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PHASE DIAGRAMS OF WEAKLY ANISOTROPIC HEISENBERG ANTIFERROMAGNETS: 
I. QUASI I-DIMENSIONAL SYSTEMS 

L.J. de Jongh and H.J.M. de Groot 
Kamerlingh Onnes Laboratorium der Rijksuniversiteit te Leiden, 

Postbus 9600, 2300 RA Leiden, Nederland 

(Received 22October 1984, by R.A. Cowley) 

By utilizing the concept of effective field-dependent anisotropy, it is 
argued that the field-induced transitions in a weakly anisotropic quasi 
l-d Heisenberg antiferromagnet are "classical examples" of sollton- 
mediated phase transitions. For any T > 0 the "spinflop transition" is 
probably absent; if it still occurs, it is no longer first order as in 
3-d. Excellent agreement with data on (CH3)4NMnCL 3 and K2FeF 5 is found. 

i. Introduction 

Domainwalls in weakly anisotropic antifer- 
romagnetic Heisenberg chains are of interest 
since they provide excellent examples of Sine- 
Gordon solitons I-4. In this note we show that 
the antiferromagnetic phasedlagrams (T e versus 
H) of such quasi l-d antiferromagnets can be 
fully explained on basis of the fleld-dependence 
of the soliton density and the soliton width. 
The field-induced transitions in these systems 
turn out to be examples of soliton-mediated 
phase transitions. The physics underlying the 
behaviour of the phase boundaries in quasi l-d 
antiferromagnets is thus considerably different 
from the conventional 3-d counterparts. 

2. The soliton-model 

Consider an antiferromagnetic Heisenberg 
chain with weak orthorhombic (bi-axial) anisot- 
ropy and classical spins 5. The interaction 
Hamiltonian is: 

H = z{-mJ~ .~ -D S~ +D S~ -gu~.~ } (i) 
• i i+l x IX z zz ~ i 
i 

where J < 0, D x > 0, D z > 0, D z > D x and 
1JI >> Dx,z The term DzS ~ introduces a • planar 
anisotropy, with the z axis as the hard axis. We 
will assume, without loss of generality, this 
axis to coincide with the chain direction (ef. 
fig. i). In the easy (XY) plane the term DxS ~ 
singles out the X axis as the pr@ferential axis. 

Applying a magnetic field ~ : H x along the 
easy axis the well-known splnflop phenomenon 
will occur. As soon as the difference %(Xy-Xx)H~ 
in the Zeeman energy between the perpendicular 
and the parallel orientation of the moments with 
respect to H x exceeds the anisotropy energy 
DxS~ , the moments will flop towards the Y-axle. 
Strictly speaking this splnflop transition 
applies to the long-range ordered phase of a 3-d 
antiferromagnet, i.e below T c. However, in a 
quasi l-d antiferromagnet an analogous phenome- 
non also occurs in the paramagnetic phase, as 

soon as the temperature is low enough that the 
l-d correlation length along the chains is suf- 
ficiently well developed, so that the differ- 
ence X. - Xv between the perpendicular and par- j 
allel magnetic susceptibility is appreciable. 
Then the moments within a correlated chain seg- 
ment will be on the average perpendicular to H x 
as soon as this exceeds the spinflop-value Hsf 
given by H~f = 2DxS2/(Xy-Xx ). 

Consider now the antiferromagnetie domain- 
wall (soliton) for H x < Hsf as sketched in fig. 
la. On both sides of the wall the moments only 
have X components, whereas over the wall width 
d s they rotate in the XY plane, and have both X 
and Y components. The wall energy E s (i.e. the 
soliton creation energy) can be easily esti- 
mated2, 5 by an argument similar to that used in 
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Fig. i. Sine-Gordon solitons in antiferromag- 
netie chains. 
(a) antiferromagnetic ~ soliton for H < Hsf , (b) 
antiferromagnetlc ~ soliton for H > Hsf and (c) 
schematic representation of a single wall and a 
pair state. 
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ferromagnetic domain theory 6. If we measure the 
extension of the wall by means of an effective 
thickness over which interval the spin rotation 
angle amounts to AS and the number of spins to 
N, the wall-energy will be given approximately 
by: 

Es = (AS)2jS2/N + NDxS2 - ~N(Xy-Xx)H~ ' 

since it is the sum of exchange-, anisotropy-, 
and Zeeman-energy terms. After minimalization 
with respect to N one finds that, apart from a 
factor of order unity, the wall energy equals: 

E s = ~--AS g~BS(H~f- H~)%(I - XxlXy) %, (H x < Hsf) 

For H x > Hsf , on the other hand, the moments on 
both sides of the wall will be on the average 
along the Y direction (cf. fig. ib), and one 
finds similarly for the wall energy: 

AS g~f)~(l > E s = ~-- g~BS(H~ - - Xx/Xy)~,(Hx Hsf)" 

In both cases the wall width N (in units of the 
lattice constant an) is given by 
N = 2(AS)2JJIS2/Es [ At low temperatures X <<X 
so that the expression for E s may then be ~um~- 
rized by: 

As 11 - H21H2 1 ~ Es = 2--g~BSHsf x sfl (2) 

Relation (2) has been derived previously in a 
more rigorous way by Leung et al. 4 for the 
Hamiltonian (i), transformed to its Sine-Gordon 
form. In order to conform with their formalism, 
we take AS = 0.5 and d s = 8N, where d s now 
represents the Sine-Gordon wall-width d s = m~ I. 
For fields H x >> Hsf eq. (2) reduces to 
E s ~ g~BSHx, as used by Boucher et al. I in the 
analyses oz NMR and neutron scattering data on 
the solitons in [(CH3)4]MnCI 3 (alias TMMC). We 
note that the derivation of the above formulae 
is only valid under the conditions g~BHx << DzS2 
and ggBHx << IJIS(S+I). 

Furthermore, for Hx+ 0 eq. (2) reduces to 
E s = g~BSHsf = 4S2(Dx J)~, which is identical to 
the energy of a ferro-magnetic domainwall 6 (and 
to the soliton energy in an antiferromagnetic 7 
or ferromagnetic 8 Ising-like chain). For the 
antiferromagnetic case with H x # 0 we may thus 
write: 

Es = 4S2(D~ IJ I)%' with D Hx = Dx 1 - H2/H~frx , 

The quantity D~ may be interpreted as an effec- 
tive, field-dependent anisotropy 9. The crucial 
difference with the ferromagnet is therefore 
that in the antiferromagnet the anisotropy and 
thus E s may be varied and even reduced to zero 
for H x ÷ Hsf. The "spinflop" phenomenon may be 
seen as a softening of the soliton excitation 
mode. As E s is lowered for H ÷ Hsf , the wall 
density n s and the wall width d s increases. For 
Sine-Gordon solitons the number of kinks and 
antikinks is reported to be given in the low- 
density limit bye: 

ns = 2(2/~) ~ d~l(Es/kBT) ~ exp(-Es/kBT ) (3) 

At Hsf there will be an equipartition of paral- 
lel (X) and perpendicular (Y) spin components, 

PHASE DIAGRAMS OF WEAKLY ANISOTROPIC HEISENBERG ANTIFERROMAGNETS Vol. 53, No. 9 

and one passes from one description (fig. la) 
into the other (fig. ib). 

On the other hand, if ~ is applied along 
the next-preferred axis, i.e. H = H~ (with 
g~BSHy << DzS2), the Zeemanenergy adds up to the 
anisotropy energy DxS2 instead of competing with 
it, so that the effective field-dependent aniso- 
tropy 9 is given by: D E = Dx(l + H~/H~f). For 
increasing H¥ there is only an increase of E s 
(lowering of ns): 

E = /H2sf)% s g~BSHsf(I + H~ (4) 

3. Antiferromagnetic phase diagrams 

As a first application we consider the 
field dependence of the 3-d ordering temperature 
Tc(H) of a system of weakly coupled antiferro- 
magnetic chains induced by the weak interchain 
coupling J' (typically J'/J = I0- -~i0-4). 
The value of T c can be reasonably estimated by a 
molecular field type argument, in which the 
thermal energy at the transition, kBTc, is 
equated to the interaction energy between two 
nelghbouring correlated chain segments I0, the 
length of which is given by the intrachain cor- 
relation length ~(T): kBT c = ]J'IS(S + l)~(Tc). 
Although this equation only yields approximate 
quantitative values for T c, the proportionality 
T c ~ ~ should have a validity beyond the mean 
field approximation. We shall use it therefore 
to predict the relative variation of T c with H 
on basis of the soliton model. Since the number 
of (thermally) excited solitons will determine 
~, we may put ~(H,T) ~ i/ns(H,T), so that the 
relative variation of T c with H will be given 
by: Tc(H)/Tc(0) = ns(0)/ns(H). Inserting formula 
(2) for Es(H x) in expression (3) for ns(Es,T), 
the variation of n s and thus of T c with H x can 
be easily evaluated numerically. As an example 
we show in fig. 2 results obtained for the well- 
known quasi l-d antiferromagnet TMMC. The calcu- 
lations (dashed lines) are seen to account quite 
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Fig. 2 Phase diagram of TMMC. Data obtained 
from refs 1,9,12. The dashed lines give the pre- 
diction from the XY soliton model; the dot- 
dashed line gives the limiting behavior from the 
YZ soliton model. 
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well for the observed behaviour9, II,12 up to a 
field H x = 6Hsf. Similar agreement is found for 

= Hy , where now eq. (4) is used for E s. We 
stress that, except for Tc(O) = 0.85 K and 
Hsf = i0 kOe, there are no adjustable parameters 
in our simple model. 

In fact the underlying reason why the model 
works so well up to fields relatively high com- 
pared to Hsf is the large value for the ratio 
Dz/D x which is about 90 for TMMCI, 12. For the 
model to apply it is essential that the field 
energy remains small compared to the planar 
anisotropy term DzS2 that keeps the moments 
within the XY plane7,13. We may associate a 
critical field H c = (2DzS2/xI)~ with this 
anisotropy term by equating it to the Zeeman- 
energy %Xl H2. Now, if D x << D z then Hsf << He, 
and the moments will remain essentially within 
the XY plane in a field range extending from 
H = 0 up to values much larger than Hsf. Only 
the direction of the easy axis is changed from X 
to Y at Hsf; on both sides of Hsf the symmetry 
of the system is planar with a weaker inplane 
Ising-type component, as required by the model. 

On the other hand, as the field H x becomes 
of the order of He, the planar XY anisotropy due 
to the DzS2 term is more and more reduced by the 
field energy term, which competes with it since 
the field H x forces the moments to lie within 
the YZ plane. As pointed out by Harada et al. 13 
both planar anisotropies balance at the critical 
field Hc, where the symmetry of the system 
becomes purely uniaxial with the Y-axis as the 
Ising axis. For H x > H c the system is once more 
planar, with an in-plane Ising component, but 
now with the YZ plane as the easy plane. Also in 
this field range solitons occur 7, however the 
rotation over the wall width is now essentially 
confined to the YZ plane, whereas the soliton 
creation energy becomes E s = 4S2(DzlJl)%. With 

the field along the Y axis the same phenomenon 
occurs, but now the easy plane is changed at 
Hy = H c from the XY to the XZ plane. The dot- 
dashed curve in fig. 2 shows the prediction for 
this high-field range (for TMMC the field 
H c = ii0 kOe) with ns(H) = ns(Hc). 

Recently, NMR experiments have been performed 14 
in the high field region, which also show the 
existence of the high-field soliton regime. 

The symmetry changes brought about by the 
applied field are therefore basically different 
for orthorhombic anisotropy as for an uniaxially 
symmetric hamiltonian (D z = 0 in eq. i). Then 
the change at H = Hsf is from purely uniaxial 
(Ising) to purely planar (XY), with complete 
Heisenberg isotropy at Hsf. This is the situa- 
tion studied in most theoretical papers, which 
mainly concentrate on the hi-critical behavior 
expected at this Heisenberg point in 3-d anti- 
ferromagnets. For orthorhombic anisotropy, how- 
ever, the symmetry of the system remains Ising- 
type with a superimposed planar anisotropy at 
all field values except at H = Hsf , where the 
symmetry becomes purely planar (XY), and at Hc, 
where it becomes purely uniaxial (Ising). We 
stress these differences since they appear to be 
not always realised. Also, it is clear that the 
strong variation of T c with H for TMMC cannot 
possibly be attributed to a field-induced 
symmetry change from Ising-type for H < Hsf to 
XY type for H > Hsf, as has been postulated pre- 
viously9,10, II. 
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In concluding this section we mention that 
previously the phase boundaries of quasi l-d 
antiferromagnets have been succesfully explained 
in terms of transfer matrix theoryl2,15. In our 
opinion our present results do not contradict 
this earlier work, since any correct description 
should (implicitly) take into account the pres- 
ence of the nonlinear excitations. The advantage 
of our simple soliton model seems to be that it 
demonstrates quite clearly the physics responsi- 
ble for the observed huge variations, which is 
not so transparent from the transfer matrix 
calculations. 

4. "Spinfloptransitlon" in the 3-d ordered phase 

Another consequence of the model is that 
the excitation of a soliton in the low-fleld 
phase (H x < Hsf) may be viewed as the admixture 
of a small segment of the hlgh-field phase 
(Hx>Hsf) in this low-field phase (of. fig. la), 
because over the wall width the spins have per- 
pendicular components. Similarly the excitation 
of a soliton in the hlgh-field phase (fig. Ib) 
corresponds to the admixture of a small low- 
field segment. Since for T # 0 and any finite 
field (smaller than H~) there is a finite 
probability for the excitation of these walls, 
they will change the character of the splnflop 

transition, which would be first order in a 3-d 
antlferromagnet. In the conventional splnflop 
the magnetization changes discontinuously from 
M x = XxHx, which is very small at low tempera- 
tures, to ~ = XyHx, which is nearly independent 
of temperature. However, if solitons are excited 
as in fig. la,b the contributions from the spins 
over the wall width correspond with an increase 
and a decrease of the magnetization for H x < Hsf 
and H x > Hsf respectively. For H x ÷ Hsf the wall 
width and the number of walls increase, and the 
first order character of the transition is 
destroyed (no discontinuity in the magnetiza- 
tion), except at T = 0. Indeed, this would ex- 
plain the absence of discontinuities in M at the 
"spinfloptransltlons", as reported in several 
experimental studies of the magnetlzationcurves 
i, quasi l-d antiferromagnets. 

An important point is that in the 3-d 
ordered state the static (topological) solitons 
should occur in pairs due to the interchaln 
interactions. The excitation of a single n-wall 
in this phase would imply that about half of the 
spins of a chain would be overturned against the 
interchain coupling J'. Although J' is small, it 
then has to be multiplied by a large number of 
spins, so that the cost in interchain interac- 
tion energy becomes much larger than the wall 
energy itself. In case of a wall-pair creation, 
on the other hand, only the spins inside and in 
between the two walls are contributing to the 
interchain interaction energy. If ~ is the angle 
the spins make with the X axis, the variation of 

along the chain (Z) axis in case of a wall- 
pair is given byl6: 

%~ = tan-l((s/v) sinhvt/coshz) 

The energy of such a pair is equal to 2E s. In 
the limit vt >> 1 (sollton and antlsoliton wide 
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apart) this equation can be approximated byl6: 

-i -i 
~=tan exp(-my(Z+Zo+Vt))-tan exp(-my(Z-Zo-Vt)) 

which is just the combination of a noninter- 
acting soliton and an antisoliton (cf. fig. ic). 
Assuming thus the variation of ~(z) over the 
wall-width to be governed by the Sine-Gordon 
equation, it is easy to calculate the wall con- 
tribution to the magnetization. Since this con- 
tribution is proportional to the density, the 
comparison with the experiment allows in prin- 
ciple a direct experimental test of the predic- 
tion for n s. As an example we show in fig. 3 
data for K2FeF5, obtained by Gupta et al. 17, who 
followed the field variation of the average 
angle <~> by means of the MUssbauer effect. This 
Fe 3+ compound is another example of the weakly 
anisotropic Heisenberg antiferromagnetic chain 
with Tc(0 ) = 7.0 K, Hsf = 36 kOe, and 
IJ'/JI = 10 -3 • From this experiment one would 
conclude that the moments rotate continuously 
from the X to the Y axis, as already remarked in 
ref. 17. The width of the "spinfloptransition" 
is 20 kOe! This is nearly two orders of magni- 
tude larger than expected from demagnetizing 
effects that accompany a first-order magnetic 
transition. 

The theoretical curves in fig. 3 have been 
obtained as follows. In the antiferromagnet, the 
M~ssbauer effect cannot distinguish between an 
angle ~ and an angle ~ - ~, so in order to 
obtain <~> from Sine-Gordon theory we have to 
average over the interval <0, ~/2>, which is in 
fact half the soliton. Since for a given density 
n s each soliton has an average "free space" n~ 1 
we obtain: 

~/2 
<$> = 2n f ~(z)dz=2n d f ~--t-- d~ = 3.6 n d 

s s s sin~ s s 
o o 

If we apply (3) we get: 

<~> ~ 18.0 (2Es/kBT)% exp(-2Es/kBT) , (5) 
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Fig. 3 Spin-flop in K2FeF 5 at T = 4.2 K. Data 
obtained from ref. 17. Solid curves are predic- 
tions from the soliton model with E s and 2E s. 
Dotted curves are interpolations. 

where we have used an excitation energy of 2E s. 
Inserting eq. (2) for E s the field-dependence of 
<~> can be estimated, except in the immediate 
neighbourhood of Hsf , where the divergence of 
the exponential leads to unphysical behavior. 
Clearly, for H + Hsf the density n s as well as 
the wall-width d s increase, so that the walls 
will start to overlap and the low-density, non- 
interacting approximation breaks down. Thus the 
calculated curves in fig. 3 extend to about I0 % 
around Hsf , the high- and low-field portion 
having been connected by linear interpolation. 
(dotted curves). There appears to be good agree- 
ment with experiment. For comparison we also 
show in fig. 3 the result obtained on basis of 
(5), but now with E s instead of 2E s as the exci- 
tation energy. This would apply if the solitons 
and antisolitons would be excited independently, 
each with excitation energy E s. One would con- 
clude that only the wall-pair approach may 
account for the experimental findings. 

We also remark that in a recent study 18 of 

the MUssbauer spectra of K2FeF 5 as a function of 
field the Liverpool group has observed consider- 
able line-broadening as the field approaches the 
value for Hsf. This may be explained in terms of 
a distribution of ~ values for H = Hsf , in 
agreement with our model. 

5. Concluding remarks 

In the above we have argued that the exci- 
tation of solitons can account for the field- 
dependent thermodynamic behavior of quasi l-d 
antiferromagnets. In the paramagnetic phase the 
walls are dynamic; they determine the intrachain 
correlation length, and thus the value of the 
3-d ordering temperature Tc(H ) . In the 3-d 
ordered phase the solitons will be static and 
will be excited in pairs. As explained, this may 
account for the absence of a first-order spin- 
flop transition in such materials. In case the 
transition would still persist as a second order 
line, the phase diagram would look as in fig. 4a 
where only the point at T = O, H = Hsf would be 
first order. On the other hand there seems to be 
no reason why the transition would not be com- 
pletely absent except at T = O. One could well 
imagine a continuous evolution at low tempera- 
ture as a function of field from a situation 
where <S_> >> <S.> to the situation where 

^ 7 
<S > >> <Sx>. There would then be just a single 

Y 
antiferromagnetic phase, characterized by a 
soliton lattice, separated from the paramagnetic 
phase by a boundary as sketched schematically in 
fig. 4b. The umbilicus at H = Hsf in this curve 
would correspond to <Sx> = <Sy>, in accord with 
the expected planar symmetry at this point. In 
the soliton model this would occur as soon as 
the density and width of the walls are so large 
that neighbouring walls touch one another, i.e. 
as soon as i/n s = 2ds, which leads to the condi- 
tion x½e -x = (~/32)½,or x = 0.13, where 
x = Es/kBT. This would correspond to 
Hx/Hsf = 0.999, for TMMC at T = 0.8 K as well as 
for K2FeF 5 at T = 4.2 K. This implies that the 
precise behavior for H = Hsf will be difficult 
to observe experimentally; the high- and low- 
field part of the phase boundary would at first 
sight appear to bifurcate with a common tangent 
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Fig. 4 Possible phasediagrams proposed for 
quasi l-d antiferromagnetic with orthorhombic 
anisotropy (see text). 
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from a single (bicritical) point, as they do in 
the conventional 3-d case. Obviously, additional 
accurate experimental work would be welcome, as 
well as more sophisticated theoretical treat- 
ments of the points raised by our simple model. 
We also stress the analogies between the above 
treated problem and the field-induced transi- 
tions in Spin-Peierls system, as already pointed 
out elsewhere 5. 

Some of this work is part of the research pro- 
gram of the "Stichting voor Fundamenteel Onder- 
zoek der Materie" and was made possible by 
financial support from the "Nederlandse Orga- 
nisatie voor Zuiver Wetenschappelijk Onderzoek". 
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