 
20

 &
 5

0
12

21
7

N
S

-
G

ho
d

ke
-P

ur
an

ik
 (2

01
5)

18

A
lle

lic
 T

 c
ar

rie
rs

EU
LA

R 
G

R
4

25
5

0.
86

1.
04

 (0
.6

3–
1.

72
)

D
er

vi
eu

x 
(2

00
9)

30

A
lle

lic
 C

 c
ar

rie
rs

EU
LA

R 
G

R
12

98
0.

39
-

Ja
m

es
 (2

00
8)

19

A
lle

lic
 C

 c
ar

rie
rs

A
C

R2
0

6
69

0.
34

-
Ta

ra
b

or
el

li 
(2

00
9)

29

A
lle

lic
 C

 c
ar

rie
rs

 
D

A
S2

8≤
3.

2
6

23
3

0.
01

9
3.

86
 (1

.2
5–

11
.8

9)
Li

m
a 

(2
01

6)
1

G
en

ot
yp

ic
 C

C
EU

LA
R 

G
R

6
11

3
N

S
-

A
g

g
ar

w
al

 (2
00

6)
26

G
en

ot
yp

ic
 C

C
Δ

D
A

S4
4<

0.
6

6
18

6
0.

04
4

2.
73

 (1
.0

3–
7.

26
) 

W
es

se
ls

 (2
00

6-
1)

27
 

G
en

ot
yp

ic
 C

C
A

C
R2

0
6

69
0.

26
-

Ta
ra

b
or

el
li 

(2
00

9)
28

G
en

ot
yp

ic
 C

C
  

EU
LA

R 
G

R
12

98
0.

64
-

Ja
m

es
 (2

00
8)

19

G
en

ot
yp

ic
 C

C
D

A
S2

8≤
3.

2
6

24
0

0.
00

1*
3.

4 
Św

ie
rk

ot
 (2

01
5)

25

G
en

ot
yp

ic
 T

T
D

A
S2

8
4

48
N

S
-

D
er

vi
eu

x 
(2

00
6)

29

G
en

ot
yp

ic
 T

T
EU

LA
R 

G
R

4
48

<
0.

05
22

.2
 (1

.2
–4

2.
2)

D
er

vi
eu

x 
(2

00
6)

29
 

G
en

ot
yp

ic
 T

T
EU

LA
R 

G
R

6
12

0
0.

43
1.

41
 (0

.5
1–

4.
55

)
So

uk
up

 (2
01

5)
48

 

M
TH

FD
1

rs
17

85
05

60
(G

19
58

A
)

G
en

ot
yp

ic
 G

G
D

A
S2

8≤
3.

2
3–

6
20

8
0.

02
1

4.
67

 (1
.2

7–
17

.2
6)

G
ra

b
ar

 (2
01

0)
20

G
en

ot
yp

ic
 G

G
D

A
S≤

2.
4

6
18

6
0.

10
-

W
es

se
ls

 (2
00

6-
2)

22
 

A
lle

lic
 A

 c
ar

rie
rs

EU
LA

R 
G

R
4

25
5

0.
11

1.
62

 (0
.9

0–
2.

92
)

D
er

vi
eu

x 
(2

00
9)

30
 

SH
M

T-
1

rs
19

79
27

7
G

en
ot

yp
ic

 T
T

D
A

S2
8

4
48

<
0.

05
7.

4 
(1

.0
–5

6.
4)

D
er

vi
eu

x 
(2

00
6)

29
 

(C
14

20
T)

A
lle

lic
 T

 c
ar

rie
r

EU
LA

R 
G

R
4

25
5

0.
53

0.
85

 (0
.5

2–
1.

40
)

D
er

vi
eu

x 
(2

00
9)

30



35

Systematic review of predictive genetic biomarkers for the efficacy of MTX

2

M
et

hi
on

in
e 

p
at

hw
ay

M
TR

 (M
S)

rs
18

05
08

7 
(A

27
56

G
)

A
lle

lic
 A

 c
ar

rie
rs

EU
LA

R 
G

R
12

98
0.

06
-

Ja
m

es
 (2

00
8)

19

A
lle

lic
 A

 c
ar

rie
rs

A
C

R 
20

 &
 5

0
12

21
7

N
S

-
G

ho
d

ke
-P

ur
an

ik
 (2

01
5)

18

A
lle

lic
 G

 c
ar

rie
rs

EU
LA

R 
G

R
4

25
5

0.
41

1.
23

 (0
.7

3–
2.

10
)

D
er

vi
eu

x 
(2

00
9)

30

A
lle

lic
 G

 c
ar

rie
rs

D
A

S2
8≤

3.
2

6
23

3
0.

01
7

0.
42

 (0
.2

0–
0.

86
)

Li
m

a 
(2

01
5)

31

G
en

ot
yp

ic
 A

A
EU

LA
R 

G
R

12
98

0.
00

3*
-

Ja
m

es
 (2

00
8)

19

G
en

ot
yp

ic
 A

A
D

A
S2

8
4

25
5

N
S

-
D

er
vi

eu
x 

(2
00

6)
29

G
en

ot
yp

ic
 G

G
D

A
S2

8≤
3.

2
6

23
3

0.
25

0.
27

 (0
.0

3–
2.

51
)

Li
m

a 
(2

01
5)

31

M
TR

R
rs

16
20

40
A

lle
lic

 C
 c

ar
rie

rs
EU

LA
R 

G
R

6
45

7
0.

04
1.

45
 (1

.0
0–

2.
10

)
Se

na
p

at
i (

20
14

)17

G
en

ot
yp

ic
 C

C
EU

LA
R 

G
R

6
45

7
0.

02
2.

22
 (1

.1
1–

4.
43

)
Se

na
p

at
i (

20
14

)17

rs
18

01
39

4 
(A

66
G

)
A

lle
lic

 A
 c

ar
rie

rs
D

A
S2

8≤
3.

2
6

23
3

0.
04

1
2.

16
 (1

.0
3–

4.
53

)
Li

m
a 

(2
01

5)
31

A
lle

lic
 A

 c
ar

rie
rs

A
C

R 
20

 &
 5

0
12

21
7

N
S

-
G

ho
d

ke
-P

ur
an

ik
 (2

01
5)

18

G
en

ot
yp

ic
 A

A
D

A
S2

8
4

  4
8

N
S

-
D

er
vi

eu
x 

(2
00

6)
29

G
en

ot
yp

ic
 A

A
D

A
S2

8≤
3.

2
6

23
3

0.
04

6
2.

36
 (1

.0
1–

5.
52

)
Li

m
a 

(2
01

5)
31

D
e 

no
vo

 p
yr

im
id

in
e 

p
at

hw
ay

TY
M

S
rs

22
44

50
0

A
lle

lic
 A

 c
ar

rie
rs

EU
LA

R 
G

R
6

45
7

0.
00

5*
#

1.
48

 (1
.1

2–
1.

94
)

Se
na

p
at

i (
20

14
)17

G
en

ot
yp

ic
 A

A
EU

LA
R 

G
R

6
45

7
0.

00
4*

#
1.

48
 (1

.1
3–

1.
94

)
Se

na
p

at
i (

20
14

)17

rs
28

47
15

3
G

en
ot

yp
ic

 A
A

EU
LA

R 
G

R
6

  6
1

0.
26

1.
92

 (0
.6

2–
5.

97
)

Sa
la

za
r 

(2
01

4)
38

 
A

lle
lic

 A
 c

ar
rie

rs
EU

LA
R 

G
R

6
45

7
0.

00
9*

#
0.

68
 (0

.5
1–

0.
91

)
Se

na
p

at
i (

20
14

)17

G
en

ot
yp

ic
 A

A
EU

LA
R 

G
R

6
45

7
0.

04
#

0.
71

 (0
.5

2–
0.

98
)

Se
na

p
at

i (
20

14
)17

rs
37

86
36

2
A

lle
lic

 G
 c

ar
rie

rs
EU

LA
R 

G
R

6
45

7
0.

01
1*

#
0.

51
 (0

.3
0–

0.
86

)
Se

na
p

at
i (

20
14

)17

G
en

ot
yp

ic
 G

G
EU

LA
R 

G
R

6
45

7
0.

99
#

-
Se

na
p

at
i (

20
14

)17

Ta
b

le
 2

-1
 c

on
tin

ue
s 

on
 n

ex
t 

p
ag

e.



36

Chapter 2

Ta
b

le
 2

-1
. C

o
nt

in
ue

d

G
en

e
SN

Ps
G

en
et

ic
 m

od
el

En
d

p
oi

nt

Ti
m

e 
of

 
re

sp
on

se
 

ev
al

ua
tio

n 
(m

on
th

s)
N

 
Re

p
or

te
d

P-
va

lu
e 

O
R 

(9
5%

C
I)

St
ud

y

U
b

iq
ui

ti
n 

p
at

hw
ay

C
U

L1
rs

12
25

71
H

ap
lo

ty
p

e 
A

-T
-T

D
A

S2
8≤

3.
2

6
29

0.
00

51
*  

   
2.

83
 (1

.3
3–

6.
04

)
N

eg
i (

20
11

)32

rs
24

34
81

H
ap

lo
ty

p
e 

G
-C

-T
D

A
S2

8≤
3.

2
6

74
0.

05
1.

42
 (1

.0
–2

.0
2)

N
eg

i (
20

11
)32

rs
24

34
80

H
ap

lo
ty

p
e 

G
-T

-T
D

A
S2

8≤
3.

2
6

25
0.

00
45

*
2.

83
 (1

.3
3–

6.
04

)
N

eg
i (

20
11

)32

O
th

er
K

IR
2D

S4
 g

en
e

Fu
ll-

le
ng

th
 

D
A

S2
8≤

2.
5

6
31

2
0.

03
34

*
0.

43
 (0

.2
15

–0
.9

87
)

M
aj

or
cz

yk
 (2

01
4)

33

P-
va

lu
es

 m
ar

ke
d

 in
 b

ol
d

 p
-v

al
ue

s 
ha

ve
 a

 re
p

or
te

d
 p

-v
al

ue
 b

el
ow

 0
.0

5.
 P

-v
al

ue
s 

m
ar

ke
d

 w
ith

 a
n 

as
te

ris
k 

(*
) w

er
e 

si
g

ni
fic

an
tly

 a
ss

oc
ia

te
d

 a
ft

er
 m

ul
tip

le
 te

st
in

g
 

co
rr

ec
tio

n 
(B

on
fe

rr
on

i c
or

re
ct

io
n,

 p
<

0.
05

). 
P-

va
lu

es
 m

ar
ke

d
 w

ith
 #

 h
av

e 
a 

re
p

or
te

d
 p

-v
al

ue
s 

th
at

 w
as

 a
lre

ad
y 

co
rr

ec
te

d
 b

y 
m

ul
tip

le
 t

es
tin

g
.  

A
b

b
re

vi
at

io
ns

: B
F:

 B
on

fe
rr

on
i E

U
LA

R 
G

R:
 E

ur
op

ea
n 

le
ag

ue
 a

g
ai

ns
t r

he
um

at
is

m
 g

oo
d

 re
sp

on
se

 c
rit

er
ia

. A
C

R:
 A

m
er

ic
an

 C
ol

le
g

e 
of

 R
he

um
at

ol
og

y.
 O

R:
 O

d
d

s 
Ra

tio
. C

I: 
C

on
fid

en
ce

 In
te

rv
al

, S
N

Ps
: s

in
g

le
 n

uc
le

ot
id

e 
p

ol
ym

or
p

hi
sm

s,
 N

S:
 N

ot
 s

ig
ni

fic
an

t.



37

Systematic review of predictive genetic biomarkers for the efficacy of MTX

2
Ta

b
le

 2
-2

. M
o

st
 p

ro
m

is
in

g
 S

N
P

s 
th

at
 w

er
e 

si
g

ni
fi c

an
tl

y 
as

so
ci

at
ed

 w
it

h 
M

TX
 e

ffi
 c

ac
y.

M
A

F

G
en

e
SN

P
Lo

ca
tio

n
A

F
A

FR
A

M
R

EU
R

SA
S

A
ss

oc
ia

tio
n

O
R 

[9
5%

 C
I]

St
ud

y

SL
C

19
A

1    
rs

10
51

26
6*

21
:4

55
37

88
0

0.
48

86
0.

32
68

0.
58

21
0.

54
87

0.
59

41
G

en
ot

yp
ic

 A
A

1.
78

 [1
.1

3–
2.

81
]

D
ro

zd
zi

k 
(2

00
7)

41

A
TI

C
   

 
rs

75
63

20
6

2:
21

53
25

93
1

0.
40

18
0.

51
29

0.
42

80
0.

48
71

0.
32

92
A

lle
lic

 T
 c

ar
rie

rs
0.

20
 [0

.0
9–

0.
46

]
Li

m
a 

(2
01

6)
1

D
H

FR
rs

83
67

88
5:

80
61

62
25

0.
42

35
0.

51
06

0.
36

31
0.

38
07

0.
43

35
A

lle
lic

 A
 c

ar
rie

rs
G

en
ot

yp
ic

 A
A

1.
44

 [1
.0

8–
1.

93
]

1.
47

 [1
.0

9–
1.

96
]

Se
na

p
at

i (
20

14
)17

Se
na

p
at

i (
20

14
)17

TY
M

S
rs

22
44

50
0

18
:6

61
00

5
0.

61
60

0.
81

01
0.

42
51

0.
46

12
0.

57
06

A
lle

lic
 A

 c
ar

rie
rs

G
en

ot
yp

ic
 A

A
1.

48
 [1

.1
2–

1.
94

]
1.

48
 [1

.1
3–

1.
94

]
Se

na
p

at
i (

20
14

)17

Se
na

p
at

i (
20

14
)17

TY
M

S
rs

28
47

15
3

18
:6

61
64

7
0.

29
01

0.
24

28
0.

23
05

0.
20

97
0.

38
65

A
lle

lic
 A

 c
ar

rie
rs

0.
68

 [0
.5

1–
0.

91
]

Se
na

p
at

i (
20

14
)17

TY
M

S
rs

37
86

36
2

18
:6

62
24

7
0.

06
23

0.
00

15
0.

04
90

0.
00

00
0.

10
63

A
lle

lic
 G

 c
ar

rie
rs

0.
51

 [0
.3

0–
0.

86
]

Se
na

p
at

i (
20

14
)17

* 
C

on
fir

m
ed

 b
y 

th
e 

m
et

a-
an

al
ys

es
 o

f K
un

g
 e

t 
al

. (
20

14
)52

 a
nd

 L
i e

t 
al

. (
20

16
)53

A
b

b
re

vi
at

io
ns

: A
FR

: A
fr

ic
an

 p
op

ul
at

io
n,

 A
M

R:
 A

m
er

ic
an

 p
op

ul
at

io
n,

 E
A

S:
 E

as
t 

A
si

an
 p

op
ul

at
io

n,
 E

U
R:

 E
ur

op
ea

n 
p

op
ul

at
io

n,
 S

A
S:

 S
ou

th
 A

si
an

 p
op

ul
at

io
n,

 
d

er
iv

ed
  f

ro
m

 t
he

 H
ap

M
ap

 p
ro

je
ct

.



38

Chapter 2

DISCUSSION

This systematic review assesses the effect of genetic variation on the efficacy of MTX in 

RA using the validated endpoints DAS, EULAR, or ACR response criteria. After Bonferroni 

correction for multiple testing, we identified six genetic biomarkers related to MTX efficacy. 

Of these, SLC19A1 rs1051266 had the most convincing evidence with two independent 

studies showing significant associations. Other potentially promising SNPs are ATIC 

rs7563206, DHFR rs836788, TYMS rs2244500, rs2847153, and rs3786362, but these lack 

replication studies. The six genetic biomarkers could have clinical implications for the disease 

outcome of RA. In fact, SLC19A rs1051266, DHFR rs836788, and TYMS rs2244500 showed 

a 40% or more increased chance of the effectiveness of MTX, and ATIC rs7563206 and 

rs378636, and TYMS rs2847153 showed 45% or more chance of the reduced effectiveness 

of MTX. Still we believe that additional studies are necessary before implementing 

pharmacogenetic testing for these SNPs in the treatment of RA.

A limitation of the investigated studies in this systematic review is the difference in the 

evaluation time points for measuring MTX efficacy. MTX is a slow-acting prodrug that 

becomes active when polyglutamated in the cells. The process of polyglutamation is slow 

and takes up to 27.5 weeks (range 6.6–62.0 weeks) to reach steady state.34 This delay in 

steady-state polyglutamation explains the relatively long time to clinical response, and 

therefore most studies had the endpoint set to 6 months after the start of MTX therapy. 

However, some studies evaluated response earlier than t=6 months, while MTX may not yet 

have exerted its full potential. Furthermore, the genotypic or allelic genetic models were 

often used, when in fact the hypothesis-free driven additive genetic model seems more 

appropriate because the underlying genetic model is unknown.

Another limitation is that most studies tested with univariate analysis, without taking into 

account baseline variables (multivariate testing), such as gender, smoking status, disease 

severity which are known to influence response to MTX. Most drug-gene interaction studies 

were explorative, with the use of retrospective data and lack validation. Pharmacogenetic 

testing in RA remains limited mainly because the evidence for drug-gene interactions 

are marginal. MTX is involved in multiple pathways with different genes. Yet, most 

pharmacogenetic studies were candidate studies that tested only a single or a small number 

of SNPs, but not a combination of multiple genes or pathways.35 To get clear evidence, 

additional studies with the use of a combination of multiple genes are needed. This review 

can show a basis, to test all suggestive SNPs together in association with the efficacy of MTX.

The strength of our study is that a systematic approach was used to identify SNPs and 

the selection of the articles was performed according to the PRISMA guidelines. Another 
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strength is that only validated outcome criteria were used and that adjustment for multiple 

testing by Bonferroni correction was applied for the included studies. A potential weakness 

of this review is that only English publications were included. This results in the exclusion 

of seven non-English studies, and important findings could have been missed. Another 

weakness was the limited sample size of some studies and the lack of power analysis to 

check the validity of the outcomes. Finally, a common limitation of systematic reviews is 

publication bias. Meaning that important – albeit negative – results were never published, 

which could lead to misinterpretation of the actual findings. Another limitation was that not 

all studies were performed with MTX monotherapy, and therefore the effect on response 

could be influenced by other DMARDs. Several meta-analyses have been performed on 

pharmacogenetics biomarkers for the efficacy or toxicity of MTX in RA. Of our promising 

SNPs, SLC19A1 rs1051266 with the genotypic AA (vs AG/AG) was tested in MTX efficacy 

in three meta-analyses. Two meta-analyses, conducted by Li et al.50 and Chen et al.,51 

confirmed the significant association with an OR of 1.42 (95% CI: 1.04–1.93) and 1.49 (CI: 

1.17–1.90), respectively. However, the third meta-analysis by Chen et al.51 showed substantial 

heterogeneity (I2) of 72% for the allelic model and thus represented inconsistencies of 

the pooled studies and affects the validity of the results. None of the other variants was 

evaluated in meta-analysis. 

In summary, through the use of a systematic review and inclusion of studies with validated 

RA efficacy endpoints, we identified six SNPs for which there is substantial evidence for an 

association with MTX response in RA patients. For clinical application more evidence from 

prospective studies with multivariate testing is needed. 
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Supplementary File S2-1. Full search string.

((“Arthritis, Rheumatoid”[Majr:NoExp] OR “Rheumatoid Arthritis”[ti]) AND (“Methotrexate”

[Majr] OR methotrexat*[ti] OR “Amethopterin”[ti]) AND (“Pharmacogenetics”[Mesh] OR 

pharmacogenet*[tw] OR pharmacogenom*[tw] OR “Epigenomics”[Mesh] OR epigenet*[tw] 

OR epigenom*[tw] OR “Polymorphism, Single Nucleotide”[Mesh] OR “SNPs”[tw] OR “Single 

Nucleotide Polymorphism”[tw] OR “Single Nucleotide Polymorphisms”[tw]))
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Aim: A third of rheumatoid arthritis patients discontinue methotrexate treatment 

due to inefficacy or toxic side effects. Recently, an association between SLC04A1 

rs2236553, SLC22A2 rs624249 and rs316019, and SLC28A2 rs10519020 and 

rs1060896 with the efficacy and toxicity of methotrexate was reported. This study 

aims to replicate these findings in an independent cohort (n=324). 

Methods: Regression analyses tested the associations between genotype and 

methotrexate response or toxicity. 

Results: In the discovery study, there was a significant association between toxicity and 

rs624249, and rs1060896. These associations were not replicated in the independent 

cohort. Neither study observed an association between methotrexate efficacy and 

SLC04A1, SLC22A2 or SLC28A2 variants. 

Conclusion: Current evidence does not support associations between variants in 

SLC04A1, SLC22A2 and SLC28A2 with methotrexate efficacy or toxicity.
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INTRODUCTION

Methotrexate (MTX) is the first line disease-modifying antirheumatic drug (DMARD) in the 

treatment of patients with rheumatoid arthritis (RA). However, a third of the patient fails 

to achieve clinical remission or are unable to tolerate the drug due to side effects, often 

necessitating a switch to another DMARD or biological drug. Several nongenetic factors 

are known to influence the efficacy and toxicity of MTX, including gender, disease activity, 

disease duration, ethnicity and smoking.1,2 The predictive value of these factors, however, 

remains limited for MTX response or toxicity. In contrast, genetic variation is found to play a 

substantial role, and several studies have reported a predictive role of variants in candidate 

genes related to MTX pharmacology.3–7

The precise mechanism of action of MTX in the treatment of RA is unknown, but MTX as 

a folate antimetabolite may exert its immunological function (after polyglutamation) via 

pathways involving adenosine, ubiquitin, methionine, folate, de novo pyrimidine and de novo 

purine synthesis.8 Variants in genes encoding proteins in these pathways could play a role in 

predicting efficacy or toxicity of low-dose MTX, such as demonstrated in the meta-analysis 

by Chen et al., which reported the AMPD1 34C (rs17602729) and ATIC T675C (rs4673993) 

mutations to be associated with MTX efficacy and linked TYMS 1494 del6 (rs34489327), 

FPGS (rs10106) and MTHFR C677T (rs1801133) to the risk of adverse events.4

Solute carriers (SLC) are constitutively expressed folate transporters that mediate the influx 

of MTX in the cell. Hence, genetic variation in genes encoding these transporters was 

previously examined for their association with MTX response. The most investigated SNP, 

SLC19A1 80G>A (rs1051266, also called RFC-1), was examined in two meta-analyses by 

Kung et al.6 and Qiu et al.9. Kung et al. found an association with MTX efficacy, but not 

with toxicity. Qiu et al. showed an association with MTX toxicity in Europeans (OR: 1.36; 

p=0.041). Other SNPs found to be associated with MTX toxicity were: SLC19A1 G carriers 

(rs7499; OR: 3.72; p=0.017), SLC46A1 GG (rs2239907; OR: 2.32; p=0.030) and SLC01B1 

T carriers (rs4149056; OR: 2.78; p=0.040) and TT (OR: 2.82; p=0.019; Lima et al.).10 Also, 

SLC22A11 T>A rs11231809 T-allele carriership (OR: 0.19; p=0.031) was associated with 

MTX response (as measured by the changes in the disease activity score [DAS] at the 

6-month time interval). 

Recently, a study by Aslibekyan et al.11 reported that the SNPs in SLC04A1 (rs2236553), 

SLC22A2 (rs624249 and rs316019) and SLC28A2 (rs10519020 and rs1060896) are associated 

with MTX toxicity or efficacy in RA patients in the Treatment of Early Rheumatoid Arthritis trial 

(TEAR). Those variants were relatively common with a minor allele frequency greater than 

5% in the global population. The present study aims to investigate if the initial findings can 
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be replicated in the BeSt (Dutch acronym for ‘behandelstrategieën’, treatment strategies) 

cohort, thus informing future precision medicine efforts in RA. 

MATERIALS & METHODS

Patient characteristics

DNA samples and clinical response data from 352 RA patients receiving MTX therapy were 

available on 508 patients participating in the BeSt study.12 The BeSt study is a multicenter 

randomized clinical trial that recruited early RA patients and compared the clinical and 

radiographic outcomes of four different treatment strategies as detailed below. The patient 

eligibility criteria were: age of ≥18 years, disease duration of ≤2 years, active disease on 

onset defined as ≥6 of 66 swollen joints, ≥6 of 68 tender joints and either an erythrocyte 

sedimentation rate of ≥28 mm/h or a global health score of ≥20 mm on a 0–100 mm visual 

analog scale, where 0 reflects the best and 100 the worst. Figure 3-1 illustrates the different 

treatment groups until the first evaluation point after 3 months of treatment.

Figure 3-1. Flowchart of the enrolled BeSt patients. 
Abbreviations: MXT: Methotrexate.

Written informed consent was obtained from all patients, and the local ethics committees of 

all participating hospitals approved the study (CME LUMC; registration number P258/99). 

Information about gender, the age of disease onset, age at treatment onset, smoking, MTX 

dosage, concomitant drugs (DMARDs, corticosteroids and nonsteroidal anti-inflammatory 

508 patients enrolled and randomized in the BeSt study

126 patients with 
sequential monotherapy 

(15 mg/week MTX; 
increase to 25–30 mg/
week when insufficient 

response)

121 patients with 
sequential step-up 

combination therapy (15 
mg/week MTX; increase 
to 25–30 mg/week when 

insufficient response)

133 patients with initial 
combination therapy 

with prednisone (7.5 mg/
week MTX, 2000 mg/
day sulfasalazine, and 

prednisone; increase to 
25–30 mg/week when 
insufficient response)

128 patients with initial 
combination therapy 

with infliximab 
(25–30 mg/week MTX 

and 3 mg/kg infliximab)

93 (28.7%) patients 
with sequential 

monotherapy were 
available for 

current analysis

90 (27.8%) patients 
with sequential step-up 

combination therapy 
were available for 
current analysis

73 (22.5%) patients 
with initial combination 
therapy with prednisone 

were available for 
current analysis

68 (21.0%) patients 
with initial combination 
therapy with infliximab 

were available for 
current analysis
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drugs), rheumatoid factor and anticitrullinated protein antibody seropositivity and the DAS28 

score before and after 6 months of treatment were provided. In the BeSt study, individual 

ethnicity data were not available, but most patients (>95%) were self-reported Caucasians. 

Genotyping

The five SLC SNPs that emerged from the LASSO regression in the previous explorative 

study from Aslibekyan et al.11 were genotyped in the BeSt cohort. Thermocycler (SensoQuest 

GmbH, Gottingen, Germany) was used for PCR to amplify the preferred SNPs and Q-solution 

was added to facilitate the SNP amplification. For all PCRs, 45 cycles were performed. 

SLC28A2rs10519020 was genotyped by pyrosequencing (PyroMark Q96 ID system, Qiagen, 

Hilden, Germany), while SLC22A2 rs624249, SLC22A2 rs316019, SLC28A2 rs1060896 

and SLC04A1 rs2236553 were genotyped by high-resolution melting (Lightscanner, Idaho 

Technology Inc., UT, USA). The obtained genotypes were confirmed by Sanger sequencing 

(Applied Biosystems, MA, USA).

End points

Similar end points were used as in the discovery study by Aslibekyan et al.11 as discussed 

below. Efficacy was defined as DAS28 at 24 weeks, and the MTX-related toxicity was defined 

as any adverse or severe adverse event within the first 2 years of treatment. The research 

nurse determined toxicity during hospital visits in the BeSt study.

Treatment of early rheumatoid arthritis trial data

The design of the TEAR trial was previously described in detail elsewhere.13 Briefly, 

TEAR is a 2-year, double-blind clinical trial of two treatment strategies (early intensive 

vs step-up therapy) and two medication combinations (MTX + etanercept and MTX + 

hydroxychloroquine + sulfasalazine) in early RA (<3 years since disease onset). Efficacy was 

ascertained at the 24-week time point using the change in DAS28 score, while toxicity was 

ascertained by self-report during clinic visits over the 2 years of follow-up; because of low 

rates of adverse events, all types of toxicity were combined. In the present analysis, smoking 

was ascertained using a validated biomarker (cotinine) to ensure accuracy. Genotyping was 

performed using the DMET array as previously described13 as well as the Affymetrix 6.0 

chip during a subsequent effort. TEAR data were reanalyzed for the present study to ensure 

methodological consistency with BeSt; specifically, we analyzed the data using standard 

regression rather than using the LASSO as described in the original paper (see below).
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Statistical analysis

Statistical analyses were performed using SPSS 23.0 (SPSS, Inc., IL, USA) and Plink (version 1.9, 

http://pngu.mgh.harvard.edu/purcell/plink/).14 Each SNP was checked for Hardy–Weinberg 

equilibrium. The associations of SNPs with efficacy or toxicity were analyzed using multiple 

regression models, adjusted for DAS28 at baseline, age, gender, smoking and treatment arm.

We tested associations of SNPs with efficacy in both complete study populations as well 

as in the subgroup of patients initially treated with MTX monotherapy. Due to the timing 

of both studies, a subgroup analysis on MTX monotherapy was not possible for toxicity. 

We applied a Bonferroni correction for the five SLC SNPs to adjust for multiplicity, which 

results in a significance threshold of 0.01 (0.05/5 SLC SNPs). 

RESULTS

Study population 

DNA from 351 patients from the BeSt cohort was available for the current analysis, but for 

25 patients, data on either DAS28 (n=2), MTX dose (n=2), or both (n=21) were missing at 

24 weeks. An additional two patients had stopped MTX before 24 weeks, yielding a total 

of 324 patients for the association analysis.

Table 3-1. General characteristics of both study populations

Variables BeSt (n=324) TEAR (n=480)

Age, years† 54.3±13.4 49.5±12.6
Female, n (%) 220 (67.9) 349 (72.7)
Methotrexate dosage at 6 months, mg/wk† 19.9±6.9 13.9±3.5
RF-positive, n (%)† 211 (65.1) 430 (89.6)
Smoking, n (%) 116 (35.8) 150 (39.0)
DAS28 at baseline, points 5.7±0.90 5.8±1.1
DAS28 at 24 weeks, points† 3.6±1.23 3.9±1.4
Experience adverse events within 2 years of treatment, n (%) 114 (35.2) 174 (36.3)

† Significant difference between BeSt and TEAR study (p<0.05). 
Abbreviations: DAS28: Disease activity score measured in 28 joints, RF: Rheumatoid factor, BeSt: 
Behandelstrategieën (Dutch acronym for treatment strategies), TEAR: Treatment of early rheumatoid 
arthritis trial.

Table 3-1 summarizes the demographic and clinical characteristics of the patients enrolled in 

the TEAR and BeSt cohorts. The mean age of the BeSt patients was 54 years and the mean 

baseline DAS28 was 5.7; 68% were female. Of the 324 patients, 116 (36%) patients were 

current smokers, and 211 (65%) were rheumatoid factor positive. After 6 months, the mean 
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dose of MTX was 19.8 mg/week, ranging from 7.5 to 30.0 mg/week, and all patients used 

concomitant folic acid supplementation (5 mg/week). Within 6 months of enrolment, 188 

patients (58%) received MTX monotherapy, and 136 patients received MTX combination 

therapy, either with infliximab (n=66, 20%) or with sulfasalazine and prednisolone (n=70, 22%).

Genetic association results

In the BeSt cohort, all five genotyping assays had a call rate of >95%, and all five genotypes 

did not violate Hardy–Weinberg equilibrium (p>0.05). The minor allele frequencies (MAF) of the 

investigated SNPs were >5%, except the SNP in SLC28A2 (rs10519020, MAF in BeSt=0.95%) 

which occurred more frequently in the general population: MAF=6.55% (1000 genome project, 

Caucasians: 1.91%).15 The associations between the investigated genetic variants and efficacy 

are shown in Table 3-2, and the associations with toxicity are summarized in Table 3-3.

Table 3-2. Associations between DAS28 at 24 weeks and SLC SNPs

BeSt study TEAR study

Gene SNP Allele B (SE) p-value† B (SE) p-value†

SLCO4A1 rs223655 C -0.11 (-1.20) 0.23 0.11 (0.14) 0.45
SLC22A2 rs624249 A -0.10 (-1.06) 0.29 -0.13 (0.13) 0.34
SLC22A2 rs316019 T 0.12 (0.86) 0.39 0.18 (0.21) 0.39
SLC28A2 rs1060896 C -0.01 (-0.08) 0.78 0.17 (0.13) 0.18
SLC28A2 rs10519020 C -0.26 (-0.56) 0.73 0.25 (0.30) 0.40

† The p-values were adjusted for gender, DAS28 at baseline, randomization groups, age and smoking status. 
Abbreviations: B: Regression coefficient, DAS: Disease activity score, SE: Standard error, BeSt: 
Behandelstrategieën (Dutch acronym for treatment strategies), TEAR: Treatment of early rheumatoid 
arthritis trial.

Table 3-3. Associations between toxicity (within 2 years of therapy) and SLC SNPs

BeSt study TEAR study

Gene SNP Allele OR (95% CI) p-value† B (SE) p-value†

SLCO4A1 rs223655 C 1.31 (0.92–1.85) 0.13 0.85 (0.71–1.03) 0.10
SLC22A2 rs624249 A 0.87 (0.62–1.23) 0.44 1.55 (1.16–2.07) 0.003
SLC22A2 rs316019 T 1.03 (0.62–1.71) 0.92 1.28 (0.82–1.99) 0.28
SLC28A2 rs1060896 C 1.27 (0.92–1.74) 0.15 0.72 (0.54–0.95) 0.02
SLC28A2 rs10519020 C 4.03 (0.71–22.87) 0.12 0.87 (0.72–1.06) 0.17

† The p-values were adjusted for gender, DAS28 at baseline, randomization groups, age and smoking 
status. Nominally significant (p<0.05) associations are marked in bold, and significant association after 
Bonferroni correction (p<0.01) are underlined.
Abbreviations: DAS: Disease activity score, OR: Odds ratio, BeSt: Behandelstrategieën (Dutch acronym 
for treatment strategies), TEAR: Treatment of early rheumatoid arthritis trial.
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Both studies showed null associations between MTX efficacy and SLC SNPs. Further tests 

carried out with the MTX monotherapy groups consistently showed no significant associations. 

Although in the TEAR study two nominally significant SLC-variants were associated with MTX 

toxicity, these associations in the BeSt cohort were not statistically significant.

DISCUSSION

In this study, we aimed to replicate previously reported associations of selected variants 

in SLC04A1, SLC22A2, and SLC28A2 with the efficacy and toxicity of MTX in RA patients 

participating in the TEAR study. Before pharmacogenetics biomarkers can be used in clinical 

practice, it is essential that potential biomarkers from explorative studies are replicated in 

independent cohorts; such replication was not achieved in our study, redirecting future 

pharmacogenetics investigations of MTX to other genomic regions. The SLC superfamily 

comprises 55 gene families with at least 362 putatively functional protein-coding genes. 

SLC04, SLC22A and SLC28 function, respectively as bicarbonate transporter, organic cation/

anion/zwitterion transporter and Na-coupled nucleoside transporter. Although no further 

studies published on relationships of the investigated variants with either MTX efficacy or 

toxicity, associations have been described with SLC22A2 rs316019 and either cisplatin,16 

metformin,17 smoking cessation,18 diabetic nephropathy and hypertension19 and SLC28A2 

rs1060896 with ribavirin.20

There are several potential explanations why the reported pharmacogenetics markers could 

not be replicated. The most likely reason is that the biomarkers found in the TEAR study 

were false positive findings. Alternatively, contradictory findings could be explained by 

patient differences between the two study cohorts. For instance, we observed significant 

differences in age, rheumatoid factor positivity, DAS28 at 24 weeks, and MTX dosage at 

24 weeks. By adjusting for differences in age, DAS28 at baseline, and group assignment 

in the regression models, baseline differences were taken into account, but we could not 

correct for differences that occurred during treatment, although to a large extend the drug 

treatment regimens between the studies were comparable. In both studies, one group 

was treated with MTX, and a biological (TEAR etanercept and BeSt infliximab), one group 

with MTX and sulfasalazine (and in case of BeSt also with prednisolone), and one group 

was treated with MTX monotherapy. Moreover, subgroup analysis in both TEAR and BeSt 

patients receiving MTX monotherapy showed no significant associations between efficacy 

and the genetic SLC variants. A potential limitation is that our study has a limited number of 

patients involved to detect the previously reported associations. However, post hoc analysis 

showed that the positively associated SNPs (rs624249 and rs1060896) have more than 90% 
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power to detect an effect. Another limitation could be the effect introduced by different 

ethnicities in the two cohorts. Yet, in both cohorts most patients were from Caucasian origin 

(TEAR 80%, BeSt >95%), and the investigated significant SNPs showed no different allele 

frequencies according to the 1000 genome data.

Penalized regression, as used in the discovery study,11 offers an attractive way to select 

relevant SNPs in the application of pharmacogenomics, especially when the considered 

number of SNPs exceeds the number of individuals in the study. The two most widely used 

techniques are Ridge and LASSO regression,21 and various combinations thereof, such as 

elastic net22 and group LASSO.23 These methods are widely accepted for explorative studies 

but were developed for prediction problems, in other words, false positives among selected 

SNPs are acceptable as long as outcome prediction performs well. No associations are 

established by penalized regression. Replication in independent cohorts is a prerequisite 

for clinical application, and the presence of false positives in the SNPs selected by penalized 

regressions tends to hamper such efforts, as evidenced by our study. An improved strategy 

seems to be that penalized regression should only be considered a screening step, followed 

by a step that demonstrates associations.

In conclusion, our study provides no evidence that genetic variants in SLCO4A1, SLC22A2 

and SLC28A2 are associated with either efficacy or toxicity in early RA patients treated with 

MTX. To better understand the role of SLC, future research should focus whether other SLC 

variants are associated with the effectiveness or toxicity of MTX in RA patients.
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Aim: To study the performance of a clinical pharmacogenetic model for the prediction 

of non-response to methotrexate in rheumatoid arthritis patients treated with 

combination therapy. 

Methods: Prediction model risk scores were calculated and compared with non-

response (DAS>2.4). Regression and ROC curve analyses of the prediction model were 

performed. Also, the sensitivity, specificity, and the positive and negative predictive 

values (PPV and NPV) were determined. 

Results: The ROC AUC was 75% at first and 70% after second evaluation. At the 

second evaluation, prediction non-response had a sensitivity of 67% (CI: 54–78%), 

specificity of 69% (CI: 60–77%), PPV of 52% (CI: 45–60%) and NPV of 80% (CI: 

73–85%). 

Conclusion: The clinical pharmacogenetic model could not predict non-response in 

RA patients treated with methotrexate combination therapies.
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INTRODUCTION

Rheumatoid arthritis (RA) is the most common form of autoimmune arthritis, affecting 

0.5–1.0% of the adult population in the Western World.1 Much of the joint damage that 

ultimately results in disability begins early in the course of the disease. Thus, early disease 

recognition, prompt diagnosis with early (intensive) treatment is critical to quickly achieve and 

maintain control of the inflammation and the underlying disease process. The vast majority of 

patients with RA start with methotrexate (MTX),2 with the treatment goal of remission or low 

disease activity (Disease Activity Score [DAS] ≤2.4). MTX has been used for decades, but a 

considerable proportion of patients experience an inadequate response. Temporary treatment 

with corticosteroids has shown to increase early response rates, but after discontinuation 

of this, MTX can still prove insufficient response. On the other hand, some patients achieve 

lasting clinical remission on MTX monotherapy. To date, it remains a process of trial and error 

to choose the best initial treatment for newly diagnosed RA patients, although attempts have 

been made to identify clinical and genetic risk factors for response to MTX.

A clinical pharmacogenetic model was prior developed to predict non-response (DAS>2.4) 

of monotherapy MTX in early RA patients.3 This predictive model combines clinical predictors 

with genetic variants related to the mechanism of action of MTX (Table 4-1). Based on the 

summed score in the model, patients are divided into predicted responders (summed score 

of ≤3.5), intermediate responders (summed score between 3.5 and 6.0) or non-responders 

(summed score ≥6.0). The predicted non-responders and predicted responders were used to 

calculate the predictive parameters for the clinical outcome low disease activity (DAS<2.4).

The originally derived prediction model, in patients treated with MTX monotherapy (n=205), 

showed a sensitivity of 86% (95% confidence interval (CI:) 76–93%) and specificity of 95% (CI: 

82–99%) with an AUC of 85% (CI: 80–91%) for the prediction of MTX non-responders. Cross-

validation in a small group of 38 early RA patients treated with MTX monotherapy supported 

the obtained results, although with worse sensitivity and specificity of respectively 70% (CI: 

35–93%) and 72% (CI: 47–90%). A subsequent study (n=71) in MTX treated patients with 

preceding DMARD failure confirmed that the model performs modestly well in predicting 

MTX non-response, with a sensitivity of 81% (CI: 61–94%), a specificity of 47% (28–66%) and 

AUC of 77% (CI: not available).4 Also, a recent replication study, that combined predicted 

intermediate responders with predicted responders, showed in a large number of MTX 

monotherapy treated RA patients (n=720) a sensitivity of 50% (CI: 45–55%), a specificity of 

75% (CI: 69–80%) and an AUC of 66% (CI: not available).5

Since in daily clinical practice RA patients are frequently treated with MTX based (sometimes 

temporary) combination therapies at an early disease stage – although debate remains 
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whether these combinations are superior to MTX alone – the performance of the prediction 

model in these patients is of importance. This study aimed to evaluate the test characteristics 

of the pharmacogenetic model to predict MTX non-response in RA patients treated with 

combination therapies. 

PATIENTS & METHODS

The recommendations in the TRIPOD statements6 and the STARD guidelines7 were used 

for the describing of the methods and results of the study. 

Study participants

Retrospective data of 314 patients were collected from three academic hospitals in the 

Netherlands: Radboud University Medical Centre, Nijmegen (RUMC), Erasmus Medical 

Centre, Rotterdam (EMC) and Leiden University Medical Center, Leiden (LUMC). Included 

patients derived from the tREACH trial8 (EMC), the IMPROVED study9 (LUMC), and the early 

RA inception cohort10 (Radboud UMC). The period for patient recruitment was between 

1989 and 2009, 2007 and 2010, and 2007 and 2011 for respectively the early inception 

cohort, the IMPROVED study, and the tREACH trial.

Eligible patients were diagnosed with RA, based on the ACR 1987 or EULAR/ACR 2010 

classification criteria for RA. Included patients had a treatment duration with MTX and 

follow-up for at least two study evaluation visits, were 18 years or older, and had not used 

any DMARD before the start of MTX. Further, DNA samples and clinical data included in the 

prediction model must be available (complete-case analysis). All patients provided written 

consent for participation in this study, and the institutional ethics committees approved 

the study protocol.

IMPROVED patients started their treatment with MTX and tapered prednisone in 7 weeks 

from 60 mg/day to 7.5 mg/day. At four months, patients with DAS<1.6 received tapered 

prednisolone to zero in 3 weeks. Patients not in remission (DAS>1.6) at four months were 

randomized in either 1) MTX + hydroxychloroquine + sulfasalazine and prednisolone, 

or 2) MTX and adalimumab. The given doses in IMPROVED were: MTX 25 mg/week, 

hydroxychloroquine 400 mg/day, sulfasalazine 2 g/day, prednisolone 7.5 mg/day, and 

adalimumab 40 mg/2 weeks.

tREACh patients started their treatment with either 1) MTX + sulfasalazine and hydroxy-

chloroquine with glucocorticosteroids intramuscularly, 2) MTX + sulfasalazine and hydroxy-

chloroquine with oral glucocorticosteroids, or 3) MTX + tapered oral glucocorticosteroids. 
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Glucocorticosteroids were either given as a single intramuscular dose (either methylpredniso-

lone 120 mg or triamcinolone 80 mg) or an oral tapering scheme of prednisolone in 9 weeks 

from 15 mg/day to 2.5 mg/day. Patients that not achieved low disease activity (DAS>2.5) at 

three months switched to MTX with etanercept. The given doses in tREACH were: MTX 25 

mg/week, sulfasalazine 2 g/day, hydroxychloroquine 400 mg/day, etanercept 50 mg/week.

RUMC patients were asked in the outpatient clinic to participate in follow-up research (early 

RA inception cohort). Most RUMC patients started with MTX monotherapy. Also, circa one-

fourth of patients were treated with a combination of MTX with either leflunomide or with 

sulfasalazine. Typically, few patients received oral corticosteroids or biological DMARDs as 

first-line treatment. However, often intra-articular corticosteroids are used to offer temporary 

relief, and in a later stage, the combination of MTX and biological DMARDs are sometimes 

required for adequate disease control. 

Outcome and predictors

The primary endpoint was non-response set as not achieving low disease activity (DAS>2.4) 

at first or second evaluation visit after 3–4 months and 6–8 months after the start of therapy, 

respectively. The secondary endpoint was EULAR good response criteria, defined as a 

DAS improvement of >1.2 from baseline and with a DAS of ≤2.4 attained during the first 

or second evaluation.11 

Genotyping

Four genetic variants in four genes – MTHFD1 rs17850560, AMPD1 rs17602729, ITPA 

rs1127354, ATIC rs2372536 – were genotyped in all patients using the TaqMan technique. 

A TaqMan assay performed quantitative genotyping with a real-time polymerase chain 

reaction using the LightCycler® 480 (Roche Diagnostics, Mannheim, Germany) following the 

manufacturer’s protocol. The program LightCycler® 480 Endpoint Genotyping analysis software 

(Roche Diagnostics, Mannheim, Germany) was used to call the genotype results. Each variant 

was tested for Hardy-Weinberg equilibrium, and a p<0.05 was considered as deviance.

Statistical analysis

On baseline, first and second evaluation, the variables between the three cohorts were 

evaluated. To test differences between the observed responders (attained low disease 

activity; DAS≤2.4) and non-responders (DAS>2.4), variables at the second evaluation 

were compared. The variables in the prediction model (Table 4-1) at the first and second 

evaluation were entered into a logistic regression model and checked if those variables 
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showed the same effect as in the discovery study. The included variables with the same 

weighted scores were associated with actual response (low disease activity, DAS>2.4). The 

associations were reported as betas and OR with the corresponding p-values.

Receiver Operating Characteristic (ROC) curves of the prediction model with the four 

pharmacogenetic variants (pharmacogenetic model) and without (clinical model) were 

plotted and the area under the curve (AUC) was calculated. 

Based on the summed score in the model, patients are divided into predicted responders 

(summed score of ≤3.5), intermediate responders (summed score between 3.5 and 6.0) or 

non-responders (summed score ≥6.0). To assess the performance of the prediction model 

the sensitivity, specificity, PPV and NPV were calculated. The intermediate responders were 

ignored in the calculation of the predictive parameters, but were used in the calculation of 

the AUC of the ROC curve.

Table 4-1. The pharmacogenetic model to predict non-response to methotrexate

Score Variable

0 Male gender
DAS at baseline ≤3.8
RF-negative non-smoker

1 Female gender
RF-negative smoker
RF-positive non-smoker
MTHFD1 1958 AA genotype
AMPD1 34 CC genotype
ATIC 347 G-allele carrier

2 RF-positive smoker
ITPA 94 A-allele carrier

3 DAS at baseline >3.8 and ≤5.1

3.5 DAS at baseline >5.1

A higher summed scores indicate a higher probability of non-response to methotrexate.
Abbreviations: DAS: Disease Activity Score, RF: Rheumatoid Factor.

Time evaluation of the different cohorts

The evaluation time differed intra-and interstudy. For instance, the tREACH study evaluation 

points were planned quarterly, while the IMPROVED study assessment was planned every 

four months. To check if those evaluation points influence the DAS and the prediction 

model, association between visiting times and the DAS were tested using Chi-square test 

and additionally, visually inspected for a pattern by a scatterplot.
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Intended sample size

Based on the development study, the amount of minimal included patients was guided to 

an expected 40% prevalence of non-responders and a point estimate of 85% sensitivity. 

As a result, at least 264 patients required to be included to achieve a confidence limit of 

>75 with 0.95 probability.12 We planned to include 320 patients to achieve some margins 

of error and misjudgment of the frequency of non-responders. This sample would allow 

80% power to detect differences in sensitivity between responders and non-responders.

All statistical analyses were performed using RStudio version 1.0.136 (RStudio, Boston, MA) 

and IBM®. SPSS® Statistics 24.0 version (SPSS INC, Chicago, Illinois, USA). P-values lower 

than 0.05 were considered significant. 

RESULTS

Cohort differences 

Patient baseline characteristics were similar between the three study cohorts, except for 

age, smoking, ESR, CRP, VAS, and drug treatment (Table 4-2). The mean DAS at baseline 

was 3.49 (SD±0.98, range 0.67–6.77), 34 patients (11%) had a DAS below 2.4, patients 

median age was 54 years (range 18–87 years), the majority was female (69%), rheumatoid 

factor and anti-citrullinated protein antibodies were positive in 70 and 67% of patients, 

respectively. At first and second evaluation respectively, the mean MTX dosage of all 

included patients was 23.3±4.1 and 22.1±5.2 mg/week, and the given weekly MTX dosage 

was approximately the same between the cohorts. On the contrary, concomitant drug 

treatment differed between the groups, for example, RUMC patients started their treatment 

with fewer oral corticosteroids and less concomitant DMARDs than EMC and LUMC, on 

both evaluation points.

Study outcomes

After the first and second evaluation respectively, 215 (68%) and 223 patients (71%) achieved 

low disease activity (DAS≤2.4). EULAR good response (DAS<2.4 and DAS improvement >1.2 

from baseline) was attained at the first and second visit, in respectively 165 (53%) and 169 

(64%) patients. Genotype distribution of all four genetic variants were in Hardy-Weinberg 

equilibrium (p-value >0.05).

The patient baseline characteristics of the actual responders (DAS<2.4) and non-responders 

at the second evaluation are shown in Table 4-3. At baseline (start of therapy), significant 

differences were observed for the use of concomitant DMARDs and corticosteroids, gender, 



66

Chapter 4

Table 4-2. Patients characteristics at baseline, first and second evaluation. 

EMC 
(n=142)

LUMC 
(n=135)

RUMC 
(n=37)

Combined 
(n=314)

At first visit (baseline)

Age, mean ±SD years 55.2±14.4 52.3±13.6 58.8±14.2 54.4±14.1
Female, n (%) 92 (64.8) 95 (70.4) 29 (78.4) 216 (68.8)
Smoker, n (%) 52 (36.6) 34 (25.2) 6 (16.2) 92 (29.3)
RF-positive, n (%) 102 (71.8) 90 (66.7) 27 (73.0) 219 (69.8)
ACPA positive, n (%) 101 (71.6)# 86 (63.7) 16 (61.5)# 203 (67.2)#

DAS, mean ±SD 3.5±0.9 3.4±1.0 3.6±1.2 3.5±1.0
ESR, mean ±SD 32.0±22.4 33.6±25.9 22.8±19.2 31.6±23.8
CRP, mean ±SD 20.4±27.9 23.1±32.0 19.0±30.4 21.5±30.0
VAS, mean ±SD 51.2±24.2 43.2±24.1 56.1±24.7 47.8±24.5
MTX doses, mean ±SD 25.0±0.0 25.0±0.0 14.24±6.88 23.72±3.89
Concomitant DMARDs, n (%) 138 (97.2) 135 (100.0) 8 (21.6) 281 (89.5)
Concomitant NSAIDs, n (%) 4 (2.8) 93 (68.9) 27 (73.0) 124 (39.5)
Concomitant corticosteroid, n(%) 136 (95.8) 135 (100.0) 3 (8.3) 247 (87.3)
Concomitant biologicals, n (%) 0 (0.0) 23 (17.0) 1 (2.7) 24 (7.6)

At first evaluation (t=3–4 months)

DAS, mean ±SD 2.0±1.0 1.6±0.9 3.0±1.2 1.9±1.0
ΔDAS from baseline, mean ±SD 1.5±1.1 1.9±1.1 0.6±1.2 1.6±1.2
ESR, mean ±SD 17.3±14.2 12.4±10.1 21.9±22.7 15.7±14.3
CRP, mean ±SD 8.5±12.9 7.7±11.1 13.8±27.3 8.7±14.4
VAS, mean ±SD 31.1±23.0 21.7±20.5 40.6±27.0 28.2±23.3
MTX doses, mean ±SD 24.0±3.2 24.5±2.1 22.2±5.3 23.3±4.1
Concomitant DMARDs, n (%) 138 (97.2) 135 (100.0) 9 (24.3) 282 (89.9)
Concomitant NSAIDs, n (%) 18 (12.7) 65 (48.1) 24 (64.9) 107 (34.1)
Concomitant corticosteroid, n (%) 9 (6.3) 34 (25.2) 4 (10.8) 47 (15.0)
Concomitant biologicals, n (%) 0 (0.0) 23 (17.0) 1 (2.7) 24 (7.6)

At second evaluation (t=6–8 months)

DAS, mean ±SD 1.9±0.9 1.6±0.8 2.8±0.9 1.9±1.0
ΔDAS from baseline, mean ±SD 1.7±1.1 1.8±1.1 0.8±1.0 1.6±1.1
ESR, mean ±SD 14.9±13.2 13.2±14.7 15.5±12.5 14.2±13.7
CRP, mean ±SD 7.4±11.6 7.7±16.1 6.4±10.0 7.4±13.5
VAS, mean ±SD 28.6±20.7 24.7±20.8 24.8±13.8 21.7±8.7
MTX doses, mean ±SD 22.7±4.4 22.5±5.4 21.6±5.6 22.2±5.2
Concomitant DMARDs, n (%) 141 (99.3) 134 (99.3) 10 (27.0) 285 (90.8)
Concomitant NSAIDs, n (%) 19 (13.4) 26 (19.3) 24 (64.9) 69 (22.0)
Concomitant corticosteroid, n (%) 9 (6.3) 34 (25.2) 3 (8.1) 46 (14.6)
Concomitant biologicals, n (%) 13 (9.2) 35 (25.9) 1 (2.7) 49 (15.6)

# Missing data.
Abbreviations:  EMC: Erasmus Medical Center, LUMC: Leiden University Medical Center,  RUMC: Radboud 
University Medical Center. RF: Rheumatoid Factor, ACPA: Anti-citrullinated protein antibodies, DAS: 
Disease activity score, ESR: Erythrocyte sedimentation rate, CRP: C-reactive protein, VAS: visual analogue 
score, DMARDs:  Disease-modifying antirheumatic drugs, NSAIDs: nonsteroidal anti-inflammatory drugs. 
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and the VAS. RUMC patients less often started on combination therapy with corticosteroids, 

less often had an EULAR response than patients in the other cohorts.

Performance of the pharmacogenetic model

Table 4-4 shows the distribution of the patients into non-responders, intermediate and 

responders according to the cut-off values of the pharmacogenetic model, divided into 

patients that achieved response (DAS<2.4) or non-response (DAS≥2.4). At first evaluation, 

the model for prediction non-response had a sensitivity of 67% (CI: 54–78%), specificity 

of 70% (CI: 61–78%), PPV of 55% (CI: 47–63%) and NPV of 79% (73–85%). At the second 

evaluation, the model for prediction non-response had a sensitivity of 67% (CI: 54–78%), 

specificity of 69% (CI: 60–77%), PPV of 52% (CI: 45–60%) and NPV of 80% (73–85%).

Table 4-3. Variables at baseline of the responders and non-responders (according the second 
evaluation)

Baseline variables 
Responders 
(n=223)

Non-responders 
(n=91) p-value

Age, mean ±SD 53.6±14.3 56.3±13.5 0.187
Female gender, n (%) 142 (63.7) 74  (81.3) 3.42*10-3 **
RF-positive, n (%) 159 (71.3) 60 (65.9) 0.422
Current smoker, n (%) 64 (28.7) 28 (30.8) 0.819
DAS, mean ±SD 3.3±0.9 3.9±1.0 0.056
ESR, mean ±SD 30.9±23.5 33.5±24.6 0.795
VAS, mean ±SD 44.1±24.0 56.9±23.2 2.30*10-5 ***
CRP, mean ±SD 20.4±26.8 24.2±36.8 0.315
MTX dose, mean ±SD 24.4±2.4 21.9±5.8 0.324
Concomitant NSAIDs,  n (%) 89 (39.9) 35 (38.5) 0.912
Concomitant DMARDs, n (%) 211 (94.6) 70 (76.9) 9.17*10-6 ***
Concomitant corticosteroids, n (%) 208 (93.3) 66 (72.5) 1.47*10-6 ***
ITPA 94 A-allele carrier, n (%) 22 (9.8) 16 (17.6) 0.087
ATIC 347 G-allele carrier, n (%) 120 (53.8) 50 (54.9) 0.954
AMPD1 34 CC genotype, n (%) 187 (83.9) 70 (76.9) 0.199
MTHFD1 1985 AA genotype, n (%) 42 (18.8) 21 (22.1) 0.486

Responders were defi ned as DAS≤2.4 at 6 months.
Abbreviations: RF: Rheumatoid Factor, DAS: Disease Activity Score 28, ESR: Erythrocyte 
Sedimentation Rate, VAS: Visual Analogue Score, CRP: C-reactive protein, MTX: methotrexate, 
NSAIDs: non-steroidal anti-infl ammatory drugs,
DMARDs: Disease-modifying antirheumatic drugs. 
* p<0.05, ** p<0.01, *** p<0.001. # Including missing data.
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Regression analysis of the prediction model

Regression analyses of the variables in the prediction are shown in Supplementary Table 

S4-1. At both time points (first and second evaluation) only the variables female gender and 

DAS at baseline were significantly associated (p<0.05) with MTX response (DAS≤2.4). At 

first evaluation, RF-positive smoker, MTHFD1, and ATIC were associated with non-response, 

while at second evaluation this was only seen for AMPD1 (OR<1.0). Also, the confidence 

intervals of most included variables cross 1.0, and this implies that those variables show 

no difference between the responders and non-responders.

Figure 4-1 plots the ROC curves of the pharmacogenetic and clinical model (without 

the four genetic variants). The AUC of the ROC curves were 74.6% and 71.5% for the 

pharmacogenetic model and the clinical model respectively at the first evaluation. The 

AUC of the second evaluation was lower than that of the first evaluation, with 69.1% and 

67.1%, for the pharmacogenetic and clinical model respectively. Taken LUMC and EMC 

together (without the 32 RUMC patients); the AUC of the ROC were similar to the group 

consisting of the three cohorts. 

Using the EULAR response criteria as an endpoint instead of low disease activity (DAS<2.4) 

leads to worse performance of the prediction model. The AUC of the ROC curves with 

EULAR response were AUC of 62.9 and 63.4 (pharmacogenetic), and AUC of 57.7 and 62.3 

(clinical model), respectively for the first and second visit.

Table 4-4. Pharmacogenetic model at fi rst and second evaluation with observed and predicted 
MTX response (n=314)

Predicted response according to the prediction model

Non-responders Intermediate Responder

Score ≥6 Score 3.5–6 Score ≤3.5 Total

Observed response at fi rst evaluation
Non-responder 46 30 23 99
Responder 38 89 88 215
Total 84 119 111 314

Observed response at second evaluation
Non-responder 44 25 22 91
Responder 40 94 89 223
Total 84 119 111 314

Non-responders were classifi ed as DAS>2.4 and responders as DAS≤2.4
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Evaluation time differences

Analysis of the time after the start of MTX (evaluation time) to the DAS showed no pattern 

in the scatterplots in both evaluation points (Supplementary Figure S4-1). Also, no statistical 

difference was found between the DAS and the time visits: p-values were 0.08 and 0.56 at 

the first and second evaluation, respectively.

Figure 4-1. The receiver operating characteristic (ROC) curves of the pharmacogenetic model 
and clinical model. 
The ROC curve was expressed as 1-specificity with sensitivity at first evaluation (t = 3 mo) and second 
evaluation (t = 6 mo). The pharmacogenetic model (blue line) contained the variables: gender, DAS28 
at baseline, RF, smoking status and the genetic variants ATIC 347G, IPTA 94A, MTHFD1 1985AA and 
AMPD1 34CC. The clinical model (red line) contained the variables: gender, DAS28 at baseline, RF 
and smoking status.
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DISCUSSION

This study shows that the pharmacogenetic model, originally derived in early RA patients 

treated with MTX monotherapy, could not predict non-response of RA patients treated with 

MTX based combination therapies. Although the AUCs of the ROC curves were weak to 

modest (approximately 70%), the PPV, specificity and sensitivity were inadequate to predict 

non-response. For instance, the PPV, the complement of the false discovery rate, showed 

that approximately 50% of the actual non-responders (47 out of 91) were predicted as 

responders. Interestingly, while in MTX monotherapy the model had a sensitivity of 86% in 

predicting non-response, in patients treated with MTX combination therapy the PPV had 

a decrease to 70%. Therefore, the prediction model is not clinically applicable to predict 

non-response in patients treated with MTX combination therapy.

There are several possible explanations for the underperformance of the prediction model. 

One reason is that the included pharmacogenetic variants showed a minimal additive value 

in the prediction model with an AUC increase of 2.0 and 3.1% of the ROC curves, for the 

first and second evaluation visit respectively. The reason may be that the pharmacogenetic 

variants are related to the mechanism of action of MTX and adding other DMARDs as is the 

case in our replication cohort compared to the discovery cohort could dilute the predictive 

effect. While the weak predictive value of the pharmacogenetic variants was confirmed in the 

replication studies with MTX monotherapy treated RA patients, the variants showed a better 

prediction and therefore makes it a necessary component in the pharmacogenetic model. 

Another potential explanation for the underperformance of the prediction model may be 

the baseline DAS in the prediction model. Patients in the development cohort had a high 

mean baseline DAS of 4.4, and as a consequence, a DAS of 3.8 was a modifier for response 

in the prediction model. In our cohort, however, the baseline DAS was 3.5 and showed a 

small contribution in the prediction model. Because the low baseline DAS, and because 

the use of combination therapies, the majority of the patients achieved low disease activity 

on both evaluation visits (circa 70%). Yet, using the EULAR response criteria, that takes the 

baseline DAS into account and showed ~50% responders, still results in poor prediction and 

is not applicable in the clinical setting. This study showed that the predictive value of the 

model exists mainly on the clinical values: gender, rheumatoid factor positivity, and smoking 

status. The use of different RA classification criteria (1987 or 2010 criteria) could also play a 

role in the underperformance of the prediction model. For instance, the 2010 criteria were 

broader, and patients could be indicated with RA in an earlier disease stage. However, 

no difference was found between the classification criteria of RA in baseline DAS scores. 
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The frequency of the predicted intermediate responders is an important indicator of the 

feasibility of the prediction model and could limit the clinical usefulness, as it increases 

the number needed to diagnose. In our study, a large group of patients (approximately 

40%) were predicted intermediate responders, and for this group, no drug advice (MTX 

or alternative drug treatment) could be given. Therefore, it may be better to use a single 

cutoff value in the prediction model to get a clear distinguishment between two groups: 

predicted responders and predicted non-responders. For instance, this was performed in 

the large replication study, where responders and intermediate responders were combined 

into one group.

Our study has a few strengths. First, with 314 patients the study is one of the largest 

MTX pharmacogenetics studies published so far. Also, the estimations of the diagnostic 

parameters were precise, with small CIs around them. Second, patients were treated with 

mainly combination therapies of MTX with either another DMARD or tapered corticosteroids 

and thus represents treatment according to daily clinical practice. Third, the use of the 

TRIPOD and STARD reporting criteria ensures a full and transparent way of reporting.

The prediction of efficacy in RA seems challenging with still today no clear indicators for 

routine daily practice. Multiple studies tried to find predictors for the response to MTX or 

the discontinuation of MTX in RA patients,13–16 but those studies lack or failed replication. 

Subsequently, a review on biological DMARDs showed 65 potential (bio)markers, but as well 

no validation studies were performed.17 Probably, even a reasonably accurate prediction 

of response will not have a substantial impact on the treatment outcome. One explanation 

was that hospitals increasingly used the treat-to-target approach (with the DAS steered 

therapy) and the use of temporary corticosteroids treatment. This results in the finding of 

current trials that >80% of the patients are in a state of remission after one year of drug 

treatment. Also, the prediction models include variables that also predict to some extent 

non-response for alternatives for MTX. For example, sex, RF as acute phase reactants have 

weak predictive effects also for other (b)DMARDs. Therefore, overall, there seems little room 

to improve the treat-to-target and trial and error RA care vastly.

In summary, a prediction model developed to predict response to MTX monotherapy was 

tested in three other cohorts starting with MTX combination therapy and performed poorly. 

Based on patients with the treat-to-target approach, prediction models offer no added 

value for daily clinical practice.
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Supplementary Table S4-1. Regression coefficients and odds ratios of the logistic regression 
models to predict MTX response

At first evaluation visit (3–4 months)

Variable β OR [95% CI] p-value

(intercept) 2.53 12.54 [4.59–37.08] 1.92 * 10-06 ***
Female gender -1.72 0.18 [0.09–0.35] 1.55 * 10-06 ***
DAS at baseline -0.43 0.65 [0.55–0.78] 2.01 * 10-06 ***
RF positive smoker 0.01 1.01 [0.68–1.50] 0.960
MTHFD1 1958 AA genotype 0.09 1.09 [0.57–2.14] 0.795
AMPD1 34 CC genotype -0.03 0.97 [0.48–1.90] 0.929
ITPA 954 A-allele carrier -0.33 0.72 [0.49–1.05] 8.39 * 10-2 *
ATIC 347 G-allele carrier 0.21 1.23 [0.73–2.08] 0.434

At second evaluation visit (6–8 months)

Variable β OR [95% CI] p-value

(intercept) 1.94 6.97 [2.73–18.89] 7.92 * 10-05 ***
Female gender -0.94 0.39 [0.20–0.71] 2.93 * 10-3 **
DAS at baseline -0.40 0.67 [0.57–0.80] 6.02 * 10-6 ***
RF positive smoker -0.04 0.96 [0.65–1.43] 0.857    
MTHFD1 1958 AA genotype -0.16 0.86 [0.45–1.65] 0.637
AMPD1 34 CC genotype 0.38 1.46 [0.75–2.79] 0.256
ITPA 954 A-allele carrier -0.34 0.71 [0.49–1.04] 7.56 * 10-2 *
ATIC 347 G-allele carrier -0.09 0.92 [0.54–1.54] 0.742

Abbreviations: DAS: disease activity score, RF: rheumatoid factor, β: regression coefficient, OR: Odds 
ratio, CI: confidence interval.
* p<0.10, ** p<0.01, *** p<0.001.
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Supplementary Figure S4-1. Scatterplot of the time visits of the first and second evaluation (days) 
versus the disease-activity score.
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Introduction: Approximately 16% of the patient discontinue low-dose methotrexate 

(MTX) treatment due to adverse drug reactions (ADRs), such as hepatic toxicity. 

However, the cause of drug-induced liver injury (DILI) is unclear and unpredictable and 

may have a genetic origin. Therefore, we performed a nested case control genome-

wide association study (GWAS) to explore genetic factors that are associated with 

MTX DILI. 

Methods: Seven international groups contributed blood samples and data of RA 

patients who started MTX. MTX-induced DILI was defined as an ALT level of ≥3X 

the upper limit of normal (ULN), while controls had no ALT levels above 3X ULN. 

Controls (ratio 3:1) were matched per study site for age, gender, and duration of 

MTX use. GWAS with MTX DILI and individual SNPs (693,931) was performed using 

the additive genetic model, corrected for sex, country, and age. A p≤5x10-8 was 

considered significant, while a p≤5x10-6 was considered suggestive. 

Results: 104 MTX-induced DILI cases and 315 controls were included for association 

analysis. None of the SNPs were significantly associated with MTX DILI. However, 

we found seven genetic variants that were suggestive of association with MTX DILI 

(p-value 7.43*10-8 to 4.86*10-6). Of those, five SNPs are in the intronic protein-coding 

regions of FTCDNL1, BCOR, FGF14, RBMS3, and PFDN4/DOK5. Further investigation 

into MTHFR C677T and the HLA region did not lead to significant findings. 

Conclusion: We were not able to find clear genetic variants associated with MTX-

induced DILI.
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INTRODUCTION

Low-dose methotrexate (MTX) is the cornerstone of antirheumatic drug treatment. Although 

MTX is an effective and safe antirheumatic drug, adverse drug reactions (ADRs) are the 

reason for discontinuation in about 16% of the patients.1,2 Common ADR of MTX includes 

bone marrow suppression, pulmonary, gastrointestinal, and hepatic toxicity. Drug-induced 

liver injury (DILI) is among the most important ADR, but the cause of liver damage from 

MTX use is still unclear and MTX-induced liver toxicity remains largely unpredictable.6 A 

potential cause of DILI is the depletion of folate and accumulation of MTX polyglutamates 

in the liver.3 Another possible mechanism is the release of adenosine, which stimulates 

the matrix proteins by fibrogenic activation of stellate cells in the liver and thus fibrosis 

formation.4 Additional risk factors for MTX-induced hepatotoxicity are concomitant use of 

NSAIDs, obesity, and excessive alcohol consumption.5–8

Elevated levels of the hepatic transaminase enzymes alanine aminotransferase (ALT) and 

aspartate aminotransferase (AST) occurs in 7.5 to 26% of the RA patients treated with 

MTX, and the incidence of high-level enzyme elevation (at least 2–3 times the upper limit 

of the normal range [ULN]) has been found in 3.5% of patients.9,10 Persistently elevated 

levels correlate with histopathologic abnormalities and changes in fibrosis assessed by liver 

biopsy samples, although relation with the clinical outcome of interest – clinically overt 

liver cirrhosis – has not been well established. Therefore, monitoring of the transaminase 

levels in RA patients treated with MTX is important and combined with liver biopsy are 

recommended in the American College of Rheumatology Guideline for the Management of 

Rheumatoid Arthritis. According to these guidelines it is recommended to initially monitor 

transaminases every 2–4 weeks, then every 12 weeks in patients on stable therapeutic 

doses.11 MTX therapy must be discontinued when two subsequent ALT/AST levels are higher 

than three times the ULN. After normalization of the liver enzyme levels, MTX therapy may 

be resumed at a lower dose.

A large meta-study by Owen et al.12 showed that the polymorphism MTHFR C677T is 

a promising genetic variant predictive for increased risk of MTX-induced liver toxicity. 

RA patients treated with MTX who are a carrier of C677T have a mildly increased risk 

of hepatotoxicity (OR 1.71, 95% CI: 1.32–2.21, p<0.001) compared to patients with the 

wildtype genotype. Interestingly, genetic variants in the human leukocyte antigen (HLA) 

gene have been related to DILI for a variety of drugs, albeit not with MTX-induced DILI.13 

For example, HLA-B*14:01 was associated with trimethoprim-sulfamethoxazole-induced 

liver injury in European Americans, and HLA-B*5701 was associated with flucloxacillin 

DILI.14,15 In the field of rheumatology, however, no association was found between HLA 

antigens and MTX DILI RA. 
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Since the role of genetic predisposition of MTX liver injury remains unclear, we hypothesize 

that genetic polymorphisms could unravel the mechanism or cause of MTX-induced DILI. 

Therefore, we performed a genome-wide association study (GWAS) in a case-control design 

to explore genetic loci associated with MTX DILI in RA patients. 

METHODS

Study population

In the literature, we searched for publications on biomarker studies in RA on MTX 

monotherapy and invited principal investigators to participate in this GWAS MTX DILI study. 

MTX DILI cases were defined as RA patients on MTX having a single event of an ALT level 

of >3x ULN, while controls had an ALT within the range 0–3x ULN.  

A total of seven international research groups from Poland, the United Kingdom, Slovenia, 

and The Netherlands provided blood or DNA samples and clinical data for the GWAS. 

The included patients (n=430) were from previously described clinical cohorts: RAMS 

study (Manchester, United Kingdom, n=24),16 BeST study17 (Leiden, The Netherlands, 

n=114), tREACH trial (Rotterdam, The Netherlands, n=48),18 DREAM registry19 (Nijmegen, 

the Netherlands, n=84), or were derived from daily clinical practice in Slovenia (University 

Medical Centre Ljubljana, Ljubljana, Slovenia, n=76), The Netherlands (Reade, Amsterdam, 

the Netherlands, n=48) or Poland (Pomeranian Medical University, Szczecin, Poland, n=36).

All included patients were diagnosed with RA according to the 1987 ACR and/or 2010 ACR/

EULAR criteria and used MTX with folic acid for at least 6 months. Controls were matched 

per study site to cases (3:1) for age (±5 years difference), gender (male/female), and the 

duration of MTX use (±50 days). Data collected for each patient were baseline laboratory 

measurements at the start of MTX, age, gender, concomitant drug treatment (NSAIDs, 

corticosteroids, other DMARDs). According the study protocol or the standard treatment 

procedure, regular laboratory measurements were included during the follow-up time (until 

ALT >3 ULN of the included cases or the related control).

At each site, investigators obtained written informed consent from the patients. Every 

participating study group provided consent for the use of these samples for this study. 

Each study site obtained approval from the local ethics committee or institutional research 

ethics board. 
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Sample size

Prior to the inclusion of the cases/controls the required sample size was estimated. A logistic 

regression of the binary response variable (ALT >3X ULN) on a binary independent variable 

(genotype of the individual SNP) with a sample size of 320 observations (ratio case/control 

groups of 3:1) achieves 80% power at a 0.05 significance level to detect a change from 

the baseline value of 0.250 to 0.417. This change corresponds to an odds ratio of 2.146.

Validation cohort

Another research group was asked to confirm our findings using an independent validation 

cohort. Validation was performed only if there were significant hits.

Genotyping and quality control

Full blood samples or germline DNA were collected at each site and sent to the LUMC for 

preparation according to the manufacturer’s recommended protocol. Samples were prepared 

to a DNA concentration of 4 μg (50 ng/μl) and were assessed by a spectrophotometer 

(Nanodrop; Wilmington, DE, USA). GWAS genotyping was conducted with the Illumina GSA 

Beadchip Illumina GSA MD-24v1-0 in the Human Genotyping Facility Genetic Laboratory 

at the Erasmus MC, Rotterdam, The Netherlands. This array contains 693,931 SNPs. The 

RAMS study had previously performed a GWAS using GRCh37/hg19 imputed with the 

1000 genomes V3 reference panel. For the analysis, the SNPs corresponding to the GSA 

Beadchip were extracted from the RAMS GWAS and merged with the GWAS data.

Quality control (QC) checks were performed using software R version 3.5.02 8 and PLINK-

software, version 1.0720,2 9,30 Patients were excluded from analyses based on an individual 

genotype call rate <97%, gender mismatch between reported and estimated sex based 

on genotypes of the X-chromosome (using PLINK), or excess of heterozygous genotypes 

as measured by the inbreeding coefficient. The imbreeding F-statistic was used to detect 

excess of heterocygosity based on outlier detection. Genetic markers were excluded 

based on a SNP call rate <97% and a p≤10-7 for the Hardy-Weinberg equilibrium (HWE) 

goodness-of-fit test.

After exclusion of patients and markers in these marginal QCs, the remaining set was used 

for integrative QC assessment. To evaluate the possibility of population stratification or 

outliers, multidimensional scaling (MDS) analysis was performed using PLINK. Additionally, 

pairwise identity by state (IBS) statistics were calculated to identify potential duplicates. MDS 

and IBS were computed using PLINK. Patients who were identified as outliers based on IBS 

clustering were excluded from the analysis. MDS coordinates were extracted and used as 
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covariates in the association analysis. SNP imputation was performed using the programs 

“shapeit” and “impute2” with default parameters using the reference panel 1000Genomes 

build version 3 with the total, ‘cosmopolitan’, set of individuals.21 An MDS plot was used 

to compare the self-reported and genetic ethnicity of patients.

Data analysis

Association analysis with MTX DILI and individual SNPs was performed using an additive 

genetic model, with sex, country, and age as covariates. Specifically, MTHFR C677T 

(rs1801133) and the HLA gene region were explored to investigate associations between 

MTX DILI and these SNPs, using the additive genetic model, with covariates sex, country, 

and age.

Statistical analyses were performed in R statistics version 3.5.0. Associations with a p≤5x10-8 

were considered statistically genome-wide significant and associations with a p-value 

between 5x10-8 and 5x10-6 were considered suggestive.22 Post association QC was performed 

by visual inspection of Quantile-Quantile (QQ) plots of p -values of association tests and 

computation of the inflation factor.23 To improve readability, and account for high correlation 

between neighbouring SNPs, the list of top-SNPs according to p-values, only contains the 

best association in a window of 100kb. The full list is given as supplementary material. 

RESULTS

Quality control 

Eleven patients were excluded based on missing data (n=8, due to insufficient amount 

of DNA) or gender check using the  heterozygosity/inbreeding coefficient (n=8, Figure 

5-1A). 196,650 SNPs were excluded due to low allele frequency, missing data analysis, or 

not meeting the HWE criterion (Figure 5-1B). No outliers were detected on IBS clustering. 

After applying the quality control criteria, a total of 502,291 NPs in 419 RA patients, 104 

cases, and 315 controls, were available for association analysis. 

Study population

The demographic and clinical characteristics of the study population are shown in Table 

5-1. The mean dose of MTX was 18.8 mg/week (SD: 6.0, range 7.5–30 mg/week), mean 

age was 54.8 years (SD: 13.0, range 20–87 years), with a disease duration of 34.3±84.2 

weeks. All patients used folic acid.
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Figure 5-1. Flow chart of the quality controls for patients (A) and SNPs (B). 

GWAS results

None of the SNPs reached the genome-wide level of statistical significance (p≤5x10-8) in 

the analysis (multivariate corrected for gender, age, and country) and therefore no external 

validation was used. Seven SNPs were found to meet the threshold of p≤5x10-6 and are 

therefore considered suggestive for an association with MTX DILI. From those, five SNPs 

were related to genes in FTCDNL1 rs12693892, BCOR rs4827191, FGF14 rs75805413, 

RBMS3 rs73044680 and PFDN4/DOK5 rs67738640. After merging with the RAMS GWAS 

693,931 SNPs were tested. Also, imputation of genetic markers using the 1000Genomes 

dataset lead to 932,8966 SNPs, but did not lead to hits after Bonferroni correction (p>5x10-8). 

The MTHFR C677T (rs1801133) genetic variant was not significantly associated with MTX 

DILI (p=0.4). Also, the result of the SNPs in the HLA region (chromosome 6 29941260 to 

33143325 base pairs) found no significant association (p>10-4).

Marginal quality control:
SNPs (n=693,931)

Marginal quality control:
patients (n=430)

Missing data analysis 
(treshold >40%)

Gender check

Inbreeding 
(coefficient: 0.01 

95% CI: 0.06–0.07)

Technical duplicates

Total: 419 patients Total: 502,291 SNPs

8 (1.9%)

3 (0.7%)

0 (0.0%)

0 (0.0%)

102,960 (14.8%)

11,820 (1.7%)

85,681 (12.3%)

Allele frequency 
(MAF treshold 0.5%)

Missing data analysis 
(cutt-off 20.0%)

Hardy-Weinberg 
equilibrium 
(p≤1.0x10-7)

A B
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Table 5-1. Demographic and clinical characteristics of the included patients (n=419)*

Characteristic

Age, years, mean 54.8±13.0
Female gender, no (%) 325 (77.8%)
Smoker, no (%) 96 (32%)
Alcohol consumption, no (%)# 128 (50%)
Disease duration, weeks  34.3±84.2
DAS28 start of MTX 4.6±1.39
Rheumatoid factor positive, no (%) 233 (71.3%)
C-reactive protein, mean 20.9±23.9
MTX maintenance doses, mg/week 18.8±6.0
Folic acid doses, mg/week 6.5±3.2
Other DMARD use, no (%) 72 (35.5%)
NSAID use, no (%) 32 (30.2%)
Corticosteroid use, no (%) 97 (75.8%)
Laboratory values at start MTX

ASAT (U/L) 26.1±24.4
ALAT (U/L) 25.0±17.3
Creatinine 56.7±36.4
Hemoglobin (mmol/L) 8.2±2.2
Gamma-GT (U/L) 32.4±19.7

Abbreviations: AST: aspartate transaminase, ALT: alanine transaminase, DAS28: Disease Activity Score 
of 28 joints. DMARD: disease-modifying antirheumatic drugs, MTX: methotrexate.
* Plus-minus values are means ±SD. 
# Alcohol consumption is defined as at least three alcoholic units per week.
Continuous values as mean ± standard deviation.

Table 5-2. Suggestive biomarkers related to MTX toxicity using the model corrected for sex, 
country, age, and SNP (p<5.0*10-6)

Marker Gene Allele
Chromosome
(GRCh37.p13) MAF

1000 genome 
MAF p-value

rs12693892 LINC01877
FTCDNL11)

A>G 2:200483842 0.4964 0.3764 7.43*10-8

rs4827191 -
BCOR

A>C 23:39901078 0.1646 0.1891 2.51*10-6

rs75805413 FGF14 T>C 13:102917882 0.0152 0.0042 3.50*10-6

rs73044680 RBMS3 A>G 3:295756660 0.0426 0.0176 4.26*10-6

rs7447381 LINC01170 C>T 5:123401074 0.4839 0.4820 4.33*10-6

rs12693889 LINC01877 T>A,C 2:200473658 0.1975 0.2456 4.53*10-6

rs67738640 -
PFDN4
DOK5

T>C 20:52931326 0.0589 0.1336 4.86*10-6

1) 156,200 base pairs away from the FTCDNL11 gene.
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Figure 5-2. Manhattan plot for the model MTX DILI corrected for gender, age, and country. 
The significance level (red horizontal line) is set to 5.0*10-8. The red dots are the imputed data and the 
dark blue dots are the measured data.

Figure 5-3. Manhattan plot of the HLA region for the model MTD DILI corrected for gender, age, 
and country. 
The significance level (red horizontal line) is set to the Bonferroni boundary for the HLA region 
(p=1.73*10-6).
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DISCUSSION

To the best of our knowledge, this study is the first GWAS to investigate genetic variants 

associated with MTX DILI. In this exploratory GWAS, we identified seven suggestive variants 

associated with MTX DILI in LINC01877 (FTCDNL1) rs12693892, BCOR rs4827191, FGF14 

rs75805413, RBMS3 rs73044680, LINC01170 rs7447381, LINC01877 rs12693889 and 

PFDN4/DOK5. While no SNPs with genome-wide significance (p<5.0*10-8) were found, 

the most promising SNP was LINC01877 rs12693892 with p=7.43*10-8.

Our findings point toward genes encoding proteins related to the mechanism of action 

of MTX. Albeit LINC01877 rs12693892 is a non-protein-coding RNA sequence, it is close 

within the FTCDNL1 gene (156,200 base pair difference). Protein expression of FTCDNL1 

was mainly found in the brain and liver tissue, whereas FTCDNL1 provides a transferase and 

binding activity of folic acid.24 The use of MTX and a deficiency of FTCDNL1 could lead to 

a reduction of the protective effects of folic acid and could therefore cause liver injury. No 

other studies found an association of liver injury with rs12693892, while two other SNPs 

in FTCDNL1 (rs10203122 and rs7605378) were previously associated with osteoporosis.25

BCOR is an epigenetic regulator that binds to BCL-6 and takes part in the polycomb 

repressive complex (PRC) 1.1. PRC1.1 silences genes through ubiquitination of Lys119 in 

histone H2A. BCOR germinal loss-of-function mutations determine oculo-facio-cardio-dental 

syndrome and mutations in BCOR have been associated with different types of cancer (CNS 

tumors, sarcomas, hemolymphopoietic system tumors, and carcinomas).26 Hypothetically, 

mutations in BCOR could change cell functioning and cell survival. The SNP identified in 

this GWAS (rs4827191) is close within the BCOR gene effect allele and is located on the 

X-chromosome. Due to the haploid nature of males, the power to detect a significant 

association with rs4827191 are halved for males compared to females. To take account of 

this haploid effect, we matched on gender.

Fibroblast growth factor (FGF) family members possess broad mitogenic and cell survival 

activities and are involved in a variety of biological processes, including embryonic 

development, cell growth, morphogenesis, tissue repair, tumor growth, and invasion.27 A 

hypothetic mechanism could be that alterations in the production of the protein-coding 

FGF14 rs75805413 cause less liver cell recovery by the hepatotoxic effects of MTX and 

could explain the increase of the level of transaminases. Also, multiple FGF SNPs have been 

associated with Spinocerebellar Ataxia 2728 and Autosomal Dominant Cerebellar Ataxia.29 

RBMS3 is a protein-coding gene that has been implicated in diverse functions, like DNA 

replication, gene transcription, cell cycle progression, and apoptosis. Previous studies found 

that RBMS3 is a risk factor related to bisphosphonate-related osteonecrosis,30 systemic 
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sclerosis,31 and different cancer types.32 RBMS3 A>G (rs73044680 ) could influence the liver 

cell, which can trigger MTX DILI.

rs67738640 is a non-coding SNP located between the PFDN4 and DOK5. PFDN4 is a 

transcription factor that regulates the cell cycle and ensures the binding and stabilizing of 

new proteins by correct folding. Prognostic markers have been associated with B-cell non-

Hodgkin’s lymphoma, breast cancer,33 colorectal,34,35 and liver cancer and hepatocellular 

carcinoma.36 DOK5 is essential in signal transduction, including MAP kinase (inflammatory 

cascade) activity. DOK5 has been associated with multiple auto-immune diseases, such 

as diabetes type II,37 systemic sclerosis,38 and also with different cancer types.39 Genetic 

alterations in PFDN4 or DOK5 could cause dissection of the folding and inflammation 

mechanism and subsequent lead to hepatotoxicity.

The MTHFR enzyme is important in folate metabolism, an integral process for cell metabolism 

in the DNA, RNA, and protein methylation.40 Previous studies showed that MTHFR C677T 

(rs1801133) was associated with MTX DILI.12 In our study, analysis on the MTHFR C677T 

showed no association with MTX DILI (p<10-3). Previous studies showed associations of 

drug-induced liver toxicity with SNPs in the HLA region, but this was not yet explored for 

MTX DILI. HLA is responsible for the regulation of the immune system and it may protect 

against or fail to protect against external pathogens and is also linked to different auto-

immune diseases, such as RA and coeliac disease. In our study, we found no evidence of 

an association between the HLA SNPs and MTX DILI. However, if HLA genetic variants 

predispose for RA, choosing the control group is of great importance. Thereby, the effect 

of MTX DILI could be missed, and another study with a second non-RA patient group had 

to be selected that used MTX without having DILI.

DILI was defined as at least three times the ULN of the ALT. A limitation is that we included 

RA patients that used MTX and had a single event of an increase of ALT of 3 times the ULN. 

Obviously, ALT elevation is not specific for DILI as other factors may also cause the increase 

of ALT, such as concomitant non-alcoholic fatty liver disease or alcoholic liver disease.41–46 

For instance, in our study 50% of the included patients used regularly alcohol (minimal 3 

units per week) that could contribute to the emerging of MTX DILI. Of note, we did not 

prospectively match alcohol consumption between the case and control groups, but post 

hoc analysis showed that alcoholic use was evenly contributed amongst cases and controls.

Obesity might be associated with more severe inflammation through elevated or reduced 

levels of secretory adipocytes products, such as resistin and adipocytokines leptin. 

Those inflammatory processes may exacerbate chemical-induced hepatotoxicity.47 These 

mechanisms might be involved with MTX DILI, but further research is needed for a clear 
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understanding of the possible association between obesity and MTX DILI. Unfortunately, we 

did not have the data on BMI, and could not further investigate the effect of obesity and the 

emerge of DILI and also could not correct for it in our association analysis. In addition to the 

BMI, other potential factors for MTX DILI are the lack of folate supplementation, weekly dose 

of MTX, exposure duration of MTX (MTX cumulative dose), the disease duration, gender, 

and age.48,49 In our study, all patients used folic acid, and other risk factors like gender, age, 

and MTX dose, and disease duration were matched with the case-control design or were 

corrected in our data analysis. 

As reported previously, MTX acts on multiple pathways, including the adenosine, de novo 

purine synthesis, folate, methionine, and de novo pyrimidine synthesis pathways.50 In this 

study, we tested if specific SNPs with a large effect size were associated with MTX DILI. 

However, it could be possible that multiple SNPs with small effect sizes are involved in the 

development of DILI. Another limitation is that no replication cohort was used to validate 

our multiple findings. Furthermore, our study was performed on patients of European 

ancestry (mostly Caucasian). Those findings could have a disparity on association analysis 

to other races, like African or Asian races.

In conclusion, we identified no clear genetic variants related to MTX DILI in RA patients of 

European ancestry. 
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Aim: About 30% of rheumatoid arthritis patients have no clinical benefit from TNF 

inhibitors. Genome-wide association (GWA) and candidate gene studies tested 

several putative genetic variants for TNF inhibitor efficacy with inconclusive results. 

Therefore, this study applied a systematic pathway analysis. 

Patients & methods: A total of 325 rheumatoid arthritis patients treated with adali-

mumab were genotyped for 223 SNPs. We tested the association between SNPs and 

European League Against Rheumatism response and remission at 14 weeks under 

the additive genetic model using logistic regression. 

Results: A total of three SNPs located in CD40LG (rs1126535), TANK (rs1267067) and 

VEGFA (rs25648) showed association with both end points. TNFAIP3 (rs2230926) had 

the strongest effect related to European League Against Rheumatism response. 

Conclusion: This exploratory study suggests that TNFAIP3, CD40LG, TANK and 

VEGFA play a role in the response to adalimumab treatment.
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INTRODUCTION

TNF inhibitors are effective as second-line drug in rheumatoid arthritis (RA) patients after 

failure of (mono) therapy with disease modifying antirheumatic drugs.1–3 However, about 

30% of patients with (severe) RA have no clinical benefit from treatment with TNF inhibitors 

while they are at risk for side effects such as (serious) infections and malignancies.4,5 Although 

several clinical and laboratory markers, such as C-reactive protein level, rheumatoid factor 

positive and anticyclic citrullinated peptide antibodies, are recognized as predictors for 

the response to TNF inhibitors, multiple studies showed that these biomarkers alone are 

weak predictors.6 Genetics may play an additional role in the efficacy of TNF inhibitors and 

therefore studies have been performed to identify predictive genetic biomarkers for the 

response to TNF inhibitors for RA.7–24 Despite significant efforts, clinical application of these 

candidate genetic biomarkers is not reached due to underpowered cohorts, conflicting 

results, lack of replication studies or questionable causality.

As seen in other diseases, it seems plausible that pharmacogenetic response in RA depends 

on the interaction of genes involved in antirheumatic drug mode of action and genes 

associated with RA pathogenesis.25,26 Therefore, we selected genes related to seven different 

pathways where TNF plays a pivotal role. In addition, we included previously associated 

genes to explore the presence of putative biomarkers for the efficacy of adalimumab in RA. 

Characteristically, with this study, the use of a pathway approach combines the advantages 

of both candidate gene methods and GWA studies.15 

The goal of this exploratory study was to determine genetic variants that are responsible 

for the efficacy of adalimumab. 

MATERIALS & METHODS

Cohort ascertainment

Previously, regulation for reimbursement of treatment with a TNF inhibitor in The Nether-

lands required prescribers to provide documentation that the following criteria were met: 

a diagnosis of RA,27 active disease with a disease activity score (DAS) 28 of 3.2 or higher28 

and previous insufficient response on at least two synthetic disease-modifying antirheumatic 

drugs, one of which was methotrexate (MTX). Accordingly, for patients prescribed 

adalimumab (ADA), data were collected by the central ADA distributor in The Netherlands 

(ApotheekZorg, Sittard, The Netherlands). No database was available, but instead, we 

approached every patient who met the inclusion criteria and requested a saliva sample for 

genotyping. Available patient data was retrieved from ApotheekZorg. 
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Between 2005 and 2007, 325 patients were selected who started with ADA; were 18 years 

or older; had an erythrocyte sedimentation rate of at least 28 mm/h; patient’s assessment of 

disease activity (pain rating on a 100-mm visual analog scale) and were followed prospectively 

using ADA of minimal 14 weeks. The ethics committee of the Leiden University Medical 

Center approved the study protocol. All patients provided written informed consent.

Single nucleotide polymorphism selection

We investigated different genes related to the mechanism of action of TNF inhibitors; 

the inflammatory process of RA; and single nucleotide polymorphisms (SNPs) previously 

associated with genetic susceptibility to RA or anti-TNF treatment outcome. Briefly, a 

systematic approach was used to select candidate SNPs related to the mechanism of action 

of adalimumab, as described in detail by Kooloos et al.29 From the pathway approach, 

186 candidate SNPs in 111 genes divided into seven different pathways were selected. 

Additionally, 37 other significantly associated SNPs previously reported were selected.30–35 

Finally, 223 SNPs (minor allele frequency >0.05 and NCBI reported validation states >2) in 

124 genes were selected (Table 6-1). 

The pathway approach considers the variability in the entire pathway without restricting the 

analysis to a single candidate gene.29 In theory, this would affect the stringency of multiple 

testing correction. Therefore, we calculated a global p-value, which corrects for each gene 

region included in the study.

DNA collection & genotyping 

DNA was collected from 2 ml saliva using the Oragene™ DNA self-collection kit (DNA 

Genotek, Inc., Ontario, Canada). DNA samples were extracted according to instructions 

provided by the manufacturer. Genotyping was performed using a custom designed array 

with Veracode GoldenGate GT assays on the Illumina BeadXpress platform (Illumina, Inc., 

CA, USA).

Quality control 

Prior to association analysis, quality control procedures were performed. First, low-quality 

DNA (defined as DNA yield lower than 10 μg and/or nucleic acid purity [260/280 nm ratio] 

lower than 1.6) was excluded from further analysis. Second, SNP genotyping plots for each 

assay were visually checked for the degree of clustering. SNPs that showed an unexpected 

number of clusters or poorly defined or separated clusters were removed. Additionally, 

monoallelic SNPs with a call rate of less than 0.98 and SNPs with a call rate of less than 90% 
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were removed. The reliability of the SNP detection based on the shape of the clusters and 

their relative distance to each other (distribution) was calculated with the GenTrain score. 

Patient samples with a GenTrain score of less than 0.6 were removed. Finally, genotype 

frequencies were tested for deviations from Hardy–Weinberg equilibrium. Under Hardy– 

Weinberg assumptions, deviant SNPs (p<0.001) were removed from further analysis.

Table 6-1. Selected genes related to the mechanism of action of adalimumab

Mechanism of action Genes n Ref.

Neutralization and blockage 
interaction

ADAM17, IL1A, IL1B, IL1R1, IL1R2, 
IL1RAP, IL1RN, LTA, TNF, TNFRSF1A, 
TNFRSF1B

11 [36,37]

Interaction with Fc receptor FCGR2A, FCGR2B, FCGR3A, FCGR3B  4 [38]

Initiation of reverse signaling, 
leading to blockage or increased 
apoptosis or growth arrest

BAK1, BAX, BCL2L1, BIRC2, BIRC3, 
CASP3, CASP7, CASP8, CFLAR, 
CHUK, FADD, IKBKB, IKBKG, 
MAP3K7, MAP3K7IP1, MAP3K7IP2, 
MAPK14, MAPK8, NFKB1, NFKB2, 
NFKB3, RIPK1, TANK, TNFAIP3, TP53, 
TRADD, TRAF2, XIAP

28 [39,40]

Reduction of infl ammatory 
cytokine production and 
angiogenic factor expression

APOA1, CD11, CD28, CD40, CD40L, 
CD69, CSF1, CSF1R, CSF2, CSF2RA, 
CSF2RB, CSF3, CSF3R, FIGF, FLT1, 
FLT4, ICAM1, IFNA1, IFNB, IFNG, 
IFNGR1, IFNGR2, IL10, IL10RA, 
IL10RB, IL11, IL11RA, IL12A, IL12B, 
IL12RB1, IL12RB2, IL13, IL13RA1, 
IL13RA2, IL15, IL15RA, IL18, IL18R1, 
IL2, IL2RA, IL3, IL3R, IL4, IL4R, IL6, 
IL6R, IL7, IL7R, IL8, IL8RA, IL8RB, IL9, 
IL9R, KDR, LIF, LIFR, OSM, OSMR, 
PECAM1, SELE, TGFB1, VCAM1, 
VEGFA, VEGFB, VEGFC, VWF

66  [36,41–43]

Restoration of immune regulation FOXP3 1 [44]

Mediation of complement-
dependent cytotoxicity and 
antibody-dependent cytotoxicity

C2, C3, C4A, C4B, C5, C5AR1, C1QA, 
C1QB, C1QC, CR1 

10 [37,40]

Downregulation or discontinuation 
of bone and cartilage destruction

TNFRSF11A, TNFSF11, TNFRSF11B, 
TRAF6 

4 [45,46]

Previously reported genes 
associated with effi cacy of TNF 
inhibitors or susceptibility of RA

ANAPC4, FCN1, FCRL3, HLA-DRB1, 
HMGN2, IRF5, ITGAV, LOC100133618, 
MMEL1, PADI4, PTPN22, RSBN1, 
RUNX1, SLC22A4, STAT4, TNF, 
TNFAIP3, TNFRSF1B, TRAF1

37 [30–35]

Abbreviations: RA: Rheumatoid arthritis.
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Defi nition of effect

End points were the achievement of good response and remission at 14 weeks according 

to European League Against Rheumatism (EULAR) criteria.47 The EULAR good response 

was defined as an improvement to the baseline of DAS28>1.2 and DAS28≤3.2 at 14 weeks. 

EULAR remission was defined as a DAS28≤2.6 at 14 weeks.

Statistical analysis

Statistical analyses were performed using SPSS 23.0 (SPSS, Inc., IL, USA) and Plink (version 

1.07).48 Associations between SNPs and EULAR good response or EULAR remission at 14 

weeks were tested with multiple logistic regressions. Before multivariate analysis, gender, 

concomitant use of MTX, age and baseline DAS28 were univariately tested for association 

between the end points EULAR good response and EULAR remission at 14 weeks. Variables 

with a p-value of <0.05 were selected for multivariate analysis.

A global p-value was calculated using the p-min, tail strength and Sequence Kernel 

Association Test (SKAT) statistics.49 Global p-values summarize the statistical significance of 

the values of all SNPs within each gene region resulting in a single p-value that is corrected 

for multiple testing. To account for nonindependence of SNPs, p-values from empirical 

distributions using permutations were computed for the tail strength and p-min statistics. 

SNPs were permuted as a block, keeping intact the relationship between covariates and 

outcome. For p-min and tail strength, individual tests were based on a logistic model with an 

additive genetic model and 1 × 104 permutations were used to obtain empirical p-values. 

The SKAT statistics does not assume independence of SNPs and was computed using 

bioconductor package globaltest without permutations.50 Covariates were standardized 

for the SKAT statistic. Computations were parallelized using package parallelize.dynamic.51

Global p-values were computed using R version 3.2. Characteristics of the global tests can 

be summarized as follows: p-min performs well when there is a single SNP (or a single set of 

highly correlated SNPs) among all SNPs that are associated with the outcome, tail strength 

performs well when many SNPs have a small effect and SKAT performs well when effect sizes 

follow a normal distribution, in other words, a situation between p-min and tail strength. 

RESULTS

In this exploratory study, 34 patients and 28 SNPs were removed for further analysis during 

quality control procedure, resulting in a total of 291 patients and 195 different SNPs for 

the analysis (Figure 6-1). In our cohort, RA patients with a mean age of 58.5 years and with 
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a mean DAS28 at baseline of 5.8 were studied (Table 6-2). The majority of the patients 

(82.1%) received concomitant MTX with an average dose of 22.2 mg/week. Nongenetic 

factors associated with adalimumab response were age, baseline DAS28, gender and the 

use of concomitant MTX. Baseline DAS28 and age showed a significant association with 

EULAR good response (p=2.56×10-9 and 2.34×10-2, respectively) and EULAR remission 

(p=3.24×10-12 and 9.48×10-4, respectively). Gender and concomitant use of MTX were not 

associated with either primary end points (p>0.05) and were not included as covariates.

Figure 6-1. Study flow chart of sample and single nucleotide polymorphism selection for the 
analysis of single nucleotide polymorphisms associated with the efficacy of adalimumab in 
rheumatoid arthritis. 
The calculated GenTrain score represents the reliability of the SNP detection based on the shape of 
the clusters and their relative distance to each other (distribution). The call rate for each sample is the 
number of SNPs successfully genotyped divided by the total number of SNPs.

223 SNPs 325 patients

323 patients202 SNPs

Low quality DNA (n=2)GenTrain <0.6 (n=21)

Call rate <90% (n=28)

HWE deviation (n=7)

Call rate <90% with 
poorly defined or 

separated clusters (n=4)

Total: 291 samples with 195 SNPs
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EULAR response at 14 weeks was dichotomized in good response (157/291 patients, 54%) 

or no adequate response (134/291 patients, 46%) with the latter including EULAR moderate 

and non-responders. We identified 12 genetic variants (odds ratios [OR] between 1.464 

and 5.395) that were associated with adalimumab efficacy for EULAR good response at 

the 0.05 level (Table 6-3). 

The global p-value for the outcome EULAR good response and p-min statistics was 0.029. 

We also computed global p-values for the tail strength and SKAT statistics which were 

0.4 and 0.2, respectively. Seven SNPs (Table 6-3) demonstrated a significant association 

with EULAR good response (p<0.029), coding for the genes TNFAIP3, VEGFA, CD40LG, 

TANK, FCGR2A, PADI4 and VWF. Five significant SNPs had an OR between 1.5 and 2.0, 

with p-values between 2.4×10-2 and 6.7×10-3. The SNP coding for TNFAIP3 (rs2230926) 

had the strongest association with a p-value of 3.8×10-3 and OR of 5.4. 

After 14 weeks, 93/291 (32%) patients achieved EULAR remission. We found eight SNPs, 

who were associated and showed a trend with EULAR remission at the 0.05 level (Table 6-4). 

Noteworthy, three SNPs encoding the VEGFA, CD40LG and TANK genes were associated 

with both end points, EULAR good response and remission. For the outcome EULAR 

remission the global p-values for p-min, tail strength and SKAT were 0.97, 0.89 and 0.89, 

respectively, which were not significant at the level of 0.05.

Table 6-2. General characteristics of the study population (n=291)

Characteristic Frequency

Female, n (%) 206 (70.8)
Age, years 58.5±11.7
Concurrent methotrexate 239 (82.1)
Methotrexate dose, mg/week 22.2±5.7
Previous use of biological agent, n (%) 14 (4.8)
DAS28, baseline 5.8±1.0
DAS28, 14 weeks 3.1±1.1
Relative change in DAS28 (%) 46.2±16.8
Response according to EULAR criteria:

Good response, n (%) 157 (54.0)
Moderate response, n (%) 126 (43.3)
No response, n (%) 8 (2.7)

Remission according to EULAR criteria, n (%) 93 (32.0)

Abbreviations: DAS28: 28 joint disease activity score, EULAR: European League Against Rheumatism.
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DISCUSSION

In an effort to elucidate pharmacogenetic biomarkers in TNF pathways and RA susceptibility 

genes related to the efficacy of adalimumab, we performed a cohort study in 291 RA 

patients treated with adalimumab. We found an association of three genetic loci coding for 

VEGFA, CD40LG and TANK with efficacy following adalimumab treatment in both EULAR 

response and remission. Overall, seven SNPs (ORs between 1.516 and 5.395) coding for 

TNFAIP3, VEGFA, CD40LG, TANK, FCGR2A, PADI4 and VWF were significantly associated 

with EULAR response, of which the SNP coding for TNFAIP3, rs2230926, had the strongest 

effect and is, therefore, the most promising gene. 

In the literature, data from several TNF inhibitor pharmacogenetic studies using the 

candidate gene approach are known. Usually, these studies focus on a single or a few loci 

or genes while for complex diseases such as RA, it seems more likely that drug response 

is the result of multiple genes. GWA study, in contrary, investigates multiple genes, but 

has the disadvantage that most associations identify genes of unknown causality, require 

a substantial sample size and require stringent correction for multiple testing to limit the 

risk of false-positive results. Therefore, in the current study, we used a pathway selection 

method using RA susceptibility genes related to TNF pathway. 

A significant strength of our study is that only one TNF inhibitor, adalimumab, was inves-

tigated. Routine clinical practice shows that the response to TNF blockers is generally not a 

class phenomenon. Indeed, patients who do not respond to one type of TNF blocker may 

respond to another. Therefore, each TNF inhibitor could be associated with different genetic 

components responsible for the efficacy in RA, and combining multiple TNF inhibitors could 

lead to incorrect or missed associations. 

We are aware that our research may have limitations. First, patients started adalimumab 

several years ago and this may have led to an increased number of patients with advanced RA 

since currently TNF inhibitors are prescribed at an earlier stage of the disease. This was also 

evident in the baseline DAS of our cohort, where most patients were categorized as severe 

RA (mean DAS>5.1).28 Second, only eight patients (2.7%) were non-responders according to 

the EULAR criteria. This number was too low to allow comparison of non versus moderate 

versus good responders. Therefore, we combined non-responders and moderate responders. 

Unfortunately, this decreases the contrast between responder groups. Third, nongenetic 

factors such as serology (e.g., anticyclic citrullinated peptide antibodies or rheumatoid factor) 

and disease duration could influence the efficacy of TNF inhibitors. Unfortunately, our study 

was not designed as a prospective study and these factors were not retrievable. Fourth, the 

disadvantage of the pathway selection method is that no new (unknown) genes can be found.
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In our study, TNFAIP3 rs2230926 had the largest effect size with EULAR response, with an 

OR of 5.4. The wild-type allele (T) of this SNP is related to a better response of adalimumab 

as compared with the G-allele. TNFAIP3 is critical for limiting inflammation by terminating 

the TNF-induced NF-B transcription factors as well as TNF-mediated apoptosis. 

Consequently, defects in the TNFAIP3 expression could lead to chronic inflammation and 

tissue damage.52 This implies that the T-allele leads to less inflammation and apoptosis, and 

hence less tissue damage occurs. Multiple SNPs in the TNFAIP3 gene have been associated, 

including rs5029937 and rs6920220, with an increased risk of developing RA by 20 to 40%, 

respectively previously. The study of Zhu et al. found rs2230926 heterozygote related to 

poor RA outcome, which is in line with our findings.53,54

The minor allele of rs25648, coding for VEGF, is associated with a better outcome in both 

EULAR good response as EULAR remission compared with the wild-type allele. VEGF is 

an important protein involved in angiogenesis and is an important aspect of new tissue 

development, growth and tissue repair.55 Since it is demonstrated that expression of VEGF 

is reduced in RA patients treated with TNF inhibitors, it is thought that TNF inhibitors may 

interfere with the angiogenesis in the inflammatory process of RA.36 Our findings would seem 

to suggest that the minor allele (T) leads to increased VEGF expression and subsequently 

leads to a better prognosis of RA.

CD40LG is a member of the TNF superfamily, which is primarily expressed on the surface 

of activated T cells and stimulates B-cell proliferation and secretion of pro-inflammatory 

cytokines and chemokines after CD40-CD40LG ligation.56 CD40LG is an extracellular target 

for TNF inhibitors. This was demonstrated in a study of Danese et al.,57 where patients 

using infliximab had reduced levels of CD40LG. Anti-CD40L stimulated human CD4+ T cells 

produced less IL-2, which results in less T-cell maturation and directly prevents the onset of 

autoimmune diseases, like RA.58 Correspondingly, adalimumab may limit the inflammatory 

process involved in RA by inhibiting CD40LG. Likewise, the observed interindividual 

differences in response in our study may be the result of the SNP rs1126535 in the gene 

encoding of the CD40LG protein. Concerning our results, we hypothesize that patients 

carrying the CD40LG (rs1126535) C-allele may have less binding capacity to TNF inhibitors 

compared with patients genotyped carrying a CD40LG (rs1126535) T-allele.

TANK, a protein coding for TRAF family member associated NF-B activator, is part of the 

TRAF family which mediates signals from cytokine signals through cell surface receptors 

and, thereby, activating downstream intracellular signaling cascades. TANK binds to TRAF1, 

TRAF2 and TRAF3. It is observed that the mechanism of action of TNF inhibitors includes 

the initiation of reverse intracellular signaling cascade by binding of antibodies to trans-

membrane TNF. This may lead to a decreased production of pro-inflammatory cytokines 
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(like TNF-), increased production of anti-inflammatory cytokines (like IL10) and induction of 

apoptosis in cells [36–37,59]. In our results, patients with a homozygous mutant genotype 

(rs1267067-CC) were more likely to achieve clinical response than patients carrying a wild-

type allele (rs1267067-TT or rs1267067- CT). Hypothetically, this polymorphism may support 

the reverse signaling by less binding of TRAF1-TRAF3 to TANK.

In conclusion, with the use of a systematic pathway method, we identified four different 

SNPs in CD40LG, TNFAIP3, TANK and VEGFA as putative candidates associated with the 

efficacy of adalimumab. Of these TNFAIP3 is the most promising candidate.

Acknowledgement 

The authors are grateful to Tahar van der Straaten and Yavuz Ariyurek for helping with Illumina 

BeadStudio Data Analysis Software Modules (Illumina, Inc., CA, USA). Also, we want to 

thank all participants who agreed to participate in this study and the staff and pharmacists 

of ApotheekZorg (Sittard, The Netherlands) who helped in the acquisition of clinical data.



108

Chapter 6

REFERENCES 

1. Keystone EC, Kavanaugh AF, Sharp JT et 
al. Radiographic, clinical, and functional 
outcomes of treatment with adalimumab 
(a human anti-tumor necrosis factor mono-
clonal antibody) in patients with active 
rheumatoid arthritis receiving concomitant 
methotrexate therapy: a randomized, 
placebo-controlled, 52-week trial. Arthritis 
Rheum. 50(5), 1400–1411 (2004).

2.  Maini RN, Breedveld FC, Kalden JR et al. 
Sustained improvement over two years in 
physical function, structural damage, and 
signs and symptoms among patients with 
rheumatoid arthritis treated with and metho-
trexate. Arthritis Rheum. 50(4), 1051–1065 
(2004). 

3.  van Der Heijde D, Klareskog L, Rodriguez-
Valverde V et al. Comparison of etanercept 
and methotrexate, alone and combined, in 
the treatment of rheumatoid arthritis: two-
year clinical and radiographic results from the 
TEMPO study, a double-blind, randomized 
trial. Arthritis Rheum. 54(4), 1063–1074 
(2006). 

4.  Poddubnyy D, Rudwaleit M. Efficacy and 
safety of adalimumab treatment in patients 
with rheumatoid arthritis, ankylosing spondy-
litis and psoriatic arthritis. Expert Opin. Drug 
Saf. 10(4), 655–673 (2011). 

5.  Furst DE, Kavanaugh A, Florentinus S, 
Kupper H, Karunaratne M, Birbara CA. Final 
10-year effectiveness and safety results 
from study DE020: adalimumab treatment 
in patients with rheumatoid arthritis and an 
inadequate response to standard therapy. 
Rheumatology (Oxford) 54(12), 2188–2197 
(2015). 

6.  Marotte H, Miossec P. Biomarkers for pre-
diction of TNFalpha blockers response in 
rheumatoid arthritis. Joint Bone Spine 77(4), 
297–305 (2010). 

7.  Krintel SB, Palermo G, Johansen JS et al. 
Investigation of single nucleotide polymor-
phisms and biological pathways associated 
with response to TNF inhibitors in patients 
with rheumatoid arthritis. Pharmacogenet. 
Genomics 22(8), 577–589 (2012). 

8.  Plant D, Bowes J, Potter C et al. Genome-
wide association study of genetic predic-
tors of anti-tumor necrosis factor treatment 
efficacy in rheumatoid arthritis identifies 
associations with polymorphisms at seven 
loci. Arthritis Rheum. 63(3), 645–653 (2011).

9.  Cui J, Saevarsdottir S, Thomson B et al. Rheu-
matoid arthritis risk allele PTPRC is also asso-
ciated with response to anti-tumor necrosis 
factor alpha therapy. Arthritis Rheum. 62(7), 
1849–1861 (2010). 

10.  Cui J, Stahl EA, Saevarsdottir S et al. 
Genome-wide association study and gene 
expression analysis identifies CD84 as a 
predictor of response to etanercept therapy 
in rheumatoid arthritis. PLoS Genet. 9(3), 
e1003394 (2013). 

11.  Swierkot J, Bogunia-Kubik K, Nowak B et 
al. Analysis of associations between poly-
morphisms within genes coding for tumour 
necrosis factor (TNF)-alpha and TNF recep-
tors and responsiveness to TNF-alpha block-
ers in patients with rheumatoid arthritis. Joint 
Bone Spine 82(2), 94–99 (2015). 

12.  Avila-Pedretti G, Tornero J, Fernández-Nebro 
A et al. Variation at FCGR2A and functionally 
related genes is associated with the response 
to anti-TNF therapy in rheumatoid arthritis. 
PLoS ONE 10(4), e0122088 (2015).

13.  Tan RJL, Gibbons LJ, Potter C et al. Investi-
gation of rheumatoid arthritis susceptibility 
genes identifies association of AFF3 and 
CD226 variants with response to antitumour 
necrosis factor treatment. Ann. Rheum. Dis. 
69(6), 1029–1035 (2010). 



109

Pathway analysis of genetic variants related to the efficacy of adalimumab

6

14.  Sieberts SK, Zhu F, García-García J et al. 
Crowdsourced assessment of common 
genetic contribution to predicting anti-TNF 
treatment response in rheumatoid arthritis. 
Nat. Commun. 7, 12460 (2016). 

15.  Umicevic Mirkov M, Cui J, Vermeulen SH 
et al. Genomewide association analysis of 
anti-TNF drug response in patients with 
rheumatoid arthritis. Ann. Rheum. Dis. 72(8), 
1375–1381 (2013). 

16.  Liu C, Batliwalla F, Li W et al. Genome-
wide association scan identifies candidate 
polymorphisms associated with differential 
response to anti-TNF treatment in rheuma-
toid arthritis. Mol. Med. 14(9–10), 575–581 
(2008). 

17.  Batalla A, Coto E, Gómez J et al. IL17RA 
gene variants and anti-TNF response among 
psoriasis patients. Pharmacogenomics J. 
35(8), 2101– 2107 (2016) 

18.  Mewar D, Wilson AG. Treatment of rheu-
matoid arthritis with tumour necrosis factor 
inhibitors. Br. J. Pharmacol. 162(4), 785–791 
(2011). 

19.  Lee YH, Bae SC. Associations between 
PTPRC rs10919563 A/G and FCGR2A R131H 
polymorphisms and responsiveness to TNF 
blockers in rheumatoid arthritis: a meta-
analysis. Rheumatol. Int. 36(6), 837–844 
(2016). 

20.  Dávila-Fajardo CL, van der Straaten T, Baak-
Pablo R et al. FcGR genetic polymorphisms 
and the response to adalimumab in patients 
with rheumatoid arthritis. Pharmacogenom-
ics 16(4), 373–381 (2015). 

21.  Ranganathan P. Pharmacogenomics of tumor 
necrosis factor antagonists in rheumatoid 
arthritis. Pharmacogenomics 6(5), 481–490 
(2005). 

22.  Nishimoto T, Seta N, Anan R et al. A single 
nucleotide polymorphism of TRAF1 predicts 
the clinical response to anti-TNF treatment in 
Japanese patients with rheumatoid arthritis. 
Clin. Exp. Rheumatol. 32(2), 211–217 (2014). 

23.  Ceccarelli F, D’Alfonso S, Perricone C et al. 
The role of eight polymorphisms in three 
candidate genes in determining the suscep-
tibility, phenotype, and response to anti-TNF 
therapy in patients with rheumatoid arthritis. 
Clin. Exp. Rheumatol. 30(6), 939–942 (2012). 

24.  Conigliaro P, Ciccacci C, Politi C et al. 
Polymorphisms in STAT4, PTPN2, PSORS1C1 
and TRAF3IP2 genes are associated with 
the response to TNF inhibitors in patients 
with rheumatoid arthritis. PLoS ONE 12(1), 
e0169956 (2017). 

25.  Dornbrook-Lavender KA, Pieper JA. Genetic 
polymorphisms in emerging cardiovascular 
risk factors and response to statin therapy. 
Cardiovasc. Drugs Ther. 17(919), 75–82 
(2003). 

26.  Mascheretti S, Schreiber S. Genetic testing 
in Crohn disease: utility in individualizing 
patient management. Am. J. Pharmacog-
enomics 5(4), 213–222 (2005). 

27.  Matsumoto Y, Uemura M, Hibino N, Yama-
moto M. [Clinical usefulness of the 1987 
revised criteria for rheumatoid arthritis by 
American Rheumatism Association]. Nihon 
Naika Gakkai Zasshi 77(5), 742–743 (1988).

28.  Aletaha D, Landewe R, Karonitsch T et al. 
Reporting disease activity in clinical trials of 
patients with rheumatoid arthritis: EULAR/
ACR collaborative recommendations. Ann. 
Rheum. Dis. 67(10), 1360–1364 (2008). 

29.  Kooloos WM, Wessels JAM, van der Straaten 
T, Huizinga TWJ, Guchelaar HJ. Criteria for 
the selection of single nucleotide polymor-
phisms in pathway pharmacogenetics: TNF 
inhibitors as a case study. Drug Discov. Today 
14(17–18), 837–844 (2009). 

30.  Criswell LA, Lum RF, Turner KN et al. The 
influence of genetic variation in the HLA-
DRB1 and LTA-TNF regions on the response 
to treatment of early rheumatoid arthritis with 
methotrexate or etanercept. Arthritis Rheum. 
50(9), 2750–2756 (2004). 



110

Chapter 6

31.  Choy EH, Panayi GS. Cytokine pathways and 
joint inflammation in rheumatoid arthritis. N. 
Engl. J. Med. 344(12), 907–916 (2001). 

32.  Wood AJJ. Therapeutic strategies for rheu-
matoid arthritis. N. Engl. J. Med. 350(25), 
2591–2602 (2009). 

33.  Kang CP, Lee KW, Yoo DH, Kang C, Bae SC. 
The influence of a polymorphism at position 
-857 of the tumour necrosis factor  gene on 
clinical response to etanercept therapy in 
rheumatoid arthritis. Rheumatology 44(4), 
547–552 (2005). 

34.  Olsen NJ, Stein CM. New drugs for rheuma-
toid arthritis. Drugs 350, 2167–2179 (2004). 

35.  Tutuncu Z, Kavanaugh A, Zvaifler N, Corr 
M, Deutsch R, Boyle D. Fcgamma receptor 
type IIIA polymorphisms influence treatment 
outcomes in patients with inflammatory 
arthritis treated with tumor necrosis factor 
alpha-blocking agents. Arthritis Rheum. 
52(9), 2693–2696 (2005). 

36.  Paleolog EW, Young S, Stark AC, McClo-
skey RV, Feldma M, Main RN. Modulation 
of angiogenic vascular endothelial growth 
factor by tumor necrosis factor alpha and 
interleukin-1 in rheumatoid arthritis. Arthritis 
Rheum. 41(7), 1258–1265 (1998). 

37.  Nesbitt A, Fossati G, Bergin M et al. 
Mechanism of action of certolizumab pegol 
(CDP870): in vitro comparison with other 
anti-tumor necrosis factor  agents. Inflamm. 
Bowel Dis. 13(11), 1323–1332 (2007).

38.  Kohno T, Tam LTT, Stevens SR, Louie JS. 
Binding characteristics of tumor necrosis 
factor receptor-fc fusion proteins vs anti-
tumor necrosis factor mAbs. J. Investig. 
Dermatology Symp. Proc. 12(1), 5–8 (2007). 

39. Mitoma H, Horiuchi T, Tsukamoto H et al. 
Binding activities of infliximab and etaner-
cept to transmembrane tumor necrosis 
factor-alpha. Gastroenterology 126(3), 
934–936 (2004). 

40.  van den Brande JMH, Braat H, van den 
Brink GR et al. Infliximab but not etanercept 
induces apoptosis in lamina propria T-lym-
phocytes from patients with Crohn’s disease. 
Gastroenterology 124(7), 1774–1785 (2003). 

41.  Charles P, Elliott MJ, Davis D et al. Regulation 
of cytokines, cytokine inhibitors, and acute-
phase proteins following anti-TNF-alpha 
therapy in rheumatoid arthritis. J. Immunol. 
163(3), 1521–1528 (1999). 

42.  Klimiuk PA, Sierakowski S, Domysławska 
I, Fiedorczyk M, Chwiecko J. Reduction 
of soluble adhesion molecules (sICAM-1, 
sVCAM-1, and sE-selectin) and vascular 
endothelial growth factor levels in serum 
of rheumatoid arthritis patients following 
multiple intravenous infusions of infliximab. 
Arch. Immunol. Ther. Exp. (Warsz) 52(1), 
36–42 (2004). 

43.  Ulfgren AK, Andersson U, Engström M, 
Klareskog L, Maini RN, Taylor PC. Systemic 
anti-tumor necrosis factor alpha therapy in 
rheumatoid arthritis down-regulates synovial 
tumor necrosis factor alpha synthesis. Arthri-
tis Rheum. 43(11), 2391–2396 (2000). 

44.  Goldstein I, Ben-horin S, Koltakov A et 
al. alpha1beta1 Integrin+ and regulatory 
Foxp3+ T cells constitute two functionally 
distinct human CD4+ T cell subsets oppo-
sitely modulated by TNFalpha blockade. J. 
Immunol. 178(1), 201–210 (2007). 

45.  Kubota A, Hasegawa K, Suguro T, Koshihara 
Y. Tumor necrosis factor-alpha promotes the 
expression of osteoprotegerin in rheumatoid 
synovial fibroblasts. J. Rheumatol. 31(3), 
426–435 (2004). 

46.  Lee C-K, Lee EY, Chung SM, Mun SH, Yoo 
B, Moon H-B. Effects of disease-modifying 
antirheumatic drugs and antiinflammatory 
cytokines on human osteoclastogenesis 
through interaction with receptor activator of 
nuclear factor kappaB, osteoprotegerin, and 
receptor activator of nuclear factor kappaB 
ligand. Arthritis Rheum. 50(12), 3831–3843 
(2004). 



111

Pathway analysis of genetic variants related to the efficacy of adalimumab

6

47.  Prevoo MLL, van ‘t Hof MA, Kuper HH, van 
Leeuwen MA, van de Putte LBA, van Riel 
PLCM. Modified disease activity scores that 
include twenty-eight-joint counts develop-
ment and validation in a prospective lon-
gitudinal study of patients with rheumatoid 
arthritis. Arthritis Rheum. 38(1), 44–48 (1995). 

48.  Purcell S, Neale B, Todd-Brown K et al. 
PLINK: a tool set for whole-genome associa-
tion and population-based linkage analyses. 
Am. J. Hum. Genet. 81(3), 559–575 (2007).

49.  Wu MC, Lee S, Cai T, Li Y, Boehnke M, 
Lin X. Rare-variant association testing for 
sequencing data with the sequence kernel 
association test. Am. J. Hum. Genet. 89(1), 
82–93 (2011). 

50.  Goeman JJ, van de Geer SA, van Houwelin-
gen HC. Testing against a high dimensional 
alternative. J. R. Stat. Soc. Ser. B-Statistical 
Methodol. 68, 477–493 (2006). 

51.  Böhringer S. Dynamic parallelization of R 
functions. R. J. 5(2), 88–96 (2013). 

52.  Vereecke L, Beyaert R, van Loo G. The 
ubiquitinediting enzyme A20 (TNFAIP3) is 
a central regulator of immunopathology. 
Trends Immunol. 30(8), 383–391 (2009). 

53.  Zhu L, Wang L, Wang X et al. Characteristics 
of A20 gene polymorphisms and clinical 
significance in patients with rheumatoid 
arthritis. J. Transl. Med. 13(1), 215 (2015). 

54.  O’Rielly DD, Rahman P. Pharmacogenetics of 
rheumatoid arthritis: potential targets from 
susceptibility genes and present therapies. 
Pharmgenomics Pers. Med. 3(1), 15–31 
(2010). 

55.  Marrelli A, Cipriani P, Liakouli V et al. Angio-
genesis in rheumatoid arthritis: a disease 
specific process or a common response 
to chronic inflammation? Autoimmun. Rev. 
10(10), 595–598 (2011). 

56.  Laman JD, Claassen E, Noelle RJ. Functions 
of CD40 and its ligand, gp39 (CD40L). Crit. 
Rev. Immunol. 16(1), 59–108 (1996). 

57.  Danese S, Sans M, Scaldaferri F et al. TNF- 
blockade down-regulates the CD40/CD40L 
pathway in the mucosal microcirculation: a 
novel anti-inflammatory mechanism of inflixi-
mab in Crohn’s disease. J. Immunol. 176(4), 
2617–2624 (2006). 

58.  Blair BPJ, Riley JL, Harlan DM et al. CD40 
ligand (CD154) triggers a short-term CD4(+) 
T cell activation response that results in 
secretion of immunomodulatory cytokines 
and apoptosis. J. Exp. Med. 191(4), 651–660 
(2000). 

59.  Shen C, van Assche G, Rutgeerts P et al. 
Caspase activation and apoptosis induction 
by adalimumab: demonstration in vitro and 
in vivo in a chimeric mouse model. Inflamm. 
Bowel Dis. 12(1), 22–28 (2006).





General discussion

C
ha

p
te

r 
7





115

General discussion

7

Rheumatoid arthritis (RA) is an inflammatory disease of the joints that affects circa 1% of the 

Western population.1 It is a progressive disease that results in joint damage and disability 

unless the inflammation is slowed or stopped by appropriate drug treatment. The treatment 

principle is to suppress the inflammation at an early stage of the disease with aggressive 

drug treatment to reach specified and sequentially measured goals, such as remission or 

low disease activity (so-called treat-to-target approach).2 This approach is not only in RA 

a common concept but also in the field of other chronic diseases, including diabetes,3 

hypertension,4 and hyperlipidemia.5 Thus, the treatment of RA has a clear target and could 

combination therapies when monotherapy fails to achieve the goal.

Despite using such clear clinical endpoints in the treat-to-target approach, still, not all RA 

patients obtain an adequate effect to reduce the disease activity. Conventional drugs used 

in RA – the “disease-modifying antirheumatic drugs” (DMARDs) – reach their optimal effect 

after two to three months of treatment. Subsequently, it remains a hurdle for rheumatologists 

to identify the responders and non-responders beforehand, while patients can be treated with 

a DMARD that had an insufficient clinical response for several months. A variety of reasons 

could be conceived for the efficacy of DMARDs, but we hypothesize that pharmacogenetics 

(PGx) plays a substantial part in it. In essence, the patient’s PGx could be determined prior 

to prescribing DMARDs, making that the drug treatment could be adjusted earlier instead 

of attempting multiple months of treatment without potential success.

Precision medicine – also known as personalized treatment – with the use of PGx is an 

evolving field in which the treatment is tailored to the individual patient. Precision medicine 

is already widely recognized and is for instance embedded in the daily practice of oncology 

and cardiology. One example of PGx testing in daily clinical practice is on CYP2C9/VKORC1 

for the change of the maintenance dose of warfarin, a vitamin K antagonist that is used to 

inhibit the formation of coagulation factors II, VII, IX, and X, and protein C and S.6 Normally, 

due to the narrow therapeutic index and the wide variability in individual dosing, frequent 

monitoring of the international normalized ratio over weeks is needed to determine the 

right dose. Guidelines from the Dutch Pharmacogenetics Working Group (DPWG) and 

the Clinical Pharmacogenetics Implementation Consortium (CPIC) can aid physicians to 

set patients earlier on the right dose, with determining PGx variants in multiple, such as 

CYP2C9, CYP4F2, and VKORC1 combined with non-pharmacogenetic variants.7–10 

Although a large number of studies investigates PGx in RA, still, not a single genetic 

marker has been implemented in daily clinical practice. Thus, the field of RA is still in the 

proof of principle phase, whereas numerous challenges must first be addressed before 

the implementation of PGx. Contradictory or non-convincing study results hamper the 

implementation, among others caused by lack of power (small sample size) or the use 
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of multi-ethnicities or different evaluation times. This general discussion highlights the 

obstacles to the implementation and the future directions in the field of PGx testing in RA.

Methodological and statistical aspects 

Most PGx studies in RA were retrospective analyses, that were limited to patients with 

available outcomes data and sufficient material (blood, saliva) for genotyping. As a result, 

retrospective studies have some disadvantages over prospective studies. First, data from 

retrospective studies are frequently old, and therefore the study can lack important data 

which cannot be supplemented or has potential confounding factors. Second, it can be 

difficult to identify an appropriate exposed comparison group (for example controls in a 

case/control study) within the same study, and as a consequence, result in a small sample 

size. Third, differential losses to follow-up retrospective studies can introduce selection 

bias, thereby it may ensure that the included patients are not representative of the studied 

population. In the field of RA, in Chapter 2 we concluded that most PGx studies associated 

with methotrexate (MTX) efficacy had a small study group (<100 patients) with a small 

effect size (OR between 1.0 and 1.5) or lack the proper multivariate analysis that prevents 

association by confounders. 

The second issue in pharmacogenetic testing is multiple testing, which refers to simultane-

ously investigate more than one hypothesis on the same study group of study subjects. The 

risk of multiple testing is that a significant difference is more often found based on coinci-

dence when doing multiple tests. A correction for multiple testing maintains a stricter level 

of significance, but there is no firm rule whether you should correct it or not. In our thesis, 

we correct mostly for multiple testing by the simplest and most conservative approach us-

ing the Bonferroni correction. In Chapter 6 we performed a pathway analysis, whereas the 

SNPs within gene regions overlap each other. Consequently, Bonferroni correction is too 

stringent, because it is based on independent tests, and therefore a global p-value must 

be calculated using p-min, tail strength, and sequence kernel association test statistics. In 

most PGx rheumatology studies, no correction for multiple testing was applied.

Yet it is not justified to claim that studies that do not correct for multiple testing or consist of 

small sample sizes are wrong or even useless in science. Exploratory studies are essential, have 

a low threshold, and show a basis for new (pharmacogenetic) findings with more knowledge 

about the mechanism of action (efficacy or toxicity) of drugs. However, associations with 

good causality must be validated to confirm the result. After proper validation, the studies 

must be prospectively tested for both confirming the pharmacogenetic association as 

feasible in the clinical practice.
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Hurdles of the translation into clinical practice

PGx has several hurdles to overcome for translation into clinical practice in the field of 

RA. The main problem is the paucity of available data that PGx testing demonstrates 

clinical improvement. Furthermore, a common assumption is that the findings of clinical 

improvement must be replicated in independent cohorts. Problems could be that there 

is no equivalent replication cohort or mostly the findings could not be replicated. For 

example, therapeutic drug monitoring (TDM) has been researched for a long time before it 

was embedded in clinical daily practice to adjust the drug dose according to the explored 

therapeutic window. Just like TDM, research must be done elaborately, and eventually – 

when there is sufficient evidence – PGx will be implemented in daily practice. One example 

that PGx is used in daily clinical practice is for the chemotherapeutic agent 5-fluorouracil 

(5-FU). Hereby, multiple studies showed that there is a relationship between different allelic 

variants in the DPYD gene (the gene that encodes DPD) and a deficiency in DPD activity. 

A deficiency of DPD activity leads to an increased risk for 5-FU toxicity, and therefore pre-

emptive PGx testing for DPYD variants is performed.

After validation, there must be carrying capacity among clinicians to implement it into clinical 

practice. Different organizations associated with PGx – such as CPIC, Dutch Pharmaco-

genetics Working Group (DPWG), Pharmacogenomics Research Network, and Ubiquitous 

Pharmacogenomics – contribute to the implementation of PGx in clinical practice by 

establishing pharmacogenomic information, developing implementation tools, and also 

release public guidelines to implement PGx in clinical practice. 

Phenotype defi nition and evaluation time

In RA, numerous criteria are used to determine the efficacy of drug therapy. For instance, 

we described in Chapter 2 that the endpoints DAS(28), remission (DAS<1.6 or DAS28<2.6), 

low disease activity (DAS<2.4 or DAS28<3.2), EULAR response criteria, and ACR20, 50, 

70 response criteria are often used to determine the efficacy of MTX. Granted that the 

majority of recent studies increasingly inclined towards the EULAR response criteria, still a 

few studies used different endpoints. For this reason, it is difficult to combine or compare 

the results directly. Attention is not only needed for the efficacy endpoint, but also the time 

of evaluation of those endpoints. In the case of MTX, most studies used the evaluation 

time points after three or six months of therapy, which properly reflects the effect of low 

dose MTX in RA. 

Different studies investigate the effect of pharmacogenetics on the side effects or efficacy of 

MTX. A systematic review and meta-analysis showed that RFC-1 80G>A (SLC19A) rs1051266 

is associated with the toxicity of MTX.11 Our systematic review (Chapter 2) showed that this 
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SNP (rs1051266) among five other SNPs was associated with MTX efficacy, but still needs 

further validation. 

For future research, it is preferable to take a uniform approach; with consistent criteria 

and time of evaluation. For example, as an efficacy endpoint the EULAR response criteria 

is suitable since it also corrects for DAS at baseline. Three or six months after the start of 

the treatment are appropriate choices of evaluation, whereas DMARDs are effective. For 

pharmacogenetics related to efficacy, simultaneously testing multiple SNPs seems more 

obvious than testing single SNPs, because DMARDs act on different pathways and combining 

SNPs can probably impact the response. For example, the associated six SNPs in Chapter 

2 could be used to test if they together form a better prediction and associations on the 

efficacy of MTX.

Functional SNPs 

To better understand if pharmacogenetic variants are associated with the efficacy or adverse 

events it is essential to know if those variants are functional SNPs that alter the function of a 

gene. However, there are at least 3.1 million SNP in the human genome, and most of them are 

not defined as (non-)functional and pragmatically these are extrapolated to assign an effect 

to a gene. Most common polymorphisms (MAF>5%) are potential regulatory polymorphisms 

located in 1) noncoding regions, including promoter/upstream, downstream and intron 

regions, that may affect transcription; 2) in intron and untranslated regions transcribed as 

RNA that may affect transcription, RNA splicing, stability or translation; or 3) in intergenic 

regions of unknown function. 

Even if a SNP is functional it can have minimal impact on the alteration of a protein and 

lead to clinically unimportant changes.12 In our studies, we tested individual SNPs that 

may have a (minimal) effect or no effect on the gene, but it could also be possible that a 

set of SNPs that form a haplotype could have a functional association of the efficacy or 

toxicity of drugs. However, to detect haplotype associations, other genotypic methods with 

sequencing data are needed. 

Prediction models: trend or necessity?

Prediction models for DMARD treatment are developed with the purpose to support drug 

decision-making for rheumatologists. In recent years the number of publications on statistical 

models and decision models increased, but yet, these models are not clinically applied. 

One of the obstacles is that validation is a necessity before a model can be applied. In the 

developing phase, good models have internal validation. Further to internal validation, 
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prediction models must also be externally validated in another cohort in the same type 

of patients, preferably by other investigators. Unfortunately, most multivariate prediction 

models fail external validation due to poor study design, missing data, or weak-mediocre 

key performance. Also, not all important issues are reported, and therefore the TRIPOD 

statements have been introduced. The TRIPOD statements consist of the minimal details 

to report when developing or validating a multivariate diagnostic or prognostic prediction 

model.13 

As mentioned earlier, (in)efficacy of drug response is probably multi genetic, and therefore 

a combination of different pharmacogenetic biomarkers could play a role and needs further 

investigation. This is also embedded in our prediction model, which consists of four different 

genes. Even though the prediction model, tested in Chapter 5, compromises four SNPs 

in four genes, those genes were included a decade ago, while there were only a limited 

potential known SNPs. Nowadays, there are more investigated SNPs known and it seems 

that other SNPs have more potential to link them between MTX efficacy and PGx.

Future perspectives on genetic testing

Both the candidate gene studies and GWAS are subject to the same artifacts of spurious 

association findings. GWAS relies on the indirect association to locate a pharmacogenetic-

causing variant but only identifies putative candidate genes that still need a functional assay 

to determine the functioning of the active substance rather than just its PGx part. The direct 

candidate gene analysis relies on a priori hypothesis to identify a pharmacogenetic-causing 

variant by direct sequencing.  

A novel method, next-generation sequencing (NGS) could be the future that will unravel 

complex disease genetics, like RA. NGS performs sequencing of millions of small DNA 

fragments in parallel. These fragments are mapped together with the individual reads to 

the human genome. Each of the three billion bases in the human genome is sequenced 

multiple times, providing accurate data and more insight into unexpected DNA variation. 

The advantage of NGS is that it will capture a broader spectrum of mutations than Sanger 

sequencing, is unselective, and is used to interrogate full genomes or exomes to discover 

entirely novel mutations and disease-causing genes, and could detect mosaic mutations.14

However, sequencing has the property that it results in huge data and being that, could 

lead to more spurious findings than GWAS or candidate gene studies. A better method 

seems to select genes from significant associations in a GWAS and sequence those genes 

and filter potential associations. This not only leads to a narrow, and more objective result, 

but is also more affordable.
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Prospects towards personalized treatment in rheumatoid arthritis

In the last decade, great progress has been made in the clinical management of RA to 

achieve low disease activity or remission (so-called treat-to-target principle).2 Thanks to the 

treat-to-target approach patients are earlier onset on an effective DMARD and ultimately had 

less joint damage. Additionally, the introduction of the new drugs (TNF-and JAK-inhibitors) 

ensures that there is an ample choice in the treatment of RA and offers a solution when the 

conventional DMARDs had an insufficient clinical effect. Despite those developments, it 

remains the question of the field of rheumatology has still engrossment about genetic testing.

In this thesis, four SNPs were associated with the efficacy of adalimumab (Chapter 6) but 

need additional replication to validate those findings. In Chapter 1 we found in the literature 

six potential SNPs associated with the efficacy of MTX, but five of them did not have any 

replication studies that could confirm the results. Also, the prediction model for MTX 

monotherapy (Chapter 4) seems useful, but still, nowadays most of the included non-genetic 

variants are taken into consideration for drug decision making and the four pharmacogenetic 

variants in the prediction model showed a small contribution to its total effect.

Up to now, no genetic variants have yet been robustly and consistently associated with 

response to DMARD use in RA. Also, the results of candidate gene studies, including ours, 

had led to conflicting results with margin effect sizes. Given the fact that MTX acts on 

various biological pathways, it is more likely that multiple genes are related to the efficacy 

and therefore a combination of multiple genes seems more logical. Genetic studies, that 

tested single SNPs, are not sufficient to unravel complex immunological diseases like 

RA or multi-target drug treatment as MTX. Therefore, future studies must focus more on 

a combination of multiple SNPs (haplotype), eventually in combination with other non-

genetic factors. One method to take this into account is by using a polygenetic risk score 

(PRS). A PRS summarises the estimated effect of multiple genetic variants on an individual’s 

phenotype, calculated as a weighted sum of trait-associated alleles. A practical example 

of the application of PRS is in the prediction of subtype-specified breast cancer, which was 

based on a large GWAS dataset.15

Future research should consider the potential effects of combining results from GWA studies 

with sequencing data, so the discovery of genetic variants will be accelerated and could 

ultimately lead to the implementation of pharmacogenetics in RA patients. Also, PRS could 

be used to improve the predictive value of the efficacy or toxicology of DMARDs and thus 

help to improve stratification for the screening of suitable DMARDs.
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ENGLISH SUMMARY

Rheumatoid arthritis (RA) is a chronic, symmetrical, autoimmune disease characterized by 

inflammation of the mucous membranes in the joints. RA occurs in approximately 1% of 

the world population and often develops between the ages of 40 and 60 years, especially 

in women. Left untreated, the disease leads to inflammation and destruction of joints, 

leading to loss of physical function and inability to perform daily tasks. The exact cause of 

RA is unknown, but certain risk factors can increase the onset of the disease, such as age, 

smoking, genetics (particularly the HLA-DRB1 gene), and hormonal changes (pregnancy 

and breastfeeding).

For the treatment of RA, it is essential to intervene both early and aggressively with 

medication to prevent (potential) damage with a more favourable course of the disease. 

Treatment is usually started with the drug methotrexate (MTX), possibly in combination with 

other disease-modifying antirheumatic drugs (DMARDs) or with prednis(ol)one to quickly 

suppress the inflammation. Although the treatment of RA has improved considerably in 

recent decades, drug treatment does not work well for everyone. As a result, it is suspected 

that genetics plays a central role in the efficacy of current (RA) medications. The aim of this 

thesis is therefore to investigate which genetic factors influence the toxicity or effectiveness 

of the drugs used in RA.

Chapter 1 is a general introduction to RA. Here, the classification criteria for RA and the 

different ways of recording disease activity are described. The drug treatments with, among 

other things, MTX and biologicals are discussed here, but also the principle of genetics 

and the different methods of applying genetics. As MTX is a cornerstone in the treatment 

of RA, this thesis is mainly focused on this drug.

The exact mode of action of MTX is unknown, but it is known to act through at least eight 

different mechanisms in the cell. Different proteins are involved in each mechanism, which 

in turn can be influenced by genetics. In recent decades, much research has been done on 

the role of genetics in the treatment of MTX in RA. However, none of these studies tested 

with valid endpoints and have been adjusted for multiple testing. Therefore, in chapter 

2 we performed a systematic review, applying both valid endpoints only and Bonferroni 

correction. Ultimately, it turns out that six associations were significant. These associations are 

promising for predicting the efficacy of MTX, but only one association has been confirmed 

in an independent cohort.

MTX is transported from the blood into the cell by a transport protein across the cell 

membrane. Once inside the cell, MTX is polyglutamated and becomes active in the cell. An 

important transport protein is the solute carrier (SLC), encoded by the SLC gene. Because 
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the coding for RA patients can be different, it is thought that SLC influences the toxicity 

and effectiveness of MTX. In collaboration with a group from Alabama, Birmingham, USA, 

we looked at five different SLC genetic variants to see whether this affects efficacy (chapter 

3). We were able to conclude that this is not the case, both separately and in combination.

Because MTX does not appear to be effective in all patients, a predictive model has been 

developed. This model contains four genetic and three non-genetic factors (smoking, gender, 

and rheumatoid factor). The model was developed in 2006 for patients with monotherapy 

MTX. Today, however, patients are increasingly treated with combination therapy. In this 

study, described in chapter 4, three different Dutch cohorts had been examined whether the 

model is also suitable in contemporary practice. However, this turned out not to be the case.

As standard, both before and during the treatment of MTX, blood is drawn regularly to 

check liver function and other processes. This is done regularly because a side effect of 

MTX is liver damage. If these liver function values   are elevated, MTX should be tapered 

or discontinued. Not only immediately after starting MTX, the liver enzyme values may be 

increased, even after years of treatment of MTX, though. Only a number of patients develop 

liver damage, so it is suspected that the cause is genetic. In chapter 5 we performed a 

genome-wide association study (GWAS). A GWAS looks at a large part of the genome, 

without having to determine beforehand which individual SNPs are tested.

A GWAS is performed to provide important insights into the underlying mechanisms of 

liver damage caused by MTX. It can also help in the development of biomarkers to predict 

in advance patients who have a higher chance of developing drug side effects. Because 

not all patients develop liver damage, many different hospitals have been approached. 

In the end, seven different centres from Poland, Slovenia, England and the Netherlands 

participated in the study. No genetic variants were found that were a “hit”. Nevertheless, 

some promising associations were found. This offers a perspective, and further research is 

needed to understand their content and implications.

If MTX and other conventional DMARDs do not exert sufficient clinical effects, the biologicals, 

or tumor necrosis factor-alpha (TNF-) inhibitors, can be used. TNF- is a cytokine that 

activates the immune system after the binding to the TNF receptors. Inhibitors ensure 

that the activation is prevented so that the inflammation is inhibited or stopped. Since 

2004, several TNF-alpha inhibitors have been marketed, of which adalimumab is the most 

commonly used drug. The advantage of TNF-alpha inhibitors is that RA patients respond 

more quickly to the medication, but due to the high cost, they are only used at a later stage, 

after the failure of several DMARDs.
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Adalimumab does not work equally well for all patients, so it has been investigated whether 

this difference has a genetic cause. We did this with pathway analysis. In this analysis, a series 

of SNPs are preselected based on the action and pharmacokinetics of adalimumab. This 

method was used in chapter 6, where we investigated which genes influence the efficacy 

of the biologic adalimumab in RA. For this, 186 SNPs in 111 genes were selected that 

occur in seven different pathways. We also added 37 significant SNPs from the literature, 

representing a total of 223 SNPs in 124 genes. The four genetic variants CD40LG, TNFAIP3, 

TANK, and VEGFA seems to play a crucial role in the efficacy of adalimumab.

Chapter 7 includes the general discussion, covering all issues in the design and imple-

mentation of genetics research. Importantly, much research remains to explore the genetic 

aspects in the treatment of RA.
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Reumatoïde artritis (RA) is een chronische, symmetrische, auto-immuunziekte die zich 

kenmerkt door ontstekingen van het slijmvlies in de gewrichten. RA komt bij circa 1% van de 

wereldbevolking voor en ontstaat vaak op een leeftijd tussen de 40 en 60 jaar, met name bij 

vrouwen. Onbehandeld leidt de ziekte tot ontstekingen en ernstige schade aan gewrichten, 

wat weer leidt tot verlies van de fysieke functie en onvermogen om dagelijkse taken uit 

te voeren. De exacte oorzaak van RA is onbekend, maar er zijn bepaalde factoren die het 

risico op het ontstaan van de ziekte kunnen verhogen, zoals leeftijd, roken, genetica (in het 

bijzonder het HLA-DRB1 gen) en verandering van de hormonale spiegel (zwangerschap 

en borstvoeding).

Voor de behandeling van RA is het essentieel om zowel bijtijds als agressief medicamenteus 

in te grijpen om zo (potentiële) schade te voorkomen en een gunstiger verloop van 

de ziekte te bewerkstelligen. Doorgaans wordt de behandeling gestart met het 

geneesmiddel methotrexaat (MTX), eventueel in combinatie met een andere ‘disease-

modifying antirheumatic drugs’ (DMARD’s) of met prednis(ol)on om de ontsteking snel te 

onderdrukken. Alhoewel de behandeling van RA de laatste decennia sterk is verbeterd, 

slaat de medicamenteuze behandeling niet bij iedereen voldoende aan. Hierdoor bestaat 

het vermoeden dat genetische factoren een centrale rol spelen met betrekking tot de 

werkzaamheid van de huidige medicatie. Het doel van dit proefschrift is dan ook te 

onderzoeken welke genetische factoren van invloed zijn op de toxiciteit of effectiviteit van 

de geneesmiddelen die worden gebruikt bij RA. 

Hoofdstuk 1 is een algemene inleiding over RA. Hier worden de classificatiecriteria voor 

RA en de verschillende manieren om de ziekteactiviteit vast te leggen beschreven. Ook de 

medicamenteuze behandelingen met o.a. MTX en biologicals komen hier aan bod, maar 

ook het principe van genetica en de verschillende toepassingen van nieuwe inzichten op 

dit gebied. Doordat MTX een hoeksteen is in de huidige behandeling van RA, is deze thesis 

voornamelijk gericht op dit geneesmiddel. 

De exacte werking van MTX is onbekend, maar aangetoond is dat het tenminste via 

acht verschillende mechanismen in de cel zijn werking uitoefent. Bij elk mechanisme zijn 

verschillende eiwitten betrokken die weer op hun beurt door genetica kunnen worden 

beïnvloed. De laatste decennia is er veel onderzoek gedaan naar de rol van genetica in de 

behandeling van MTX in RA. Geen van deze onderzoeken is getest met valide eindpunten en 

gecorrigeerd voor het ‘multiple testen’. Hierom hebben we in hoofdstuk 2 een systematische 

review uitgevoerd, waarbij we zowel alleen valide eindpunten als Bonferroni-correctie 

hebben toegepast. Uiteindelijk blijkt dat er zes associaties zijn die significant waren. Deze 
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associaties lijken veelbelovend voor het voorspellen van de werkzaamheid van MTX, maar 

slechts één associatie is bevestigd in een onafhankelijk cohort.

MTX wordt vanuit het bloed door een transporteiwit over het celmembraan in de cel 

getransporteerd. Eenmaal in de cel wordt MTX gepolyglutameerd en wordt het werkzaam 

in de cel. Een belangrijk transporteiwit is solute carrier (SLC), gecodeerd door het SLC 

gen. Doordat de codering voor RA-patiënten verschillend kan zijn, wordt gedacht dat SLC 

invloed heeft op zowel de toxiciteit als de effectiviteit van MTX. In samenwerking met een 

groep uit Alabama, Birmingham, USA hebben we gekeken naar vijf verschillende genetische 

SLC-varianten en het daadwerkelijke effect op de werkzaamheid (hoofdstuk 3). We konden 

zowel separaat als gecombineerd concluderen dat dit niet het geval is.

Doordat MTX lang niet bij alle patiënten effectief blijkt, is er een voorspellend model 

ontwikkeld. Dit model bevat vier genetische en drie niet-genetische factoren (roken, 

geslacht en reumafactor). Het model is in 2006 ontwikkeld voor patiënten met monotherapie 

MTX. Tegenwoordig worden patiënten echter in toenemende mate behandeld met een 

combinatietherapie. In deze studie, beschreven in hoofdstuk 4, is er in drie verschillende 

Nederlandse cohorten naar gekeken of het model ook geschikt is in de hedendaagse 

praktijk. Dit bleek echter niet zo te zijn.

Er wordt standaard, zowel voor als tijdens de behandeling van MTX, regelmatig bloed 

geprikt om de leverfunctie en andere lichamelijke processen te controleren. Dit wordt 

gedaan omdat een bijwerking van MTX leverschade is. Indien deze leverfunctiewaarden 

zijn verhoogd, moet MTX worden afgebouwd of worden gestopt. Niet alleen direct na 

het starten van MTX kan het voorkomen dat de leverenzymwaarden zijn verhoogd, maar 

zelfs ook na jarenlange behandeling met MTX. Doordat slechts een klein gedeelte van de 

patiënten leverschade krijgt, bestaat het vermoeden dat de oorzaak hiervan genetisch is. 

In hoofdstuk 5 hebben we een genoombrede associatiestudie (‘genome-wide association 

studies’, GWAS) uitgevoerd. Een GWAS kijkt naar een groot gedeelte van het genoom, 

zonder dat daarvoor vooraf moet worden vastgesteld welke individuele SNP’s getest worden.

Een GWAS wordt uitgevoerd om belangrijke inzichten te geven in de onderliggende 

mechanismen van het ontstaan van leverschade door MTX. Tevens kan het helpen bij 

de ontwikkeling van biomarkers om vooraf patiënten te identificeren die een grotere 

kans hebben op het ontwikkelen van geneesmiddelbijwerkingen. Doordat lang niet alle 

patiënten leverschade krijgen, zijn veel verschillende ziekenhuizen benaderd. Uiteindelijk 

hebben er aan de studie zeven verschillende centra uit Polen, Slovenië, Engeland en 

Nederland deelgenomen. Er bleken geen genetische varianten gevonden te zijn die een 

“hit” waren. Desondanks werden er een aantal veelbelovende associaties gevonden. Dit 
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biedt perspectief, en er moet dan ook verder worden uitgezocht welke implicaties deze 

bevindingen hebben.

Als MTX en andere conventionele DMARD’s onvoldoende klinische effecten uitoefenen, 

kunnen de biologicals, oftewel tumornecrosefactor alfa (TNF-)-remmers, worden ingezet. 

TNF- is een cytokine, die na binding aan de TNF-receptoren o.a. het immuunsysteem 

activeert. Hierbij zorgen remmers ervoor dat de activatie wordt voorkomen waardoor de 

ontsteking wordt geremd of gestopt. Sinds 2004 zijn er meerdere TNF-alfa remmers op 

de markt, waarvan adalimumab het meest gebruikte geneesmiddel is. Het voordeel van 

TNF-alfa remmers is dat RA-patiënten sneller reageren op de medicatie, maar door de hoge 

kosten worden deze pas in een later stadium, na het falen van meerdere DMARD’s, gebruikt. 

Adalimumab werkt niet voor alle patiënten even goed en daarom is onderzocht of dit een 

genetische oorzaak heeft. Dit hebben we met een pathway-analyse gedaan. Bij deze analyse 

wordt een reeks SNP’s op basis van de werking en farmacokinetiek van adalimumab vooraf 

geselecteerd. Deze methode is gebruikt in hoofdstuk 6, waarbij we onderzochten welke 

genen invloed hebben op de effectiviteit van de biological adalimumab in RA. Hiervoor 

zijn 186 SNP’s in 111 genen geselecteerd die in zeven verschillende pathways voorkomen. 

Ook hebben we uit de literatuur 37 significante SNP’s toegevoegd, wat neerkomt op een 

totaal van 223 SNP’s in 124 genen. De vier genetische varianten CD40LG, TNFAIP3, TANK 

en VEGFA blijken een rol te spelen bij de werking van adalimumab.

In hoofdstuk 7 is de algemene discussie opgenomen, waarbij alle problematiek bij het 

ontwerpen en uitvoeren van genetica-onderzoek aan bod komt. Er ligt nog veel terrein 

braak om de genetische aspecten bij de behandeling van RA te onderzoeken.
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Dankwoord

Graag bedank ik iedereen die heeft bijgedragen aan de totstandkoming van dit proefschrift.

Bijzonder erkentelijk ben ik mijn promotor en copromotoren. Henk-Jan, met jouw eruditie, 

enthousiasme, optimisme en snelle respons gaf je bezielend leiding aan mijn promotie-

onderzoek. De plezierige samenwerking en communicatie resulteerden in verschillende 

waardevolle en motiverende onderzoeksideeën. Jesse, je kritische en initiatiefrijke houding 

hielden me scherp. René, jouw klinische blik met oog voor de toepasbaarheid en relevantie 

gaf het onderzoek het nodige gewicht. Zoals vaker in het leven verliep niet alles zonder 

tegenslagen. Met volharding werden uiteindelijk nieuwe wegen gevonden.

Gedurende het promotieonderzoek heb ik hulp gekregen van de studenten Denise, Jip en 

Moenira. Bedankt voor jullie inzet! Ook dank ik Tahar, Renée, Danië lle, Rowena, Yavuz en Fina 

voor de hulp bij de DNA-extractie, het genotyperen en het meedenken bij de vele bepalingen. 

Voor de statische uitdagingen ben ik veel dank verschuldigd aan Stefan Böhringer. Zonder 

zijn hulp zou dit onderzoek onmogelijk zijn geweest. Daarnaast dank ik Wendy, Kyra, Mieke 

en Marion die mij veel werk uit handen hebben genomen op organisatorisch gebied.

Mijn dank gaat ook uit naar mijn (oud-)kamergenoten: Meta, Sofieke, Paul, Xiaoyan, 

Carin, Cathelijne, Maaike, Anabel, Michel, Anyue, Tom en Sylvia. Aan het einde van je 

PhD-project realiseer je je pas echt hoe een promotieproces verloopt. Het is af en toe wel 

even doorzetten. Verder dank ik mijn collega-promovendi van de reumatologie voor het 

wekelijkse uurtje met altijd enerverende interacties en waardevolle feedback. Dank jullie: 

Sytske Anne, Joy, Miranda, Emma en Féline. 

Goede samenwerking is een voorwaarde voor goed onderzoek. Tijdens mijn onderzoek 

heb ik veelal op locatie hulp gekregen in Nijmegen (Johanne, Els, Thea, Marieke, Jaap en 

Alfons), Leiden (Gerrie en Cedric), Amsterdam (Renske, Ingrid en Mike) en Rotterdam (Mieke 

en Jard). Ook verdienen mijn buitenlandse collega’s veel lof: Engeland (Suzanne en Nisha), 

Polen (Andrzej), Slovenië (Vita en Barbara) en de Verenigde Staten (Stella). Bedankt dat jullie 

mijn verzoeken om hulp altijd inwilligden en de moeite namen om met mij mee te denken.

Dank gaat voorts uit naar mijn familie en schoonfamilie, zeker voor de welkome ontspannende 

momenten zoals die in Porto, op Texel of aan het Idromeer. Naast mijn vader daarboven, 

blijft mijn moeder mijn grootste supporter. Haar trots, interesse en betrokkenheid waren 

hartverwarmend, evenals de steun die ik voelde van mijn broer en zus. Bedankt, Jaap en 

Linda dat jullie mijn paranimf willen zijn tijdens de plechtigheid.

Tot slot wil ik mijn liefste Paulien bedanken, die er altijd voor mij was. Die voor mij naar 

Leiden is verhuisd. Bedankt dat je mijn steun en toeverlaat bent geweest, niet alleen in de 

afgelopen jaren, maar altijd.




