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Abstract
A key objective in the field of translational psychiatry over the past few decades has been to identify the brain correlates of
major depressive disorder (MDD). Identifying measurable indicators of brain processes associated with MDD could facilitate
the detection of individuals at risk, and the development of novel treatments, the monitoring of treatment effects, and
predicting who might benefit most from treatments that target specific brain mechanisms. However, despite intensive
neuroimaging research towards this effort, underpowered studies and a lack of reproducible findings have hindered
progress. Here, we discuss the work of the ENIGMA Major Depressive Disorder (MDD) Consortium, which was established to
address issues of poor replication, unreliable results, and overestimation of effect sizes in previous studies. The ENIGMA MDD
Consortium currently includes data from 45 MDD study cohorts from 14 countries across six continents. The primary aim of
ENIGMA MDD is to identify structural and functional brain alterations associated with MDD that can be reliably detected
and replicated across cohorts worldwide. A secondary goal is to investigate how demographic, genetic, clinical,
psychological, and environmental factors affect these associations. In this review, we summarize findings of the ENIGMA
MDD disease working group to date and discuss future directions. We also highlight the challenges and benefits of large-
scale data sharing for mental health research.
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Introduction
Major depressive disorder (MDD) is the largest con-

tributor to the disease burden caused by poor mental
health worldwide owing to its high prevalence, high
recurrence rates, chronicity, and comorbidity with phy-
sical illness1. Thus, effective and early treatment is crucial.
Unfortunately, current strategies for treating MDD, which
do not take neurobiological markers into consideration,
have not been particularly effective2–6.
Over the past several decades, technical advances in

neuroimaging have provided the impetus for identifying
measurable indicators of brain processes associated with
MDD in order to detect individuals at risk for the dis-
order, to facilitate the development of novel interven-
tions, and to evaluate treatment effects. Although
several neuroimaging markers have been found that
differentiate patients with MDD from healthy controls
(e.g., Mulders et al.7; Kempton et al.8), progress has still
been limited in part by underpowered studies and a lack
of reproducible findings (e.g., Kapur et al.9). Many
research studies in the field have been restricted by
small samples, resulting in a lower probability of finding
“true” effects (low-powered studies tend to produce
more false negatives than do high-powered studies) and
an inflated estimate of the effect size when a true effect
is discovered10–12. This is particularly problematic when
the true effect size is modest, which is often the case for
differences in brain imaging measures between patients
and controls. Underpowered studies also make it diffi-
cult to reproduce significant findings, leading to
inconsistent and poorly replicated neuroimaging find-
ings in depression13,14.
Larger samples and meta-analytic approaches represent

good strategies to overcome issues associated with small
sample sizes. Large-scale data collection initiatives with
harmonized assessments (including neuroimaging), such
as the population-based UK Biobank study (N=
500,000)15, are yielding key insights into brain mechan-
isms involved in MDD (e.g., Howard et al.16; Shen et al.17;
Harris et al.18). However, recruiting large samples is not
always feasible because of limited access to patient
populations at any one site or limited availability of
scanning facilities and the financial costs of scanning
hundreds or even thousands of participants. Moreover,
large-scale population-based samples also typically focus
on individuals from a single geographic region or country
within a restricted age range, thereby limiting the gen-
eralizability of findings across countries, cultures, and
developmental stages. Issues with retrospective meta-
analyses include the potential over-representation of
positive findings in the published literature (publication
bias) and a lack of harmonization of data processing and
statistical analysis methods across the different studies
included in the meta-analysis.

Worldwide pooling of existing neuroimaging data offer
a highly effective alternative to larger non-generalizable
studies and retrospective meta-analyses, as it (1) makes
optimal use of valuable and costly existing data sets from
individual studies; (2) collates large data sets at a relatively
low cost; (3) allows coordinated analysis using standar-
dized protocols for data processing and analysis; and (4)
combines expertize of hundreds of professionals in the
fields of neuroimaging, psychiatry, statistics, and mathe-
matics. Here, we discuss the work of the worldwide
Enhancing NeuroImaging Genetics through Meta-
Analysis (ENIGMA) Major Depressive Disorder (MDD)
consortium.

The ENIGMA MDD consortium
The MDD Working Group was founded in 2012 as part

of the ENIGMA consortium. ENIGMA was initiated in
2009 to boost statistical power in genome-wide associa-
tion studies (GWAS) that aimed to identify common
genetic variants that affect brain structure19–21. Because
most major mental illnesses have a high-dimensional
genetic architecture with polygenic influences, epistasis
and gene by environment interactions, by focusing on
intermediate phenotypes—or endophenotypes—at the
level of MRI-derived brain measures, it was thought that
researchers would be better able to identify the neuro-
biological underpinnings of psychiatric disorders22–24.
Therefore, the ENIGMA consortium was launched to
combine existing genomic and neuroimaging data around
the world to conduct well-powered GWAS analyses.
ENIGMA has since published the largest genetic studies
of the brain, in partnership with other consortia25–30,
mapping genome-wide effects of over a million genetic
loci in over 30,000–50,000 brain MRI scans (for a recent
review of the ENIGMA imaging genetics findings, see
Thompson et al.21).
Building on ENIGMA’s initial successes in imaging

genetics, disease working groups were formed to study
patterns of brain abnormalities in major psychiatric,
neurodevelopmental, neurological, and neurogenetic dis-
orders. ENIGMA MDD was established with the initial
aim to (1) identify structural and functional brain altera-
tions associated with MDD that can be reliably detected
and replicated across many different samples worldwide;
and (2) identify demographic, genetic, clinical, psycholo-
gical, and environmental factors that affect these
associations.
Since it was established, ENIGMA MDD has grown to

35 participating research institutions (including 45 study
cohorts) from 14 different countries across six continents
in September 2019 (Fig. 1). For an up to date overview of
all participating research institutions, see: http://enigma.
ini.usc.edu/wp-content/uploads/2019/10/List_members_
oct2019-2.pdf. To date, participating researchers have
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shared demographic, clinical and neuroimaging data from
9788 healthy individuals and 4372 individuals with MDD.
ENIGMA MDD and other disease working groups are

supported by the ENIGMA Methods working groups (Fig.
2), which are dedicated to developing standardized pro-
cessing, quality assurance, and statistical analysis proto-
cols, to reducing statistical heterogeneity and researcher
degrees of freedom, and to ensuring or evaluating

reproducibility. Brain measures derived from the
ENIGMA protocols have shown good reliability31–34.
Because ENIGMA is dedicated to “open science”, all
ENIGMA protocols are publicly available on the
ENIGMA website.
Here, we discuss findings of structural brain alterations

associated with MDD and depression-related phenotypes
that were obtained through this worldwide data-sharing
initiative. We also discuss clinical implications, future
directions for the ENIGMA MDD consortium and iden-
tify challenges of large-scale data sharing.

ENIGMA MDD findings to date
The initial studies conducted with data available

through the ENIGMA MDD consortium focused on
identifying associations between MDD and structural
brain measures that could reliably be detected across
many samples worldwide. Because inconsistent findings
across previous retrospective meta-analyses may be owing
in part to differences in data processing and statistical
analyses among the primary studies, we conducted indi-
vidual participant data (IPD)-based (or prospective) meta-
analyses to identify differences in subcortical volume,
subcortical shape, cortical thickness, cortical surface area,
and white matter integrity between patients with MDD
and healthy controls, and to examine the effects of
demographic and clinical characteristics35–38. Harmo-
nized imaging processing (e.g., Freesurfer39), quality

Fig. 1 World map of cohorts participating in ENIGMA MDD. Locations of cohorts included in the ENIGMA MDD consortium in September 2019.

Fig. 2 Connections between ENIGMA MDD and other ENIGMA
working groups. Note: not all ENIGMA working groups are displayed
in this figure. In September 2019, ENIGMA includes 50 working groups,
of which 26 working groups focus on mental and neurological
disorders. dMRI diffusion magnetic resonance imaging (MRI), rsfMRI
resting state functional MRI, EEG electroencephalogram, tbfMRI task-
based functional MRI, MDD major depressive disorder, PTSD post-
traumatic stress disorder, AD anxiety disorder.

Schmaal et al. Translational Psychiatry          (2020) 10:172 Page 3 of 19



assurance (http://enigma.ini.usc.edu/protocols/imaging-
protocols/) and statistical analysis protocols were run
locally on data from participating cohorts. In addition, the
scope of retrospective meta-analyses in terms of examined
brain regions is limited to those reported in the original
studies, as many published studies adopted a hypothesis-
driven approach and focused on specific regions of
interest (ROIs). The large sample size available in
ENIGMA MDD ensures the statistical power needed to
investigate whole-brain structural brain alterations. For
the IPD-based meta-analyses, summary statistics of each
site were shared to be included in a random effects meta-
analysis to examine differences in structural brain mea-
sures between MDD patients and controls.
A few ENIGMA MDD studies have started to adopt a

mega-analytic approach, where individual-level measures
derived from the harmonized imaging processing proto-
cols are pooled across sites and regression analyses are
conducted on this pooled dataset while correcting for
confounding site effects (e.g., linear mixed models with a
random intercept for site). Key advantages of a meta-
analytic versus mega-analytic approach include: (1)
allowing the analysis of individual studies to account for
local population substructure; (2) allowing analysis of
study-specific covariates that may be better dealt with
within each study; and (3) allowing analyses to be con-
ducted within each participating site and results to be
shared through a central site without requiring individual-
level data to be shared40. However, the advantages of a
mega-analytic versus meta-analytic approach include (1)
greater flexibility in the control of confounders at the level
of individual patients and studies; and (2) not having to
assume within-study normality and known within-study
variances40, as these assumptions can be especially pro-
blematic with smaller samples41. Moreover, pooling all
data in a single statistical model may boost statistical
power to detect certain effects42, such as higher-level
interactions, when the phenotype of interest is rare (e.g.,
suicide attempt, number of medication naive patients) or
when the range of continuous variables is limited (e.g.,
age, symptom severity, childhood trauma scores) in
individual studies. All ENIGMA MDD studies published
to date are summarized in Table 1.

Structural brain alterations in MDD
Subcortical brain regions
The first ENIGMA MDD project focused on differences

in subcortical volume between MDD patients (N= 1728)
and healthy controls (N= 7199)35. Consistent with prior
studies and retrospective meta-analyses8,43–45, in this
IPD-based meta-analysis we found significantly lower
hippocampal volumes in individuals with MDD compared
with healthy controls. This effect was also consistently
observed across individual cohorts, although the overall

effect size was modest (Cohen’s d=−0.14). The hippo-
campal volume deficit was greater in MDD patients with
recurrent episodes (N= 1119, Cohen’s d=−0.17), com-
pared with healthy controls, whereas no hippocampal
volume alterations were observed in first-episode patients
(N= 583). Our findings may suggest that depression-
related reductions in hippocampal volume are a result of
longer illness duration or greater number of episodes,
instead of a premorbid vulnerability factor. This is con-
sistent with prior longitudinal studies showing greater
hippocampal atrophy in individuals with persistent,
recurring, or worsening of depressive symptoms over
time46–49. Nonetheless, it is unclear whether hippocampal
atrophy associated with prolonged illness duration or
recurrence represents a state marker instead of a per-
manent scar. Fortunately, hippocampal alterations may
normalize as hippocampal enlargement has been observed
following remission or treatment of MDD48,50,51. We also
found smaller hippocampal volumes in patients with an
adolescent onset of MDD (⩽21 years; N= 541; Cohen’s
d=−0.20), compared with controls, whereas no differ-
ences were observed in those with an adult onset of MDD
(N= 997) (Fig. 3a). This is in line with previous studies
showing smaller hippocampal volumes in adolescents and
even children with depression52–55, whereas other studies
found lower hippocampal volumes only in adults with an
age of onset >3056 or no differences in hippocampal
volume between adults with an adolescent versus adult
age of onset of MDD57. Because only about half (57%) of
the adolescent-onset patients had a recurrent episode of
MDD, adolescent disease onset may, in part, have an
independent association with hippocampal volumes.
Smaller hippocampal volumes may precede disease onset,
especially in this early-onset group, perhaps as a result of
factors commonly associated with early-onset MDD
including childhood adversity58,59 and genetic influ-
ences60. Longitudinal studies designed to track hippo-
campal volume changes prior to disease onset and over
the disease course are required to elucidate whether
hippocampal abnormalities result from a prolonged
duration of chronic stress associated with depressive
episodes, represent a vulnerability factor for MDD, or
both.
Interestingly, we did not detect significant differences

for any of the other subcortical volumes, including the
amygdala, nucleus accumbens, caudate, putamen, thala-
mus, and pallidum, or the lateral ventricles and intracra-
nial volume (ICV). Previous reports have varied regarding
volume abnormalities in subcortical regions other than
the hippocampus, such as the amygdala8,61,62. None-
theless, associations with MDD may still be present for
functionally distinct subregions within these broader
subcortical regions. Patterns of depression-related
alterations in subregions of subcortical surfaces have
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been difficult to identify as there are few identifiable
surface landmarks, in contrast with the landmarks con-
sistently found in cortical surfaces (e.g., deep sulcal pat-
terns). In this context, subcortical shape analysis may be a
more sensitive method to identify more localized effects
in subdivisions in subcortical regions that were not cap-
tured by the volumetric analysis of subcortical regions in
the first paper from the ENIGMA MDD consortium35. To
address this, we conducted an additional multi-site meta-
analytic investigation to test whether MDD patients, and
specific subgroups of MDD based on important clinical
characteristics, differ from healthy controls in subcortical
shape. Specifically, we applied meta-analytic models on
effect sizes generated from 1781 patients with MDD and
2953 healthy controls across 10 study cohorts. Consistent
with the findings from our first meta-analysis, we found
that relative to healthy controls (N= 2879), patients with
an adolescent onset of MDD (N= 476) had lower thick-
ness (Cohen’s d=−0.17) and smaller surface area
(Cohen’s d=−0.18) in the hippocampus, with most
pronounced effects in the subiculum and cornu ammonis
(CA) subfields two and three of the hippocampus37

(Fig. 3a). Extending our prior findings, we also observed
lower thickness (Cohen’s d=−0.16) and smaller surface
area (Cohen’s d=−0.17) in the amygdala in adolescent-
onset patients, specifically within the basolateral subdivi-
sion of the amygdala37 (Fig. 3a). These subregions are rich
in glucocorticoid receptors, emphasizing that disturbed
glucocorticoid signaling during stress response promotes
the development of MDD63. Importantly, shape analyses
of subcortical structures clarify results in the extant lit-
erature of smaller hippocampal volumes and ambiguous
effects in the amygdala in patients with MDD; delineating
nuanced effects in depression-related subregions of sub-
cortical structures may help to identify more precise
intervention targets or more sensitive biomarkers of
treatment response. Noteworthy, additional ENIGMA
MDD analyses regarding associations between MDD and
FreeSurfer-derived hippocampal subfields are currently
underway.

Cortical thickness and surface area
Following these studies of subcortical morphology, we

examined cortical thickness and surface area in relation to
MDD and clinical characteristics in a meta-analysis of
data from 20 participating ENIGMA MDD cohorts36.
Because more research groups joined ENIGMA MDD
after the publication of our subcortical volume meta-
analysis study, we were able to conduct separate analyses
in young people (⩽21 years) and adults (>21 years). Most
published studies to date have focused on regional cortical
volume, which is a function of cortical thickness and
surface area. Advances in neuroimaging data processing
have made it possible to separate cortical surface area andTa
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cortical thickness, which is important to do in the context
of understanding brain correlates of MDD, given that
these neural characteristics are genetically and phenoty-
pically distinct27,64,65. In adults, we observed subtle cor-
tical thickness alterations in 13 of 68 cortical regions in
patients with MDD (N= 1902) compared with healthy
controls (N= 7658) (Cohen’s d’s between −0.10 and
−0.14), including lower thickness of the bilateral medial
orbitofrontal cortex (OFC), fusiform gyrus, insula, rostral
anterior (ACC) and posterior cingulate cortex (PCC) and
unilaterally in the left middle temporal gyrus, right
inferior temporal gyrus and right caudal ACC (Fig. 3b).
Our findings in adults with MDD were consistent with
prior meta-analyses showing depression-related structural
alterations in the medial PFC and ACC8,66–69; however,
they extended previous findings by demonstrating struc-
tural abnormalities in the temporal regions (middle and
inferior temporal gyri and fusiform gyrus), posterior cin-
gulate cortex and insula. These cortico-limbic thickness
alterations may contribute to the broad spectrum of
emotional, cognitive, and behavioral disturbances
in MDD.
The largest effect size was observed in the medial OFC,

which—in contrast to lower hippocampal volume—was
already detectable in first-episode patients. In contrast to

the hippocampal volume finding that were driven by adult
patients with an adolescent onset of their first depressive
episode, the lower cortical thickness findings were driven
mostly by adult patients with an adult onset of MDD
(N= 1214; Cohen’s d −0.11 to −0.18) relative to controls.
No cortical surface area differences were found among the
adult groups. We speculated that the more pronounced
effects in adult patients with an adult age of onset may be
driven in part by their older age compared with adult
patients with an adolescent age of onset of their first
depressive episode, which was confirmed by a post hoc
moderator analysis with mean age of patients in each
sample. This suggests that mental illness has a greater
impact on cortical thickness in the context of aging.
Indeed, cortical thickness has been shown to be a more
sensitive indicator of aging than is surface area or
volume70–72. Because our meta-analytic approach did not
allow us to pool all data across samples, we were not able
to investigate age-by-diagnosis effects across the entire
age range (individual samples had restricted age ranges).
Therefore, future mega-analyses could further elucidate
these dynamic relations with development and aging.
Surprisingly, in contrast to adults with MDD, adoles-

cents with MDD showed no cortical thickness alterations,
but rather, alterations in global cortical surface area

Fig. 3 Converging findings across ENIGMA MDD studies. Specific characteristics of brain structure are differentially affected by MDD (or vice
versa) at different stages of life. a Alterations in hippocampal and amygdala volumes and shapes are observed in adolescent-onset MDD and lower
cortical surface area in adolescents with MDD. b Cortical thickness alterations and white matter abnormalities are specifically associated with adult-
onset MDD and older age in individuals with MDD and/or childhood maltreatment. *This association was independent of MDD diagnosis. MDD
major depressive disorder, FA fractional anisotropy, RD radial diffusivity.
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(Fig. 3a); the effect sizes of these results were larger
(Cohen’s d −0.31 to −0.41 in local regions) than the
cortical thickness alterations observed in adults. Cortical
surface area has been understudied in the context of
MDD. Nonetheless, a recent longitudinal study showed
that lower surface area was specifically observed in young
people experiencing depressive symptoms in early ado-
lescence but not in those developing depressive symptoms
later in adolescence, and that lower surface area was
already observable in young people with subclinical
depressive symptoms, not all of whom will develop a full-
threshold MDD diagnosis36. Thus, cortical surface area
reductions may represent an early developing subtype of
depressive disorder, shaped by genetic factors or early life
adversity (prenatal73,74 or perinatal or during child-
hood75–77), and potentially precede the onset of MDD.
This hypothesis is consistent with the observation that,
compared with cortical thickness, cortical surface area has
a higher genetic heritability27,64,78, has a genetic correla-
tion with MDD and depressive symptoms (this genetic
association is absent for cortical thickness27), is deter-
mined earlier in development, and is less strongly affected
by later environmental influences71,79.
Importantly and paradoxically, no differences in surface

area were observed in adult patients with adolescent-
onset MDD. This might be explained by (1) normalization
of cortical surface area when transitioning into adulthood;
(2) cortical surface area alterations being only present in a
specific subgroup (subtype) of adult patients with
adolescent-onset MDD, which we were unable to detect;
or (3) those with cortical surface area alterations in early
adolescence may be at higher risk for transitioning from
MDD to other mental disorders over time. This latter
possibility is consistent with reports of lower cortical
surface area in adolescents and adults with psychosis or
schizophrenia80,81, and in individuals at high risk for and/
or transitioning to psychosis82,83. Longitudinal studies are
required to test the hypothesis that cortical surface area
alteration is a pre-existing risk factor for the development
of MDD, and to investigate the subsequent clinical course
of these depressed young people with global surface area
reductions.

Brain asymmetry
Altered brain asymmetry may have a role in MDD,

especially at a functional level84, but only a few studies
have investigated structural asymmetry85,86. In our stu-
dies, the majority of cortical thickness or surface area
alterations were observed across both hemispheres, with a
few regions showing only unilateral differences36. How-
ever, we did not explicitly test whether the effect sizes of
our findings differed significantly by hemisphere. There-
fore, in a separate study, we investigated structural
asymmetries by investigating asymmetry indices ((left−

right)/(left+ right)) for local and global cortical and
subcortical brain regions in individuals with MDD (N=
2256) compared with healthy controls (N= 3504)87. The
results showed no significant differences in brain struc-
tural asymmetry between individuals with MDD and
controls for any of the structural brain measures, nor any
associations with clinical characteristics. These findings
suggest that altered brain structural asymmetry is of little
relevance to the pathophysiology of MDD, although
functional asymmetries may still play a role.

Brain aging in MDD
MDD is associated with an increased risk of aging-

related medical illnesses such as cardiovascular disease
and cancer88,89. Although aging is associated with loss of
gray matter, depression may accelerate age-related brain
atrophy90. Therefore, we examined deviations from nor-
mative brain aging in adults with MDD and associated
clinical heterogeneity by pooling data from >6900 healthy
controls and individuals with MDD from 19 different
scanners participating in the ENIGMA MDD con-
sortium91. Normative brain aging was estimated by pre-
dicting chronological age (18–75 years) from 7 subcortical
volumes, 34 cortical thickness and 34 surface area, lateral
ventricles and ICV measures using Ridge Regression,
separately in 952 male and 1236 female controls. We
showed that our brain age prediction model generalized
to unseen hold-out samples (927 male controls and 986
males with MDD, and 1199 female controls and 1689
females with MDD; correlations r between predicted and
actual age ranged from 0.77–0.85, mean absolute errors
(MAE) ranged from 6.32 to 7.18 years), as well as to
completely independent samples from different scanning
sites (N= 1330 from 23 different scanners; r= 0.71 and
MAE= 7.49 for male controls, r= 0.72 and MAE= 7.26
for female controls)91.
Brain-predicted age difference (brain-PAD) was com-

puted from the difference between predicted “brain age”
and chronological age92. We found that, at the group
level, MDD patients had a + 1.08 years (Cohen’s d= 0.14,
p < 0.0001) greater discrepancy between their predicted
and actual age compared with control participants. In
other words, individuals with MDD were estimated to be
~ 1 year older than expected based on the brain age
model. The brain age model relied mostly on cortical
thickness measures (compared with subcortical volumes,
cortical surface area and ICV) in order to make good age
predictions. Brain-PAD differences were observed in all
subgroups of patients compared with controls, with no
significant differences in brain-PAD between the patient
groups.
As many of the MDD patients did not show advanced

brain aging compared with controls, the clinical sig-
nificance of the observed higher brain-PAD in MDD
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patients may be limited. However, there may still be a
subgroup of MDD patients with more extreme patterns of
brain aging, which would be important to identify as
accelerated brain aging may be reversed with targeted
treatment. For example, one study showed that brain-
PAD was temporarily reduced by 1.1 years in healthy
controls owing to the acute anti-inflammatory effects of
ibuprofen93. Inflammatory biomarkers are commonly
dysregulated in MDD and negative relationships between
levels of inflammatory cytokine (e.g., interleukin-6) and
cortical thickness have been found in medication-free,
first-episode MDD patients94, suggesting that inflamma-
tion may be a common biological mechanism between
MDD and brain aging. Notably, brain-PAD has been
shown to be a general predictor of psychiatric and neu-
rological disorders, with low clinical disease specificity95.

White matter microstructure
We also examined white matter microstructure in 1305

MDD patients, and 1602 healthy controls from 20 sam-
ples participating in ENIGMA MDD worldwide, again
using a meta-analytic approach38. The ENIGMA protocol
for diffusion tensor imaging (DTI)33 calculates fractional
anisotropy (FA) for 25 atlas-defined white matter tracts of
interest. FA is a commonly used measure in DTI analysis,
and higher values indicate directionally constrained dif-
fusion of water molecules within the white matter, which
is mostly interpreted as higher degree of myelin integrity.
In addition to FA, the ENIGMA DTI protocols also yield
the following diffusivity metrics: axial diffusivity (AD),
which is thought to represent the number, caliber, and
organization of axons, radial diffusivity (RD), which may
be a measure of myelination, and mean diffusivity (MD),
which is often considered a measure of membrane den-
sity96. As maturation of white matter tracts continues
through adolescence and young adulthood, adolescent
(age ≤21 years) and adult (age >21 years) patients and
controls were analyzed separately. The meta-analysis
showed subtle but widespread changes in FA, with
lower FA in adult MDD patients observed in 16 out of 25
ROIs (Cohen’s d between 0.12 and 0.26) (Fig. 3b). Adult
MDD patients also showed higher RD in multiple tracts
(Cohen’s d between 0.12 and 0.18), potentially reflecting
changes in the morphology of glial cells or myelina-
tion97,98. These alterations in FA and RD appeared to be
global effects, as after correction for average FA and RD
across the white matter skeleton respectively, these effects
were no longer significant. Nevertheless, and in accordance
with previous studies, the strongest regional changes in FA
were observed in the genu and body of the corpus callosum
and the corona radiata99,100. The corpus callosum connects
brain regions in both hemispheres, including regions
involved in mood regulation such as the anterior cingulate
cortices and orbitofrontal cortices, whereas the corona

radiata is part of the limbic-thalamo-cortical circuitry and is
also implicated in mood regulation101.
The effect sizes for case–control differences in adults

were small, but very similar to the effect sizes reported in
the meta-analysis of subcortical volume and cortical
morphology35,36. Also, in line with the previous cortical
and subcortical meta-analysis findings, the widespread
alterations in FA in adult patients were driven by MDD
patients with recurrent episodes (N= 645), as there were
no significant differences between first-episode patients
(N= 169) and controls (N= 816). This again suggests
that these alterations may reflect the cumulative effect of
stress on brain morphology, rather than a vulnerability
factor for MDD, although the reduced statistical power
for the first-episode patients comparison may also explain
this difference. In line with the cortical meta-analysis
findings, but in contrast with findings on subcortical
volume, we observed lower FA in patients with an adult
age of onset (N= 399) compared with controls
(N= 869) (Fig. 3b), but no differences when comparing
patients with an adolescent age of onset (N= 251) com-
pared with controls (N= 853). We hypothesized that
MDD may interact with the normal aging process of white
matter, which was in line with findings from our diagnosis-
by-age interaction analysis, in which we observed that
MDD was associated with an accelerated decline in overall
FA with increasing age compared to controls.
We could not replicate the case–control differences in

white matter microstructure in adults in a sample from
the UK Biobank (N= 2096 patients and 3275 healthy
controls), which may be related to lower severity of MDD
symptoms in the UK Biobank sample or subtle differences
in image processing. In addition, there were no significant
differences in FA or diffusivity measures between ado-
lescent patients and controls in the ENIGMA MDD
sample after correction for multiple testing, with smaller
effects in adolescents potentially related to lower disease
duration and number of episodes in adolescent patients
compared with adult patients. However, we cannot rule
out that our sample of adolescent participants may still
have been too small to detect subtle effects (N= 372
patients and 290 healthy controls).

Sex differences in depression-related structural brain
alterations
Major depression is more than twice as prevalent and the

disease burden of MDD is 50% higher in females than in
males1, which may suggest different etiological pathways to
developing MDD in males and females. However, across
our ENIGMA MDD studies examining subcortical, cortical,
and white matter integrity differences in MDD35,37,38,80, we
found no diagnosis-by-sex interaction effects in adult MDD
patients, indicating that structural brain alterations likely do
not contribute to these sex differences in MDD. In addition,
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even though the model fits of the brain aging models
improved when trained separately in males and females, the
(subtle) advanced brain aging that we observed in adults
with MDD was not different for male versus female
patients91. Nonetheless, sex differences in structural brain
alterations may be present during specific sensitive periods
of brain development, such as adolescence or more speci-
fically, during puberty102. We did indeed found higher RD
only in adolescent males with MDD, but not females,
compared with adolescent controls38. However, we did not
observe sex differences in the cortical alterations in the
adolescent MDD group36. This could perhaps be explained
by the observation that sex differences in white matter
volumes increase from birth, through adolescence, until
males and females reach adulthood, whereas sex differences
in gray matter remain relatively stable across develop-
ment103. Future research would also benefit from a
separation between gender and sex analyses.

Childhood maltreatment
Of central relevance to understanding the role of

environmental factors contributing to neurophenotypes
of MDD is research focused on childhood adversity and
maltreatment. Indeed, childhood maltreatment is rela-
tively common in the general population104,105 and is
associated with an increased risk of a multitude of psy-
chiatric illnesses, including MDD104,106. In addition to
epidemiological and clinical evidence linking childhood
maltreatment and MDD, recent neuroimaging studies
show that brain structures affected by childhood mal-
treatment are also implicated in the etiology and expres-
sion of MDD symptoms107–109.
Two studies from the ENIGMA MDD consortium

examined the effects of childhood maltreatment on brain
structure in depressed and non-depressed individuals
using a mega-analytic approach75,110. In the two largest
studies to date examining associations between childhood
maltreatment and brain structure, Frodl et al. and Tozzi
et al. examined the association between severity of
childhood maltreatment—including emotional, physical
and sexual abuse, or emotional and physical neglect as
assessed with the childhood trauma questionnaire (CTQ)
—and brain morphometry in a total of 3036 and 3872
individuals with and without MDD, respectively. Across
all individuals, and correcting for MDD diagnosis, greater
exposure to childhood maltreatment was associated with
lower cortical thickness of the banks of the superior
temporal sulcus (STS) and supramarginal gyrus (SMG),
and with lower surface area across the whole brain and in
the middle temporal gyrus (Fig. 3b). Childhood mal-
treatment severity interacted with age such that greater
severity and older age were associated with lower cortical
thickness in banks of the STS, SMG, rostral anterior
cingulate cortex (rACC), OFC, ACC, posterior cingulate

cortex (PCC), insula, precuneus, and frontal and temporal
lobe regions. This regional pattern is consistent with the
cortical meta-analysis study36, where we found that adult
patients (>21 years old), and especially those with an adult
age of onset of MDD, had lower cortical thickness in the
bilateral OFC, ACC, PCC, insula, frontal, and temporal
lobe regions. It is thus possible, then, that in adults these
depression-related cortical regions are explained by the
severity of childhood maltreatment.
The effects of childhood maltreatment on subcortical

structures in MDD and healthy controls, however, were
distinct from the effects of MDD on subcortical struc-
tures. Notably, in females only—although the same pat-
tern showed a trend towards significance in males—
greater maltreatment severity was associated with smaller
caudate volumes110. This result stands in contrast to the
first paper from the ENIGMA MDD consortium, where
we found that MDD was associated with smaller hippo-
campal volumes, but not smaller caudate volumes,
regardless of sex. As part of the dorsal striatum, the
caudate is involved in motor planning, procedural learn-
ing, and reward-based reinforcement learning111,112.
Specifically, the caudate codes representations of expec-
tation violation and reward prediction errors that underlie
approach and avoidance behaviors and reward-based
learning, all of which are significantly altered in indivi-
duals exposed to childhood adversity and maltreat-
ment113,114. While keeping in mind the heterogeneity of
MDD and the limitations of retrospective reports of
childhood maltreatment115, in the context of under-
standing neurophenotypes of MDD thus far, our results
may suggest that smaller hippocampal volumes result
from (stress-related) mechanisms directly associated with
MDD, whereas smaller caudate volumes may result from
exposure to stress during sensitive periods of develop-
ment (i.e., childhood). Of note, MDD was no longer
associated with smaller hippocampal volumes when cor-
rected for childhood maltreatment110, although the
overall sample included in the subcortical meta-analysis35

was larger than the sample included in this childhood
maltreatment mega-analysis and there was also a differ-
ence in the composition of the cohorts evaluated. Future
longitudinal studies in youth exposed to childhood mal-
treatment are needed to disentangle primary con-
sequences of childhood maltreatment on brain integrity,
from secondary associations caused by prolonged stress
experiences and/or the development of maltreatment-
associated psychiatric diseases such as MDD.

Suicidal thoughts and behaviors
Many individuals with MDD experience suicidal

thoughts, and major depressive episodes account for at
least half of suicide deaths116. The lifetime probability of
suicide attempts is 20–25% among people with major
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mood disorders117. Prior studies had identified structural
brain alterations in individuals with MDD and a history of
suicidal thoughts and behaviors, with most consistent
evidence for structural deficits in the ventromedial and
ventrolateral PFC, dorsomedial and dorsolateral PFC,
ACC, insula and posterior structures including PCC,
temporal regions, and the cerebellum (for recent reviews,
see118–123). Findings of structural alterations in sub-
cortical regions, including the amygdala, hippocampus
and striatal regions have been less-consistent across stu-
dies. However, published studies have been primarily
conducted using small sample sizes (typically N < 50 per
group). Therefore, we performed an IPD-based meta-
analysis of subcortical volumes, lateral ventricle volumes,
and total ICV using data from N= 1101 people with
MDD (451 of whom exhibited suicidal ideation or beha-
vior) and N= 1996 healthy controls from seven research
cohorts participating in the ENIGMA MDD con-
sortium124. Groups were identified based on the presence
of suicidal ideation, defined as thinking about suicide or
taking one’s life, but without making any specific plan or
acting upon those thoughts; suicidal planning, or the
systematic formulation of a program of action that has
the potential to lead to a suicide attempt; and a suicide
attempt, defined as any self-initiated action aimed at
terminating one’s life, regardless of the method or degree
of its consequences. Because the number of suicide
attempters (N= 14) was too small to allow any cross-
group comparison, the MDD individuals with suicide
attempts were grouped with those MDD individuals with
suicide planning into a single category (suicidal behavior).
No significant association of suicidal thoughts and

behavior with any of the subcortical volumes was
found124. MDD patients reporting suicidal plans or
attempts did show a 2.87% smaller ICV (Cohen’s d=
−0.284) than controls, but no significant differences were
found when compared with the MDD patients with only
suicidal ideation without a plan or those without suicidal
ideation and behavior. These null findings with regard to
subcortical volumes could perhaps be explained if addi-
tional involvement of subcortical regions, and especially
the hippocampus35, in suicidal thoughts and behaviors
beyond their role in MDD is subtle and only apparent in
studies with very large sample sizes. Alternatively, given
the highly heterogeneous nature of both MDD and sui-
cidality, subcortical structural alterations may only
become apparent in specific subgroups of people with
suicidal thoughts and behaviors. Finally, it may be that
cortical structural alterations play a greater role than
subcortical alterations in suicidal thoughts and behaviors.
Efforts to identify cortical structural alterations associated
with suicidal thoughts and behaviors are currently ongo-
ing within ENIGMA MDD in a sample with a higher
prevalence of suicide attempts.

Impact of antidepressant medication
With regard to antidepressant medication use at the

time of scanning, patients taking antidepressants tended
to show greater structural alterations than antidepressant-
free patients, both in the subcortical and cortical
ENIGMA MDD meta-analysis studies35,36. These findings
are counterintuitive as antidepressant treatment has been
associated with reduced hippocampal atrophy by puta-
tively enhancing synaptic plasticity and neurogenesis125.
However, as the majority of the ENIGMA MDD cohorts
did not collect detailed information on the history of
antidepressant use, the duration of use, time since last
antidepressant treatment and dose of the antidepressant,
and given the cross-sectional nature of the studies, these
findings cannot be interpreted as direct effects of anti-
depressant medication use. MDD patients taking anti-
depressants at the time of scanning were likely the most
severe/chronic or recurrent patients in the sample, so the
results are likely to be confounded by the severity or
course of the disorder. Potential neuroprotective effects of
antidepressant medication are more consistent with our
cortical surface area findings in adolescents with MDD,
showing lower cortical surface area in several regions in
antidepressant-free adolescent patients compared with
healthy controls but no differences between adolescent
patients taking antidepressants and healthy adolescents36.
Confounding effects of recurrent or chronic illness were
also minimized in this group given their earlier stage of
illness.
In contrast to associations between antidepressant use

and more pronounced cortical thickness and hippocampal
volume abnormalities in adults with MDD, the meta-
analysis of white matter microstructure revealed no dif-
ferences between adult patients who were taking anti-
depressants at the time of scanning and healthy
individuals38. Differences in white matter microstructure
were, however, present in adults with MDD who were
antidepressant-free at the time of scanning compared
with controls38. This finding was unexpected as the meta-
analysis of white matter microstructure and the meta-
analysis of cortical thickness were both performed in a
partly overlapping sample of adults with MDD with a
similar prevalence of recurrent episode patients (79%
versus 71%). Therefore, if the greater and more wide-
spread cortical thickness alterations were driven by a
more severe course of the disorder, a similar effect would
have been expected with regard to white matter micro-
structure. These findings raise the question of whether
antidepressant medication may have differential effects on
different characteristics of the brain (e.g., cortical thick-
ness versus surface area and white matter microstructure)
within the same individuals. Effects of antidepressant
medication use on measures of gray matter and white
matter microstructure require further investigation in a
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sample with more detailed and comprehensive informa-
tion on antidepressant treatment (e.g., information on
history, type of antidepressant, and duration of use) and
simultaneous use of other medications (e.g., atypical
antipsychotics). In addition, although many human and
animal studies have examined the effects of short-term
antidepressant medication use on brain structure, there is
limited information on the effects of long-term anti-
depressant medication use on brain structure. In this
respect, to disentangle indirectly associated phenomena
from causal effects of antidepressants, longitudinal studies
are needed, preferably with a focus on long-term exposure
and at different stages of brain development and aging.

Scientific and clinical relevance
Our findings were computed from many data sets

combined, which has provided a more reliable estimate of
effect sizes of structural brain alterations associated with
MDD than have individual small sample studies. This
inclusion of large-scale, diverse samples also enabled us to
calculate and report how reproducible these structural
brain alterations are across data sets and how well find-
ings generalize to cohorts with different ages of onset,
duration of illness, and with different geographic origins.
Critically, most of our findings were based on a meta-
analytic approach, which increases rigor. Moreover, we
also extend retrospective meta-analyses of published
studies by including data that have not been previously
published owing to publication bias and by using har-
monized data processing and statistical analysis protocols
across all data sets.
Our work has identified subtle structural brain altera-

tions that are associated with specific demographic and
clinical characteristics of MDD. In particular, specific
features of brain structure were differentially associated
with MDD at different stages of life and different stages of
illness. Specifically, the associations with hippocampal and
amygdala volumes/shapes and cortical surface area were
documented in adults with an adolescent-onset MDD and
in adolescents with MDD, respectively. In contrast, cor-
tical thickness reductions and white matter abnormalities
were associated specifically with adult-onset MDD and
with older age in individuals with MDD and childhood
maltreatment (Fig. 3). Moreover, the subcortical and
white matter alterations found in patients with recurrent
episodes compared with healthy controls, where absent in
first-episode MDD patients, compared with healthy con-
trols. These findings have generated novel hypotheses
regarding different features of brain structure being
involved in the onset and progression of depression at
different stages of brain development and provide
important directions for future research. For example,
reductions in cortical surface may represent an early
developing subtype of depressive disorder, potentially

preceding the onset of MDD. If confirmed in future
longitudinal studies, this could provide important infor-
mation for development of novel prevention and early
intervention strategies for depression.
Many of the structural brain alterations identified in the

ENIGMA MDD studies have smaller effect sizes than had
been assumed based on previously published studies, even
in more homogeneous subgroups of MDD patients.
However, many of the larger effect sizes observed in prior
studies may have been owing to small sample sizes and
publication bias. Effect sizes of neuroimaging measures
have been shown to have noticeable instability up to as
many as 1000–2000 subjects (e.g., see Figure S1 in Miller
et al.126). Indeed, large-scale studies, including studies that
pool existing data such as ENIGMA as well as large
population-representative samples126,127, are beginning to
show that variability in structural and functional brain
imaging accounts for only a small percentage of the
explained variance of clinical phenotypes. Thus, similar to
genetics literature, it appears that individual measures of
structural brain alterations account for limited variance in
complex phenotypes such as depression.
These findings have important implications for our

theoretical understanding of MDD; small effect sizes
make it unlikely that MDD can be explained by a generic
disease process, which is perhaps not surprising given the
multi-causal nature of this highly complex disorder. In
addition, from a clinical perspective, these small effect
sizes may make it unlikely for individual structural brain
measures to provide diagnostic biomarkers. Effect sizes
between a Cohen’s d of 1.5 and 3 are likely to be required
for a biomarker to be clinically useful, depending on the
nature of the application128. Nonetheless, given that data
available in ENIGMAMDD are cross-sectional, it remains
to be elucidated whether any of these structural brain
measures could serve as predictive or prognostic bio-
markers, or as indices of treatment response that are
related to long-term mental and physical health out-
comes. Furthermore, multiple factors with small effect
sizes can be combined to create a large effect. Therefore,
the findings to date motivate future ENIGMA MDD
studies to investigate whether the combination of differ-
ent neuroimaging modalities as well as combining neu-
roimaging with clinical, psychosocial, and other biological
data modalities (e.g., using machine-learning methods)
could explain more variance in the depressive phenotype,
with the ultimate goal of developing clinically useful
diagnostic or predictive tools.

Future directions
The ENIGMA MDD consortium is a dynamically

evolving consortium, in which new research groups con-
tinue to join and new projects are continually being
initiated. Our first studies have mainly focused on
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case–control differences in structural brain measures that
can reliably be identified and replicated across many
samples worldwide. An important next step within
ENIGMA MDD is investigating higher dimensional
structural brain measures (e.g., using vertex-wise or voxel-
wise analysis), which may be better able to detect subtle
regional structural brain alterations in MDD, with
potentially larger effect sizes. Future work to identify
potential histological, genetic, and environmental
mechanisms underlying these structural brain alterations
is also underway. Furthermore, as can be seen in Fig. 1,
Asian research institutions are under-represented in
ENIGMA MDD. Many research institutions in China
have shared neuroimaging data from individuals with
depression with the REST-meta-MDD consortium, which
has recently published the first large-scale mega-analysis
on resting state functional MRI data of 1300 depressed
patients and 1128 healthy controls from 25 research
groups in China129. Future collaborations between the
ENIGMA MDD and REST-meta-MDD consortia will be
important for identifying potential cultural differences in
brain alterations associated with MDD.
Future plans of the ENIGMA MDD consortium also

include (but are not limited to): (1) parsing the hetero-
geneity of MDD, (2) moving beyond structural brain
measures to include functional brain alterations, and (3)
elucidating whether the identified neuroimaging markers
are unique to MDD or shared across mental disorders,
which are further discussed below.

Addressing the heterogeneity of MDD
By pooling data across many samples worldwide, the

ENIGMA MDD consortium performs studies encom-
passing a range of depressive phenotypes—from very mild
to severe and a broad range of previous treatments
received. This broad spectrum of depressive phenotypes
combined with a very large sample size provides the
opportunity to study the phenotypic and neurobiological
heterogeneity of MDD. Analyses within subtypes, rather
than across a heterogeneous diagnosis-based sample,
could reveal more pronounced changes in brain structure
and function. For example, large samples allow the stra-
tification or clustering patients into different subgroups
while preserving sufficient statistical power within each
subgroup.
In addition, heterogeneity could be addressed by

examining individual differences, for which large samples
are required to capture the full range of variation in the
phenotype. Such approaches may reveal clues for the
development of treatments tailored to subtypes or indi-
vidual differences. At present, there are various ongoing
ENIGMA MDD projects that aim to address this het-
erogeneity by examining associations between brain
alterations and depressive symptom subtypes (e.g.,

atypical depression) and the presence or absence of phe-
notypes closely related to MDD (e.g., obesity).
In addition, it is also important to investigate associa-

tions with individual symptoms, as individual symptoms
differ in their impact on impairment of functioning, their
response to specific life events, their risk factors130, as well
as their response to treatment (e.g., Chekroud et al131.).
Therefore, several ongoing projects in ENIGMA MDD
have taken a dimensional approach to identify neural
correlates of between-subject differences in the severity of
individual symptoms (e.g., insomnia, suicidality).
Moreover, the pathophysiology of MDD is also likely

highly heterogeneous. Different pathophysiological
mechanisms can result in similar symptoms for different
individuals (equifinality) and the same underlying biolo-
gical risk factors may result in a different expression of a
certain disorder depending on an interaction with the
environment and genetic vulnerability (multifinality). In
line with recent studies using brain imaging markers to
identify subtypes of MDD defined by different profiles of
biological markers, so-called “biotypes” (e.g. Drysdale
et al.132, but also see Dinga et al.133 for limitations asso-
ciated with this approach), we aim to investigate potential
biotypes and their replicability across multiple cohorts in
ENIGMA MDD.

Functional neuroimaging
An important next frontier in ENIGMA MDD will be to

characterize brain functional deficits in MDD. Although
the past two decades have witnessed a surge in studies on
resting state fMRI, the vast heterogeneity in analysis
methods, choice of seeds, templates, and parcellation
atlases has yielded a patchwork landscape of results in the
literature. So far, only a few resting state meta- or mega-
analyses exist for major depression129,134, either focusing
on one specific network or combining results from dif-
ferent analysis strategies across studies. We therefore plan
to conduct a large resting state analysis by pooling data
from sites across the world, assessing a range of resting
state features using harmonized processing and a standard
set of seeds, templates, and atlases.
In addition to rsfMRI, future endeavors will also include

task fMRI. In the spirit of the Research Domain Criteria
framework135, we will hone future analyses to task para-
digms that tap into functional domains relevant to
depressive symptomatology, in particular, spanning the
negative valence and cognitive domains. So far, meta-
analyses in MDD mainly have been based on coordinates
of peak statistical difference reported in single published
studies14, using tools such as activation likelihood esti-
mation (ALE)136. As potential case–control differences
with small effect sizes (typically not reported if not sig-
nificant in single studies) may be omitted in such meta-
analyses and previous negative findings may have not

Schmaal et al. Translational Psychiatry          (2020) 10:172 Page 13 of 19



been published, it will be important to expand this work
through applying IPD-based meta- and mega-analyses.
Therefore, we will conduct voxel- (or vertex-)wise meta-
analyses, which have been shown to be superior to
coordinate-based meta-analyses137,138. A caveat is whe-
ther different versions of task paradigms—or even dif-
ferent tasks probing the same functional domain—can be
combined meaningfully in a meta- or mega-analysis. This
needs to be further confirmed empirically, although pre-
liminary results from the ENIGMA task-based fMRI
workgroup are promising139.
Variance introduced by the different scanner types and

acquisition parameters at each of the contributing sites
cannot be avoided, but we can overcome the apparent
heterogeneity in preprocessing, feature extraction, and sta-
tistical testing of fMRI data by harmonizing software
packages, preprocessing settings, task contrasts, seed masks,
parcellation atlases, network templates, and statistical
models across participating sites. Similarly, the same rig-
orous quality assessment (QA) procedures should be
employed across participating sites, judging data quality
against centrally defined criteria. Following the example of
using standardized analytical tools and QA procedures for
structural analyses in ENIGMA, such procedures and tools
are currently developed within the ENIGMA task-based
and ENIGMA resting state fMRI methods working groups.

Identifying shared and unique brain alterations across
mental disorders
Until recently, all ENIGMA disease working groups

have focused on comparisons of a single disorder with
healthy individuals using neuroimaging data. Results from
primary projects in ENIGMA have indicated that schi-
zophrenia (SCZ)80, bipolar disorder (BD)140, and MDD36

patients are all characterized by lower prefrontal and
temporal cortical thickness relative to healthy control
subjects. However, effect sizes differed between disorders,
the largest (up to Cohen’s d 0.5) having been observed in
SCZ, followed by BD (Cohen’s d 0.3) and MDD (Cohen’s
d 0.15). A similar gradient was observed for hippocampal
volume across these disorders35,141,142, suggesting an
“affective-psychotic severity continuum” (Fig. 4). More-
over, in ENIGMA, the obsessive–compulsive disorder
(OCD) consortium likewise found lower hippocampal
volume in OCD patients versus healthy controls, but this
effect was at least partly driven by patients with comorbid
MDD143, again suggestive of a shared mechanism. Nota-
bly, hippocampal volume loss was also observed in post-
traumatic stress disorder even after accounting for
childhood trauma144. Finally, the findings of structural
brain alterations in people with substance use disorders
from the ENIGMA Addiction consortium also overlap
with our findings in MDD, showing similar effect sizes for
the hippocampus, insula, and medial OFC145.

Given that all ENIGMA psychiatric disease working
groups use the same standardized preprocessing pipelines
and analysis protocols, ENIGMA is well positioned to
perform cross-disorder comparison studies. Several cross-
disorder initiatives are ongoing, including comparisons of
brain morphology across SCZ, BD, and MDD as well as
across neurodevelopmental disorders (autism spectrum
disorder, attention deficit hyperactivity disorder, OCD,
and Tourette’s syndrome)146. The presence of suicidal
thoughts and behaviors and childhood maltreatment are
also relevant, as these constitute transdiagnostic
constructs.

Challenges of large-scale data-sharing initiatives
Worldwide data-sharing initiatives such as ENIGMA

are not without their challenges. Some of these challenges
encompass ethical and computational issues with regard
to data sharing, as well as science and data sharing policies
that vary from one research institute to another, from
country to country or even from continent to continent
and may change over time. This may restrict some
researchers from sharing raw neuroimaging data,
although sharing de-identified, individual-level data may
still be feasible. In addition, several challenges need to be
addressed in translating the small to moderate effect sizes
observed throughout ENIGMA MDD to the individua-
lized and generalizable prediction of MDD-related phe-
notypes. The first is the need for rigorous testing and
validation of predictive models in multiple independent
samples. A challenge in this respect is the relative una-
vailability of deeply characterized phenotypes and long-
itudinal data. To date, ENIGMA MDD has largely relied
on existing data, which implies a degree of heterogeneity
with respect to phenotyping including clinical assess-
ments, limiting the analysis of sources of clinical hetero-
geneity. In addition, the current focus of ENIGMA MDD
is on cross-sectional studies. Consequently, our findings
require further investigation in longitudinal studies to
elucidate, for example, influences of brain development
and aging, medication effects, and the clinical relevance of
the observed structural brain alterations in MDD. Com-
bining longitudinal samples is not without its challenges,
but has already been successfully done for healthy indi-
viduals by the ENIGMA Plasticity working group147.
Another limitation is that neuroimaging data were

collected using different MRI scanners, different sequen-
ces, different brain coverage and, for functional analyses,
different paradigm versions or acquisition lengths, which
may all introduce noise and further complicate the search
for robust biological markers of MDD. Efforts to develop
post-processing methods to reduce noise associated with
differences in scanning and other characteristics between
cohorts will be important, especially in the context of
machine-learning analysis.
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Finally, it could be the case that certain findings
regarding the neurobiology of MDD will not be obtained
by ever larger meta-analyses of existing samples; we may
need alternative methods of data collection or new data
types that are sensitive to effects that are undetected
today. We stress the need for a many-pronged approach
using novel data collection and the coordinated analysis of
the data already available, as well as the development of
new approaches.

Conclusion
Over the past 7 years since its initiation, ENIGMA

MDD has brought together research groups across the
world with broad expertize to work together to gain a
better understanding of brain abnormalities associated
with MDD. By addressing issues of underpowered stu-
dies, our work has provided more reliable estimates of
the extent of structural brain abnormalities in depres-
sion, showing that variability in structural brain altera-
tions may only account for a small percentage of the
depression phenotype. Future work is underway that
aims to address the heterogeneity of depression and to
integrate across data modalities to better understand the
multi-causal nature of depression, with the ultimate goal
to help develop or select more effective treatments
for MDD.
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