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ABSTRACT
Genetic algorithms have unique properties which are useful when
applied to black box optimization. Using selection, crossover, and
mutation operators, candidate solutions may be obtained without
the need to calculate a gradient. In this work, we study results
obtained from using quantum-enhanced operators within the se-
lection mechanism of a genetic algorithm. Our approach frames
the selection process as a minimization of a binary quadratic model
with which we encode fitness and distance between members of a
population, and we leverage a quantum annealing system to sample
low energy solutions for the selection mechanism. We benchmark
these quantum-enhanced algorithms against classical algorithms
over various black-box objective functions, including the OneMax
function, and functions from the IOHProfiler library for black-box
optimization. We observe a performance gain in average number of
generations to convergence for the quantum-enhanced elitist selec-
tion operator in comparison to classical on the OneMax function.
We also find that the quantum-enhanced selection operator with
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non-elitist selection outperform benchmarks on functions with fit-
ness perturbation from the IOHProfiler library. Additionally, we
find that in the case of elitist selection, the quantum-enhanced op-
erators outperform classical benchmarks on functions with varying
degrees of dummy variables and neutrality.

CCS CONCEPTS
•Computingmethodologies→Discrete space search; •Com-
puter systems organization→ Quantum computing.

KEYWORDS
Quantum Computing, Quantum Annealing, Quantum-Inspired Al-
gorithms, Quantum-Enhanced Algorithms, Combinatorial Opti-
mization, Evolutionary Algorithms, Genetic Algorithm, Selection
Operators, Maximum Diversity Problem

1 INTRODUCTION
Evolutionary algorithms are nature-inspired models drawn for ob-
servations of organic evolution. Using selection, recombination, and
mutation, this family of algorithms evolves populations to search an
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optimization domain with respect to the individual fitness within
the population. Related to the fields of biology, numerical optimiza-
tion, and artificial intelligence, these algorithms may also model
a collective learning process, where individuals may not only rep-
resent a point on the domain of the objective function, but also
may represent knowledge of an environment [1]. This family of
algorithms are particularly well suited for Black-box optimization,
where there is no knowledge of the internal structure of the ob-
jective function, in that there is no need to calculate a gradient to
search the landscape, which could be highly nonlinear and rugged
with many local optima.

Quantum computing has steadily shown an increasing potential
for disrupting limitations imposed by seemingly intractable prob-
lems [10]. By leveraging properties of quantum mechanics, such as
superposition, entanglement and interference, researchers realized
theoretical speedups for processes such as order finding, factor-
ing, and search [8, 17, 18]. In our current era of noisy-intermediate
scale quantum devices (NISQ) [14], as quantum computing hard-
ware continues to evolve, it is not without growing pains as it has
been realized that coherence times and fault tolerance to external
noise are not perfect. For algorithms with a provably exponential
speedup over classical algorithms, hardware with many physical
qubits (quantum bits), low noise, and long coherence times to may
be required to realize circuits with the required depth and scale.
However, in the near term, there exists the possibility to investigate
if there are sub-components of routines for classical algorithms
that may be intractable for classical computation which may bene-
fit from leveraging qualitative performance enhancements from a
NISQ-era quantum computing systems leveraging quantum effects.

In this work we examine leveraging a quantum annealing sys-
tem to find solutions to the problem of optimal selection within
an evolutionary algorithm, encoded as a binary quadratic model.
We examine the trade-off in selective pressure vs. exploration in
the evolutionary search, and show qualitative gains with respect to
fitness and expected run-times in the form of average generations
to convergence. We investigate these performance gains with re-
spect to the change in the ratio of 𝜇 to 𝜆, or the size of the selected
parent pool and number of offspring, and find that the gap in per-
formance grows as the ratio approaches 𝜆/𝜇=2. This is not without
a cost, as we also observe an additional overhead in compute times,
which are incurred by making calls across a network to query a
quantum processing unit at each generation, an issue also identi-
fied in [16]. We also confirm findings the authors reported in this
work, where for fully connected graphs of input QUBOs (Quadratic
Unconstrained Binary Optimization) constructed from randomly
initialized populations, hybrid quantum-classical outperform fully
quantum solvers by finding lower energy configurations given the
input.

We test our quantum-enhanced algorithms on the IOHprofiler
suite for black-box optimization, specifically examining Pseudo-
Boolean functions [5].We find that for functions with perturbed
fitness, quantum-enhanced selection operators achieve slightly bet-
ter performance to their classical counterparts. We find that our
quantum enhanced algorithms generally match or outperform their
classical counterparts on a majority of test functions, 10 out of 15
test functions, tested for significance with p-values < 0.05.

2 RELATEDWORKS
Quantum-inspired evolutionary algorithms have been well stud-
ied over the years, starting with [13], where classical simulation
of quantum mechanical properties were applied to evolutionary
search. This culminated in a large body of work with many variants
of quantum-inspired algorithms as described by Zhang in [20].

In surveying quantum-inspired algorithms, Zhang noted 3 types
of algorithms which combine quantum computational properties
with evolutionary algorithms [20]. These include:

• Evolutionary Designed QuantumAlgorithms (EDQA), which
leverage evolutionary algorithms to evolve new designs of
quantum algorithms

• Quantum Evolutionary Algorithms (QEA), where evolution-
ary algorithms are implemented on a quantum computer

• Quantum-Inspired Evolutionary Algorithms (QIEA), which
are algorithms where the evolutionary process is supple-
mented by routines inspired by quantum mechanics, but
implemented using classical hardware.

Along with these, we propose to consider an additional algorithm
class. As we are currently in the NISQ era for quantum hardware,
we can also examine hybrid quantum-classical algorithms, where
some portions or subroutines of the algorithm’s execution are per-
formed on a quantum computer, and other portions are performed
classically. We call this type Quantum-Enhanced Evolutionary Al-
gorithms, and give an example illustration of this concept in Fig.
1.

Studies into quantum-enhanced evolutionary algorithms can
be examined from a standpoint of leveraging a quantum device
and quantum mechanical properties for selection, crossover, or
mutation operators within the heuristic of the evolutionary search.

Of these evolutionary operators, the idea for a genetic algorithm
assisted by quantum annealing was proposed by Chancellor in
[3], and the authors of [11] investigated using a quantum-assisted
mutation operator, and leveraging reverse annealing runs using a
quantum annealer. By performing qausi-local searches using the
quantum-assisted mutation operator, the authors were able to show
an improvement over forward quantum annealing in finding global
optima for a set of input spin-glasses. More recently, investiga-
tion into continuous black box optimization leveraging a quantum-
assisted acquisition function have been reported in [9]. In [16],
the authors leverage a quantum annealing system to formulate
continuous optimization problems cast within a quantum nonlin-
ear programming framework, and show applications within the
green energy space. Sharabiani et. al also identified the overhead in
compute times in regards to querying a QPU for an subroutine for
their optimization algorithm in their work. To our knowledge, there
has be no prior investigation into quantum-enhanced routines for
selection, which our work addresses.

Turning our attention away from quantum annealing for a mo-
ment, there also exists a stream of research into applying Grovers’s
algorithm for unstructured search to global optimization [2]. While
we may not have systems of the scale and fidelity available today
to implement these algorithms on a practical level, this stream of
research could be further investigated and realized as quantum
systems come online with higher orders of available error corrected
qubits and longer coherence times.
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To motivate our work, we frame the selection process as a Maxi-
mumDiversity problem, where we wish to select a subset of parents
for crossover and/or mutation, which preserve a high degree of
quality diversity within the parent pool, with low genotype simi-
larity between parents, while preserving a high degree of fitness
in regards to the objective function. Maximum Diversity Problems
have been shown to be NP-Hard [4, 7]. The difference in our for-
mulation from classic Maximum Diversity Problems is that we do
not use Euclidean distance as our distance function, but investigate
other distance functions such as Hamming distance. This type of
combinatorial optimization scales with respect to the input 𝑛, and
is dominated by O(2𝑛), as there is a binary decision variable for
each individual within the population. However, we propose that
by leveraging a quantum processing unit, or other hybrid quantum-
enhanced or quantum-inspired methods, we may be able to sample
approximate solutions of quality in comparison to other techniques
and heuristics. This is themainmotivation for leveraging a quantum
computing system for this work.

3 METHODS
3.1 Evolutionary Algorithms
Evolutionary Algorithms model processes observed in nature in-
cluding natural selection, reproduction and mutation. In regards to
global optimization, these processes are leveraged to evolve individ-
ual solutions with respect to an objective or fitness function. In the
case of a Genetic Algorithm for Pseudo-Boolean Optimization, A
population of individuals 𝑃 (0) := [a0, ... an] is initialized, where the
the values of a ∈ [0, 1] are generated at random uniformly. At each
generation, individuals (also referred to as chromosomes in the case
of genetic algorithms) from a population are selected, recombined
to produce offspring, and mutated, resulting in a new population.
Over time individuals converge to minima of the objective function
to be optimized with respect to their fitness values, given by a black
box objective function𝜓 . These properties make evolutionary algo-
rithms powerful candidates for optimization for black box functions
where the domain and modality of the function is unknown for
both discrete, as in the case of pseudo-Boolean optimization, and
continuous optimization.

3.2 Selection Operators for Evolutionary
Algorithms

In selecting parents from a population pool formutation and crossover,
we may choose from a number of selection operators. These opera-
tors may be deterministic or probabilistic and can include:

• (𝜇 − 𝜆) selection In (𝜇 − 𝜆) selection, 𝜇 individuals are se-
lected based on the rank of their fitness values to create 𝜆
offspring. In this case, only child offspring are included in
the subsequent population.

• (𝜇 +𝜆) selection In (𝜇 +𝜆) selection, 𝜇 individuals are selected
based on the rank of their fitness values to create 𝜆 offspring.
(𝜇+𝜆) selection is elitist, meaning the parents are included in
subsequent generations. In our experiments, we also tracked
and recombined the best solution found so far with selected
members of the population to create subsequent generations.

We choose these operators in comparison to our quantum-enhanced
operator in order to compare and contrast the trade offs in explo-
ration vs. exploitation in our evolutionary search.

3.3 A Quantum-Enhanced Selection Operator
Maximum diversity problems are characterized by selecting ele-
ments from a set which maximize diversity within the selected
subset. Kuo et. al [12] gave a formulation for this set of problems as
a binary quadratic model, which were also shown to be NP-Hard.

When given a set of candidates within a population pool, a
natural question is how to select parents with a high degree of
fitness, yet are also diverse from one another, with the idea that we
want to be able to balance the trade off between exploitation and
exploration in or selection mechanism. Low population diversity
may lead to more localized search and premature convergence.
Similar to the feature subset selection problem in machine learning
[6], the problem of selecting the optimal subset of parents from a
population pool can be framed as a binary quadratic model. In our
formulation we start by defining a matrix Q:

Q𝑖 𝑗 =


−𝛼 |𝜓 (a𝑖 ) | if 𝑖 = 𝑗

−𝛽 |𝑑𝑖𝑠𝑡 (a𝑖 , a𝑗 ) | if 𝑖 < 𝑗

0, otherwise
(1)

Where𝜓 (a𝑖 ) is the fitness evaluated by the chromosome a𝑖 , and
𝑑𝑖𝑠𝑡 (a𝑖 , a𝑗 ) is the pair-wise distance metric between chromosomes
within the population. Note that for this formulation the distance
metric may be arbitrarily chosen by the practitioner, in our case
we use hamming distance, where we negate the quadratic term as
bit strings with higher values for hamming distance may be more
distant in the sampled hyper-cube.

We introduce the terms 𝛼 and 𝛽 as scaling constants, which we
may use to adjust the optimization domain for the binary quadratic
model for more or less ruggedness in order to leverage the effect of
quantum tunneling. Depending on the choice of distance metric,
one may want to use a negative value for the scaling term 𝛽 applied
to the quadratic terms of the QUBO, in the case where a higher
value for the distance metric represents a higher degree of similarity
or correlation. We may tune the 𝛼 parameter to increase or decrease
the selective pressure, givingmore or less weight to individuals with
respect to their fitness. The 𝛽 term allows to increase or decrease
the diversity in the population of selected individuals in regards to
the distance between their chromosomes. Overall the action of the
two terms help to maintain selective pressure while also achieving
a balance of diversity within the selected population.

The Q matrix acts as input for our resulting minimization prob-
lem, where we wish to find an optimal assignment of qubit values,
represented as 𝜎𝑖 where 𝜎 ∈ [0, 1] and 𝑖 ∈ [1, ..., 𝑛] to indices of
the population which is of size 𝑛, where we select members of the
population with a value of 𝜎 = 1 of size 𝜇

𝐸 (𝜎) =
∑︁
𝑖≤ 𝑗

𝜎𝑖Q𝑖 𝑗𝜎 𝑗 + (
∑︁
𝑖

𝜎𝑖 − 𝜇)2 (2)

Using this population subset of size 𝜇, wemay then perform crossover
and mutation classically, creating a new population and increment
to the next generation. For our experiments we investigate elitist
and non-elitist versions of the quantum-enhanced operator, where
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Algorithm1Genetic Algorithmwith quantum-enhanced Selection
Operator
Require: population size 𝑛
Require: chromosome size 𝜈
Require: maximum generations 𝑡
Require: mutation probability𝑚
Require: Boolean flag elitist
Require: Boolean flag quantum-enhanced
1: Initialize 𝑃 (0) := [a0, ..., a𝑛], a = [𝑥0, 𝑥1, , , 𝑥𝜈 ], where 𝑥 ∈ [0, 1]

and are drawn with uniform probability, set 𝑏𝑒𝑠𝑡 = a0
2: for a ∈ 𝑃 (0) do
3: if 𝜓 (a) > 𝜓 (𝑏𝑒𝑠𝑡) then
4: 𝑏𝑒𝑠𝑡 = a
5: end if
6: end for
7: for generation 𝑔=1, 2, ..., 𝑡 do
8: if quantum-enhanced then
9: Construct Q according to ( Eq. 1)
10: Sample solution vector𝑚𝑖𝑛(𝐸 (𝜎)) according to ( Eq. 3)
11: Select 𝑃𝜇 (𝑔) = 𝑃𝜎 (𝑔) where 𝜎𝑛 = 1 for [𝜎1, .., 𝜎𝑛] in 𝜎

12: else:
13: if 𝑔 = 1 then
14: Select 𝜇 parents from 𝑃 (0) : 𝑃𝜇 (𝑔)
15: else
16: Select 𝜇 parents from 𝑃 (𝑔) : 𝑃𝜇 (𝑔)
17: end if
18: end if
19: if elitist then
20: Perform crossover on 𝑏𝑒𝑠𝑡 with 𝑃𝜇 (𝑔) to generate 𝑃𝜆 (𝑔)

offspring, add 𝑃𝜇 (𝑔) to 𝑃𝜆 (𝑔)
21: else
22: Perform crossover on 𝑃𝜇 (𝑔) to generate 𝑃𝜆 (𝑔) offspring
23: end if
24: Mutate 𝑃𝜆 (𝑔) according to probability𝑚
25: 𝑃 (𝑔) = 𝑃𝜆 (𝑔)
26: for a ∈ 𝑃 (𝑔) do
27: if 𝜓 (a) > 𝜓 (𝑏𝑒𝑠𝑡) then
28: 𝑏𝑒𝑠𝑡 = a
29: end if
30: end for
31: end for
32: return 𝑏𝑒𝑠𝑡

Figure 2: Pseudocode of quantum-enhanced genetic algo-
rithm

the parents are included in the former case and not in the latter
case. We also include the heuristic of recombining the selected
population with the best solution found so far in the elitist version
for both classical and quantum-enhanced operators. We outline the
pseudo-code for these algorithms in Fig. 2.

4 EXPERIMENTS
4.1 Benchmarking Quantum, Hybrid, and

Classical Solvers
For our version of a quantum-enhanced evolutionary algorithm,
we make calls to the D-Wave quantum annealer, using the quantum
processing unit (QPU). During the annealing regime, the system
starts in a state of superposition for all qubit values, and by gradually
reducing the amplitude of a transverse field, drives the system to a
ground state. By leveraging quantum-mechanical properties such
as entanglement and superposition, we may observe an effect know
as quantum tunneling, where barriers in the optimization landscape
are surpassed, instead of walked or sampled over.

The D-wave 2000Q QPU is composed of 2000 qubits and 5600
couplers, with 128000 Josephson junctions. As the QPU may not
have full connectivity, as it uses a chimera architecture, so a minor
embedding is created to model the fully connected graph on the
chip. For our purposes we used D-wave’s software tools to auto-
matically create a minor embedding on the QPU for our problem
to be sampled [19].

Before approaching the problem of utilizing the quantum-enhanced
selection operator, it is natural to question how well a particular
solver may find energy minima for the formulation of the binary
quadratic model. In order to ascertain solution quality, we randomly
initialized populations of solutions according to step 1 in Algorithm
1 in Fig. 2, with which we constructed Q matrices according to
equations 1. and 2. We then ran trials for each solver type, with the
set of solvers consisting of:

• D-Wave 2000Q - D-Wave Sampler (DwS)
• D-Wave 2000Q - D-Wave Clique Sampler (DwCS)
• Leap Hybrid Sampler (LHS)
• Simulated Annealing (SA)
• Steepest Descent (SD)

For the quantum samplers, D-Wave provides tools to embedding
the QUBO on the chip. In the case of the D-Wave Sampler, a minor
embedding using the embedding composite tool was constructed
for this purpose to map the problem onto the QPU. For the D-Wave
Clique Sampler, the tool attempts to find clique embedding on the
chip of equal chain length. An important parameter, chain strength,
was set as the maximum absolute value of the linear terms of the
initialized binary quadratic model for both quantum samplers and
embedding tools [19].

D-Wave also provides access to a hybrid sampler, which lever-
ages both classical and quantum calls within it’s subroutine. This
technology is proprietary to D-Wave, and therefore we treat this
sampler as a black box, and assume that some component of the
subroutine leverages calls to a quantum processing unit. For the clas-
sical solvers, simulated annealing and steepest descent are relatively
straight forward in their implementations and may be reviewed
per D-Wave’s documentation [19].

In our tests we examined varying the values of the parameters
𝛼 and 𝛽 to see if there was any change in the solution quality ac-
cording to the distributions of minimum energies found by each
sampler. Generally, we found that the Hybrid sampler achieved best
performance, and the fully quantum samplers were less performant
(Fig 3., Fig 4.), when run over the same set of input QUBOs. This
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could be attributed to the fully connected nature of the input prob-
lem, where the embedding found of the decomposition of the fully
connected graph for the quantum samplers may not be optimal
with respect to the QPU architecture. Since the Hybrid Sampler
achieved the best results over different values of 𝛼 and 𝛽 (Fig. 3,
4), we used this sampler for our experiments over the OneMax
function and functions from IOHProfiler.

4.2 OneMax
In our initial experiments we benchmarked our quantum-enhanced
genetic algorithm against genetic algorithms with (𝜇 + 𝜆), (𝜇, 𝜆)
over the OneMax function.

Following [15],the members of our population are vectors of
length 𝜈 , a = [𝑥0, 𝑥1, , , 𝑥𝜈 ], where 𝑥 ∈ [0, 1]. We wish to find the
bit-string a which maximizes the function:

𝑓 (a) =
𝜈∑︁
𝑖=1

𝑥𝑖 (3)

The optimum a′ of which is essentially a vector of ones, a′ =

[1, 1, ...1] where |a′ | = 𝜈 .

4.3 IOHExperimenter
For our experiments, we used the IOHProfiler software library [5]
for black-box optimization. IOHProfiler contains a suite of Pseudo-
Boolean functions with which to benchmark optimization algo-
rithms. The functions selected for our benchmarking include func-
tion IDs (fids) 4-18 (Table 1.). The functions 4-17 are variants of
OneMax and LeadingOnes, and are W-model transformed, using
dummy variables (DV ), neutrality (Neu), epistasis (Eps), and fitness
perturbation (FP).

Table of W-model transformed objective functions
FID function DV Neu Eps FP
4 OneMax 𝑛/2 1 1 𝑖𝑑

5 OneMax 0.9𝑛 1 1 𝑖𝑑

6 OneMax 𝑛 3 1 𝑖𝑑

7 OneMax 𝑛 4 1 𝑖𝑑

8 OneMax 𝑛 1 1 𝑟1
9 OneMax 𝑛 1 1 𝑟2
10 OneMax 𝑛 1 1 𝑟3
11 LeadingOnes 𝑛/2 1 1 𝑖𝑑

12 LeadingOnes 0.9𝑛 1 1 𝑖𝑑

13 LeadingOnes 𝑛 3 1 𝑖𝑑

14 LeadingOnes 𝑛 4 1 𝑖𝑑

15 LeadingOnes 𝑛 1 1 𝑟1
16 LeadingOnes 𝑛 1 1 𝑟2
17 LeadingOnes 𝑛 1 1 𝑟3

Table 1: Function transformations from IOHProfiler library
[5], with ruggedness functions 𝑟1-𝑟3 mapping various levels
of fitness perturbation.

Function 18 from IOHProfiler is an instance the Low Auto-
Correlation Binary Sequence problem, where the fitness is de-
termined by the reciprocal over the sequence’s auto-correlation
𝑥 ↦→ 𝑛2

2
∑𝑛−1

𝑘=1

(∑𝑛−𝑘
𝑖=1 𝑠𝑖𝑠𝑖+𝑘

)2 , where 𝑠𝑖 = 2𝑥𝑖 − 1 [5].

4.4 Experiment Parameters, Performance
Metrics and Quality Diversity

In order to compare selection operators as part of a larger heuristic,
we set some parameters within the genetic algorithm to be static
across all experiments. For our choice of mutation rate, we used a
rate of𝑚 = 0.02. For our chromosome size, 𝜈 , we set 𝜈 = 50 For the
elitist versions of the classical and quantum-enhanced algorithms,
we chose to track the best solution found so far, and recombined
with the parent pool chosen by the selection operator to create off-
spring. In the non-elitist versions, we only used the parent pool and
recombined with members of the population drawn with uniform
probability. For our population size, we chose a size 𝑛 = 50 for all
experiments, and examined the change in the size of the selected
parent pool, 𝜇 in relation to the number of offspring, 𝜆. For the (𝜇,
𝜆) operator, we set the number of children per parent to the value
of 𝜆/𝜇. For settings of 𝛼 and 𝛽 , for 𝑄𝐸 − (𝜇, 𝜆) we set 𝛼 = 100 and
𝛽 = 100 and for 𝑄𝐸 − (𝜇 + 𝜆) we set 𝛼 = 1000 and 𝛽 = 10.

In our experiments, we examined the expected run-time, which
we define as the average number of generations to the target solu-
tion per run, with a total of 20 runs for each experiment. We set a
budget of 50 generations for each experiment. We also took into
account best fitness values found at each generation, which we
averaged over all runs.

We measured the quality at each generation by taking the av-
erage of the pairwise hamming distances of all members of the
population at each generation, and averaging over these in each
individual run, finally taking the average for all 20 runs.

5 RESULTS
We plotted the results as distributions of energies per sampler on
random initialization of populations with varying values of 𝛼 and
𝜆 in figures 3 and 4. We plotted the gap observed in the change in
ratio of 𝜇/𝜆 vs. average generations to convergence over OneMax
in figure 5. We plotted the average fitness and log of average geno-
type diversity over the One Max Function in figures 6 and 7. We
tabulated performance results with quantum-enhanced vs. classical
algorithms in Tables 2,3 and 4. We highlighted best performing in
bold, ranked in order by average fitness, average generations to
convergence, and average genotype diversity. For fids 11,12,13,18
the𝑄𝐸 − (𝜇 +𝜆) operator outperformed other operators in terms of
fitness and average generations to convergence. For fids 7, 10, 14,
15, 16, 17 the𝑄𝐸 − (𝜇, 𝜆) outperformed other versions with regards
to fitness values. To verify the significance of these results we ran
t-tests for independence over the samples of trials vs. their classical
versions, and found all within significant range (𝑝 − 𝑣𝑎𝑙𝑢𝑒<0.05).

6 DISCUSSION
In examining the performance of the quantum enhanced algorithms,
we plotted the average generations to convergence and genotype
diversity over the OneMax function as shown in Fig. 6 and Fig.
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Figure 3: Distributions of energies found per sampler on ran-
domly initialized QUBOs, 𝛼=1000, 𝛽=10, 𝜇=7

Figure 4: Distributions of energies found per sampler on ran-
domly initialized QUBOs, 𝛼=10, 𝛽=1000, 𝜇=7

Figure 5: Change in average generations to reach global op-
timum for OneMax Function vs. ratio of 𝜇/𝜆

7. In comparing the quantum-enhanced methods to their classi-
cal counterparts we see that the quantum-enhanced 𝑄𝐸 − (𝜇 + 𝜆)
achieve high velocity towards convergence in Fig. 7., indicating

Figure 6: Average log genotype diversity for quantum-
enhanced vs. classical operators over OneMax objective
function

Figure 7: Average best fitness for quantum-enhanced vs. clas-
sical operators over OneMax objective function

higher selective pressure with lower average generations to con-
vergence. Taking a closer look at the difference between average
generations for 𝑄𝐸 − (𝜇 + 𝜆) and it’s classical counterpart, in Fig.
5, we notice a gap in expected run-time in generations as the ratio
of 𝜇/𝜆 approaches 0.5. This could be attributed to higher weight-
ings of 𝛼 = 1000 vs. 𝛽 = 10, where preference is given to fitness
within the QUBO of the quantum-enhanced selection mechanism.
We also see that there is a trade-off when comparing the average
log genotype diversity of populations as indicated in Fig. 6, where
𝑄𝐸 − (𝜇, 𝜆) shows on average a higher log diversity to it’s classi-
cal counterpart. Surprisingly, when testing over the IOHProfiler
suite, we notice the average genotype diversity being lower for
𝑄𝐸 − (𝜇, 𝜆) than (𝜇, 𝜆). This could also be due the the weighting
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of the 𝛼 = 100 and 𝛽 = 100 terms, and the trade off in optimizing
for fitness and lower expected run-time vs. diversity. We also see
this trade off when applied to fids 4-18 in tables 2-4, where the
elitist versions achieve higher fitness on functions with dummy
variables and neutrality, and non-elitist versions performing well
on functions with perturbations of the ruggedness function. This
indicates that diversity may help to overcome these perturbations,
which may lead searches with higher velocity to converge into local
minima, and achieving a proper balance in weightings for terms in
the QUBO when optimizing for this criterion is crucial.

In the trade-off of exploration vs. exploitation, for elitist vs. non-
elitist algorithms, we note the main difference in recombining the
best solution found so far with the selected population in the elitist
cases. In the cases where we tuned 𝛼 = 1000, we noticed a decrease
in diversity for an increase in velocity. This leads us to believe that
there may be some potential in future work towards characterizing
the objective function, and incorporating a switching mechanism
within the optimization routine based upon whether exploitation
or exploration may be more or less advantageous.

While we used static mutation rates of 0.2, in our experiments we
noticed the interplay between selection, crossover, and mutation.
As we wanted to only examine the effects of the selection operator,
we kept the other operators static, but we believe that future work
could also examine adaptive population sizes, as well as the effect of
adaptive mutation rates, which could help to reduce the diminished
genotype diversity towards the end of the optimization regime as
observed in Fig. 6.

7 CONCLUSION
We conclude that our quantum-enhanced selection operator shows
some advantages in velocity and exploration within the population
selection mechanism, although there is also a trade off in the la-
tency for compute times on current NISQ chips. Future work could
extend this method to Evolution Strategies to search over contin-
uous function domains, as well as potential applications such as
hyper-parameter optimization and neural architecture search for
machine learning. Future work could also incorporate streams of
research previously identified in the related works section, such as
Grover’s search for global optimization. Finally, future work could
examine quantum-enhanced surrogate modeling for both single
and multi-objective optimization.
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NOMENCLATURE
𝐺 Average generations to convergence or stopping criterion,

also denoted as expected run-time.
𝐺𝐷 Genotype diversity, the average amount of diversity mea-

sured between genotypes in a population.
𝑄𝐸 − (𝜇 + 𝜆) Quantum-enhanced selection operator with elitism

and recombination with best solution
𝑄𝐸 − (𝜇, 𝜆) Quantum-enhanced selection operator without elitism,

and only recombining members of selected population
without tracking best solution
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IOH Function results- ( 𝑛 = 50, 𝜈 = 50, 20 trials)
IOH FID 𝑄𝐸 − (𝜇 + 𝜆) Mean Fitness (𝜇 + 𝜆) Mean Fitness 𝑄𝐸 − (𝜇 − 𝜆) Mean Fitness (𝜇 − 𝜆) Mean Fitness
4 25 (+/- 0.0) 25 (+/- 0) 25 (+/- 0) 25 (+/- 0)
5 44.95 (+/- 0.21) 45.0 (+/- 0.0) 45 ( +/- 0.) 45.0 (+/- 0.)
6 16 (+/- 0.0) 15.95 (+/- 0.2) 16 (+/- 0.0) 16 (+/- 0.0)
7 43.45 (+/- 1.01) 43.05 (+/- 1.74) 46.65 (+/- 1.31) 43.45 (+/-1.65)
8 25.25 (+/- 0.43) 24.85 (+/- 0.57) 25.4 (+/- 0.0) 25.95 (+/- 0.0)
9 49.1 (+/- 0.83) 48.9 (+/- 0.7) 49.6 (+/- 0.21) 49.9 (+/- 0.3)
10 34.5 (+/- 4.15 34.5 (+/- 3.1) 48.0 (+/- 2.0) 45.5 (+/- 2.29)
11 25 (+/- 0.0) 25 (+/- 0.0) 24.3 (+/- 1.3) 23.9 (+/- 1.69)
12 42.1 (+/- 2.9) 40.0 (+/- 5.2) 25.45 (+/- 3.2) 23.5 (+/- 3.45)
13 16 (+/ 0.0) 16 (+/ 0.0) 16 (+/ 0.0) 16 (+/ 0.0)
14 10.1 (+/- 4.7) 10.25 (+/- 4.14) 12.35 (+/- 5.8) 9.65 (+/- 3.2)
15 11.25 (+/- 4.3) 11.8 (+/- 5.3) 13.3 +/-(1.9) 12.15 (+/- 2.15)
16 17.55 (+/- 7.14) 17.4 (+/- 6.0) 24.95 (+/- 4.2) 20.85 (+/- 5.1)
17 9.25 (+/- 3.34) 9.5 (+/- 4.15) 16.9 (+/- 5.1) 10.75 (+/- 4.26)
18 4.01 (+/- 0.35) 3.81 (+/- 0.31) 2.79 (+/- 0.23) 3.09 (+/- 0.32)

Table 2: Average Fitness values for 20 trials.

IOH Function results- ( 𝑛 = 50, 𝜈 = 50, 20 trials)
IOH FID 𝑄𝐸 − (𝜇 + 𝜆) Average G (𝜇 + 𝜆) Average G 𝑄𝐸 − (𝜇 − 𝜆) Average G (𝜇 − 𝜆) Average G
4 10.2 (+/- 1.9) 9.8 (+/- 2.1) 11.8 (+/- 1.5) 11.85 (+/- 1.95)
5 23.2 (+/- 6.6) 21.3 (+/- 2.7) 30.15 (+/- 4.4) 26.55 (+/- 4.9)
6 12.25 (+/- 7.1) 21.3 (+/- 15.0) 9.7 (+/- 2.3) 8.85 (+/- 2.55)
7 50 (+/- 0.0) 50 (+/- 0.0) 50 (+/- 0.0) 50 (+/- 0.0)
8 46 (+/- 7.45) 49.55 (+/- 1.35) 44.75 (+/- 8.04) 35.4 (+/- 5.64)
9 44.2 (+/- 9.5) 48.35 ( +/- 5.1) 44.1 (+/- 6.26) 38.55 (+/- 7.2)
10 50 (+/- 0.0) 50 (+/- 0.0) 50 (+/- 0.0) 50 (+/- 0.0)
11 17.85 (+/- 4.8) 20.75 (+/- 5.7) 30.7 (+/- 9.3) 43.55 (+/- 8.17)
12 48.15 (+/- 3.7) 45.5 (+/- 5.2) 50 (+/- 0.0) 50 (+/- 0.0)
13 9.85 (+/- 4.7) 14.3 (+/- 10.6) 21.65 (+/- 6.5) 22.5 (+/- 9.48)
14 50 (+/- 0.0) 50 (+/- 0.0) 50 (+/- 0.0) 50 (+/- 0.0)
15 50 (+/- 0.0) 50 (+/- 0.0) 50 (+/- 0.0) 50 (+/- 0.0)
16 50 (+/- 0.0) 50 (+/- 0.0) 50 (+/- 0.0) 50 (+/- 0.0)
17 50 (+/- 0.0) 50 (+/- 0.0) 50 (+/- 0.0) 50 (+/- 0.0)
18 50 (+/- 0.0) 50 (+/- 0.0) 50 (+/- 0.0) 50 (+/- 0.0)

Table 3: Average generations to convergence values for 20 trials.

IOH Function results- ( 𝑛 = 50, 𝜈 = 50, 20 trials)
IOH FID 𝑄𝐸 − (𝜇 + 𝜆) Average GD (𝜇 + 𝜆) Average GD 𝑄𝐸 − (𝜇 − 𝜆) Average GD (𝜇 − 𝜆) Average GD
4 0.45 (+/- 0.02) 0.68 (+/- 0.02) 0.62 (+/- 0.0) 0.68 (+/- 0.01)
5 0.4 (+/- 0.01) 0.68 (+/- 0.02) 0.57 (+/- 0.01) 0.69 (+/- 0.02)
6 0.45 (+/- 0.04) 0.68 (+/- 0.02) 0.63 (+/- 0.01) 0.69 (+/- 0.02)
7 0.35 (+/- 0.01) 0.67 (+/- 0.02) 0.56 (+/- 0.01) 0.68 (+/- 0.02)
8 0.37 (+/- 0.01) 0.67 (+/- 0.01) 0.57 (+/- 0.01) 0.67 (+/- 0.01)
9 0.36 (+/- 0.02) 0.68 (+/- 0.01) 0.55 (+/- 0.01) 0.68 (+/- 0.02)
10 0.36 (+/- 0.02) 0.68 (+/- 0.02) 0.59 (+/- 0.0) 0.68 (+/- 0.02)
11 0.45 (+/- 0.02) 0.68 (+/- 0.01) 0.58 (+/- 0.01) 0.69 (+/- 0.02)
12 0.40 (+/- 0.01) 0.68 (+/- 0.02) 0.59 (+/- 0.0) 0.68 (+/- 0.02)
13 0.48 (+/- 0.04) 0.69 (+/- 0.01) 0.61 (+/- 0.01) 0.68 (+/- 0.02)
14 0.35 (+/- 0.01) 0.68 (+/- 0.02) 0.61 (+/- 0.01) 0.68 (+/- 0.01)
15 0.36 (+/- 0.01) 0.68 (+/- 0.02) 0.59 (+/- 0.0) 0.68 (+/- 0.02)
16 0.36 (+/- 0.01) 0.69 (+/- 0.02 0.59 (+/- 0.01) 0.67 (+/- 0.02)
17 0.34 (+/- 0.01) 0.68 (+/- 0.02) 0.61 (+/- 0.01) 0.68 (+/- 0.02)
18 0.34 (+/- 0.01) 0.69 (+/- 0.01) 0.64 (+/- 0.0) 0.68 (+/- 0.02)

Table 4: Average genotype diversity to convergence values for 20 trials.
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