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Chapter 2

Galactic potential constraints from
clustering in action space of combined

stellar stream data

Based on: Reino S., Rossi E. M., Sanderson R. E., Sellentin E., Helmi A.,
Koppelman H. H., Sharma S., 2021, MNRAS, 502, 4170
&
Reino S., Rossi E. M., Sanderson R. E., Sellentin E., Helmi A., Koppelman
H. H., Sharma S., 2022, MNRAS, 512, 4455

Stream stars removed by tides from their progenitor satellite galaxy or
globular cluster act as a group of test particles on neighboring orbits, prob-
ing the gravitational field of the Milky Way. While constraints from individ-
ual streams have been shown to be susceptible to biases, combining several
streams from orbits with various distances reduces these biases. We fit a
common gravitational potential to multiple stellar streams simultaneously
by maximizing the clustering of the stream stars in action space. We apply
this technique to members of the GD-1, Pal 5, Orphan and Helmi streams,
exploiting both the individual and combined data sets. We describe the
Galactic potential with a Stäckel model, and vary up to five parameters si-
multaneously. We find that we can only constrain the enclosed mass, and
that the strongest constraints come from the GD-1, Pal 5 and Orphan streams
whose combined data set yields M(< 20 kpc) = 2.22+0.10

−0.08 × 1011 M�. When
including the Helmi stream in the data set, the mass uncertainty increases
to M(< 20 kpc) = 4.10+2.05

−1.25 × 1011 M�.
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2.1 Introduction

The outer reaches of the Milky Way, known as the “halo”, are dominated by
dark matter. Knowledge of the mass and shape of the halo is required for
placing strong constraints on the formation history of the Milky Way, testing
the nature of dark matter and modified gravity models (e.g. Mao et al. 2015;
Thomas et al. 2018). Some of the most promising dynamical tracers of the
Galactic potential in the halo region are stellar steams. Stellar streams form
when stars are torn from globular clusters or dwarf galaxies due to Galactic
tidal forces. The stars in the ensuing debris gradually stretch out in a series
of neighboring orbits. This property makes stellar streams superb probes of
the underlying gravitational potential, allowing us to constrain the mass dis-
tribution within the extent of their orbits (Johnston et al. 1999). In addition,
density variations and gaps within a stream can potentially provide informa-
tion about past encounters with small-scale substructure and therefore an
opportunity to detect the presence of dark matter subhaloes (Carlberg et al.
2012; Sanders et al. 2016; Erkal et al. 2017; Bonaca et al. 2019; Banik &
Bovy 2019; Bonaca et al. 2020b).

The first detections of streams included the discovery of the tidally dis-
torted Sagittarius Dwarf Galaxy by Ibata et al. (1994), the tidal tails around
multiple globular clusters by Grillmair et al. (1995) and the Helmi streams
by Helmi et al. (1999). Since then, the number of known streams has grown
rapidly owing to the high-quality data from wide-field surveys. The first
surge in discoveries came with the arrival of the Sloan Digital Sky Survey,
where among others, the GD-1 (Grillmair & Dionatos 2006b), Orphan (Grill-
mair 2006; Belokurov et al. 2006), Palomar 5 (Odenkirchen et al. 2001) and
NGC 5466 streams (Grillmair & Johnson 2006) were found. More discoveries
from other surveys, such as PAndAS, Pan-STARRS1 and the Dark Energy
Survey, followed (Martin et al. 2014; Bernard et al. 2014; Koposov et al. 2014;
Bernard et al. 2016; Shipp et al. 2018).

Despite the abundance of known streams (see e.g. Newberg & Carlin 2016;
Mateu et al. 2018), full six-dimensional phase space maps of stream members,
crucial for obtaining accurate constraints on the Galactic potential, have only
been made for a few cases. Recently, the second data release of Gaia (Gaia
DR2, Gaia Collaboration et al. 2018) expanded our ability to make such
maps by several orders of magnitude, by measuring proper motions for more
than a billion Milky Way stars. This phenomenal wealth of data has already
facilitated the discovery of many new streams (Malhan et al. 2018; Ibata
et al. 2019; Meingast et al. 2019) and prompted further investigations of the
previously known ones (Price-Whelan & Bonaca 2018; Price-Whelan et al.
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2019; Koposov et al. 2019; Koppelman et al. 2019a). To gain a full 6D view
of more distant streams, Gaia data must be combined with radial-velocity
measurements for faint stars from current or future wide-field spectroscopic
surveys such as RAVE (Kunder et al. 2017b), S5 (Li et al. 2019), WEAVE
(Dalton et al. 2012), 4MOST (de Jong et al. 2019b), SDSS-V (Kollmeier et al.
2017) etc.

Perhaps the most intuitive approach for constraining the Galactic poten-
tial with stellar streams is the orbit-fitting technique, where orbits integrated
in different potentials are compared with the tracks of observed streams (e.g.
Koposov et al. 2010; Newberg et al. 2010). However, the oversimplification
that streams perfectly follow the original progenitor’s orbit has been shown
to lead to systematic biases when used to constrain the Galactic potential
(Sanders & Binney 2013a). More realistic stream modelling involves creat-
ing either full N-body simulations of disruptions of stellar clusters (the most
accurate but also most computationally expensive option) or particle-spray
models, where the stream is created by ejecting stars from the Lagrange
points of an analytical model of the progenitor at specific times (Bonaca
et al. 2014; Küpper et al. 2015; Erkal et al. 2019).

All these methods compare models to observed streams in 6-dimensional
phase space, or some subset of measured positions and velocities. It is, how-
ever, possible to simplify the behaviour of streams considerably by switching
to action-angle coordinates (McMillan & Binney 2008; Sanders & Binney
2013b; Bovy et al. 2016). In this work we follow the action-space clustering
method of Sanderson et al. (2015). Actions are integrals of motion that, save
for orbital phase, completely define the orbit of a star bound in a static or
adiabatically time-evolving potential. Converting the 6-dimensional phase-
space position of a star to action space essentially compresses the entire orbit
of a star to just three numbers. Stream stars move along similar orbits and
thus should cluster tightly in action space. However, since action calculation
requires knowledge of the Galactic potential, clustering occurs only if the
actions are calculated with something close to the true potential (Peñarrubia
et al. 2012; Magorrian 2014; Yang et al. 2020). Therefore, our strategy to
find the true Galactic potential is to identify the potential that produces the
most clumpy distribution of stars in action space.

The method outlined in Sanderson et al. (2015) quantifies the degree of
action space clustering with the Kullback-Leibler divergence, which is used
to determine both the best-fit potential and its associated uncertainties. In
that work we demonstrated the effectiveness of this procedure by successfully
recovering the input parameters of a potential using mock streams evolved
in that potential. Here, we apply the same technique to real stellar streams.
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Stellar streams can possess a variety of morphologies: some appear as
long narrow arcs, others shells, while still others are fully phase-mixed and
no longer easily distinguishable as single structures (Hendel & Johnston 2015;
Amorisco 2015). However, even if phase-mixing has induced a lack of appar-
ent spatial features, the fact that these stars still follow similar orbits causes
them to condense into a single cluster in action-space. Our method is thus
applicable to streams in any evolutionary stage.

Another important advantage of this technique is that it can be applied
to multiple streams simultaneously. Combining multiple streams is crucial
since it helps counteract the biases to which single-stream fits have been
shown to be susceptible (Bonaca et al. 2014). Single-stream fits that account
for only statistical uncertainties are severely limited by systematics, both in
the insufficiency of the potential model (compare for example the Law &
Majewski (2010) and Vera-Ciro & Helmi (2013) fits to the Sagittarius stream
in the era before Gaia ) and in the limited range of orbits explored. Only
simultaneous fitting of multiple streams can begin to probe the extent and
nature of these systematic uncertainties by consolidating several independent
measurements of the mass profile over a range of Galactic distances.

This paper is organised as follows. In Section 2.2, we explain the theoret-
ical background and the details of our procedure. In particular, the Stäckel
potential used to model the Milky Way is introduced in Section 2.2.1, the cal-
culation of actions from the observed phase space is described in Section 2.2.2,
and Sections 2.2.3 and 2.2.4 discuss how we determine the best-fit potential
(see also Appendix 2.B) and confidence intervals, respectively. In Section
2.3, we introduce the four streams in our sample, giving a brief overview of
their properties and an outline of our data sets (for more detail see Appendix
2.A). Our results, for both individual and combined streams, are presented
in Section 2.4 for the one-component model and in Section 2.5 for the two-
component model. Section 2.6 is dedicated to validating our results and
presenting the predicted orbits. In Section 2.7, we compare our results with
other potential models of the Milky Way and discuss the implications, and
in Section 2.8 we summarize our main conclusions.

2.2 Method

To constrain the Milky Way’s gravitational potential, we exploit the idea that
stream stars’ action-space distributions bear the memory of their progenitor’s
orbit. We describe the Galactic potential with a one- or two-component
Stäckel model (§2.2.1), converting the observed phase space coordinates of
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each star in our sample into action space coordinates (§2.2.2) for a wide,
astrophysically motivated range of Stäckel potential parameters. The model
for the potential that produces the most clumped configuration of actions
is selected as the best-fit potential (§2.2.3). Once the best-fit potential is
identified, its confidence intervals are determined by quantifying the relative
difference between the action distribution in the best-fit potential and those
of all other considered potentials (§2.2.4).

2.2.1 Stäckel potential

While there exist algorithms to estimate approximate actions for any gravita-
tional potential (see review by Sanders & Binney 2016), analytical transfor-
mation from phase space coordinates to action-angle coordinates is possible
only for a small set of potentials. The best suited of these to describe a
real galaxy is the axisymmetric Stäckel model (Batsleer & Dejonghe 1994;
de Zeeuw 1985). This work exploits potentials of the Stäckel form, enabling
us to explore the relevant parameter space efficiently. In addition, using a
potential with analytic actions avoids introducing additional numerical errors
from action estimation, which are a function of the actions themselves, and
are several orders of magnitude higher for radial than circular orbits (Vasiliev
2019a).

The Hamilton-Jacobi equation is a formalization of classical mechanics
used for solving the equations of motion of mechanical systems (see e.g.
Goldstein 1950). The Stäckel potential, when expressed in ellipsoidal coor-
dinates, allows the Hamilton-Jacobi equation to be solved by the separation
of variables and therefore the actions to be calculated analytically. Here, we
describe the Stäckel potential using spheroidal coordinates: the limiting case
of ellipsoidal coordinates that is used to describe an axisymmetric density
distribution.

The transformation from cylindrical coordinates R, z, φ to spheroidal
coordinates λ, ν, φ is achieved using the equation

R2

τ − a2
+

z2

τ − c2
= 1 , (2.1)

where τ = λ, ν. Hence, this is a quadratic equation for τ with roots λ and
ν. Parameters a and c, which can be interpreted as the scale lengths on the
equatorial and meridional planes, respectively, define the location of the foci
∆ =

√
a2 − c2 and therefore the shape of the coordinate system. We also

define the axis ratio of the coordinate surfaces, e ≡ a
c .

An oblate density distribution has a > c, while a prolate density distri-
bution has a < c. Further details about this coordinate system can be found
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in de Zeeuw (1985) and Dejonghe & de Zeeuw (1988). The Stäckel potential,
Φ, in spheroidal coordinates has the form

Φ(λ, ν) = −f(λ)− f(ν)

λ− ν
,

f(τ) = (τ − c2)G(τ) ,
(2.2)

where G(τ) is the potential in the z = 0 plane, defined as

G(τ) = GMtot√
τ + c

, (2.3)

with Mtot the total mass and G the gravitational constant. Putting these
elements together, we get

Φ(λ, ν) = − GMtot√
λ+

√
ν

. (2.4)

It is possible to combine two Stäckel potentials for a more realistic model
of the Galaxy (Batsleer & Dejonghe 1994). In this case, we have two com-
ponents in the full potential, Φouter and Φinner, each following Equation 2.2.
In Batsleer & Dejonghe (1994) the inner component is intended to represent
the disc, while the outer component is associated with the halo. However,
for our work the individual components are not intended to represent specific
structures of the Milky Way; their purpose is simply to add more flexibility
to our model.

The two components have different axis ratios and scale radii, defined by
parameters aouter, couter and ainner, cinner. For the overall potential to retain
the Stäckel form (as defined by Equation 2.2), and hence the separability of
the Hamilton-Jacobi equation, the two components must share the same foci
and therefore the coordinates must be related by

λouter − λinner = νouter − νinner = q , (2.5)

and the parameters of the the two components’ coordinate systems have to
be linked by

a2outer − a2inner = c2outer − c2inner = q , (2.6)

where q is a constant. The total potential is then

Φ(λouter, νouter, q) = −GMtot

[
1− k√

λouter +
√
νouter

+
k√

λouter − q +
√
νouter − q

]
(2.7)
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where k is the ratio of the inner component mass to the outer component
mass, and Mtot is the sum of the two component masses.

We set q > 0, so that the scale of the outer component is larger than
the scale of the inner component. We restrict our model to potentials where
the inner component has an oblate shape, i.e. einner > 1, suitable for the
inner regions of the Milky Way. In addition, we require the inner component
to be flatter than the outer component by restricting einner > eouter. These
choices force the outer component also to have eouter > 1, meaning the overall
model is limited to quasi-spherical and oblate shapes. The cause for this final
restriction becomes evident when we write down q in the following from:

q =
c2inner(e

2
inner − e2outer)

e2outer − 1
(2.8)

Ultimately, the cause for this final restriction comes from the requirement
that both the disc potential and the halo potential share the same foci, which
means they have to be oriented in the same way. We first consider a model
that consists of a single component represented by a Stäckel potential. The
set of three parameters that defines a particular potential is ζ = (Mtot, a, e).
We select trial potentials by drawing 40 points from a uniform distribution in
log space for each parameter over its prior range: [0.7, 1.8] in log10(a/kpc),
[11.5, 12.5] in log10(M/M�), and [log10(0.5), log10(2.0)] in log10(e). Conse-
quently, there are 403 trial potentials for this model.

Next, we consider two-component Stäckel potential, defined by a set
of five parameters ζ = (Mtot, aouter, eouter, ainner, k). In this case the pa-
rameters are not all independent, but are constrained by Equations (2.6).
Thus, we select the trial potentials by drawing 50 points for the shape pa-
rameters, again from uniform distributions in log space, over the following
ranges: [0.7, 1.8] in log10(aouter/kpc), [log10(1.0), log10(2.0)] in log10(eouter)
and [log10(0.), log10(0.7)] in log10(ainner). Of these, we only use the (∼ 8000)
parameter combinations that allow us to construct a mathematically valid
potential; i.e., one where both einner and eouter are larger than 1. In addition,
we draw 20 points for the mass parameters in these parameter ranges: [11.5,
12.5] in log10(M/M�) and [log10(0.01), log10(0.3)] in log10(k). For each of
these potentials we find the mass enclosed within r = R2 + z2 by calculating

M(< r) = 2π

∫ r

0

∫ √
r2−R2

−
√
r2−R2

ρ(R, z)Rdz dR , (2.9)

where the density ρ(R, z) is found through the Poisson equation. Therefore,
rather than determining the mass enclosed within an isodensity contour, we
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integrate the density profile out to a spherical r in order to compare with
previous work.

2.2.2 Actions

In this work, we analyse stellar data in action-angle coordinates. The actions
are integrals of motion that uniquely define a bound stellar orbit and the
angles are periodic coordinates that define the phase of the orbit. For a
bound, regular orbit 1, the actions Ji are related to the coordinates qi and
their conjugate momenta pi by

Ji =
1

2π

∮
pidqi , (2.10)

where the integration is over one full oscillation in qi. In the spheroidal coordi-
nate system defined in §2.2.1, q1 = λ, q2 = ν and q3 = φ. The expressions for
the actions in the Stäckel potential are found by solving the Hamilton-Jacobi
equation via separation of variables (see e.g. Binney & Tremaine 2008). This
leads to the definition of three integrals of motion: the total energy E, and
the actions I2 and I3; and to the equations for the momenta. The integral of
motion I2 is related to the angular momentum in the z-direction,

I2 =
L2
z

2
, (2.11)

while I3 can be seen as a generalization of L − Lz (Dejonghe & de Zeeuw
1988),

I3 =
1

2
(L2

x + L2
y) + (a2 − c2)

[1
2
v2z − z2

G(λ)− G(ν)
λ− ν

]
. (2.12)

The momenta, pτ , are then expressed as a function of the τ coordinate and
the three integrals of motion:

p2τ =
1

2(τ − a2)

[
G(τ)− I2

τ − a2
− I3

τ − c2
+ E

]
, (2.13)

from which the first two actions can be calculated as

Jτ =
1

2π

∮
pτdτ , (2.14)

where the integral is over the full oscillation of the orbit in τ , i.e. the limits
are the roots of p2τ . As pτ is only a function of τ and the three integrals of

1An orbit for which the angle-action variables exist (Binney & Tremaine 2008).
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motion, it follows that Jτ is also an integral of motion. The third action,
Jφ, is equal to Lz and therefore independent of the particular axisymmetric
potential.

We calculate the actions for all stars in our sample for each trial po-
tential. From the observed sky positions and proper motions in Gaia DR2,
cross-matched with distance and radial velocity estimators from the various
sources discussed in §2.3, we derive the Galactocentric phase-space coordi-
nates ω = (x,v), where x is the three-dimensional position vector and v
is the three-dimensional velocity vector. Details of this transformation are
given in Appendix 2.A. The phase-space coordinates are then used to calcu-
late (τ, pτ ) and E, I2 and I3 for each star in each trial potential. As mentioned
before, Jφ = Lz and does not vary from potential to potential. The other two
actions, Jλ and Jν are found from Equation 2.14 by numerical integration.
We discuss the influence of measurement errors in §2.6.

Some combinations of observed phase-space coordinates and trial poten-
tial can result in the star being unbound from the Galaxy, in which case
its actions are undefined. In our analysis, we throw out any potential that
produces unbound stars, a reasonable assumption given that the stars in our
data set are all well within the Galaxy’s expected virial radius and have ve-
locities much less than estimates of the escape velocity. We comment on the
impact of this choice on our results in §2.6.

2.2.3 Determination of the best-fit potential

In the previous section, we transformed the phase space coordinates of stream
stars to action space coordinates for particular trial potentials. Now, we anal-
yse the resulting action distributions to measure their degree of clustering.
We quantify the degree of clustering with the use of the Kullback-Leibler di-
vergence following Sanderson et al. (2015). The Kullback-Leibler divergence
(KLD) measures the difference between two probability distributions p(x)
and q(x) and is defined by

KLD(p || q) =
∫

p(x) log p(x)

q(x)
dnx . (2.15)

The larger the difference between the two probability distributions, the larger
the value of the associated KLD. If the two distributions are identical the
KLD value is 0.

For a discrete sample [xi] with i = 1, ... , N drawn from a distribution
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p(x), the KLD can be calculated via Monte Carlo integration as

KLD(p || q) ≈ 1

N

N∑
i

log p(xi)

q(xi)
, if q(xi) 6= 0 ∀i. (2.16)

We now specify the distribution q(x) to be a uniform distribution u(J), in
the actions. This uniform distribution corresponds to a fully unclustered
action space. To test whether a trial potential parameterized by ζ maps the
observed phase space data ω to a more clustered distribution than u(J), we
set p(x) to p(J | ζ,ω). p(J | ζ,ω) is the probability distribution p of actions
J , given parameter values ζ and the phase space coordinates ω.

The Kullback-Leibler divergence is then

KLD1(ζ) = 1

N

N∑
i

log p(J | ζ,ω)

u(J)

∣∣∣∣
J=Ji

ζ

, (2.17)

where N is the total number of stars in our sample. p is evaluated at
J i
ζ = J(ζ,ωi), where ωi are the phase space coordinates of star i. The

potential closest to the true potential gives rise to the most clumped proba-
bility distribution; i.e., the distribution that is the most peaked and therefore
most dissimilar to a uniform distribution. We therefore select as our best-fit
potential parameters, ζ0, the parameters that maximise the Kullback-Leibler
divergence across all our trial potentials. This is equivalent to selecting the
model that produces the most similar orbits for all stars in a given stream,
by exploring all possible star orbits over a range of models given their cur-
rent phase space coordinates. We label Equation 2.17 as KLD1 because the
identification of the best-fit model is the first step in our procedure. Practi-
cally, we calculate KLD1 using Equation 2.17 for all potentials that are not
discarded for producing unbound stars. We obtain the numerator in Equa-
tion 2.17 by constructing a three-dimensional probability density function
p(J | ζ ,ω) using the Enlink algorithm developed by Sharma & Johnston
(2009). This algorithm computes a locally adaptive metric by making use of
a binary space-partitioning tree scheme, where the partitioning criterion is
determined by comparing the Shannon entropy or information along differ-
ent dimensions. The density is then computed using the Epanechnikov kernel
with the smoothing length determined by the given number of nearest neigh-
bors identified by the tree. We use the code’s default 10 nearest neighbours
as recommended in Sharma & Johnston (2009).

The denominator in Equation 2.17, u(J), is a uniform distribution nor-
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malised over the maximum possible range of J :

u =
[(

Jmax
λ − Jmin

λ

)(
Jmax
ν − Jmin

ν

)(
Jmax
φ − Jmin

φ

)]−1
, (2.18)

where Jmax and Jmin are the extrema amongst all J calculated for our five-
parameter search. This means u(J) is constant for all J and all ζ and as
such does not have an impact on maximizing KLD1(ζ).

The standard KLD1(ζ), calculated using Equation 2.17, gives equal weight
to each of the stars in the sample, and it is suited to cases where our data
sample includes either a single stream or multiple streams with unknown stel-
lar membership. However when combined stellar stream data are analysed
and star membership is known, as it is in our case, we can exploit this extra
information and modify Equation 2.17 accordingly. Equation 2.17 has the
implicit property that streams with more stars exert a larger influence on
the results compared to streams with fewer stars, since each star contributes
equally to the KLD. While this is reasonable when membership is not known
a priori, it is not the ideal use of the data since then the largest and hottest
streams, which give the least sensitive constraints, dominate over thinner
and colder streams with far fewer members. When membership information
is available, we can instead introduce a scheme that gives equal weight to all
streams, by weighting the contribution of each star with:

wj =
1

Ns
× 1

Nj
, (2.19)

where Ns is the number of streams in our sample and Nj is the number of
stars in stream “j” (and therefore N =

∑Ns
j Nj).

The KLD works best if there is little overlap between the different streams
in action-space. We showed in previous work (Sanderson et al. 2015) that
the clustering-maximization algorithm will still find a good model potential
if the streams overlap, and does not crucially depend on knowing stream
membership. However, in our case, stream membership is known, and the
performance of the algorithm can be further improved by incorporating this
information in the weighted KLD1 approach.

We can ensure that there is no overlap by constructing a probability
density function pj(Jj | ζ,ωj) for each stream j individually from points Jj .
We then normalize each pj with Nj

N to keep the each pj at the correct relative
size between the different streams. This weighted KLD1(ζ) is thus calculated
as follows:

wKLD1(ζ) =
Ns∑
j

Nj∑
i

wj log Nj

N

pj(Jj | ζ,ωj)

u(J)

∣∣∣∣
J=Jij

ζ

, (2.20)
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where J ij
ζ = J(ζ,ωij), where ωij are the phase space coordinates for star i

in stream j.
This tactic also helps avoid the spurious solution achieved by increasing

the mass and decreasing the scale radius until all stars are clustered near the
origin in action space, which sometimes can dominate over the true consen-
sus fit for severely overlapping streams or in cases with a high fraction of
interlopers from the thick disc.

We perform this individual stream-by-stream probability density estima-
tion whenever we use the weighted version of the KLD1 (Equation 2.20).
However, when performing our analysis with the standard KLD1 (Equa-
tion 2.17) this separation is not done, and the probability density is calculated
using data of all streams jointly.

2.2.4 Determination of confidence intervals

One interpretation of the KLD is that of an average log-likelihood ratio of a
data set. The likelihood ratio,

Λ =
N∏
i

p(xi | ζ)
q(xi | ζ)

, (2.21)

indicates how much more likely x is to occur under p(x | ζ) than under
q(x | ζ), where we recall that p(x | ζ) and q(x | ζ) are probability density
functions. Therefore, the average log-likelihood ratio for xi is

〈logΛ〉 = 1

N

N∑
i

log p(xi | ζ)
q(xi | ζ)

, (2.22)

which is equivalent to calculating the Kullback-Leibler divergence. The in-
terpretation of KLD as an average log-likelihood ratio allows us to draw con-
fidence intervals on the best-fit parameters through Bayes’ theorem, which
states that the posterior probability of a model defined by its parameters ζ,
given data x, is equal to the likelihood of the data given the model times the
prior probability of the model:

p(ζ | x) ∝ p(x | ζ)p(ζ) . (2.23)
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This indicates that the ratio of likelihoods is directly linked to the ratio of
posterior probabilities:

KLD(p || q) = 1

N

N∑
i

log p(xi | ζ)
q(xi | ζ)

=
1

N

N∑
i

log p(ζ | xi)

q(ζ | xi)
− log p(ζ)

q(ζ)

(2.24)

Assuming that the prior distributions are flat or equal, the KLD is thus equal
to the expectation value of the log of the ratio of posterior probabilities (for
more information, see Kullback 1959).

This leads us to the second step in our procedure, where we compare
the action distribution of the best-fit potential, p(J | ζ0 ,ω), to the action
distributions of the other trial potentials, p(J | ζtrial ,ω), by computing

KLD2(ζ) = 1

N

N∑
i

log p(J | ζ0 ,ω)

p(J | ζtrial ,ω)

∣∣∣∣
J=Ji

0

, (2.25)

where both functions are evaluated at J0 = J(ζ0 ,ω), i.e. at the actions
computed with the best-fit potential parameters ζ0 and phase space ω. In
our procedure, we use equation 2.25 to calculate the KLD2(ζ) for each trial
potential. In contrast to the calculation of the KLD1(ζ), two different sets of
actions are used to obtain the probability density functions in the numerator
and the denominator: both sets of actions are calculated using the same
observed phase space coordinates ω but two different potentials (the best-
fit potential with parameters ζ0 and another trial potential with parameters
ζtrial). We use Enlink to estimate the probability densities for the two sets
of actions J(ζ0 ,ω) and J(ζtrial ,ω).

Analogous to KLD1(ζ), we introduce an alternative version of KLD2(ζ)
that incorporates weights. The weighted KLD2(ζ) is defined as follows:

wKLD2(ζ) =
Ns∑
j

Nj∑
i

wj log Nj

N

pi(Ji | ζ0,ωi)

pi(Ji | ζtrial,ωi)

∣∣∣∣
Ji=Jij

0

. (2.26)

where the weights are calculated using Equation 2.19.
As discussed above, the KLD2(ζ) values can be interpreted as the rela-

tive probability of parameters ζ0 and ζtrial, given the data. The confidence
intervals on the best-fit potential are then derived by estimating the value of
KLD2(ζ) at which the posterior distributions become significantly different,
i.e. KLD2(ζ) becomes significantly different from KLD2(ζ0) = 0.
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We begin by assuming that the posterior probability distributions are
approximately D-dimensional Gaussians with a covariance matrix Σ that is
equal to a D×D identity matrix, where D is the number of free parameters in
our model. We calculate KLD2(ζ) between two of these identical Gaussian
distributions placed at different positions: one centred at ζ0 representing
the probability distribution of our best-fit model and the other centred at
ζtrial representing the probability distribution of a trial model. Since we are
interested in determining which of our trial models are within 1σ of our best-
fit model, we use here the limiting case for ζtrial where the Gaussian function
for the trial model is centred exactly at 1σ away from ζ0. The 1σ contour
in this situation is a D-dimensional sphere, centered at ζ0 with radius 1σ.
The second Gaussian is then centered on a point on this sphere, i.e. centered
anywhere on ‖ζ0‖+ 1.

Calculation of the KLD2(ζ) between these two distributions results in

KLD2(ζ) = 1

N

N∑
i

log e−(ri−‖ζ0‖)2/2

e−(ri−(‖ζ0‖+1))2/2
= 0.5 , (2.27)

where r are points drawn from the Gaussian centered on ζ0. This corresponds
to a 1σ confidence interval. Similarly, the KLD2(ζ) value that signifies the
limiting edge of 2σ confidence can be calculated using a trial model that is
centred at exactly 2σ away from ζ0, etc.

The single parameter 1σ confidence intervals are drawn as the full range
of parameter values in the subset of potentials that are within 1σ from the
best-fit potential, i.e. from the subset of potentials that have KLD2(ζ) 6 0.5
(or wKLD2(ζ) 6 0.5 when the weighted case is used).

2.3 Stream catalogue
The goal of this work is to use the action space clustering method on real data
of known stream stars. For this purpose we compiled data from 7 different
literature sources (Koposov et al. 2010; Willett et al. 2009; Li et al. 2017;
Koposov et al. 2019; Price-Whelan et al. 2019; Ibata et al. 2017; Koppelman
et al. 2019a) to obtain a data set containing full 6D phase-space information
for stars in the GD-1, Helmi, Orphan and Palomar 5 streams. When complete
6D information for individual stars was not available, we made use of the
stream’s track: the measurements of the stream’s mean phase-space position
as a function of a coordinate aligned with the stream. We fit the tracks with
a simple polynomial function in order to find the stars’ missing 6D phase
space components, based on their location along the stream. We do not
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Figure 2.1: Phase-space projections of uncleaned stream data and fits used to interpo-
late missing distance and radial velocity (RV) for stream stars. φ1 is the stream-aligned
coordinate for the stream portrayed on each particular panel. Measurements used for the
polynomial fits are shown in black (> 0.5 membership probability) or gray points (< 0.5
membership probability); measurements for individual stars shown as green points are for
comparison only. Polynomial fits are shown in yellow; estimated values for individual stars
are shown as small blue points. Data sources are discussed in detail in Appendix 2.A. Top
left panel: fit to the track distances of GD-1 from Koposov et al. (2010) (circles) and Li
et al. (2018) (triangles). Second row left panel: RV measurements from Koposov et al.
(2010), Li et al. (2017) and Willett et al. (2009). Top centre panel: fit to distances of
individual Pal 5 members from Price-Whelan et al. (2019). Second row centre panel: fit
to RVs of individual Pal 5 members from Ibata et al. (2017). Top right panel: fit to track
distances of the Orphan Stream from Koposov et al. (2019). Individual measurements from
Koposov et al. (2019) (green points) for comparison. Second row right panel: fit to track
RVs of the Orphan stream from Koposov et al. (2019). Note that the RV estimates in this
panel are in the Galactic standard of rest frame. Individual measurements from Li et al.
(2017) (green points) for comparison. Bottom two rows: Proper motion measurements
from Gaia DR2.
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assign membership probabilities to the stars in each stream, but rather treat
all of them as certain members. A perfectly clean selection of stream stars
is not crucial for our method, which can operate without any membership
information at all since it relies on finding the most clustered total action
distribution. The addition of stars incorrectly classified as stream members—
as long as such stars are in the minority—will simply result in slightly less
clustered action-space for each of the trial potentials. We do not expect
interlopers to bias the result: since stream membership is usually determined
by making selections in some combination of positions, velocities, colors and
magnitudes rather than in actions, it is unlikely that interlopers will cluster
with the rest of the stream in action space near the best-fit potential.

Nevertheless, to focus on the most informative stars, we perform cuts on
some of the streams after visually inspecting them in µα - µδ or Lz - L⊥
space (we discuss the possible impact of this cut in section 2.6). Our full
data set is available in electronic format online. In the following, we briefly
review each stream’s properties and compiled data set. For more details on
our data assembly process we refer to Appendices 2.A.1-2.A.3.

2.3.1 The GD-1 stream

GD-1 is a long and remarkably narrow stream first discovered by Grillmair
& Dionatos (2006b) in the SDSS data. It lies at a distance of ∼ 15 kpc
from the Galactic center and ∼ 8 kpc above the plane of the disc. Due to
its thinness and location high above the Galactic disc it is thought to have
formed from a tidally disrupted globular cluster, but no progenitor has yet
been found. Orbits fitted to the available data have shown that GD-1 is
moving retrograde with respect to the rotation of the Galactic disc, and is
currently near pericentre (around 14 kpc), with apocentre 26–28 kpc from
the Galactic centre (Willett et al. 2009; Koposov et al. 2010).

The GD-1 stream has seen considerable use in studies aiming to con-
strain the inner Galactic potential. For example, using a single component
potential Koposov et al. (2010) find that the orbit that best fits the GD-1
data corresponds to a potential with the circular velocity at the solar radius
Vc(R�) = 221+16

−20 km s−1 and the flattening q = 0.87+0.12
−0.03. A more recent

work by Malhan & Ibata (2019), which uses a combination of Gaia DR2,
SEGUE and LAMOST data, finds a circular velocity at the solar radius of
Vc(R�) = 244 ± 4 km s−1, the flattening of the halo q = 0.82+0.25

−0.13 and the
mass enclosed within 20 kpc M(< 20 kpc) = 2.5± 0.2× 1011 M�.

We compiled a list of GD-1 members with measured radial velocities from
Koposov et al. (2010), Li et al. (2017) and Willett et al. (2009). These stars’
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measurements are then supplemented with positions and proper motions from
Gaia DR2. Finally, we fit a polynomial to the stream track distance infor-
mation from Koposov et al. (2010) and Li et al. (2018) and use the resulting
function to predict distances to each of our stream members based on their
location along the stream. In total our GD-1 data set consists of 82 member
stars with full 6D phase space information. We further clean this sample by
discarding 13 stars that are not part of the central clump in either µα - µδ

or Lz - L⊥ space, leaving 69 stars (see Appendix 2.A.1).

2.3.2 Orphan Stream

The Orphan stream was discovered by Grillmair (2006) and Belokurov et al.
(2006) as a broad stream of stars extending ∼ 60 degrees in the Northern
Galactic hemisphere. Although thought to be the remnant of a small dwarf
galaxy (Grillmair 2006), no suitable progenitor for the stream has so far been
found. Using SDSS DR7 data, Newberg et al. (2010) obtained a well-defined
orbit to the stream and showed that the stars are on a prograde orbit with
respect to disc rotation with a pericentre of 16 kpc and an apocentre of 90
kpc. At the time, the detected portion of the stream ranged from ∼ 20 to
∼ 50 kpc in the Galactic frame.

Recently, several discoveries regarding the Orphan stream were made by
Koposov et al. (2019) who traced the track of the Orphan stream using RR
Lyrae in the Gaia DR2 catalogue. They found that the stream is much longer
than previously thought and showed that it also extends to the Southern
Galactic hemisphere: the stream was found to extend from ∼ 50 kpc in
the North to ∼ 50 kpc in the South, going through its closest approach at
∼ 15 kpc from the Galactic Centre. They noticed, however, that the stream
track behaviour changes between the two hemispheres. First, a twist in the
stream track emerges soon after the stream crosses the Galactic plane from
south to north. Second, the motion of the stars in the southern hemisphere
is not aligned with the stream track. Erkal et al. (2019) show that these
effects can be reproduced by adding the contribution of the Large Magellanic
Cloud (LMC) into the Milky Way potential. These results demonstrate that
the assumption that the Orphan stream stars orbit in a static Milky Way
potential would lead to a bias.

Using the Orphan stream RR Lyrae from Koposov et al. (2019) and in-
cluding the perturbation from the LMC Erkal et al. (2019) find that the best
fit Milky Way potential has a mass enclosed within 50 kpc of 3.80+0.14

−0.11 ×
1011 M� and scale radius of the NFW halo of 17.5+2.2

−1.8 kpc. As a comparison,
when using only the Northern portion of the stream Newberg et al. (2010)
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find that the orbit is best fit to a Milky Way potential which has a mass
enclosed within 60 kpc of about 2.6× 1011 M�.

We assemble our Orphan Stream data in two parts. In both cases the
positions and proper motions are from Gaia DR2, but accurate individual
distances and radial velocities have been measured for disparate sets of stars.

To compile the first subsample, we begin with a list of stream members
that have accurate distance measurements: the Orphan stream RR Lyrae
from Koposov et al. (2019). We fit a polynomial to the radial velocity track
information from Koposov et al. (2019) and use it to predict radial velocities
to our stream members based on their location along the stream. Although
the RR Lyrae stars stretch from φ1 ∼ −78 to ∼ 123 degrees, we discard
those that have φ1 < 0, i.e. those in the Southern Galactic hemisphere. We
do this because there are no radial velocity measurements in the negative
φ1 section of the stream (see the bottom right panel of Figure 2.1), leading
our estimates to depend too heavily on the selection of the degree of the
polynomial and its fit to the positive φ1 section of the stream. As an added
advantage, this cutoff eliminates the part of the stream that appears to be
most strongly affected by the LMC, which is not in our potential model.

To compile the second subsample, we begin with a list of stream mem-
bers that instead have individual radial velocity measurements: the stream
members from Li et al. (2017) with radial velocities from SDSS or LAMOST.
Next, we fit a polynomial to the distance track data from Koposov et al.
(2019) to find distances for the stars.

After combining the two data sets, we make an additional cut in Lz - L⊥
and µα - µδ space, selecting after visual inspection the 129 stars that form a
clump in velocity space. More details can be found in Appendix 2.A.2.

2.3.3 The Palomar 5 stream

The tidal streams around the Palomar 5 globular cluster were first found by
Odenkirchen et al. (2001). They detected two symmetrical tails on either side
of the cluster, extending in total about 2.6 degrees on the sky. Subsequent
data has allowed the stream to be traced further out and revealed that the
two tidal tails are far from symmetric, the tails having distinctly different
lengths and star counts. The current known length of the trailing trail is
23 degrees (Carlberg et al. 2012) while that of the leading tail is only 3.5
degrees (Odenkirchen et al. 2003). The reason for the asymmetry is not clear
but possible options include perturbations from spiral arms, rotating bar,
molecular clouds and dark matter subhaloes (Pearson et al. 2017; Amorisco
et al. 2016; Erkal et al. 2017). Palomar 5 is currently near the apocentre of
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its prograde orbit, which ranges from pericentre at 7− 8 kpc to apocentre at
around 19 kpc from the Galactic Centre (Odenkirchen et al. 2003; Grillmair
& Dionatos 2006a; Küpper et al. 2015). The stream has previously been
used to constrain the Milky Way potential by Küpper et al. (2015) who
found the mass enclosed within Palomar 5 apocentre distance to be M(<
19) kpc = (2.1± 0.4)× 1011 M� and the halo flattening in the z-direction to
be qz = 0.95+0.16

−0.12.
As before, we use a combination of sources to get full 6D phase space

information for stars in the Palomar 5 stream. We use a list of 27 RR Lyrae
member stars with distance estimates from Price-Whelan et al. (2019) and
another 154 members with radial velocity measurements from Ibata et al.
(2017). To find the distances for the members from Ibata et al. (2017) and
radial velocities for members from Price-Whelan et al. (2019), we use the
measurements of the individual members in the other set, using the same
track-fitting strategy as for the other streams. In other words, we fit a poly-
nomial to the distances from Price-Whelan et al. (2019) to find distance
estimates for the Ibata et al. (2017) members and, similarly, fit a polynomial
to the radial velocity data from Ibata et al. (2017) to find radial velocity esti-
mates for the Price-Whelan et al. (2019) members. As always, the positions
and proper motions are from Gaia DR2.

After the two data sets are then joined, a cut in Lz - L⊥ and µα - µδ

space is performed, resulting in the sample of 136 stars. More details can be
found in Appendix 2.A.3.

Note that since we have adopted the distances from Price-Whelan et al.
(2019), our Pal 5 stars are closer than previously reported. Price-Whelan
et al. (2019) find a mean cluster heliocentric distance of 20.6± 0.2 kpc while
previous distance measurements are ∼ 23 kpc [e.g.][](Odenkirchen et al. 2001;
Carlberg et al. 2012; Erkal et al. 2017). The main cause for this distinction is
that the previously reported distances were computed from distance moduli
(Harris 1996; Dotter et al. 2011) that were not corrected for dust extinction.

2.3.4 The Helmi stream

The Helmi stream was first detected by Helmi et al. (1999) as a cluster of 12
stars in the angular momentum space of the local halo, based on Hipparcos
measurements. The orbit of the stream was found to be confined within
7 and 16 kpc from the Galactic Centre. While forming a single clump in
Lz - L⊥ diagram, in velocity space the structure separates into two distinct
groups: one with positive vz and the other with negative vz. Helmi et al.
(1999) postulated that the two clumps originate from a common dwarf galaxy
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that has since its disruption reached a highly phase-mixed state. This view
explains the observed bimodality of vz as a feature that arises due to the
existence of several wraps of the stream near the Solar neighbourhood (as
shown in Figure 5 of Helmi 2008; see also McMillan & Binney 2008 for further
discussion of this phenomenon).

Using Gaia DR2 data complemented by radial velocities from the APOGEE,
RAVE and LAMOST surveys, Koppelman et al. (2019a) found 523 new mem-
bers of the Helmi stream within 5 kpc of the Sun selected in Lz - L⊥ space.
In this work we include 401 high confidence members that are within 1 stan-
dard deviation of the mean radial velocity from the Koppelman et al. (2019a)
sample with their full 6D phase space information.

2.4 Results for a single-component potential

In this section we present our results for a single-component Stäckel potential
with both individual and combined stream data sets (Sec. 2.4.1 and Sec. 2.4.2,
respectively). The best-fit parameter values (those that maximize KLD1)
and uncertainties (derived from KLD2) are summarised in Table 2.1. Here,
we focus on the KLD2 distributions, while those for KLD1 can be found in
Appendix 2.B. The KLD1 values associated with the best-fit parameters are
given in Table 2.3.

2.4.1 Results for the individual stream data sets

Figure 2.2 shows the individual results for GD-1, Helmi, Orphan and Pal 5
on the enclosed mass - scale length plane. The parameter space is colour-
coded by their KLD2 values. The smaller the KLD2 value, the more similar
the action distribution of that potential is to the action distribution of the
best-fit potential. The potentials with values of KLD2 6 0.5 - marked in
Figure 2.2 with orange - is the 1σ region, as explained in Section 2.2.4. The
grey points stand for discarded potentials, where at least one star is on a
dynamically unbound orbit as discussed in Section 2.2.2.

Figure 2.2 indicates that the GD-1, Pal 5 and Orphan streams deliver
constraints that are much more precise than those from the Helmi stream.

The best-fit values for M(< 20 kpc) range from 1.89 × 1011 to ∼ 9 ×
1011M� between individual streams, with the Orphan stream returning the
lowest and Helmi stream the highest estimates. Although their best-fit values
differ by an order of magnitude, their derived confidence intervals are compat-
ible. However, the confidence intervals from the GD-1 stream are in tension
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Figure 2.2: Individual stream results for the single-component potential in the enclosed
mass–scale length space. The best-fit point is marked with a pink cross, the grey points
represent potentials that resulted in unbound stars and were therefore discarded, and other
points are colour-coded according to their KLD2 value. The orange region shows 1σ con-
tours (defined as described in §2.2.4).

with those from Pal 5 and Orphan streams. This is likely a manifestation of
the systematic biases affecting single-stream fits.

With the exception of Palomar 5 and, to some extent, the Orphan stream,
the individual streams cannot place strong constraints on the scale length
of the potential: the best-fit values range from 10.24 to 27.12 kpc between
individual streams, with the Helmi stream yielding the lowest and the Orphan
stream the highest values. All four streams accept a values between ∼ 15
kpc and ∼ 17 kpc within a 1σ uncertainty level.

The best-fit values for flattening range from 0.88 to 1.40, with the lowest
estimate belonging to the GD-1 and the highest to the Pal 5 stream. We
remind the reader that in the Stäckel convention flattening is defined as a

c , so
e > 1 corresponds to a oblate potential while e < 1 corresponds to a prolate
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potential.
The GD-1 stream provides a strong upper limit to the flattening - only

accepting prolate shapes (e 6 0.95) - but it is unable to determine the lower
limit. The Helmi stream accepts almost all flattening values except the ones
corresponding to the most prolate (e < 0.64) and most oblate (e > 1.74)
shapes. The Pal 5 and Orphan streams, on the other hand, provide a lower
limit to flattening, both only allowing oblate shapes (e > 1.09 for Orphan
and e > 1.21 for Pal 5).

2.4.2 Results for the combined data set

The weighted combined data results are shown in Figure 2.3: the combination
of all four streams on the top panel and the combination of GD-1, Orphan and
Pal 5 on the bottom panel. As a reminder, the weighted results incorporate
the knowledge of stream membership by (a) calculating the stream-weighted
versions of KLD1 and KLD2 (the latter is marked on the relevant figures as
wKLD2), and (b) by artificially separating streams in action space during
the density estimation. This is in contrast to the standard results which
assume no knowledge of the stream membership. In this section, we discuss
the weighted results only. The standards results will be discussed in the
subsequent section.

Constraints from analysing combined data sets are tighter than those
yielded by individual stream data sets. The 1σ constraint on the enclosed
mass for the combination of GD-1, Orphan and Pal 5 data sets is much tighter
than that obtained by combining all four streams’ data sets. The possible

Figure 2.3: As in Figure 2.2, but showing the weighted combined data results for the
single-component potential. Top: results when combining all four streams. Bottom:
results for the combination of GD-1, Orphan and Pal 5.
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reasons are discussed in more detail in Section 2.7.1.
The two different analyses also give results that are somewhat inconsistent

with each other: we find 4.26+1.22
−0.57×1011 M� when analysing the combination

of four streams’ data and 2.89+0.28
−0.27×1011 M� for the GD-1, Orphan and Pal

5 data sets, i.e. the inclusion of Helmi stream data pulls the consensus result
to a higher enclosed mass.

In contrast, the scale lengths of the two sets of combined data are in good
agreement within the errors: we find 17.21+5.11

−3.05 kpc and 19.60+5.81
−4.48 kpc, for

the combination of four- and three-stream data sets, respectively.
Although the flattening parameters of the two combinations are consis-

tent with one another within their 1σ intervals, their best-fit values vary from
1.93 for the combination of four streams to 1.40 for the combination of GD-1,
Orphan and Pal 5. These high best-fit values, which correspond to oblate
potentials, are likely driven by the Pal 5 and Orphan streams, which indi-
vidually disfavour the lower values of e. Both Pal 5 and Orphan individually
accept values of flattening above 1.2, and the 1σ confidence intervals of the
combined sets clearly reflect this, as both find a lower limit of ∼ 1.2.

The combined stream results therefore show virtually no improvement
over the individual results. We therefore conclude that we can only weakly
constrain the flattening parameter with our data and this one-component
potential.

We do not expect the single-component potential to be a good represen-
tation of the Milky Way’s actual gravitational field for streams whose orbits
intersect the disc, such as the Helmi and Pal 5 streams. Although we give
results for these streams and use them in some combined fits with this model,
we caution that the best-fit parameters should not be interpreted as repre-
senting a particular component of the Milky Way’s structure. The best-fit
models tend to respond to the need for a more concentrated central compo-
nent (i.e. the disc) than the model will allow by increasing the total mass,
leading to larger circular velocities at large radii.

Figure 2.4 shows the total distributions of wKLD2 for the enclosed mass
and flattening parameters that result from the analysis of the combined data
sets (upper panel: four stream data set; lower panel: three-stream data set).
The black horizontal lines are at wKLD2 = 0.5, the value that corresponds to
the 1σ confidence interval for a single-component potential. The quoted 1σ
confidence intervals correspond to the parameter range on the x-axis in each
panel where wKLD2 6 0.5 (shown with a grey shaded region). It is clear, in
both cases, that the confidence interval of the enclosed mass (a combination
of the scale radius and total mass parameters) is well defined. In contrast,
the flattening is only weakly constrained.
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Figure 2.5 summarises the enclosed mass, scale length and flattening re-
sults with their 1σ confidence limits as presented in Table 2.1. For com-
parison, the results from both the standard and weighted KLD analysis for
combinations of streams are shown. We find that the difference between the
best fit values of the standard and weighted methods is not significant: the
results are consistent within their 1σ confidence limits. Nevertheless, the use
of the stellar membership knowledge clearly affects the results. In the case
of the four combined streams, this has the expected effect of lowering the
best-fit enclosed mass value: the influence of the Helmi stream, that contains
the largest number of stars in our sample, has now been off-set. The opposite
happens for the combination of GD-1, Orphan and Pal 5 combination, where
the best-fit enclosed mass increases, because we counteract the fact that the
Orphan and Pal 5 members outnumber those of GD-1 in our sample. In addi-

Figure 2.4: The weighted combined data results for a single-component potential:
marginalised single parameter distributions. The top panel shows the results from the
combination of all four streams and the bottom panel shows the results of the combination
of GD-1, Orphan and Pal 5 streams. The green points show the parameter values against
the wKLD2 of the potential they belong to. The values of the parameters in the best-fit
potentials are marked with a pink cross. The black lines are drawn at wKLD2 = 0.5 which
signifies the 1σ confidence interval. The light grey bars show the range of values that are
accepted with 1σ confidence.
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Figure 2.5: Comparison of best-fit parameter values for the single-component potential
with their 1σ confidence intervals for enclosed mass (left), scale length (middle) and flat-
tening (right). Results for individual streams are labeled with the stream name. Combined
results are labeled with “G/O/P” for the three-stream combination and “All” for the four-
stream combination. In addition, the combined stream labels end with an “s” or a “w”
for the standard and weighted analyses, respectively. We remind the reader that e > 1
corresponds to a oblate potential while e < 1 corresponds to a prolate potential.

tion, no appreciable shift is found for the best-fit scale length and flattening
between the two approaches.

2.5 Results for a two-component potential
In this section we present the results of fitting the streams with the two-
component Stäckel potential. The best-fit parameter values are summarised
in Table 2.2. As for the single-component potential (Section 2.4.1), we focus
on the KLD2 results for the confidence intervals and summarise KLD1 values
associated with the best-fit parameters in Appendix 2.B and Table 2.3 and
Figures 2.10 and 2.B.1 give examples of a KLD1 distribution, alongside the
action distributions produced by two different potentials. The analysis of
the single-component model results for stream combinations showed that the
difference between the best fit values of the standard and weighted methods
is not significant, so we will only discuss the weighted results from this point
onward.

2.5.1 Results for individual stream data sets

Figure 2.6 presents the results of the individual streams on the enclosed
mass–aouter plane. The 1σ confidence intervals, again marked in orange.
GD-1’s 1σ interval for the enclosed mass forms a relative narrow stripe well
within the allowed parameter space of potentials producing bound orbits for
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Streams N∗ M20 [1011 M�] a [kpc] e Mtot [1012 M�]

GD-1 69 4.73+0.33
−1.05 15.12+2.10

−10.11 0.88+0.07
−0.38 2.65+0.51

−1.88

Helmi 401 9.06+3.20
−6.36 10.24+10.68

−5.23 0.95+0.79
−0.31 2.81+0.35

−2.39

Pal 5 136 2.73+0.60
−0.74 20.92+4.50

−5.80 1.40+0.60
−0.19 1.86+1.30

−1.14

Orphan 117 1.89+1.05
−0.60 27.12+8.05

−12.00 1.26+0.74
−0.17 2.35+0.81

−1.32

G/O/P s 322 2.60+0.39
−0.28 18.37+5.45

−2.24 1.45+0.35
−0.24 1.38+1.43

−0.35

G/O/P w 322 2.89+0.28
−0.27 19.60+5.81

−4.48 1.40+0.33
−0.23 1.75+1.41

−0.72

All s 723 5.01+2.37
−1.18 11.66+5.56

−3.23 1.86+0.14
−0.60 1.30+1.86

−0.44

All w 723 4.26+1.22
−0.57 17.21+5.11

−3.05 1.93+0.07
−0.53 1.75+1.41

−0.59

Table 2.1: The individual and combined stream results for a single-component potential.
Best-fit parameters are given with their 1σ confidence intervals. We remind the reader that
e > 1 corresponds to a oblate potential while e < 1 corresponds to a prolate potential.

all stars. In contrast, while the Orphan and Pal 5 streams also produce
clear confidence intervals for the enclosed mass, their uncertainty regions in
the direction of low aouter are limited by the edge of the allowed parameter
space of potentials producing bound orbits for all stars (see the discussion
in Section 2.6). Finally, the Helmi stream includes within its 1σ confidence
contour a significant subset of all explored enclosed mass values.

Compared to the single-component case, the best-fit M(< 20 kpc) values
are now in better agreement between individual streams, ranging from 1.91 ×
1011 to 7.93× 1011M�. As with the single-component potential, the Orphan
stream returns the lowest and the Helmi stream the highest estimates of
enclosed mass. As before, the 1σ ranges of Pal 5 and GD-1 are in tension,
but this is no longer true for the GD-1 and Orphan pair.

The mass estimates of individual streams are in good agreement with the
measurements obtained with a single-component potential. The variation in
the best-fit values is the smallest in the case of the Orphan stream, whose
best-fit values differ only by 1% between the two models. It is also notable
that the best-fit values of the Helmi stream differ only by 12% between the
models, in spite of their large error bars. The best-fit values of the GD-1 and
Pal 5 streams change by 19% and 26%, respectively, between the two models.

Pal 5 is therefore the most sensitive to the change of model: this might
be because Pal 5 has the smallest pericentre distance relative to the Galactic
Centre, where the mass in the new inner component is concentrated. In
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Figure 2.6: As in Figure 2.2, but showing individual stream results for the two-component
potential.

addition, Pearson et al. (2017) have shown that Pal 5 was likely affected by
the Galactic bar on its pericentre passage which might add to its sensitivity
to the centrally concentrated mass profile. While the Helmi stream also has
a small pericentre distance, it is not as sensitive to the change in potential
model. The possible reasons for this are discussed in Section 2.7.1.

Although all four streams have a best-fit flattening of the outer component
of ∼ 1, Pal 5 and Orphan data are the only ones that can actually constrain
the flattening of the outer component, limiting it to be lower than 1.04 in
both cases. The GD-1 and Helmi streams include the entire allowed range
of values within their 1σ confidence contours. We remind the reader that in
the two-component potential we have limited our exploration of the halo to
near-spherical and oblate shapes, which corresponds to e > 1.

The flattening of the single-component model cannot be directly com-
pared to the flattening of the outer (or the inner) component of the two-
component model. In the single-component case the flattening parameter
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Figure 2.7: As in Figure 2.2, but showing the weighted combined data results for the
two-component potential. Top: results for our four-stream data set. Bottom: results for
the combination of GD-1, Orphan and Pal 5.

reflects the combined axis ratios of the Galactic disc, bulge and halo. There-
fore, we expect the flattening not to be spherical. In the two-component case,
the two different axis ratios add more flexibility to our model, but neither of
them corresponds fully to the flattening of the single-component model. We
can, however, make a qualitative comparison in the case of Pal 5: the single-
component model best-fit flattening is ∼ 1.40, which may be interpreted as
a synthesis of the two-component results, where the outer flattening is ∼ 1,
while the inner flattening is 2.55 (as expected if the latter describes a com-
ponent that incorporates a disc-like structure).

Although in most cases we cannot constrain the flattening parameter, the
fact that all streams prefer a nearly spherical halo could be explained by the
limitation of the Staeckel potential. Batsleer & Dejonghe (1994) found that
to produce flat rotation curves they needed an almost spherical halo. Both
the halo and disc potentials are described in the same spheroidal coordinate
system (i.e. they must have the same foci) but have independent length
scales ainner and aouter. The halo component has the larger scale compared
to which the foci are relatively close together, and the halo thus appears
almost spherical. On the other hand, the foci are far apart relative to the
smaller scale of the disc potential, giving it a more oblate shape.

None of the other parameters can be strongly constrained by any of the
streams. As the enclosed mass is a function of all five potential parameters,
we conclude that only combinations of these five parameters, but not their
individual values, can be constrained.



2.5 Results for a two-component potential 51

2.5.2 Results for the combined data set

The results of our analysis of combined stream data sets are shown in Fig-
ure 2.7 in the enclosed mass - aouter plane. The top panel shows the results
of combining all four streams, while the bottom panel shows the results of
combining just GD-1 and Pal 5.

The enclosed mass estimates of the two sets of combined results are consis-
tent with each other within 1σ. We find M(< 20 kpc) = 4.10+2.05

−1.25×1011 M�
for the combination of four streams and M(< 20 kpc) = 2.22+0.10

−0.08× 1011 M�
for the combination of GD-1, Orphan and Pal 5. As for the single-component
potential, the three-stream combination returns confidence limits that are
smaller than the limits for the four-stream combination. Notably, the mass
estimates from combined data sets appear robust against the adopted model
for the potential: they are consistent with those obtained with a single-
component potential (∼ 4.26+1.22

−0.57 and ∼ 2.89+0.28
−0.27 ×1011 M�, respectively).

The change in the best-fit estimates is 4% in the case of the four-stream
combination and 23% in the case of the three-stream combination.

The analysis of the combined data sets again show no significant im-
provement over the individual results of Pal 5 and Orphan: the four-stream
combination places an upper limit of eouter 6 1.17 while the combination of
GD-1, Orphan and Pal 5 limits it to 6 1.04, both with a best-fit value of ∼ 1.

The other parameters cannot reliably be constrained with the current
data. As seen on Figure 2.7, the limits on the scale length of the outer com-
ponent extend almost the entire prior range when the data of all four streams

Figure 2.8: Comparison of the best-fit parameter values for the two-component potential
with their 1σ confidence intervals for enclosed mass (left), scale length (middle) and flat-
tening (right). Results for individual streams are labeled with the stream name. Combined
results are labeled with “G/O/P” for the three-stream combination and “All” for the four-
stream combination. We remind the reader that e > 1 corresponds to a oblate potential in
our convention.
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Streams N∗ M20 aouter eouter ainner Mtot k

GD-1 69 5.64+0.25
−2.56 16.46+46.64

−11.44 1.00+0.94
−0.00 4.69+0.32

−3.69 3.16+0.00
−2.65 0.01+0.29

−0.00

Helmi 401 7.93+3.51
−6.14 12.07+51.03

−7.06 1.00+0.86
−0.00 3.49+1.52

−2.49 2.80+0.36
−2.49 0.02+0.28

−0.01

Pal 5 136 2.01+0.23
−0.63 27.59+1.46

−11.97 1.01+0.03
−0.01 5.01+0.00

−3.08 2.80+0.36
−1.97 0.01+0.09

−0.00

Orphan 117 1.91+1.26
−0.84 39.62+23.47

−24.00 1.00+0.04
−0.00 1.53+3.48

−0.53 3.16+0.00
−1.97 0.04+0.21

−0.03

G/O/P w 322 2.22+0.10
−0.08 29.06+8.57

−12.60 1.01+0.03
−0.01 5.01+0.00

−4.01 2.48+0.07
−1.28 0.05+0.07

−0.04

All w 723 4.10+2.05
−1.25 63.10+0.00

−57.24 1.00+0.17
−0.00 5.01+0.00

−4.01 3.16+0.00
−2.33 0.21+0.09

−0.20

Table 2.2: The individual and combined stream results for a two-component potential.
Best-fit parameters are given with their 1σ confidence intervals. Note that e > 1 corre-
sponds to a oblate potential in our convention. aouter and ainner are given in units of kpc,
M20 in units of 1011 M� and Mtot in units of 1012 M�.

is used. The same applies for the scale length of the inner component, the
total mass and the mass ratio parameters. In contrast, with the combina-
tion of GD-1, Orphan and Pal 5 data, we see a smaller uncertainty region
for aouter. However, the lower limit of this region is defined by the the edge
of the allowed parameter space of potentials producing bound orbits for all
stars. Relaxing this strict constraint would likely increase this region, also
allowing lower aouter (see discussion in Section 2.6.1). We conclude that it
is the combinations of the five model parameters that give a fixed enclosed
mass, rather than individual parameter values, that are constrained.

Figure 2.8 summarises the results of the two-component model as given
in Table 2.2.

2.6 Validation

Several types of different tests of this method with mock data have previously
been performed. In Sanderson et al. (2015), the authors demonstrated that
this method works for mock streams integrated in an isochrone potential
when also fitting an isochrone potential. In Sanderson et al. (2017), the
authors showed that they could recover a good approximation to a simulated
cosmological halo potential when fitting a simple, spherical NFW potential.
This was a simpler model than the ones we fit in this work, and had a larger
mismatch to the shape of the simulated halo that was being fitted (which was
more triaxial than is expected for real halos) and to its radial profile (which
was pronouncedly not NFW) than we expect to be the case for the Stäckel
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models that we fit here, which have already been shown to accommodate a
MW-like rotation curve and allow for a variation in the degree of flattening
with radius.

Sanderson et al. (2015) and Sanderson et al. (2017) also studied the effect
of observational errors on the performance of this method extensively. They
found that including the Gaia errors serves to expand the uncertainty regions
slightly, compared to the error-free case, but that otherwise the results are
not significantly affected. This is supported by our findings, as we will show
in this section.

These works also found that the total number of stars used is less im-
portant than the number of different streams represented. Although it is
perhaps a little surprising at first glance that we get good results with so
few streams (for comparison, Sanderson et al. (2017) used 15 streams and
Sanderson et al. (2015) showed that about 20-25 streams are needed for the
error bar sizes to converge) Sanderson et al. (2015) also showed that already
with 5 they started to get a relatively unbiased answer in those tests (see dis-
cussion in their Section 7). Moreover, these tests were performed only with
satellite streams which are thicker than the globular cluster streams that we
make use of in this work.

In this section we further validate our results by discussing the effect of
measurement errors, considering the consequences of cleaning our sample to
restrict the analysis to the more informative stars, reviewing our decision
to discard potentials that produce unbound stars, exploring the orbits that
our results would produce for the individual streams and analysing stream
orbital phase information.

2.6.1 Tests of fitting assumptions

To evaluate the impact that measurement errors would have on our results,
we run a test with the GD-1 sample where the input positions and velocities
are modified in the following manner. We draw the new sky positions, proper
motions and radial velocities for each GD-1 star from a normal distribution
centered at the their measured values with a width determined by the mea-
surement uncertainties. These new values are assigned as the stars’ current
observables. The estimated distances do not have formal measurement er-
rors, but we evaluate an uncertainty of 0.5 kpc based on the spread of the
track measurements as shown in the top left panel of Figure 2.1. We again
draw the new distances from a normal distribution centered at our estimated
distances with the width of 0.5 kpc. We transform the modified observables
to Galactocentric (x,v) and repeat our analysis for the two-component po-
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tential model. The new result is consistent with the original one. The 1σ
region for the enclosed mass parameter shifts only slightly compared to the
original result: while previously the 1σ region encompassed values from 3.08
to 5.89×1011M�, with the perturbed observables it shifts to include a region
from 3.33 to 6.07 × 1011M�. The best-fit value itself differs by ∼ 8% from
the result quoted in Table 2.2.

To see how our results would change when relaxing the strict condition
that no stars must be unbound in accepted potentials, we repeat our analy-
sis for the GD-1 sample allowing for a maximum of 10% of the stars to be
unbound. We find that our results for all parameters are unaffected: enforc-
ing the strict no-unbound-stars rule does not have any impact on the GD-1
results.

When we repeat this analysis for other streams, we find that:

• The enclosed mass parameter is similarly unaffected in the case of the
Orphan and Helmi streams. Pal 5 enclosed mass region however does
shift somewhat. While the original 1σ region encompasses values from
1.38 to 2.24× 1011M�, the region that also allows 10% of the stars to
be unbound contains values from 1.59 to 2.83 × 1011M�. The best-fit
value itself differs by ∼ 7% from the result quoted in Table 2.2.

• The uncertainty regions of Pal 5 and Orphan now reach lower in aouter
as they are no longer limited by the edge of the allowed parameter space
(the grey points in Figure 2.7). This confirms once again that we are
unable to meaningfully constrain any parameters besides the enclosed
mass.

To estimate the effect of cleaning up our stream sample by making se-
lections in angular momentum, we re-analyse the GD-1 stream in the two-
component potential without making any cuts to the original sample of 82
stars. The most significant change in the results is that the 1σ region for the
enclosed mass has now been slightly extended. While the previous 1σ region
encompasses values from 3.08 to 5.89×1011M�, the region resulting from the
uncleaned sample contains values from 3.05 to 6.14 × 1011M�. The best-fit
value itself differs by ∼ 6% from the result quoted in Table 2.2 which is well
within the 1σ region for both fits. This is consistent with our expectation
that minor selections in constants-of-motion space to clean up outliers slightly
improves the constraints but does not significantly bias the fit. When repeat-
ing our analysis with the uncleaned samples of Pal 5 and Orphan streams
we find that each stream has at least one star that is unbound across all
the trial potentials. We therefore additionally relaxed the no-unbound-stars
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restriction, allowing for a maximum of 10% of the stars to be unbound as in
the previous paragraph. The combined effect further extends the uncertainty
regions while having only a minor effect on the best-fit value. For Pal 5 the
uncertainty region now extends from 1.54 to 2.96× 1011M�, only a small in-
crease from when we considered the cleaned sample with 10%-unbound-stars
in the previous paragraph. The best-fit value experiences ∼ 0.5% change
compared to the previous case, and a total of ∼ 8% change compared to the
original result quoted in Table 2.2. For Orphan, we see the 1σ region increase
from 1.07 to 3.17 × 1011M� in the original case to 0.97 to 3.42 × 1011M�.
The best-fit value has changed by ∼ 7% from the result quoted in Table 2.2.

In conclusion, none of the above mentioned choices affects our main result,
the enclosed mass estimates, by more than 8 percent; all changes are far below
1σ.

2.6.2 Predicted orbits

Figure 2.9 shows the results of orbit integration using the results of the
combined GD-1, Orphan and Pal 5 analysis. We track 4 stars in each of
the GD-1, Pal 5 and Orphan streams. We do not show the orbits for the
Helmi stream because the Helmi stream’s stars are phase-mixed and do not
exhibit coherent stream-like structure in position-space. Each shaded region
corresponds to the star whose current position has been marked with a dot
of the same colour. The edges of the shaded regions are defined by the
potentials that produce the highest and the lowest M(< 20 kpc) among
those that are within 1σ of the best-fit potential. The Figure confirms that
the orbits predicted by our analysis from GD-1 and Pal 5 are locally aligned
with the tracks of these streams.

Even though we see plausible orbits also for Orphan stream’s stars, we do
not expect perfect alignment here for two reasons. First, the Orphan stream
is a remnant of a dwarf galaxy and as such has a larger energy spread than
the GD-1 and Pal 5 streams. Second, the Orphan stream has been shown
to be perturbed by the LMC and any potential that neglects the influence
of the LMC is therefore unlikely to find a perfect fit to the Orphan stream
track.

2.6.3 Action space and stream orbital phase

In this section we discuss the action-space characteristics of our streams and
validate the fit with orbital phase information that is not utilized in our
fitting method.
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Figure 2.9: The orbits for the GD-1 (top), Pal 5 (middle) and Orphan (bottom) streams.
These shaded regions correspond to the allowed orbits of the stars whose current position
has been marked with a dot of the same colour. The edges of the shaded regions are
defined by the potentials that produce the highest and the lowest enclosed mass within
20 kpc among those that are within 1σ of the best-fit results of the combined analysis of
GD-1, Orphan and Pal 5 streams. Other stars in the stream are shown with purple dots.
Axes are in the Galactocentric frame.

In the left panel of Figure 2.10 we show an example of the KLD1 con-
tours as a function of enclosed mass and scale length of the outer component,
for the GD-1, Pal 5 and Orphan streams in the two-component model. For
each data set, there is a clear single peak in parameter space; the best-fit
model is marked with the black cross. To give an idea of the difference in
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Figure 2.10: Comparison of actions of GD-1 (orange points), Pal 5 (teal points) and
Orphan (yellow points) produced by two different two-component potentials: the best-fit
potential of the three-stream combination and another potential. Left: KLD1 values of
the three-stream combination as a function of enclosed mass and scale length of the outer
component. The higher the KLD1 value the more clustered the action-space. Center: action
distribution of the best-fit potential (black cross in left panel). Right: action distribution
of a different potential with KLD1 0.46 lower than the corresponding best fit (purple cross
in left panel). All Orphan stars have been shifted up by 2500 kpc km s−1 in Jν for clarity
on both panels.

clustering associated with a given difference in KLD1, we also mark another
location in parameter space that has KLD1 lower than the best fit (purple
cross) for comparison. In the central panel, we show the action distribution
corresponding to the best fit models (black cross), which should be the most
clustered. For comparison, in the right panels, we show the action distribu-
tion corresponding to the potential with lower KLD1 (purple cross), which
shows a visibly less clustered action distribution. The centroid of the cluster
has also moved, which is expected since the stream will be on different orbits
in the two different potentials.

The middle panel of Figure 2.10 should also be compared with the middle
panels of Figure 2.B.1 which show individual stream best-fit action spaces.

Our fit only makes use of the action coordinates, while the information
about the orbital phase of each star, are not used. Figure 2.11 shows the
histograms of the current λ for stars in GD-1 and Pal 5 streams in differ-
ent potentials. The current λ positions of the stars have been normalized
to lie between the λmin and λmax positions of each star’s orbit in the con-
sidered potential. Since λ corresponds roughly to the radial direction in our
spheroidal coordinate system, the λmin and λmax can be viewed as the peri-
centre and apocentre positions of these stars’ orbits. Figure 2.11 then shows
the approximate orbital phase of each star in the given potential. Most of
the GD-1 stars are near their apocentre in the best-fit potential obtained
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using GD-1 alone, in tension with other studies that have found GD-1 to be
near its pericentre (see Section 2.3). We also see that there is considerable
variation in the phases of the stars in the best-fit GD-1 potential. These
issues disappear when we consider the GD-1 stars in the potential that was
best fit to the combination of GD-1, Orphan and Pal 5 data. All stars are
now near their pericentre, as expected, and there is a very clear agreement
between the phases of the stars.

Figure 2.11: Histograms of the current λ for stars in GD-1 and Pal 5 in different two-
component potentials, normalized by the pericentre and apocentre positions of each star’s
orbit to serve as a proxy for the orbital phase, with pericentre at 0 and apocentre at 1.
Top left panel: The approximate orbital phase of GD-1 stars assuming the best-fit GD-1
potential. Top right panel: The position of GD-1 stars assuming the potential best-fit
to the combined GD-1, Orphan and Pal 5 data. Bottom left panel: The position of Pal
5 stars assuming the best-fit Pal 5 potential. Bottom right panel: The position of Pal 5
stars assuming the potential best-fit to the combined GD-1, Orphan and Pal 5 data.

A similar, although less striking, behavior is evident when we consider
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Pal 5 stars. If we assume the best-fit Pal 5 potential, most of the stars are
near the apocentre, as expected, but there are still quite a few stars near
pericentre as well. When switching to the potential that is best-fit for the
combination of GD-1 and Pal 5 data, we once again see a better agreement
in the orbital phases of the Pal 5 stars. The peak at apocentre is much better
defined and there are fewer outliers at all other phases.

These instances are illustrative of the biases to which fits of individual
streams are susceptible. For individual streams, maximal clustering can occur
with the wrong potential exactly because we are not including any informa-
tion about the current phase of the stars. Stars are sorted along the stream
based on their energies and this sorting of energies should also be present in
action space: stars that have higher energies are on slightly larger orbits, and
this should be reflected in action space. However, since we are neglecting the
phase information (i.e. we do not know how far apart the stars are), we can
inadvertently lose this expected sorting of energy and allow the formation of
clusters that are smaller than the ones produced by the true potential. How-
ever, the potential at which such a biased solution occurs will be different
for each different stream. Fitting multiple streams simultaneously prevents
these individual biases from being confused with the true potential, since no
individually biased solution is preferred by more than one stream.

An example of this can be seen in Figure 2.B.1, where we show a compar-
ison of the action space corresponding to individual-stream and three-stream
best-fit potentials and the energy gradient present in the formed clusters.

The most prominent example is given by the GD-1 stream, for which
maximal clustering is reached when all its stars are compressed near Jλ ∼ 0
(first row middle panel of Figure 2.B.1). As discussed above, this is caused by
a high enclosed mass that forces the stars to be positioned at the apocentres
of their orbits. However, we also see that there is no clear energy gradient in
the action-space cluster, leading us to suspect that what we are selecting is
not actually the true potential. Turning to the action distribution of GD-1
in the best-fit three-stream potential (first row right panel of Figure 2.B.1),
we see a clear improvement: first of all, the stream is no longer confined to
near Jλ ∼ 0 (which is unreasonable as we expect the orbit of GD-1 to have
some radial variation) and, second, the energy gradient along the action-
space cluster is now evident. The same effect can be observed in the case of
the Orphan stream (third row in Figure 2.B.1). It is, however, not as obvious
in the case of Pal 5 stream (second row in Figure 2.B.1). The latter is in
line with expectation, as the action space of the Pal 5 stream changes the
least between the two potentials and the KLD1 value also changes the least
between these potentials. That is to say, the KLD1 value of the best-fit three-
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stream potential (purple cross in Figure 2.B.1) also has a fairly high value in
the Pal 5-only analysis, while the difference is greater for both Orphan and
GD-1.

2.7 Comparison and discussion
In this section, we put our results into a broader context. We first compare
our enclosed mass estimates to those obtained previously with different tech-
niques, applied to the same stellar streams (Section 2.7.1). Next, we compare
our results with other, more general mass estimates (see Figure 2.12). Then
we comment on the overall potential shape by qualitatively comparing our
inferred Galactic rotation curve with recent data (Eilers et al. 2019), and
with the curve obtained from the widely used potential from Bovy (2015)
(Section 2.7.2).

2.7.1 Enclosed mass estimates

Our most precisely constrained parameter is the enclosed mass at 20 kpc from
the GD-1 stream 5.64+0.25

−2.56 (4.73+0.33
−1.05)× 1011M�, the Pal 5 stream 2.01+0.23

−0.63

(2.73+0.60
−0.74)× 1011M�, the Orphan stream 1.91+1.26

−0.84 (1.89+1.05
−0.60)× 1011M� and

their combined data sets 2.22+0.10
−0.08 (2.89+0.28

−0.27) × 1011M�. Here we quote our
best-fit values with 1σ uncertainties for the two-component (single-component)
model. The single-component accepted ranges are smaller and almost entirely
contained within the two-component model accepted ranges. The relative
change in best-fit values between the two models is 19%, 26%, 1% and 23%,
respectively.

Our two-component model enclosed mass estimates should be compared
with recent mass measurements performed on the same streams with inde-
pendent techniques. With the orbit-fitting method, Malhan & Ibata (2019)
find a mass of M(< 20 kpc) = 2.5 ± 0.2 × 1011 M� with GD-1 data. Our
best-fit GD-1 measurement is more than twice as high as this. However, as
explained in Section 2.6.3, the measurement we yield with GD-1 data using
our method is a biased one that places all GD-1 stars incorrectly at apoc-
entre. A more meaningful comparison would be with our results from the
three-stream combined data. This is in agreement with the Malhan & Ibata
(2019) measurement near the lower end of their mass estimate.

With their streakline modelling Küpper et al. (2015) obtain M(< 19 kpc) =
(2.1 ± 0.4) × 1011 M� using Pal 5 data. This should be compared with our
M(< 19 kpc) = 1.81+0.21

−0.53 × 1011 M� when only Pal 5 data is used or with
M(< 19 kpc) = 2.05+0.08

−0.05 × 1011 M� from the combined three-stream result.
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Figure 2.12: Comparison of our two-component potential results with previous measure-
ments of the enclosed mass at different radii. The light blue shaded area represents the
combined results for all four streams (left panel) and for GD-1, Orphan and Pal 5 (right
panel). The darker shaded regions show the subset of the potentials that are compatible
with the current measurements of the Local Standard of Rest velocity. The black markers
signify individual stream results at their respective average radii. The coloured markers
show measurements of the enclosed mass by other authors. The markers showing the re-
sults of Koposov et al. (2010) and Newberg et al. (2010) are slightly offset from 20 kpc and
50 kpc, respectively, for clarity.

The latter is in excellent agreement with results obtained by Küpper et al.
(2015), while the Pal 5 only result also shows good agreement.

Erkal et al. (2019) fit the Orphan stream data using realistic stream
models generated by the modified Lagrange Cloud Stripping technique and
also include the influence of LMC in their Milky Way potential. Their result
of M(< 50 kpc) = 3.80+0.14

−0.11×1011 M� should be compared with our Orphan-
only measurement of M(< 50 kpc) = 6.78+2.00

−2.23×1011 M�. Our measurement
is considerably higher than that of Erkal et al. (2019). We speculate that the
cause for this could at least partly be the fact that we neglect the effect of
the LMC.

In general, our three-stream result tends to agree well with previous mea-
surements at Galactocentric radii below ∼ 30 kpc where the bulk of our data
is situated. However, at greater Galactocentric radii our three-stream result
has a tendency to run higher compared to most other literature measure-
ments.

In contrast to the other streams, the Helmi stream stars fail to find a pref-
erentially high clustered configuration in action space for our potential mod-
els, resulting in very poor parameter determination. There are several reasons
for the strikingly weak parameter constraints provided by the Helmi stream.
First, all stars in our Helmi stream sample are within the 6D Gaia volume,
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which is likely only a small segment of the whole, phase-mixed stream. A
spatially limited “local sample” like this produces a subtly biased subset in
action space (McMillan & Binney 2008) that could be interfering with the
fit for this stream. Given its confinement to the 6D Gaia volume, the Helmi
stream also has the most limited range of galactocentric distances of any of
the streams we include in our data set. This makes it most susceptible to
degeneracies between total mass and scale radius, as discussed in Bonaca
et al. (2014) and Sanderson (2016). Second, the progenitor of the Helmi
stream is a dwarf galaxy, which are generally hotter (in terms of their ve-
locity dispersion) than streams from globular clusters. This means that the
Helmi stream stars naturally occupy a larger volume in action space at lower
density, compared to streams from globular cluster origin such as GD-1 or
Pal 5, and thus have a lower maximum value of the KLD. This in turn places
weaker constraints on the potential parameters. Finally, as discussed in §2.3,
of the four streams we consider in this work, three are selected by standard
observational cuts, where interlopers will likely have quite different actions
(for an illustration, see Donlon et al. 2019). The Helmi stream is however
identified and selected as a cluster in angular momentum space so any in-
terlopers remaining are likely to overlap with the true stream members in
action space, also increasing the minimum size of the action-space cluster.

A visual comparison of our results with previous enclosed mass measure-
ments is shown in Figure 2.12. Our mass estimates agree with some of the
recent measurements, while generally allowing for masses that are higher
than those from other measurements. We speculate that these systematics
are likely due to insufficiencies in our Stäckel model of the potential and to
the limited phase space explored by the data set of 4 streams.

2.7.2 The Galactic rotation curve

To check the global performance of our results, we calculate the resulting ro-
tation curves for our two-component potentials (shaded areas in Figure 2.13)
and benchmark them against the rotation curves of galpy’s MWPotential2014
(Bovy 2015) (black dashed line) and McMillan (2017) (cyan dashed line) and
the data from Eilers et al. (2019) (grey points). The average Galactocentric
distance of the stars of each stream are marked with a dot at the rotational
velocity curve of their respective best-fit potential. At those locations, we
plot “error bars” given by the rotation curve values produced by potentials
with KLD2 values below 0.5. This is also how the shaded uncertainty regions
have been computed for all Galactocentric distances. The darker shaded re-
gions represent the subset of these potentials that also go through the Local
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Standard of Rest. We have taken the rotational velocity at the Sun’s location
to be 232 km s−1 (Koppelman et al. 2018, and references therein) with an
uncertainty of 10%.

The single component potentials (not shown here) do not provide a good
match to the shape of the Galactic rotation curve: their inner rising slope is
too shallow and their peaks are too far out. The two-component potentials
have much more flexibility and are able to produce a realistic rotation curve.
However, our uncertainties are large and we note that the overall normali-
sation remains somewhat high with respect to the data points from Eilers
et al. (2019), which beyond > 10 kpc are barely included in the lower rim
of the shaded region. When taking into account the additional constraint of
the Local Standard of Rest velocity (marked by the red cross), we are able
to further resolve the velocity curves by discarding the surplus potentials.

Finally, a related method to the one used here was proposed by Yang et al.
(2020), who utilize the 2-point correlation function as a measure of clustering
in the action space. They model the Milky Way potential as a combination
of the disc, bulge and halo components and calculate the actions using the
Stäckel fudge approximation. As opposed to this work, only the parameters
of the halo component are explored while others are held fixed. They apply
their method to ∼ 77000 halo stars between 9 and 15 kpc with the full six-
dimensional phase space information from Gaia DR2. So, although using a
similar approach, they apply it to the halo stars rather than individual stellar
streams as we do here. In contrast to our work, they find the best-fit circular
velocity curve to be 5 − 10% lower than previous measurements. We think
this discrepancy could be due to two factors. First, they fix the mass of the
disc and bulge and fit only the halo component, but with a small range of
distances the scale radius is very difficult to constrain, leading back to the
total mass–scale radius degeneracy. Thus if the data prefer a slightly less
massive disc/bulge their fit would naturally lead to a lower circular velocity
at higher radius, since the halo component will be less massive at the radii of
the fit. Second, Yang et al. (2020) use a cutoff for the 2-point function that
effectively limits the action-space size, and therefore the mass, of clusters
in the distribution to structures comparable to or more massive than Gaia-
Enceladus, so their clustering analysis uses essentially a completely different
set of stars from ours. Therefore we do not consider it too surprising that
their result differs somewhat from ours.
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Figure 2.13: Rotation curves corresponding to the results of the two-component potential
model. The lighter shaded regions show the rotation curves for potentials within 1σ of the
best-fit for each data set. The purple, orange, teal and yellow data points correspond to
the individual results of the Helmi, GD1, Pal 5 and Orphan streams, respectively, at their
mean Galactocentric distance. The darker shaded region shows the subset of the rotation
curves that are compatible with the current measurements of the Local Standard of Rest
velocity. For comparison, the dashed black and cyan lines are the rotation curves from the
galpy MWPotential2014 (Bovy 2015) and McMillan (2017), respectively, and the grey dots
represent the data from Eilers et al. (2019).
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2.8 Conclusions

In this paper, we apply the action-space clustering method to known stellar
stream data for the first time, and obtain constraints on the Galactic po-
tential. Specifically, we consider members of the GD-1, Pal 5, Orphan and
Helmi streams, both individually and in combination. The motivation for
a simultaneous fit for multiple streams lies in obtaining more stringent, and
above all robust, constraints on the mass profile over a range of Galactic
distances.

Our conclusions are as follows:

• The most precise constraints on the parameters are obtained with the
GD-1, Orphan and Pal 5 streams. In contrast, the Helmi stream allows
a much wider range of models. We speculate why this is in section 2.7.1.

• Even when combining the streams that yield the most precise con-
straints, the only parameter we can robustly constrain is the enclosed
mass, which we calculate at 20 kpc (corresponding to the mean dis-
tance for stars in our sample) for comparison across all our fits. For
a two-component potential model we find for the GD-1 stream M(<
20 kpc) = 5.64+0.25

−2.56, for the Orphan stream M(< 20 kpc) = 1.91+1.26
−0.84,

for the Pal 5 stream M(< 20 kpc) = 2.01+0.23
−0.63 and for their combination

M(< 20 kpc) = 2.22+0.10
−0.08. The combination of all four streams in our

sample yields M(< 20 kpc) = 4.10+2.05
−1.25. Our best enclosed mass re-

sults are consistent with recent measurements, obtained with the same
streams.

• We have shown that fits from individual streams can lead to biases
when using the action-clustering method and discussed the causes for
this in Section 2.6.3. We have also shown that these biases are canceled
by the simultaneous analysis of multiple streams.

• Some additional bias in the fits to individual streams and possible ten-
sion in their combinations could be introduced by the insufficiencies in
the Stäckel model. However, Sanderson et al. (2015) showed in tests
with mock streams that even if the model is identical to the form of
the true potential, different streams still show different biases and pa-
rameter estimations generally do not overlap until a sufficient number
of streams is included in the sample. Therefore, these inconsistencies
cannot be solely traced back to the use of the Stäckel potential. What
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additional bias the use of the two-component Stäckel potential intro-
duces when modeling a MW-like galaxy will be investigated in future
work. In particular, we intend to test the method on streams found in
cosmological-hydrodynamical simulations from the FIRE suite.

Future developments of this work should incorporate more data from
known streams, spread over a large range of Galactocentric distances and
with reliable 6D information for stellar members. Moreover, our procedure, as
tested here, can more broadly be applied to a large ensemble of halo stars with
6D information without knowing stream membership, as originally intended
by Sanderson et al. (2015). Data to do this over a sufficiently broad distance
range are within reach in the near future, thanks to upcoming spectroscopic
surveys, such as WEAVE (Dalton et al. 2012), 4MOST (de Jong et al. 2019b),
DESI (Levi et al. 2019), SDSS-V (Kollmeier et al. 2017) and H3 (Conroy et al.
2019a), that will complement the increasingly precise next data releases of
the ESA Gaia mission.

2.A Data collection

We compile the 6D phase space data for three of the four streams used in
this work (GD-1, Orphan, and Palomar 5) from various literature sources.
In this Appendix we describe in detail the data assembly process for each
individual stream (§ 2.A.1–2.A.3). To convert from the assembled 6D Helio-
centric observables to Galactocentric Cartesian coordinates, we further make
the following assumptions:

• The Sun is located at a distance of 8.2 kpc from the Galactic Centre in
the direction of the negative X-axis and 27 pc above the Galactic plane
in the direction of the positive Z-axis (Chen et al. 2001).

• The Sun’s peculiar velocity is (11.1, 12.24, 7.25) km s−1 (Schönrich et al.
2010).

• The velocity of the local standard of rest is 232 km s−1 (Koppelman
et al. 2018, and references therein).

2.A.1 GD-1 data

We combine data from four literature sources to create a list of identified
GD-1 members with full 6D phase space information. Koposov et al. (2010)
performed spectroscopic measurements for 23 GD-1 members at the Calar
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Alto observatory. They also provide stream track distances, i.e. estimates of
constant distance for certain intervals of the stream’s track. They divide the
GD-1 stream into 6 sections based on the stream-aligned longitude coordinate
φ1 and derive a distance to each by isochrone fitting using SDSS photome-
try. Willett et al. (2009) list a further 48 high-confidence GD-1 members in
their Table 2. The table includes individual radial velocities as measured by
the SEGUE survey, but no individual distances. Table 1 in Li et al. (2017)
contains another 20 GD-1 stars with radial velocity information from LAM-
OST. We select only the 11 stars that were flagged by the authors as high
confidence members, i.e. candidates with confidence level 1. In addition, we
use the stream track distances from Li et al. (2018) Table 1, determined by
fitting isochrones (i.e. using the same strategy as Koposov et al. 2010) to 18
different regions along the GD-1 stream. In total, this makes 82 candidate
GD-1 members with measured radial velocities. For these stars we assemble
the full phase space information in the following way:

1. The SDSS identifiers given in Koposov et al. (2010) Table 1 and Willett
et al. (2009) Table 2 are matched with the corresponding Gaia DR2
identifiers using Simbad.

2. The Gaia DR2 identifiers for these two data sets are used to acquire
Gaia DR2 position and proper motion coordinates for each star.

3. The candidate members in the third data set, stars with confidence
level 1 in Li et al. (2017) Table 1, are cross-matched with the Gaia
DR2 catalogue in TOPCAT using the LAMOST right ascension and
declination with a 1 arcsec search radius to find their Gaia DR2 posi-
tions and proper motions.

4. LAMOST radial velocities have been shown to be underestimated by
4.5 km s−1 (Anguiano et al. 2018). We correct for this by adding
4.5 km s−1 to the quoted LAMOST radial velocities.

5. Using the transformation matrix in the Appendix of Koposov et al.
(2010) the stream aligned longitude coordinate φ1 is calculated using
Gaia DR2 right ascension and declination for all stars.

6. A polynomial of degree 2 is fitted to the combined stream track distance
data from Li et al. (2018) Table 1 and Koposov et al. (2010) Table 3
using the inverted measurement uncertainties as weights.

7. The polynomial fit is then used to find distances to each star based on
their φ1 values (see the top left panel of 2.1).
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Finally, we make a further cut by discarding the 13 stars that are not part
of the central clump in Lz - L⊥ and µα - µδ space (see Figure 2.A.1).

2.A.2 Orphan Stream data

We draw from two literature sources to build our Orphan stream members
list.

Koposov et al. (2019) identify 109 likely Orphan stream members amongst
the RR Lyrae stars in Gaia DR2, which are listed alongside their heliocentric
distances in Table 5. The stream track distances defined according to the
distribution of the RR Lyrae members are given in Table C2. In addition, the
stream radial velocity track (given in the Galactic standard of rest) derived
using likely Orphan stream members found in the SDSS data is presented in
Table 3. We collect the 6D phase space information for these 109 members
in the following way:

1. We use TOPCAT to cross-match the stars in Table 5 of Koposov et al.
(2019) with the Gaia DR2 catalogue, using a 1 arcsec search radius.

2. We fit a polynomial of degree 2 to the radial velocity track information
from Table 3 in Koposov et al. (2019) using the inverted measurement
uncertainties as weights.

3. The transformation matrix in Appendix B of Koposov et al. (2019) is
used to find φ1 for all stars.

4. There are no radial velocity track measurements in the negative φ1 part
of the stream, leading the fit in that region to be unreliable. Therefore,
we neglect the 52 stars with φ1 < 0.

5. The polynomial function is used to find a radial velocity estimate for
the remaining 57 stars based on their φ1 values (see the bottom right
panel of 2.1).

6. Finally, since the fit to the radial velocities is done in the Galactic
standard of rest frame, we transform the vgsr assigned to the stream
members back to the heliocentric rest frame using the solar reflex mo-
tion that Koposov et al. (2019) adopted for their transformation. This
is necessary to maintain a uniform transformation of all stars from he-
liocentric to Galactocentric Cartesian coordinates across all samples,
using consistent values for the solar position and velocity.
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Figure 2.A.1: Cuts performed to reach the final cleaned sample for GD-1, Pal 5 and
Orphan streams: discarded stars are shown in yellow and the final sample is shown in
purple. Left panels: stars in µα - µδ space. Right panels: stars in Lz - L⊥ space.
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Li et al. (2017) present 139 Orphan stream members with either LAMOST
or SDSS radial velocities. In this work we use only the 82 highest confidence
members, i.e. candidates with confidence level 1. We find the full phase
space map for these stars using the following steps:

1. We use TOPCAT to cross-match the SDSS or LAMOST right ascension
and declination provided for the stars in Li et al. (2017) with the Gaia
DR2 catalogue, again using a 1 arcsec search radius.

2. As for GD-1, LAMOST radial velocities are corrected by adding 4.5 km s−1

to the quoted values.

3. A polynomial of degree 4 is fitted to the points defining the heliocentric
distance track in Table C2 of Koposov et al. (2019). We assume the
measurement errors of the RR Lyrae distances from Gaia DR2 to be of
order 5% and use the inverted errors as weights in the fit.

4. The transformation matrix in Appendix B of Koposov et al. (2019) is
used to find φ1 for all stars.

5. The polynomial function is used to find a distance estimate for each
star based on their φ1 values (see the top right panel of 2.1)

A cross-match between the two data sets using Gaia DR2 source identifiers
reveals 2 common stars: for these 2 stars we use distances from Koposov
et al. (2019) and radial velocities from Li et al. (2017).

In summary, our data set consists of 2 stars with both radial velocity and
distance measurements, 80 stars with radial velocity measurements and fitted
distances, 55 stars with distance measurements and fitted radial velocities.
The fitted estimates are consistent with the spread of the measurements both
in the case of distances and radial velocities, as can be seen in Figure 2.1.
Lastly, a cut in in Lz - L⊥ and µα - µδ space is performed to discard outliers.
Our final Orphan sample thus consists of 117 stars (see Figure 2.A.1).

2.A.3 Palomar 5 stream data

We use 2 literature sources to create a list of Palomar 5 stream members
with a full 6D phase space map.

Price-Whelan et al. (2019) find 27 Palomar 5 stream members in the sam-
ple of stars that appear both in the PanSTARRS-1 catalog of RR Lyrae stars
(Sesar et al. 2017) and the RR Lyrae catalogs of Gaia DR2 (Holl et al. 2018),
presented with derived heliocentric distances in Table 2 of Price-Whelan et al.
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(2019). We build a full 6D phase space map for these 27 members using the
following steps:

1. We use the Gaia DR2 source identifiers in Table 2 of Price-Whelan
et al. (2019) to determine Gaia DR2 positions and proper motions for
all stars.

2. We calculate the stream-aligned longitude coordinate φ1 using the trans-
formation matrix provided in Price-Whelan et al. (2017), applied to the
Gaia DR2 right ascension and declination, for all stars.

3. The radial velocity track is created from measurements of individual
Pal 5 stream members in Table 2 of Ibata et al. (2017). We begin by
cross-matching the table with the Gaia DR2 catalogue in TOPCAT,
using the right ascension and declination with a 1 arcsec search radius.
We then transform to stream-aligned coordinates using the rotation
matrices provided in Price-Whelan et al. (2017), and select only the
115 stars that within ±15km s−1 of −55.30 km s−1, guided by the fit
performed by Ibata et al. (2017).

4. A line is fitted to the radial velocities of the retained stars. We add the
uncertainties of the measurements and the membership probability in
quadrature and use the inverted values as weights in the fit.

5. The polynomial function is used to find a radial velocity estimate for
each star based on its φ1 value (see the bottom middle panel of 2.1).

Ibata et al. (2017) present a sample of 154 members of the Palomar 5
stream alongside their radial velocity measurements in their Table 2. We
find the full 6D phase space for these stars in the following way:

1. A cross-match between the stars in Table 2 of Ibata et al. (2017) and the
Gaia DR2 catalogue is performed in TOPCAT using the right ascension
and declination with a 1 arcsec search radius. We find that not all Ibata
et al. (2017) stars cross-match to a unique Gaia star: some Gaia stars
are the best match for two (or in one case even three) Ibata et al.
(2017) stars. If possible, in each pair we select the star that has a
smaller angular distance to their Gaia match, and discard the other
star. In the cases where both stars in the pair have the same angular
distance to the Gaia star, we select one or the other, randomly.

2. Using the transformation matrix provided in Price-Whelan et al. (2017),
we calculate the stream-aligned longitude coordinate φ1 using Gaia
DR2 right ascension and declination for all stars.
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3. The distance track is created from Table 2 in Price-Whelan et al. (2019)
by cross-matching the table with the Gaia DR2 catalogue using Gaia
DR2 source identifiers and transforming to stream-aligned coordinates
using the rotation matrices provided in Price-Whelan et al. (2017).

4. A polynomial of degree 2 is fitted to these distances. The measurement
errors on the distances are of order 3% (Sesar et al. 2017). We add these
uncertainties and the membership probabilities in quadrature and use
the inverted values as weights in the fit.

5. The polynomial function is used to find a distance estimate for each
star based on their φ1 values (Figure 2.1, top middle panel).

After this procedure, the two data sets are joined (there are no common
stars in the two samples). Finally, we discard outliers in Lz - L⊥ and µα

- µδ space. This cut reduces our final Palomar 5 sample to 136 stars (see
Figure 2.A.1).

This set of 136 stars contains 10 Ibata et al. (2017) stars that originally
had a duplicate with the same angular distance to their matched Gaia star,
as explained above. Although we use only one set of these duplicates in our
work, we find that if we use the alternate set of 10 stars instead, our results
for Pal 5 would remain virtually unchanged: for the single-component model
the best-fit value changes 6% while for the two-component model there is no
change to the best-fit value. In both cases the range of values that the 1σ
region encompasses remains unchanged.

2.B KLD1 example

Here, we briefly discuss the determination of the best fit values using the
KLD1 (Equations 2.17 and 2.20). Figure 2.B.1 shows a comparison of the
action space of individual-stream best-fit potential and the three-stream best-
fit potential. In the left panels we show the KLD1 contours as a function
of enclosed mass and scale length of the outer component, for the GD-1,
Pal 5 and Orphan streams in the two-component model. The best-fit model
is marked with the black cross and the location of the three-stream best-fit
potential is marked with a purple cross for comparison. In the central panels,
we show the action distribution corresponding to the black cross potential
and in the right panels, we show the action distribution corresponding to the
purple cross potential. Finally, the stars in action space are coloured based
on their energies.
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Figure 2.B.1: Comparison of action space of GD-1 (top panels), Pal 5 (middle panels)
and Orphan (bottom panels) produced by two different two-component potentials. The
action of stars are coloured based on their energies. Left: KLD1 values of corresponding
individual stream analysis given as a function of enclosed mass and scale length of the outer
component. The higher the KLD1 value the more clustered the action-space. Center:
action distribution of the best-fit individual-stream potentials (black cross in left panel).
Right: action distribution of the same stream in the best-fit three-stream potential (purple
cross in left panel). The KLD1 value of the purple cross potential in a single-stream analysis
is reduced by 0.86 (for GD-1), 0.23 (for Pal 5) and 0.16 (for Orphan) compared to the KLD1
value of the black cross potential.

Table 2.3 summarises the KLD1 values of the best-fit results for all
streams and stream combinations. Since these values are per star, they also
serve as a measure of how intrinsically clustered each stream’s stars are (in
the individual fits) as well as how clustered the total distribution is (for the
consensus fits). We remind the reader that the higher the KLD1 value, the
greater the clustering in action space.
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Stream 1-comp 2-comp

GD-1 17.37 16.64
Helmi 13.43 13.43
Pal 5 14.81 13.71

Orphan 9.85 9.84
GD-1/Orphan/Pal 5 standard 11.83 -
GD-1/Orphan/Pal 5 weighted 12.13 11.91

GD-1/Helmi/Orphan/Pal 5 standard 11.57 -
GD-1/Helmi/Orphan/Pal 5 weighted 11.39 11.37

Table 2.3: KLD1 values for the best-fit results from individual and combined streams for
single-component (1-comp) and two-component (2-comp) potentials.

For the individual fits, GD-1 and Pal 5 can achieve the tightest cluster-
ing across all models, while the Helmi and Orphan streams are less clustered.
GD-1 and Pal 5 are thought to originate from globular clusters (in Pal 5’s case
the progenitor is known), while Orphan and Helmi are more likely disrupted
satellite galaxies. The tighter clustering of the globular cluster streams com-
pared to the satellite streams is consistent with the smaller total phase-space
volume of globular clusters compared with satellite galaxies. The Orphan
Stream is substantially less clustered than Helmi according to this measure,
but this may be partially due to the localized nature of the sample of Helmi
stream stars, which likely do not fully sample the phase-space volume occu-
pied by its progenitor.

Differences between the KLD1 of consensus fits and the KLD1 for each
individual stream provide some indication of the degree of tension between
the best-fit potentials preferred by each stream individually. This is another
way of understanding the trade off between the precision of the individual
stream fits and the improved accuracy of the combined fits.

When combining GD-1, Orphan and Pal 5, this tension reduces the in-
formation content per star compared to the maximum clustering of both Pal
5 and GD-1, but increases it compared to Orphan. However, for the com-
bined fit from all streams, there is more tension: the individual KLD1 values
for three of the streams are much higher than the combination value, but
are likely offset in this somewhat by the intrinsically less clustered Orphan
Stream.

Finally, the difference between the best-fit KLD1 for different potentials
used for the consensus fits indicates how much more (or less) clustering per
star is achieved by a change to the model, allowing us to do model comparison.
The Akaike (1974) Information Criterion is based on this concept, although
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it is usually expressed in terms of a log-likelihood. Moving from the one-
to two-component model produces little to no increase (and sometimes a
decrease) for each individual stream and for the two-stream combined model,
underlining our finding that most of the additional parameters are not well
constrained.




