
The future of artificial intelligence in the context of industrial ecology
Donati, F.; Dente, S.M.R.; Li, C.; Vilaysouk, X.; Froemelt, A.; Nishant, R.; ... ; Hashimoto, S.

Citation
Donati, F., Dente, S. M. R., Li, C., Vilaysouk, X., Froemelt, A., Nishant, R., … Hashimoto, S.
(2022). The future of artificial intelligence in the context of industrial ecology. Journal Of
Industrial Ecology, 26(4), 1175-1181. doi:10.1111/jiec.13313
 
Version: Publisher's Version
License: Creative Commons CC BY-NC 4.0 license
Downloaded from: https://hdl.handle.net/1887/3464617
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by-nc/4.0/
https://hdl.handle.net/1887/3464617


DOI: 10.1111/jiec.13313

FORUM

The future of artificial intelligence in the context of
industrial ecology

FrancoDonati1,2 SébastienM. R. Dente3 Chen Li1 Xaysackda Vilaysouk3

Andreas Froemelt4,5 Rohit Nishant6 Gang Liu7 Arnold Tukker1,8

Seiji Hashimoto3

1Institute of Environmental Sciences (CML),

Department of Industrial Ecology, Leiden

University, Leiden, The Netherlands

2Science for Democracy, Rue d’Arlon, Brussels,

Belgium

3College of Science and Engineering,

Ritsumeikan University, Shiga, Japan

4Swiss Federal Institute of Aquatic Science and

Technology, Eawag, Dübendorf, Switzerland

5Chair of Ecological SystemsDesign, Institute

of Environmental Engineering, ETH Zurich,

Zurich, Switzerland

6Faculty of Business Administration,

Université Laval, Quebec City, Canada

7DU Life Cycle Engineering, Department of

Green Technology, University of Southern

Denmark, Odense, Denmark

8Netherlands Organization for Applied

Scientific Research TNO, DADenHaag,

Netherlands

Correspondence

SébastienM. R. Dente, College of Science and

Engineering, Ritsumeikan University, Shiga,

Japan.

Email: sdente@fc.ritsumei.ac.jp

Franco Donati, Institute of Environmental

Sciences (CML), Department of Industrial

Ecology, Leiden University, Leiden, The

Netherlands.

Email: f.donati@cml.leidenuniv.nl

EditorManaging Review: Guillaume

Majeau-Bettez

Abstract

Artificial intelligence (AI) applications and digital technologies (DTs) are increasingly

present in the daily lives of citizens, in cities and in industries. These developments

generate large amounts of data and enhance analytical capabilities that could bene-

fit the industrial ecology (IE) community and sustainability research in general. With

this communication, we would like to address some of the opportunities, challenges,

and next steps that could be undertaken by the industrial ecology community in this

realm. This article is an adapted summary of the discussion held by experts in industrial

ecology, AI, and sustainability during the 2021 Industrial Ecology Day conference ses-

sion titled “The Future of Artificial Intelligence in the Context of Industrial Ecology.” In

brief, building on previous studies and communications, we advise the industrial ecol-

ogy community to: (1) create internal committees and working groups to monitor and

coordinate AI applications within and outside the community; (2) promote and ensure

transdisciplinary efforts; (3) determine optimal infrastructure and governance of AI

for IE to minimize undesired effects; and (4) act on effective representation and on

reduction of digital divides.
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1 INTRODUCTION

The increasing diffusion of artificial intelligence (AI) applications, such as machine learning, expert systems, computer vision, along with the rapid

expansion of digital technologies (DTs) for data collection, storage, and consumption, is providing society with an unprecedented capacity to gen-

erate insights into how to improve the quality of life and the environment (UNSGHL, 2019). These developments, often referred to as the fourth

industrial revolution (Combes et al., 2018), provide opportunities to improve the sustainability of society’s production and consumption system and

its governance (Nishant et al., 2020).

While a commonly shared definition of AI remains in many cases evasive (Frolov et al., 2021), in this paper we define it as software employing

methods and models aimed at emulating or exceeding humans’ intelligence and ability to accomplish given tasks of different levels of complexity

(Ertel, 2017; Frolov et al., 2021; Negnevitsky, 2011). Applications of AI span across the following fields (Russell & Norvig, 2010): Natural language

processing; knowledge representation; automated reasoning; machine learning; computer vision; and robotics.

However effective AI methods may be, they rely on good-quality data to provide good-quality insights. As such, it is paramount to discuss the

potential of AI in industrial ecology (IE) in combination with data processed to generate insights. Data can come from a variety of sources using

traditional quantitative and qualitative data collectionmethods such as surveys, interviews, and so on; but also, from sensors spread across society

and a variety of applications. In this article, we also refer to global digital infrastructure as the global network of interconnected DTs such as infor-

mation and communication technologies (ICT) for the purpose of collecting, storing, and consuming data fromamultitude of sources (e.g., statistical

offices and organizations, remote sensing technologies such as satellite data, smart devices, and sensors for the Internet-of-Things, smart cities and

industries, andmany others).

Since its foundation, IE has provided tools and knowledge to support the sustainable management of resources and environmental impacts and

investigate the unintended consequences of human activities (Ayres & Ayres, 2002). The increasing use of AI and the expansion of DTs present

great opportunities, but also challenges for the IE community. The scientific and societal role of IE could be strengthened by increasing the timeli-

ness, details, and insightfulness of policy recommendations designed to tackle the great environmental challenges of our time. For example, Luque

et al. (2020) argued that industrial sensing technologies could be combined with life cycle assessment (LCA) and machine learning to provide real-

time environmental monitoring and improvement of industrial operations. Rolnick et al. (2019) presented ways in whichmachine learning could be

employed to tackle climate change for 13 domains from the electricity system to education and finance.

There are, however, challenges in the development of a global digital infrastructure and the use of AI for sustainability. For example, Xu et al.

(2015) indicated that while big data obtained from DTs could offer new data and opportunities for analytical techniques enabling IE to develop

more realistic complex system models based on the capture of the “temporal, spatial and demographic heterogeneity of industrial systems,” we

should be aware that “bigger data is not always better data.” Similarly, bigger andmore complexmodels resulting from the use of AImay not always

be preferable or better than simpler ones. In fact, they may prove difficult to understand and explain or may require substantial resources (i.e.,

energy and materials) (Lottick et al., 2019). Additionally, they could perpetrate societal biases and unfair allocation of resources, or have economic

barriers causing unequal access to information and enjoyment of its benefits through society. They could cause systemic cascading shocks due to

failures of nested and decentralizedAI systems, or the promotion of unsustainable practices that prioritize fewobjectives over the overall spectrum

of sustainability (Galaz et al., 2021).

The recent (2022) special issue ofData Innovation in the Journal of Industrial Ecology addresses multiple of these questions with special attention

to opportunities (Majeau-Bettez et al., 2022), and similar efforts are also addressed in other disciplines under the environmental science umbrella

(Hsieh, 2022;McGovern et al., 2022; Rolnick et al., 2019). The present article builds on these efforts and summarizes the seminar discussion on “The

Future of Artificial Intelligence (AI) in the Context of Industrial Ecology (IE),” which took place on June 21, 2021, during the Industrial Ecology Day

(ISIE, 2021). Based on this knowledge, we propose a vision for the role of AI andDTs in the future of IE. This article contextualizes the opportunities

and challenges and indicates the next steps to be taken by the IE community.

2 ENVISIONING THE ROLE OF AI IN IE

The diffusion of AI can greatly benefit the IE field by strengthening its capacity of mapping flows and stocks of materials and energy across society

and identifying solutions to reach society’s sustainability goals. We divide the IE community work into descriptive and prescriptive, where the for-

mer concerns the analysis of current and past factors and trends of societies’ economic and environmental flows and stocks, while the latter is the

analysis of possible and alternative future scenarios based on this accounting and other factors.

In recent years, descriptive efforts have taken advantage of remote sensing and geographic information systems (GIS) to reach a higher level of

spatio-temporal details of material flows and stock (Corea, 2019; Haberl et al., 2021; Peled & Fishman, 2021). Froemelt et al. (2020) used machine

learning to combine remote sensing andGIS-datawithhouseholdbudget surveys andagent-basedmodels todevelopa spatially resolved large-scale

bottom-upmodel that is able to derive highly detailed environmental profiles for individual households. Techniques of textmining, mode and image

recognition (e.g., Google Street View), and analysis of nighttime lights from satellite images can allow a high-resolution capture of material types
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and volumes in the built environment (Arbabi et al., 2022; Mesta et al., 2019). Additionally, the expansion of Open & Agile Smart Cities is providing

additional information through sensing technologies (Degbelo et al., 2016; Open & Agile Smart Cities, n.d.). Some of these data are also available in

datamarketplaces such as Fiware (Cirillo et al., 2019) and EuropeanUnionData Portal (“Datasets—Data.Europa.Eu,” n.d.) and othersmay also arise.

These data sources could be usedwith AI methods such as computer vision techniques to infer additional information about the built environment,

transport modality, emissions, and biodiversity in cities (Ibrahim et al., 2020).

Direct data collection could be strengthened by the expansion of DTs in industrial operations. Better data could then be used directly to

assess and monitor the environmental performance of supply chains by connecting it to LCA (Luque et al., 2020). However, this is only possible if

relationships between IE practitioners and industrial actors have been established. Where such privileged relationship is missing, industrial ecolo-

gists could rely on simulation tools and support the development of digital twins. Digital twins are “digital replications of living as well as nonliving

entities” (El Saddik, 2018) suchas indigital twinsof theearth system (Bauer et al., 2021), of thebuilt environment (Ketzler et al., 2020), and industrial

activities.

While data collection through DTs is of great importance, the community cannot have the expectation of being able to collect all possible data.

In fact, this may not even be desirable, practical, or even feasible given the material requirements of DTs and concerns of data protection. For this

purpose, estimation throughmachine learning anddatamining techniques couldbeuseful. For example, there areopportunities tobe investigated in

the conversion of domain–specific data into data useful for life cycle inventories, as shown byMittal et al. (2018) in the use of datamining to convert

industrial process databases in data useful for LCI. Zhao et al. (2021) show how unit process data can also be estimated using machine learning.

Such developments could not only benefit LCA but also input–output databases in mapping activities and products as well as their environmental

extensions. Some authors have also started using these approaches to estimate missing data in impact categories for life cycle impact assessment

starting from diverse national databases (Cashman et al., 2016). The use of these approaches should be encouraged and supported, as they reduce

dependency on data requests from industrial actors.

Such approaches in data collection and estimation, as well as model creation, could then be instrumental for prescriptive efforts in the imple-

mentation of sustainability solutions. The prescriptive efforts of IE concern the prognostication of the impacts of future policies and technologies

for sustainability. For example, AI can facilitate a better comprehension of households’ consumption and environmental impacts by linking diverse

data sources and submodels (physically based, agent-based, and data-driven approaches) (Froemelt et al., 2018, 2020, 2021), which can then be

combined with top-down input–output models to investigate system-wide effects of demand-side sustainability solutions (Froemelt et al., 2021).

It could also provide more effective energy load levelization by combining AI with energy models and shedding light on additional factors affecting

newenergy systems (Zahraee et al., 2016). It could also check the validity of recommendations andoptimize themagainstmultiple values (e.g., social

andenvironmental performance). Furthermore, intelligent systemsembedded in consumerproducts and services couldhelp avoidundesiredeffects

of novel technologies, rebound effects, or problem shifting, by supporting consumers toward the adoption of sustainable lifestyles or embedding

sustainable management systemswithin a given technology.

More generally, AI can help society in designing targeted and more timely policies that take multiple values into consideration and optimize

them to reduce unintended consequences. Such a holistic viewpoint has been at the core of methodologies developed by the IE community, for

example, in LCA. To this end, multivariate assessment and optimization of current systems and future solutions could be instrumental to avoid

political and technological interventions where mitigation of ecological issues in one part of the supply chain simply shifts problems toward other

parts, negatively affecting other desired outcomes.While IEmethods such as LCA,material flow analysis, and environmental input–output analysis

have played core roles in detecting problem shifting, the combination of IE methods with AI and DTs could achieve unparalleled spatio-temporal

granularity andmake results moremeaningful for scientists and policymakers at different levels.

The severity of many social and environmental impacts depends on time and place of emissions or resource extraction. For example, companies

are rapidly expanding data collection along their supply chains thanks to embedded tracking technologies. As they assess their operations, environ-

mental impacts and the well-being of workers could also be quantified. This data could then be used to support their decision support systems to

reduce socio-economic and environmental risks (Alavi et al., 2021) and improve their operations. In this context, AI in combination with IEmethod-

ologies can help the business community create new sustainable business models answering the social-economic and environmental challenges of

our times.

3 CHALLENGES

In this study, we identified threemain challenges:

∙ Resource requirements

∙ Data accessibility and governance

∙ Explainability, interpretability, and causality
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3.1 Resource requirements

Industrial ecologists have an active lead in assessing the energy and material flows and stocks embodied in products and infrastructures, and their

environmental impacts. The tremendous insight generation of DTs and the use of AI require energy and materials that could exacerbate environ-

mental pressures. For example, AImodels have known issues of high energy consumption, which are also projected to grow beyond 2%of theworld

energy consumption (Lacoste et al., 2019; Lottick et al., 2019; Strubell et al., 2019). For this reason, tools have been developed to assess the carbon

intensity of models (Schmidt et al., 2022),1,2 which should accompany other efficiency and typical metrics (e.g., accuracy and robustness) as a push

toward yielding “novel results without increasing computational cost, and ideally reducing it” (i.e., Green AI) (Schwartz et al., 2019). Additionally,

the resource consumption of DTs has also environmental impacts of its own, so it is important to mitigate burden shifting across environmental

areas of concern (e.g., from resource depletion to climate change). In this regard, attention should be given to: (1) containing the need for large

graphical process unit (GPU) clusters; (2) mitigating excessive dispersion of sensing technologies for monitoring; and (3) avoiding repetitive data-

harvesting practices. Given the long history of industrial ecologists assessing unintended consequences of policies and technology implementation

(Font Vivanco & van der Voet, 2014), the community has a responsibility to hold Green AI standards together with the study of minimal expansion

of digital technologies.

3.2 Data accessibility and governance

The issue of data governance is inherently political and concerns many aspects such as data ownership, data storage, data dissemination, and the

question of unequal access to the digital economy. These problems often have clear reasons. For instance, detailed information fromwhich we can

derive material and energy efficiency of processes, production volumes, or product compositions are often at the core of the competitive advan-

tage of firms. Additionally, managing and exploiting big data has become a highly profitable business model for a very limited number of internet

companies. They hold andmonetize vast amounts of data while theymay provide limited access to the public and scientific community.

Gathering data and maintaining big databases are labor-intensive and costly activities. This creates an inherent problem in making data open

access as database curators need to be concerned with financial sustainability of their operations and data confidentiality. As a result, many of the

most-used datasets in the IE field, such as the life cycle inventory database Ecoinvent (Frischknecht &Rebitzer, 2005) or the IEA (e.g., the IEA Energy

balances), are licensed and for themost part only accessible for a fee.With the expansion in data volumes, there is a risk that these businessmodels

becomemore common and that reliance on private services to handle andmanipulate such data in the AI infrastructure increases.

This represents a barrier for an equal enjoyment of data (e.g., economic, industrial, and environmental data) and AI solutions regardless of the

income level of data users, and it exacerbates global inequalities in data accessibility and deployment of DTs (i.e., digital divide). Data access, quality,

and internet infrastructure notoriously differ across regions, which risk endangering sustainability (Mehrabi et al., 2020). The digital divide will

continue growing unless there are policy interventions. The use of AI for sustainability should heighten awareness of these inequalities and address

them whenever possible. In various cases, data accessibility and openness should be expanded, such as for geographic information and the built

environment.

Industrial ecologists should investigate how public and private data may be governed to serve its objective of aiding decision-making for a sus-

tainable society. They can investigate different policy frameworks andmechanisms to ensure compliance to these frameworks (Mahanti, 2021) such

that quality data is available for effective use of AI. One suchmechanism could be the creation of openly accessible benchmarkmodels and datasets

for common IE analytical tasks (e.g., data estimation for LCI and EEIO, or environmental impact assessment under different climate scenarios). In

a variety of other AI fields, such benchmarks (e.g., MNIST and CIFAR) have been instrumental in providing quality input data to train models, pro-

moting transparency, comparability ofmodels, and focused progress (benchmarks.ai, 2022). The existence of such benchmarkswould also be in line

with the current efforts for open and shared data in the IE community (Hertwich et al., 2018).

Furthermore, in order to support data availability, the systemof incentives for scientistsmayalsoneed tobemodified topromote timeliness,wide

access, and interoperability of data and software of fundamental importance to sustainability objectives. Currently, scientists may not always want

to publicly disseminate their work, for example, until they are able to submit a given number of publications or to ensure co-authorship in publica-

tions using theirwork. However understandable these practicesmay be, they remain undesirable behaviors, whichmay slowdown the community’s

ability to provide timely and replicable analysis for sustainability.

At last, AI, DTs, and annexed services can be intrusive in the private life of citizens and have profound influence on their physical, mental, and

financial well-being. At the same time, AI could also induce new behaviors and help reach sustainability objectives (Froemelt et al., 2018). However,

currently there is a significant risk that AI could be used to support and exacerbate unsustainable levels of consumption and production. If there is

no purposeful choice of direction toward sustainability from the governance perspective, the choice will be of those with the higher resources in

themarket to leverage AI andDTs developments. In this regard, AI and DTs should be closely scrutinized.
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3.3 Explainability, interpretability, and causality

The way AI models are able to explain the world (i.e., explainability) and their ability to be understood by humans (i.e., interpretability) are of great

importance to ensure trust in sustainability insights and effectiveness of sustainability solutions. Real-world data carries over biases to intelligent

systems thereby perpetuating misconceptions, discrimination, and enhancing the risks of other injustices. Improving explainability could prevent

these issues by better representing the heterogeneity of complex socio-economic and ecological systems, highlighting where and how humans

should intervene to correct AI models and reduce biases. Additionally, in the scope of IE, especially concerning scenarios analysis and dynamic

systems, it is of fundamental importance to ensure clarity between cause and outcome. For example, in the use of multiobjective optimization of

production and consumption system under different climate scenarios, we need to ensure that we can identify influential factors in such scenarios

and explain the dynamics governing them. This is especially important in cases where AI is employed to enhance decision-making. Recent studies

such as Sgaier et al. (2020) present strong argument in favor of causal AI as acting on outputs from AI models that do not explain the root causes

leading to ineffective, biased, poor decisions.

4 RECOMMENDATIONS

Wehave several recommendations for the IE community in moving forward in the use of artificial intelligence (AI) and digital technologies (DTs):

∙ Creation of internal committees andworking groups for AI andDTs research. Such committees andworking groups could:

◦ Provide research directions and promote standards and protocols for governance of data, models, and software within and outside of IE;

◦ Support knowledge transfer from and to fields that successfully embarked on interoperable data sharing and best practices in AI applications;

◦ Establish and/or promote data andmodel benchmarks as well as goodmodeling practices;

◦ Provide a platform for networking among researchers and establish relationships with other interest groups and institutions to promote

governance of AI toward sustainability.

∙ Support transdisciplinary and cross-societal efforts to ensure successful implementation and use of sustainability knowledge and solutions. In

particular:

◦ Computer science, data science, and mathematics are at the core of the expansion of the DTs, and developments in AI and collaborations

should be actively sought out to improve ourmethodological and technological approaches;

◦ Anthropologists, social scientists, and law experts are also indispensable in understanding the consequences of AI on the social and economic

organization of society. These experts carry with them different perspectives and approaches to the complex issues of sustainability;

◦ Strengthen links between citizens, research, policy, industry, and communication.

∙ Privilege simplicity and fair trade-off between complexity, and explainability, interpretability, and causality. The community objective should not

be to createmodels as complex as the world itself, but to provide systems that not only aid sustainability but embody it while improving insights,

and quality and coherency in data and models; The community should also strive to avoid always prioritizing predictive models and also direct

effort to building better causal models that help us develop a better understanding of our dynamic and complex world.

∙ Maintain awareness of inadverted impacts of AI and DTs due tomaterial and energy requirements. Determining the optimal amount of data and

connectivity that are required to support decision-making and sustainable solutions.While IE should embrace AI developments enthusiastically,

it is paramount that we are critical of the way AI is implemented and that we try to understand what such developments entail.

∙ Maintain awareness of the digital divide, biases, and issues of demographic diversity and representation in data and in AI-enabled decision-

making. The IE community should employ methods of data collection to increase representativeness and create models that take these issues

into account.

In conclusion, AI can be an important instrument to solve the greatest sustainability challenges that are currently faced by humanity. However,

it should not be seen as a silver bullet but, rather, as a helpful instrument to be handled with scrutiny. The IE community has a promising and yet

rapidly changing path ahead. AI and DTs are changing the way data is handled, services and products manufactured and consumed, and society and

industries governed. IE can provide tools and insights to direct such changes toward sustainability. At the same time, these advancements also have

a potential to greatly support thework performed by IE. Thesemutually beneficial opportunities should be nurtured and actively directed to ensure

we reach our sustainability objectives.
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