2D13C-13C MAS NMR Correlation spectroscopy with mixing by true 1H spin diffusion reveals long-range intermolecular distance restraints in ultra high magnetic field
Boer, I. de; Bosman, L.; Raap, J.; Oschkinat, H.; Groot, H.J.M. de

Citation

Version: Publisher's Version
License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)
Downloaded from: https://hdl.handle.net/1887/3464779

Note: To cite this publication please use the final published version (if applicable).
COMMUNICATION

2D 13C–13C MAS NMR Correlation Spectroscopy with Mixing by True 1H Spin Diffusion Reveals Long-Range Intermolecular Distance Restraints in Ultra High Magnetic Field

Ido de Boer,* Leon Bosman,* Jan Raap,* Hartmut Oschkinat,† and Huub J. M. de Groot*†

*Leiden Institute of Chemistry, Gorlaeus Laboratory, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, the Netherlands; and †Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle Str. 10, D-13125, Berlin, Germany

Received November 26, 2001; revised June 17, 2002; published online August 28, 2002

An improved 2D 13C–13C CP3 MAS NMR correlation experiment with mixing by true 1H spin diffusion is presented. With CP3, correlations can be detected over a much longer range than with direct 1H–13C or 13C–13C dipolar recoupling. The experiment employs a 1H spin diffusion mixing period τ_m sandwiched between two cross-polarization periods. An optimized CP3 sequence for measuring polarization transfer on a length scale between 0.3 and 1.0 nm using short mixing times of 0.1 ms $< \tau_m < 1$ ms is presented. For such a short τ_m, cross talk from residual transverse magnetization of the donating nuclear species after a CP can be suppressed by extended phase cycling. The utility of the experiment for genuine structure determination is demonstrated using a self-aggregated Chl a/H$_2$O sample. The number of intramolecular cross-peaks increases for longer mixing times and this obscures the intermolecular transfer events. Hence, the experiment will be useful for short mixing times only. For a short $\tau_m = 0.1$ ms, intermolecular correlations are detected between the ends of phytyl tails and ring carbons of neighboring Chl a molecules in the aggregate. In this way the model for the structure, with stacks of Chl a that are arranged back to back with interdigitating phytyl chains stretched between two bilayers, is validated. © 2002 Elsevier Science (USA)

Key Words: MAS NMR; spin diffusion; intermolecular correlations; distance restraints; phase cycling; correlation spectroscopy.

INTRODUCTION

For systems of biological interest, supramolecular systems, and self-assembled nanodevices, solid state NMR in conjunction with uniform isotope enrichment offers an attractive route to resolve and refine microstructure (1). First, a series of homonuclear and heteronuclear correlation experiments are performed to assign the NMR response to the chemical structure. During this stage, much can be learned about the electronic properties of the system and nonbonding interactions, for example by comparing the solid state shifts with solution NMR data. In a next step, hydrogen bonding interactions within the system can be investigated (2–4). Finally, invaluable information about the structural arrangement can be obtained from measurement of intermolecular correlations, which involves transfer over relatively large distances of \sim0.5 nm. While many strategies exist nowadays for assignment studies and characterization of hydrogen bonds, intermolecular transfer in uniformly labeled systems is not yet straightforward (5–9). In particular, detection of intermolecular 13C–13C correlations with dipolar recoupling techniques or proton-driven spin diffusion is very difficult, due to rapid relayed spin diffusion along the multispin 13C-labeled molecular network in uniformly enriched systems (10).

At an early stage, the use of MAS NMR correlation spectroscopy to resolve the structure of a uniformly enriched solid has been demonstrated for self-aggregated chlorophyll a/H$_2$O (I, 11). Chl a constitutes the green pigment in the photosynthetic apparatus of plants as well as algae and cyanobacteria. It is responsible for the absorption of light and essential for the subsequent conversion of the excitation energy into chemical energy. The chemical structure of Chl a is depicted in Fig. 1A. When exposed to H$_2$O it forms an aggregate. Such aggregates represent a paradigm for chlorophyll stacking in the chlorosome light-harvesting antennas found in some green photosynthetic bacteria (12, 13). Thus, chlorophyll aggregates can form protein-free light-harvesting antennas, which is of potential interest for artificial photosynthesis.

To resolve a model for the 3D stacking in self-aggregated, uniformly enriched chlorophyll a/H$_2$O with MAS NMR, 13C and 1H chemical shifts were assigned by means of 13C–13C homonuclear and 1H–13C heteronuclear dipolar correlation spectroscopy (1, 11). Shift constraints and intermolecular correlations obtained from a long-range 1H–13C experiment were used to construct a space-filling model (11). In this paper 1H spin diffusion techniques are used to detect intermolecular...
FIG. 1. Chemical structure of Chl \(\alpha \) with the IUPAC numbering for the ring (A). For the phytyl tail the prefix P is used. The \(^1\)H atoms are shown explicitly for the ring only. The proposed structural arrangement of the two Chl \(\alpha \) molecules in the unit cell of self-aggregated Chl \(\alpha \)/H\(_2\)O is depicted below (B). The hydrogens are left out for clarity. Solid circles indicate the carbons involved in the intermolecular correlations.

\[^{13}\text{C}\]–\[^{13}\text{C}\] correlations (14, 15). A modified CP\(^3\) experiment is presented, optimized for short \(^1\)H mixing times \(0.1 \text{ ms} < \tau_m < 1 \text{ ms}\). During the preparation period \[^{13}\text{C}\] transverse coherence is established with ramped cross polarization (22). The residual transverse \(^1\)H magnetization is, ideally, rotated back to the \(z\)-axis. Next, free precession of \(^{13}\text{C}\) is allowed during \(t_1\), while TPPM irradiation on the \(^1\)H channel is applied for heteronuclear decoupling (23). A second CP step transfers the \(t_1\) modulated magnetization back to the protons. The \(^1\)H magnetization is subsequently stored along the magnetic field \(B_0\) by a 90° pulse. The distribution of \(^1\)H magnetization is equilibrated during a spin diffusion period \(\tau_m\). With another 90° pulse, the \(^1\)H polarization is rotated back to the \(XY\) plane and a final CP is applied for high-resolution \(^{13}\text{C}\) detection.

For short mixing times, \(\tau_m \approx T_2\), the residual transverse magnetization from the donating nuclear species after the first two CP periods is a serious problem. Residual \(^1\)H magnetization after the first CP interval interferes with the magnetization transfer during the second CP step. In addition, residual \(^{13}\text{C}\) signal from the second CP interval mixes with the \(^{13}\text{C}\) coherence created during the third CP period. These processes can give rise to strong artifacts in the 2D correlation spectrum.

The simplest way to deal with these cross-talk problems is a 90° pulse to rotate the remaining coherence after the first and second CP period along the \(z\)-axis. In practice, adequate

![FIG. 2. Schematic representation of the extended CP\(^3\) pulse sequence, suitable for the 2D \(^{13}\text{C}\)–\(^{13}\text{C}\) MAS NMR correlation spectroscopy with a short \(^1\)H spin-diffusion mixing period.](image)
suppression of artifacts with a 90° pulse is difficult to achieve due to pulse imperfections, in particular for the 13C. During rf irradiation, the effective field is tilted with respect to the z-axis by an angle \(\theta \) such that

\[
\tan(\theta) = \frac{B_1}{\Delta B_0},
\]

where \(B_1 \) is the applied rf field strength and \(\Delta B_0 \) the residual z-component of the magnetic field in the rotating frame. For off-resonance irradiation, \(\theta \) deviates from 90° and the effective field points out of the \(XY \) plane. For a high-field spectrometer or moderate rf power and a broad chemical shift dispersion, this offset can become very significant for 13C and the effect of the 90° pulse is spoiled. For example, for a spectrometer with a 750 MHz 1H resonance frequency and using a moderate \(\sim 50 \text{ kHz} \) rf power, 13C spins shifted toward the extreme ends of a 300 ppm wide spectrum experience deviations (90°-\(\theta \)) as high as \(\sim 30° \). Due to a lower shift dispersion of \(\sim 14 \text{ ppm} \), this value is down to \(\sim 5° \) for 1H spins under similar conditions.

After the first CP period, the residual 1H transverse magnetization is thus only partially removed by a 90° pulse. By cycling the phase of the initial 1H 90° pulse relative to the phase of the 1H spin lock pulse of the second CP, contributions of the residual magnetization to the magnetization transfer during this CP step are cancelled (Table 1). Prior versions of the CP3 experiment use a 13C lock pulse after the first CP, which allows the residual 1H signal to decay during a spin lock time \(\tau > T_2 \) (14, 15). In practice, this yields a considerable loss of the 13C signal, in particular for materials with a long 1H \(T_2 \). This disadvantage is avoided by the phase cycling of the initial 1H 90° pulse.

The residual 13C transverse magnetization after the second CP period vanishes only for a long \(\tau_m > T_2 \) (15). For shorter \(\tau_m \), the phase of the residual 13C signal can be cycled relative to the phase of the 13C signal detected during \(T_2 \) (14). In this way, the 13C cross talk is eliminated. The pulse scheme of Fig. 2 with the cycling of Table 1 is straightforward to implement. Given that the signal to be cancelled has a considerable intensity, the phase alternation sequence of Table 1 needs to be rather extensive in order to compensate for any imperfections of the phase settings, precession during pulses, etc.

For moderate MAS rates, 1H spin diffusion processes can take place not only during the mixing time, but also during the CP intervals. In a static sample, the spin diffusion rate during a spin lock is effectively scaled by a factor of \(\frac{1}{2} \) (16). Therefore, it is expected that the 1H spin diffusion is slower during the CP periods. In addition, short CP times of 150 \(\mu \text{s} \) were used to prevent spin diffusion during CP from compromising the selectivity of the established correlations with respect to the distance. A 2D spectrum results, where only proton-bound carbons are visible (Fig. 3). Since these carbons usually cover a limited chemical shift range of only \(\sim 150 \text{ ppm} \), the spectral width can be reduced, yielding a shorter acquisition time of the 2D experiment, or a better resolution.

Using the sequence in Fig. 2, a series of datasets were collected from a sample of uniformly labeled self-aggregated Chl \(a/\text{H}_2\text{O} \) (Fig. 3). Each spectrum was obtained using a different mixing time in \(\sim 11 \text{ h} \) with a spinning frequency \(\omega_s/2\pi = 14.5 \text{ kHz} \). An extensive discussion of the assignment of the 13C NMR response can be found elsewhere (17). The CP transfer reaches its maximum in \(\sim 150 \mu \text{s} \) CP time. This was verified with a separate 1D 1H–13C CP MAS experiment (data not shown).

Several cross-peaks in Fig. 3 are indicated with arrows and labels. Dashed lines indicate the symmetry-related signals via the corresponding diagonal peaks. In order to quantify the transfer range of the correlation observed with these 1H spin diffusion experiments, the distances between hydrogens directly bound to the carbons assigned to the cross-peaks are determined from the Chl \(a \) structure. For the shortest diffusion time \(\tau_m = 100 \mu \text{s} \) (Fig. 3A), most of the cross-peaks involve intramolecular correlations with a 1H transfer range \(\lesssim 4 \text{ A} \). The 17 and the 1341 3 C resonate with 51.7 and 51.8 ppm chemical shift, respectively (17). Although the signals overlap in the 2D homonuclear correlation experiment, both labels are in the same region of the molecule and cross-peaks with other carbons can provide structural information. The same is true for the 171 and 172 signals, which coincide at 32.3 ppm. The 17 response is doubled at 8.9 and 11.5 ppm (Fig. 3), indicating two structurally distinct environments (17). The p15 13C signal is shifted to 28.4 ppm (1, 11) and is well resolved in the spectrum. In Fig. 3A, correlations of p15 with the 132 and with the overlapping 171, 172, and 131, 17 labels are clearly observed. The p15 carbons are located at the ends of the interdigitating phytol tails, and these correlations are attributed to intermolecular polarization transfer during \(\tau_m \).

A CP3 experiment with a longer \(\tau_m = 200 \mu \text{s} \) is shown in Fig. 3B. Some intramolecular correlations are detected that are not observed in the experiment with \(\tau_m = 100 \mu \text{s} \) (A). The

<table>
<thead>
<tr>
<th>Table 1: Phase Alternation Scheme Corresponding with the Pulse Sequence of Fig. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\psi_1)</td>
</tr>
<tr>
<td>+X</td>
</tr>
<tr>
<td>-X</td>
</tr>
<tr>
<td>+Y</td>
</tr>
<tr>
<td>-Y</td>
</tr>
<tr>
<td>-Y</td>
</tr>
<tr>
<td>+X</td>
</tr>
<tr>
<td>+X</td>
</tr>
<tr>
<td>+Y</td>
</tr>
</tbody>
</table>

\(^a \) +TPPI for phase-sensitive detection in \(t_i \).
intramolecular 1H transfer extends over $\sim 7 \, \text{Å}$. Finally, an experiment with a mixing time of 700 μs yields many cross-peaks (Fig. 3C). Several of the longer range correlations are depicted in Fig. 3C. Selective assignment between intra- and intermolecular correlations is virtually impossible for such a long diffusion time.

In a first order approximation, the protons form a chainlike or tubular arrangement at the exterior of the molecule. During spin diffusion in one dimension, the initial magnetization located at $r = 0$ spreads like a Gaussian distribution with a root-mean-square distance developing as

$$\sqrt{\langle r^2 \rangle} = \sqrt{2Dt}. \tag{2}$$

Although a moderate spinning frequency of 14.5 kHz is used in these experiments, the characteristic diffusivity D of $\sim 0.8 \, \text{nm}^2/\text{ms}$ commonly used in the literature is expected to be useful for a rough approximation. Equation [2] yields ~ 4 and $\sim 6 \, \text{Å}$ for 100 and 200 μs mixing, respectively. Hence the actual intramolecular transfer range of $\sim 4 \, \text{Å}$ for $\tau_m = 100 \, \mu$s and $\sim 7 \, \text{Å}$ for $\tau_m = 200 \, \mu$s is in line with previous data for 1H spin diffusion. For $\tau_m = 700 \, \mu$s, Eq. [2] predicts a spin diffusion range of $\sim 11 \, \text{Å}$. In that case the correlations can span the entire ring and an assignment to intra- or intermolecular transfer is difficult, in agreement with the data presented in Fig. 3C.

Based on aggregation shifts and long-range 1H–13C transfer, a model for the stacking of self-aggregated Chl a/H$_2$O was proposed, where parallel Chl a stacks are in a sheet arrangement, similar to that of ethyl chlorophyllide a (1, 11). In a first attempt to resolve the stacking in three dimensions, it was inferred from the data that the sheets form bilayers in a back-to-back arrangement with interdigitating chains, where several other models were rejected. The phytyl chains were assumed to be elongated, considering the linewidths of the phytyl carbons and the absence of conformational shifts.

The observed intermolecular correlations involving the p15 carbon provide a first direct experimental validation of the bilayer arrangement in the aggregate. The end of the phytyl tail of the Chl a molecule appears to be in close contact with the ring of a neighboring Chl a. From the spectra shown in Fig. 3, it can be concluded that the p15 proton is separated from hydrogens located near the basis of the phytyl tail by $\lesssim 4 \, \text{Å}$. The only way to arrange the two Chl a bilayers to accommodate these distance restraints is shown schematically in Fig. 1B. The two Chl a moieties are from two adjacent bilayers and the carbons that are involved in the observable intermolecular correlations are depicted by solid circles in Fig. 1. According to our results,
the elongated phytly tails are somewhat closer to the other ring than suggested in the earlier work (1, 11, 24–26).

Hence, the modified CP3 experiment forms a useful complementary technique for the detection of intermolecular correlations over short distances >0.3 nm. It can be a valuable tool in a structure elucidation strategy. It is anticipated that the comparison of multiple datasets, recorded with varying mixing times, can lead to sets of distance constraints that provide information about, for example, the folding of a protein.

CONCLUSIONS

The 2D CP3 13C–13C MAS NMR correlation experiment with true 1H spin diffusion previously implemented for long-range polarization transfer is successfully adapted for the detection of short-range intermolecular correlations in uniformly labeled systems of biological interest. Short mixing intervals 0.1 ms < τm < t0.7 ms are used to detect intermolecular correlations spanning distances <1 nm. In this way, information about the structure of self-aggregated Chl a/H2O is obtained. There is clear evidence for the proximity of the ends of the phytly chains of Chl a rings of opposite stacks. With the phase cycling presented here, the CP3 experiment offers an attractive method for the collection of intermolecular distance restraints and structural elucidation.

EXPERIMENTAL

The preparation of uniformly labeled self-aggregated Chl a/H2O has been described before (1). The measurements were performed with a DSX-750 spectrometer and using a 4-mm triple resonance probe (Bruker, Germany), operating at a temperature of 298 K. The spinning frequency was kept constant within a few hertz. During the 13C evolution intervals, heteronuclear TPPM decoupling (23) was applied with pulses of 7.3 µs and a phase modulation of 15°, using a rf nutation frequency of 66 kHz. Phase-sensitive detection in the t1 dimension was simulated with a TPPI scheme (27).

ACKNOWLEDGMENTS

J. Hollander, F. Lefever, and C. Erkelens are thanked for assistance during various stages of the experiments. H.J.M.d.G. is a recipient of a PIONIER award of the chemical sciences division of the Netherlands Organization for Scientific Research (NWO). The 750-MHz instrumentation was financed in part by Demonstration Project BIO4-CT97-2101 of the Commission of the European Communities.

REFERENCES

