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PHASE DIAGRAMS OF WEAKLY ANISOTROPIC HEISENBERG ANTIFERROMAGNETS:
I. QUASI 1-DIMENSIONAL SYSTEMS

L.J. de Jongh and H.J.M.de Groot
Kamerlingh Onnes Laboratorium der Rijksuniversiteit te Leiden,
Postbus 9600, 2300 RA Leiden, Nederland

(Received 220ctober 1984, by R.A. Cowley)

By utilizing the concept of effective field-dependent anisotropy, it is
argued that the field-induced transitions in a weakly anisotropic quasi
1-d Heisenberg antiferromagnet are

mediated phase transitions.
probably absent;

if it still occurs,

‘classical examples”
For any T > O the "spinflop transition" is
it is no longer first order as in

of soliton-

3-d. Excellent agreement with data on (CH3)4NMnCL3 and KZFeF5 is found.

1. Introduction

Domainwalls in weakly anisotropic antifer—
romagnetic Heisenberg chains are of interest
since they provide excellent examples of Sine-
Gordon solitonsl™%. In this note we show that
the antiferromagnetic phasediagrams (Tc versus
H) of such quasi 1-d antiferromagnets can be
fully explained on basis of the field—-dependence
of the soliton density and the soliton width.
The field-induced transitions in these systems
turn out to be examples of soliton—-mediated
phase transitions. The physics underlying the
behaviour of the phase boundaries in quasi 1-d
antiferromagnets is thus considerably different
from the conventional 3-d counterparts.

2. The soliton—model

Consider an antiferromagnetic Heisenberg
chain with weak orthorhombic (bi=~axial) anisot-
ropy and classical spins §. The interaction
Hamiltonian is:

= - . - 2 2 _ . 1
H E{ 2J§i §1+1 D 82 +D s2, guBﬁ §i} (1)
where J <0, b, > 0, D, > 0, D, > Dy and
[ >> Dy,z+ The term DZS% introduces a planar

anisotropy, with the z axis as the hard axis. We
will assume, without loss of generality, this
axis to coincide with the chain direction (cf.
fig. 1). In the easy (XY) plane the term DXS%
singles out the X axis as the preferential axis.

Applying a magnetic field = Hy along the
easy axis the well-known spinflop phenomenon
will occur. As soon as the difference Y(yy—xx)Hg
in the Zeeman energy between the perpendicular
and the parallel orientation of the moments with
respect to Hy exceeds the anisotropy energy
DyS4, the moments will flop towards the Y-axis.
Strictly speaking this spinflop tramsition
applies to the long-range ordered phase of a 3-d
antiferromagnet, i.e below T,. However, in a
quasi l-d antiferromagnet an analogous phenome—
non also occurs in the paramagnetic phase, as
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soon as the temperature 1is low enough that the
1-d correlation length along the chains is suf-
ficiently well developed, so that the differ-—
ence Y, ~ Xx between the perpendicular and par-
allel "magnetic susceptibility is appreciable.
Then the moments within a correlated chain seg-
ment will be on the average perpendicular to Hy
as soon as this exceeds the spinflop-value Hgf
given by Hgf = 2Dx32/(Xy‘Xx)-

Consider now the antiferromagnetic domain-
wall (soliton) for Hy < Hgs as sketched in fig.
la. On both sides of the wall the moments only
have X components, whereas over the wall width
dg they rotate in the XY plane, and have both X
and Y components. The wall energy Eg (i.e. the
soliton creation energy) can be easily esti-

mated?s by an argument similar to that used in
X
z
H
iy
Hy

single wall &pT pair state
Tt///,_ 113 C
>ds< E z
Fig. 1. 8ine-Gordon solitons in antiferromag-

netic chains.

(a) antiferromagnetic m soliton for H < Hge, (b)
antiferromagnetic m soliton for H > Hgf and (c)
schematic representation of a single wall and a
pair state.
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ferromagnetic domain theoryé. If we measure the
extension of the wall by means of an effective
thickness over which interval the spin rotation
angle amounts to A¢ and the number of spins to
N, the wall-energy will be given approximately
by:

= 2102 + ND S2 -~ - 2
Es (A$)<JS4/N xS %N(xy Xx)Hx ,

since it is the sum of exchange-, anisotropy-,
and Zeeman—energy terms. After minimalization
with respect to N one finds that, apart from a
factor of order unity, the wall energy equals:
1] 2 . p2y% %
Eg =7 sugSUHL~ HD

s a - xx/xy) » (H < H

sf)'
For Hy > Hgf, on the other hand, the moments on
both sides of the wall will be on the average
along the Y direction (cf. fig. 1b), and one
finds similarly for the wall energy:

% 5

Es = éghguBS(Hi - Hgf) a- Xx/xy) ’(Hx > Hsf)'
In both cases the wall width N (in units of the
lattice constant a,) is given by

N = 2(A¢)2|J’52/ES. At low temperatures xx<<x ,
so that the expression for Eg may then be Summa~
rized by:

% (2)

= A - H2/H2
Es 2 glJ'BSHsf 1 HX/Hsf

Relation (2) has been derived previously in a
more rigorous way by Leung et al.* for the
Hamiltonian (1), transformed to its Sine—Gordon
form. In order to conform with their formalism,
we take A¢ = 0.5 and dg = 8N, where dg now
represents the Sine-Gordon wall-width dg = mgl.
For fields Hy >> Hgf eq. (2) reduces to
Eg = gu,SH _, as used by Boucher et al.l in the
analyses of NMR and neutron scattering data on
the solitons in [(CH3)4]MnCly (alias TMMC). We
note that the derivation of the above formulae
is only valid under the conditions gugHy << D,S
and gugHy << |J[S(S+L).

Furthermore, for Hx » 0 eq. (2) reduces to
Eg = gupSHge = 45S2(Dy J)%, which is identical to
the energy of a ferro—magnetic domainwall® (and
to the soliton energy in an antiferromagnetic
or ferromagnetic® Ising-like chain). For the
antiferromagnetic case with Hy # 0 we may thus
write:

H t H
= 482 - _ u2/u2
E_ =45 (DXIJI) , with D_ Dxil Hx/Hsf’

The quantity DE may be interpreted as an effec—
tive, field-dependent anisotropyg. The crucial
difference with the ferromagnet 1is therefore
that in the antiferromagnet the anisotropy and
thus Eg may be varied and even reduced to zero
for Hy > Hgf. The "spinflop” phenomenon may be
seen as a softening of the soliton excitation
mode. As Eg is lowered for H »> Hge, the wall
density ng and the wall width dg increases. For
Sine~Gordon solitons the number of kinks and
antikinks 1is reported to be given in the low-—
density limit by4:

n, = 2(2/n)5 d;l(ES/kBT)% exp(-E,/k,T) 3)

At Hgge there will be an equipartition of paral-
lel (X) and perpendicular (Y) spin components,

and one passes from one description (fig. la)
into the other (fig. 1b).

On the other hand, if i is applied along
the next-preferred axis, i.e. ﬁ = Hy (with
gugSHy <KL DZSZ), the Zeemanenergy adds up to the
anisotropy energy DxS2 instead of competing with
it, so that the effective field-dependent aniso-
tropy? is given by: Dg = Dy(l + H%/Hgf). For
increasing Hy there 1s only an increase of Eg
(lowering of ng):

- 2/m2 %
E_ = gugSH_ (1 + H2/H2 ) %)

3. Antiferromagnetic phase diagrams

As a first application we consider the
field dependence of the 3-d ordering temperature
T.(H) of a system of weakly coupled antiferro-
magnetic chains induced by the weak interchain
coupling J' (typically J'/J = 1072 =1 -4y,
The value of T, can be reasonably estimated by a
molecular field type argument, in which the
thermal energy at the transition, kglT., is
equated to the interaction energy between two
neighbouring correlated chain segmentslo, the
length of which is given by the intrachain cor-
relation length E(T): kT, = |J'|S(S + 1)E(T.)-
Although this equation only ylelds approximate
quantitative values for Tc’ the proportionality
T, = & should have a validity beyond the mean
field approximation. We shall use it therefore
to predict the relative variation of T, with H
on basis of the soliton model. Since the number
of (thermally) excited solitons will determine
£, we may put £(H,T) « 1/ng(H,T), so that the
relative variation of T, with H will be given
by: T(H)/To(0) = ng(0)/ng(H). Inserting formula
(2) for Eg(Hy) 1n expression (3) for ng(Eg,T),
the variation of ng and thus of T, with Hy can
be easily evaluated numerically. As an example
we show in fig. 2 results obtained for the well-
known quasi 1-d antiferromagnet TMMC. The calcu-
lations (dashed lines) are seen to account quite

T T T T ‘lr
T™MMC o I
10} i
©o
<] d ° //4// : n
H/Hsf o® //////
6F S -
g/////
at 52%” 1
21 - ﬁ;?;"’o B
<7
I 1 1 -l
1 2 3 4 5
TeH
¢ H/TC(O)

Fig. 2 Phase diagram of TMMC. Data obtained
from refs 1,9,12. The dashed lines give the pre-
diction from the XY soliton model; the dot-
dashed line gives the limiting behavior from the
YZ soliton model.
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well for the observed behaviour9sll,12 up to a
field Hy = 6Hgg. Similar agreement is found for

= H, , where now eq. (4) is used for Eg. We
stress that, except for T.(0) = 0.85 K and
Hge = 10 kOe, there are no adjustable parameters
in our simple model.

In fact the underlying reason why the model
works so well up to filelds relatively high com—
pared to Hge is the large value for the ratio
D, /Dy which is about 90 for m™Mcl>12. For the
model to apply it is essential that the field
energy remains small compared to the planar
anisotropy term DZS2 that keeps the moments
within the XY plane7a13. We may_ associate a
critical  field H, = (2D,82/y;)% with  this
anisotropy term by equating it to the Zeeman-—
energy %leZ. Now, if Dy << D, then Hge << Hg,
and the moments will remain essentially within
the XY plane in a field range extending from
H =10 up to values much larger than Hgg¢. Only
the direction of the easy axis is changed from X
to Y at Hgg; on both sides of Hge the symmetry
of the system is planar with a weaker inplane
Ising-type component, as required by the model.

On the other hand, as the field H; becomes
of the order of H,, the planar XY anisotropy due
to the DZS2 term is more and more reduced by the
field energy term, which competes with it since
the field Hy forces the moments to lie within
the Y2 plane. As pointed out by Harada et al.13
both planar anisotropies balance at the critical
field H,, where the symmetry of the system
becomes purely uniaxial with the Y-axis as the
Ising axis. For Hy > H, the system is once more
planar, with an in-plane Ising component, but
now with the YZ plane as the easy_plane. Also in
this field range solitoms occur/, however the
rotation over the wall width 1is now essentially
confined to the YZ plane, whereas the soliton
creation energy becomes Eg = ASZ(DZIJI)%. With
the field along the Y axis the same phenomenon
occurs, but now the easy plane is changed at
Hy = H, from the XY to the XZ plane. The dot-
dashed curve in fig. 2 shows the prediction for
this high-field range (for TMMC the field
H, = 110 kOe) with ng(H) = ng (H.).

Recently, NMR experiments have been performed14
in the high field region, which also show the
existence of the high—-field soliton regime.

The symmetry changes brought about by the
applied field are therefore basically different
for orthorhombic anisotropy as for an uniaxially
symmetric hamiltonian (D, = 0 in eq. 1). Then
the change at H = Hg¢ is from purely uniaxial
(Ising) to purely planar (XY), with complete
Heisenberg isotropy at Hgg. This is the situa-
tion studied in most theoretical papers, which
mainly concentrate on the bi-critical behavior
expected at this Helsenberg point in 3-d anti-
ferromagnets. For orthorhombic anisotropy, how-—
ever, the symmetry of the system remains Ising-
type with a superimposed planar anisotropy at
all field values except at H = Hge, where the
symmetry becomes purely planar (XY), and at H,
where it becomes purely uniaxial (Ising). We
stress these differences since they appear to be
not always realised. Also, it is clear that the
strong variation of T, with H for TMMC cannot
possibly be attributed to a field-induced
symmetry change from Ising-type for H < Hge to
XY type for H > Hge, as has been postulated pre-
viously”Z»*Vs
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In concluding this section we mention that
previously the phase boundaries of quasi 1-d
antiferromagnets have been succesfully explained
in terms of transfer matrix theoryl2,15. In our
opinion our present results do not contradict
this earlier work, since any correct description
should (implicitly) take into account the pres-
ence of the nonlinear excitations. The advantage
of our simple soliton model seems to be that it
demonstrates quite clearly the physics responsi-
ble for the observed huge variations, which is
not so transparent from the transfer matrix
calculations.

4, "Spinfloptransition” in the 3-d ordered phase

Another consequence of the model is that
the excitation of a soliton in the low-field
phase (Hy < Hgg) may be viewed as the admixture
of a small segment of the high~field phase
(Hy>Hge) in this low-field phase (cf. fig. la),
because over the wall width the spins have per-
pendicular components. Similarly the excitation
of a soliton in the high-field phase (fig. 1b)
corresponds to the admixture of a small low-
field segment. Since for T # O and any finite
field (smaller than H_ ) there is a finite
probability for the excitation of these walls,
they will change the character of the spinflop
transition, which would be first order in a 3-d
antiferromagnet. In the conventional spinflop
the magnetization changes discontinuously from
My = xxHy, which is very small at low tempera—
tures, to = yyHyx, which is nearly independent
of temperature. However, if solitons are excited
as in fig. la,b the contributions from the spins
over the wall width correspond with an increase
and a decrease of the magnetization for Hy < Hg¢
and Hy > Hgr respectively. For Hy » Hgs the wall
width and the number of walls increase, and the
first order character of the transition is
destroyed (no discontinuity in the magnetiza-
tion), except at T = O. Indeed, this would ex-
plain the absence of discontinuities in M at the
"spinfloptransitions™, as reported in several
experimental studies of the magnetizationcurves
ir quasi 1-d antiferromagnets.

An important point is that in the 3-d
ordered state the static (topological) solitons
should occur in pairs due to the interchain
interactions. The excitation of a single m—wall
in this phase would imply that about half of the
spins of a chain would be overturned against the
interchain coupling J'. Although J' is small, it
then has to be multiplied by a large number of
spins, so that the cost in interchain interac-
tion energy becomes much larger than the wall
energy itself. In case of a wall-pair creation,
on the other hand, only the spins inside and in
between the two walls are contributing to the
interchain interaction energy. If ¢ is the angle
the spins make with the X axils, the variation of
¢ along the chain (Z) axis in case of a wall-
pair is given by1 :

ko = tan_l((s/v) sinhvt/coshz)

The energy of such a pair is equal to 2Eg. In
the 1limit vt >> 1 (soliton and antisoliton wide
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apart) this equation can be approximated by16:
§¢=tan_lexp(—my(z+zo+vt))-tan_lexp(—my(z-zo—vt))

which is just the combination of a noninter-
acting soliton and an antisoliton (ef. fig. le).
Assuming thus the wvariation of ¢(z) over the
wall-width to be governed by the Sine—Gordon
equation, it 1is easy to calculate the wall con-
tribution to the magnetization. Since this con-
tribution is proportional to the density, the
comparison with the experiment allows in prin-
ciple a direct experimental test of the predic-
tion for ng. As an example we show in fig. 3
data for KjFeFg, obtained by Gupta et a1.17, who
followed the field variation of the average
angle <¢> by means of the Mossbauer effect. This
Feot compound is another example of the weakly
anisotropic Heisenberg antiferromagnetic chain
with T,(0) = 7.0 K, Hg¢ = 36 kOe, and

|J'/J[ = 1073, From this experiment one would
conclude that the moments rotate continuously
from the X to the Y axis, as already remarked in
ref. 17. The width of the "spinfloptransition”
is 20 kOe! This is nearly two orders of magni-
tude larger than expected from demagnetizing
effects that accompany a first-order magnetic
transition.

The theoretical curves in fig. 3 have been
obtained as follows. In the antiferromagnet, the
Mossbauer effect cannot distinguish between an
angle ¢ and an angle mw - ¢, so in order to
obtain <¢> from Sine-Gordon theory we have to
average over the interval <0, w/2>, which is in
fact half the soliton. Since for a given density
n_ each soliton has an average "free space” ngl

s
we obtain:

© /2
- - ) -
<9> = 2ns £ d)(z)dz—ZnSdS i Sing d¢ = 3.6 nsdS
If we apply (3) we get:
Y
<o> ~ 18.0 (2E_/k,T)* exp(-2E_[k,T) , ()
2Eg
90F KFefy ~
T=42 K .
% e
(| R S
W 60 35 i
2 il
e ‘.~' -.
~ _’////
€ 30F .
1 e 1
20 40 60 80
H (kOe)

Fig. 3 Spin-flop in KpFeF5 at T = 4.2 K. Data
obtained from ref. 17. Solid curves are predic-
tions from the soliton model with Eg and 2Eg.
Dotted curves are interpolations.

where we have used an excitation energy of ZES.
Inserting eq. (2) for Eg the field-dependence of
<¢> can be estimated, except in the immediate
neighbourhood of Hsf’ where the divergence of
the exponential leads to unphysical behavior.
Clearly, for H » Hgg the density ng as well as
the wall-width dg increase, so that the walls
will start to overlap and the low-density, non-
interacting approximation breaks down. Thus the
calculated curves in fig. 3 extend to about 10 %
around Hgg, the high— and low-field portion
having been connected by linear interpolation.
(dotted curves). There appears to be good agree—
ment with experiment. For comparison we also
show in fig. 3 the result obtained on basis of
(5), but now with E; instead of 2E; as the exci-
tation energy. This would apply if the solitons
and antisolitons would be excited independently,
each with excitation energy E . One would con-
clude that only the wall-pair approach may
account for the experimental findings.

We also remark that in a recent study18 of
the Mossbauer spectra of KyFeFs as a function of
field the Liverpool group has observed consider-—
able line-broadening as the field approaches the
value for Hgy. This may be explained in terms of
a distribution of ¢ values for H = Hge, in
agreement with our model.

5. Concluding remarks

In the above we have argued that the exci-
tation of solitons can account for the field-
dependent thermodynamic behavior of quasi 1-d
antiferromagnets. In the paramagnetic phase the
walls are dynamic; they determine the intrachain
correlation length, and thus the value of the
3~-d ordering temperature T (H). In the 3-d
ordered phase the solitons will be static and
will be excited in pairs. As explained, this may
account for the absence of a first-order spin-
flop transition in such materials. In case the
transition would still persist as a second order
line, the phase diagram would look as in fig. 4a
where only the point at T = 0, H = Hgg would be
first order. On the other hand there seems to be
no reason why the transition would not be com—
pletely absent except at T = 0. One could well
imagine a continuous evolution at low tempera-
ture as a function of field from a situation
where <8,> >> <S8,> to the situation where
{Sy> >> <84>. There would then be just a single
antiferromagnetic phase, characterized by a
soliton lattice, separated from the paramagnetic
phase by a boundary as sketched schematically in
fig. 4b. The umbilicus at H = Hgg in this curve
would correspond to <Syx> = <Sy>, in accord with
the expected planar symmetry at this point. In
the soliton model this would occur as soon as
the density and width of the walls are so large
that neighbouring walls touch one another, i.e.
as soon as l/nS = 2dg, which leads to the condi-
tion x2e” X = (n/32)%,0r x = 0.13, where
x = Eg/kgT. This would correspond to
Hy/Hgg = 0.999, for TMMC at T = 0.8 K as well as
for KyFeFg5 at T = 4.2 K. This implies that the
precise behavior for H = Hgy will be difficult
to observe experimentally; the high- and low-—
field part of the phase boundary would at first
sight appear to bifurcate with a common tangent
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Fig. 4 ©Possible phasediagrams proposed for
quasi 1-d antiferromagnetic with orthorhombic

anisotropy (see text).

10.

11.
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from a single (bicritical) point, as they do in
the conventional 3-d case. Obviously, additional
accurate experimental work would be welcome, as
well as more sophisticated theoretical treat-
ments of the points raised by our simple model.
We also stress the analogies between the above
treated problem and the field-induced transi-
tions in Spin—Peierls system, as already pointed
out elsewhereJ.

Some of this work is part of the research pro-
gram of the "Stichting voor Fundamenteel Onder-

zoek der Materie”
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"Nederlandse Orga-—
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