# Complement component C1q is produced by isolated articular chondrocytes Lubbers, R.; Schaarenburg, R.A. van; Kwekkeboom, J.C.; Levarht, E.W.N.; Bakker, A.M.; Mahdad, R.; ...; Trouw, L.A. # Citation Lubbers, R., Schaarenburg, R. A. van, Kwekkeboom, J. C., Levarht, E. W. N., Bakker, A. M., Mahdad, R., ... Trouw, L. A. (2020). Complement component C1q is produced by isolated articular chondrocytes. *Osteoarthritis And Cartilage*, *28*(5), 675-684. doi:10.1016/j.joca.2019.09.007 Version: Publisher's Version License: <u>Creative Commons CC BY 4.0 license</u> Downloaded from: <u>https://hdl.handle.net/1887/3182390</u> **Note:** To cite this publication please use the final published version (if applicable). # Osteoarthritis and Cartilage # Complement component C1q is produced by isolated articular chondrocytes R. Lubbers $\dagger$ , R.A. van Schaarenburg $\dagger$ $\ddagger$ , J.C. Kwekkeboom $\dagger$ , E.W.N. Levarht $\dagger$ , A.M. Bakker $\dagger$ , R. Mahdad $\S$ , S. Monteagudo $\|$ , C. Cherifi $\|$ , R.J. Lories $\|$ $\P$ , R.E.M. Toes $\dagger$ , A. Ioan-Facsinay $\dagger$ , L.A. Trouw $\dagger$ # - † Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands - ‡ Charles River, Leiden, the Netherlands - Department of Orthopedic Surgery, Alrijne Hospital, Leiderdorp, the Netherlands - Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium - ¶ Division of Rheumatology, University Hospitals Leuven, Belgium - # Department of Immunohematology and Blood Transfusion, Leiden University Medical, Center, Leiden, the Netherlands ### ARTICLE INFO Article history: Received 9 April 2019 Accepted 21 September 2019 Keywords: Chondrocytes Complement C1q Cartilage Osteoarthritis #### SIIMMARY Objective: Inflammation and innate immune responses may contribute to development and progression of Osteoarthritis (OA). Chondrocytes are the sole cell type of the articular cartilage and produce extracellular-matrix molecules. How inflammatory mediators reach chondrocytes is incompletely understood. Previous studies have shown that chondrocytes express mRNA encoding complement proteins such as C1q, suggesting local protein production, which has not been demonstrated conclusively. The aim of this study is to explore C1q production at the protein level by chondrocytes. *Design:* We analysed protein expression of C1q in freshly isolated and cultured human articular chondrocytes using Western blot, ELISA and flow cytometry. We examined changes in mRNA expression of collagen, MMP-1 and various complement genes upon stimulation with pro-inflammatory cytokines or C1q. mRNA expression of C1 genes was determined in articular mouse chondrocytes. Results: Primary human articular chondrocytes express genes encoding C1q, C1QA, C1QB, C1QC, and secrete C1q to the extracellular medium. Stimulation of chondrocytes with pro-inflammatory cytokines upregulated C1QA, C1QB, C1QC mRNA expression, although this was not confirmed at the protein level. Extracellular C1q bound to the chondrocyte surface dose dependently. In a pilot study, binding of C1q to chondrocytes resulted in changes in the expression of collagens with a decrease in collagen type 2 and an increase in type 10. Mouse articular chondrocytes also expressed C1QA, C1QB, C1QC, C1R and C1S at the mRNA level. *Conclusions:* C1q protein can be expressed and secreted by human articular chondrocytes and is able to bind to chondrocytes influencing the relative collagen expression. © 2019 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved. # Introduction Chondrocytes are the only cells present in the healthy cartilage matrix. They are responsible for the synthesis and turnover of the articular extracellular cartilage matrix (ECM). Originating from mesenchymal stem cells, chondrocytes are located in matrix $\hbox{\it E-mail addresses: } rosalie.lubbers@gmail.com (R. Lubbers), L.A. Trouw@lumc.nl (L.A. Trouw).$ cavities called lacunae. The two major ECM macromolecules produced by chondrocytes are collagen type 2 and aggrecan<sup>1</sup>. Healthy cartilage mainly consist of these two components, but in the development of osteoarthritis (OA) the composition of the cartilage changes. In OA the chondrocytes can dedifferentiate and thereby reverse to a fibroblast phenotype, and the chondrocytes can terminally differentiate to a hypertrophic phenotype. Dedifferentiation is characterized by expression of Collagen type 1 and decreased expression of aggrecan (ACAN) and Collagen type 2. Whereas hypertrophy is characterized by the expression of Collagen type 10, runt-related transcription factor 2 (RUNX2) and <sup>\*</sup> Address correspondence and reprint requests to: L.A. Trouw, Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands. matrix metalloproteinase 13 (MMP13)<sup>2</sup>. In the early stages of OA it has been shown that the cartilage content changes from mainly collagen type 2 to collagen type 1<sup>3</sup>. Furthermore, chondrocytes that have been isolated from patients with OA also produced collagen type 10<sup>4</sup>. The complement system is an important part of the innate immune defence, which is able to remove dving cells, immune complexes and kill pathogens. The complement system can be activated via three pathways; the classical pathway (CP), the lectin pathway and the alternative pathway. C1q is the recognition molecule of the CP and together with the proteases C1r and C1s it forms the C1 complex<sup>5</sup>. C1q can activate the CP by binding different ligands such as IgG and IgM antibodies, but also DNA, C-reactive protein (CRP) and lipopolysaccharides (LPSs) $^{5-7}$ . Following activation of the CP, a C3 convertase is generated which cleaves C3 into two functional fragments, C3b which functions as an opsonin and C3a which is a chemoattractant promoting further involvement of the innate and/ or adaptive immune system. The final step in the CP is the formation of the membrane attack complex (MAC) which creates a pore on the target membrane inducing lysis [Fig. 1(A)]. While most of the complement proteins are made by the liver, an essential set of complement proteins is made by cells of the immune system<sup>8,9</sup>. C1q producing cells originate from haematopoietic stem cells, such as macrophages, immature dendritic cells and mast cells<sup>7,10–12</sup>. However, other reports suggest that decidual endothelial cells, microglia and osteoclasts can also produce $C1q^{13-15}$ . Previous studies described that matrix molecules like aggrecan, fibromodulin and osteoadherin can bind C1q and thereby activate the CP of the complement system <sup>16–18</sup>. The cartilage oligomeric matrix protein (COMP) is a strong ligand for C1q. It is hypothesised that COMP interferes with the binding site of C1r and C1s resulting in inhibition of the CP<sup>19</sup>. This interference is also reported for the cartilage fragments decorin and biglycan<sup>20</sup>. Taken into account the ability of C1q to interact with matrix molecules, it is relevant to determine whether C1q is locally produced in the articular cartilage and whether they can cause detrimental changes in chondrocytes. Proteomic data from synovial fluid from osteoarthritic patients shows the presence of complement components<sup>21,22</sup>. Wang *et al.* described that complement is important in the pathogenesis of OA<sup>23</sup>, as the presence of the MAC, which is the terminal product of the complement cascade, could be detected in the cartilage. Although the authors speculated that complement activation takes place outside the cartilage and then attacks damaged chondrocytes, it cannot be excluded that chondrocytes initiate complement activation leading to MAC deposition. Similarly, in a bovine cartilage model it was shown that terminal pathway complement components were detected upon degradation<sup>24</sup>. Additionally, in the early 90's it was already described that articular chondrocytes express mRNA for C1q and that deposits of the C1q molecule were present in the cartilage. However at that time, the source and function of the C1q was not clear<sup>25</sup>. Articular cartilage is avascular and relies on diffusion of molecules, the structure is heterogenous and the possibility to proteins to diffuse into the cartilage decreases with increasing molecular size<sup>26,27</sup>. C1q exists out three different polypeptide chains: C1qA (27,5 kilo Dalton (kDa)), C1qB (25,2 kDa) and C1qC (23,8 kDa). From each chain six copies are required, resulting in a total of 18 polypeptide chains which assemble together (460 kDa) before the full C1q molecule is secreted by the cell [Fig. 1(B)]. OA causes disruption in the cartilage structure and therefore may become more permeable. The size limit of proteins that can move freely in cartilage is estimated to be around 65 kDa<sup>25</sup>. Diffusion of IgG (150 kDa) has been demonstrated but exhibited unexpectedly slow diffusion through the superficial region<sup>27</sup>, C1q is an even larger protein with Fig. 1 Chondrocytes express C1q protein. (A) Schematic presentation of the CP of the complement system. (B) Schematic representation of the assembly of the C1q molecule. C1q is assembled from three different chains, A, B and C. (C) Flow cytometry of chondrocytes isolated from human cartilage compared to Peripheral blood mononuclear cells (PBMCs), dashed lines correspond with the isotype staining and solid lines to the antibody. (E) Flow cytometry of intracellular C1q in chondrocytes after isolation, the dashed line correspond with the isotype staining and the solid line to the antibody. (E) Cultured chondrocytes on chamber slides. C1q is visualized with ALEXA 488. Actin is used as counterstaining at 594 nm. The nucleus is stained with DAPI, $630 \times$ magnification, the scale bars indicates $6.3~\mu m$ . (F) Western blot analysis of lysates of isolated chondrocytes from four different donors, purified C1q and NHS serve as positive control whereas C1q-/- serum served as a negative control. a total molecular mass of 460 kDa, which makes it unlikely that it can readily diffuse into cartilage. In this study, we have investigated whether primary human articular chondrocytes are able to express and secrete C1q proteins. We have also determined if the expression of C1q is modulated under inflammatory conditions, frequently present in OA. ### Materials and methods Patient Cartilage was obtained as left-over tissue from OA patients undergoing total knee-replacement surgery in the Alrijne hospital, Leiden. The study was approved by the local medical ethical committee. # Isolation of chondrocytes Chondrocytes were isolated from cartilage obtained from total knee-replacement surgery. Cartilage pieces were incubated in 20 ml phosphate-buffered saline (PBS) with pronase (2 mg/ml, Roche) for 90 min, followed by overnight incubation with collagenase type 2 (225 U/ml, Worthington) in 20 ml F12 Dulbecco's modified Eagle's medium (DMEM) culture medium (Gibco) supplemented with 1% penicillin and streptomycin. After digestion of the tissue, the chondrocytes were passed over a cell strainer (mesh width 70 $\mu$ M) and were pelleted. The chondrocytes were cultured, without extra passages, for further stimulation purposes or directly lysed for Western blot analysis and RNA isolation. The purity of the chondrocytes upon isolation was determined by Flow Cytometry using CD14 (BD Biosciences cat#555399) and CD45 (BD Biosciences cat#555482) expression to check for contamination of haematopoietic cells. # Stimulation of chondrocytes Primary chondrocytes were plated in a cell density of 0.5\*10<sup>5</sup>/ cm<sup>2</sup> in F12 DMEM culture medium (Gibco) supplemented with 10% Bovine Serum Albumin (BSA), L-glutamine, penicillin and streptomycin. Chondrocytes were stimulated for 24 h with IL-1β (30 ng/ml, R&D systems), tumor necrosis factor alpha (TNF-α) (100 ng/ml, R&D systems), transforming growth factor beta (TGF-β) (10 ng/ml, peprotech), LPS (100 ng/ml, Sigma) or C1q (1/10/100 μg/ml. Quidel) and RNA was isolated as described below. For Western blot analysis primary chondrocytes were lysed and C1qA, C1qB, C1qC was determined as described previously<sup>28</sup>. For ELISA, lysates and culture supernatants of chondrocytes (unstimulated or stimulated with 30 ng/ml IL-1β) were harvested after 72 hours and C1q levels were determined as described before<sup>28</sup>. The supernatants were concentrated according to manufacturer's protocol (Amicon Ultra-0.5 Centrifugal Filter, Merck) before analysis by ELISA was performed. # **ELISA** C1q levels were measured using an in-house developed ELISA. Maxisorp plates (nunc) were coated overnight with mouse antihuman C1q (2204), (Nephrology department, LUMC) in coating buffer (0.1 M Na<sub>2</sub>CO<sub>3</sub>, 0.1 M NaHCO<sub>3</sub>, pH 9.6). Plates were washed and blocked with PBS/1% BSA for one hour at 37°C. After washing, a serial dilution of a pool of normal human serum (NHS) was applied as a standard and samples were added in dilution buffer and incubated for one hour at 37°C. After washing, plates were incubated with rabbit anti-human C1q (Dako cat#A0136) for one hour at 37°C and for detection a goat anti-rabbit horseradish peroxidase (HRP) (Dako cat#P0448) was used which was also incubated for one hour at 37°C. All washing steps were performed with PBS/1% BSA/0.05% Tween. The substrate was added to the plates using 2,2′-azino-bis-3-ethyl benzthiazoline-6-sulphonic acid (ABTS) and the signal was measured at an absorbance level of 415 nm using Biorad iMark Microplate Absorbance Reader. ### Western blot Using Western blot the composition of C1q was examined by detection of the three chains of the C1q protein. Ex vivo chondrocytes were lysed using NP-40 lysis buffer (Invitrogen, cat#FNN0021) in combination with a protease inhibitor cocktail (Sigma cat#P2714) according to manufacturer's protocol, next these lysates were applied in reduced conditions. Proteins were separated by sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS/PAGE) using Tris-glycine gels (Biorad cat#456-1033) under reducing conditions which were loaded with equal amounts lysed chondrocytes. Next proteins were transferred on a Trans-Blot Turbo Transfer pack: mini, 0.2 μM polyvinylidene difluoride (PVDF) (Bio-Rad). The membrane was blocked one hour in PBS containing 0.05% Tween and 3% skimmed milk on room temperature (RT). The rabbit anti-human C1q (Dako) was preincubated in C1q depleted serum (Quidel) for one hour. Next, the blot was incubated with the preincubated rabbit anti-human C1q overnight on 4°C. After washing with PBS/0.1% Tween the membrane was incubated with goat anti-rabbit HRP (Dako) for one hour at RT. Finally, the blot was washed and C1q was visualized using ECL Western Blotting Analvsis system (GE Healthcare). # Intracellular flow cytometry staining C1q Isolated chondrocytes were fixed and permeabilized by using the Cytofix/Cytoperm<sup>TM</sup> Fixation/Permeabilization Solution Kit (BD). Next, the chondrocytes were incubated with rabbit anti-human C1q-FITC (Dako) or with an isotype control rabbit Ig-FITC (Dako) for 20 min on ice in the dark, After incubation the chondrocytes were washed and measured on LSRII. Analyses were performed using FlowJo version 10. # Surface binding C1q chondrocytes Chondrocytes were incubated for 45 min at RT with or without purified C1q in different concentrations ( $1/10/100~\mu g/ml$ ). C1q incubation of chondrocytes was performed on a plate shaker at 600 rpm to prevent pelleting of the cells. After incubation the cells were washed and binding of C1q to the surface of chondrocytes was detected using rabbit anti-human C1q-FITC (Dako). Rabbit Ig-FITC (Dako) was used as isotype control. Samples were measured on LSRII and analyses was performed using FlowJo version 10. # qPCR human chondrocytes RNA was isolated from cultured chondrocytes using either RNeasy mini kit (Qiagen) or mirVana<sup>TM</sup> miRNA Isolation Kit (Invitrogen) and concentration was determined with the NanoDrop (NanoDrop Technologies). Subsequently, the RNA was treated with DNase I, Amplification Grade (Invitrogen) and cDNA was synthesized using superscript III (200 U/μl, Invitrogen). The cDNA was diluted and qPCR was performed using SensiFast Sybr no-ROX (Bioline). Primers specific for *MMP1*, collagen type 1, type 2, type 10, *C1R*, *C1S*, *C3*, *C5* and the C1q genes *C1QA/B/C*, as well as the reference *RPL5* were used (see Table I for primer sequences). The qPCR was performed on the real time PCR system (BioRad CFX-384) with an activation step of 3 min on 95°C (hot start polymerase | Gene | 5' Forward | 3' Reverse | |------------------|------------------------|-----------------------| | MMP1 | CTGGCCACAACTGCCAAATG | ATTCTGTCCCTGAACAGCCC | | Collagen type 1 | CATGTTCAGCTTTGTGGACCTC | ATGGTACCTGAGGCCGTTCT | | Collagen type 2 | TCCTAAAGGAGCCCGAGGTGCC | CAGGAGCTTGGAGGCCGGGT | | Collagen type 10 | CCCAGCACGCAGAATCCATCT | TTCCAGCCGGTCCAGGGATT | | C1QA | CCAGGAAGAACCGTACCAGA | GACGATGGACAGGCAGATTT | | C1QB | TCCAGATATGGAGGCCTGAC | TTCACTCAGCAGCATTCACC | | C1QC | AAGGARGGGTACGACGGACT | GTAAGCCGGGTTCTCCCTTC | | C1R | TCACAGTCCCCACGGGATAC | CCAGTGGAGAACCCAGTTGC | | C1S | CTGCAGAGGGAGCGTCAA | TGGTAGGCTCAGCATAAACCC | | 23 | TGGCCAATGGTGTTGACAGA | GCGTAGACCTTGACTGCTCC | | C5 | TACCTTGCCTGTTGAAGCCC | CCAGGGAAAGAGCATACGCA | | RPL5 | TGGAGGTGACTGGTGATG | GCTTCCGATGTACTTCTGC | | | | | activation), a melting temperature of 95°C for 5 s and at an optimized annealing temperature per primer for 5 s followed by an elongation step for 20 s on 72°C for 40 cycles. At the end of the protocol melting curves were performed from 65°C to 95°C to test specific binding of SensiFast Sybr. # Immunofluorescence staining of C1q in chondrocytes Freshly isolated chondrocytes were cultured on poly-D-lysine (Sigma 50 $\mu$ g/ml) chamber slides (Thermo Scientific) and fixated and permeabilised using 1% paraformaldehyde and acetone. Cells were subsequently incubated with rabbit anti-C1q (Dako) or isotype control rabbit Ig (Dako) for one hour at RT. After washing, slides were incubated with goat anti-rabbit ALEXA 488 (Invitrogen) and ActinRed 594 (Applied bioprobes) for one hour at RT. Finally, the slides were covered with Vectashield containing DAPI (Vector laboratories) to stain nuclei and analysed on a confocal microscope (Leica SP8 confocal). # qPCR mouse chondrocytes Articular cartilage from tibia plateaus, femoral condyles were harvested from 5 to 6 days new born mice. The isolation protocol was adapted from literature<sup>29,30</sup>, in short, chondrocytes were seeded in 12-wells plates (200.000 cells/well) after matrix digestion with "liberase, Roche" (two digestions of 45 min with 0.1 mg/ ml liberase and a third digestion with 0.025 mg/ml overnight). DMEM (Gibco Life Technologies, France) supplemented with 10 % foetal bovine serum (FBS), 2% L-glutamine and 1% of antibiotic was used for this culture 30. Isolated articular chondrocytes from several pups from the same litter were pooled, sample #1 is one pooled litter and sample #2 is a pool from another different litter. RNA was isolated using and cDNA synthesis was performed as previously described<sup>31</sup>. Next, real-time qPCR was performed with primers specific for mice C1QA/B/C, C1R and C1S (see Table II for primer sequences). qPCR was performed on the real time PCR system (BioRad CFX-384) with an activation step of 3 min on 95°C (hot start polymerase activation), a melting temperature of 95°C for 5 s and at an optimized annealing temperature per primer for 10 s followed by an elongation step for 15 s on 72°C for 40 cycles. At the end of the protocol melting curves were performed from 65°C to 95°C to test specific binding of SensiFast Sybr. After qPCR the products were analysed on agarose gel with Nancy-520 fluorescent DNA binding dye. # Statistics Statistical analyses were performed using Graphpad Prism version 7. To compare relative expression levels or ratio the Wilcoxon test or Kruskall—Wallis test with Dunn's multiple comparisons test were used. To analyse the effect of increasing concentrations of C1q, compared to unstimulated, on relative expression the Friedman test with Dunn's multiple comparisons test was used, *P*-value's <0.05 were considered significant. In all graphs the mean with SEM is shown, or a representative figure. # Results # Chondrocytes produce and secrete C1q protein We isolated primary human chondrocytes from articular cartilage obtained during surgical procedures. First, we validated the purity of the isolated chondrocyte population, using flow cytometry. As shown in Fig. 1(A), chondrocytes do not express the haematopoietic marker CD45 and the myeloid marker CD14 [Fig. 1(C)]. Additionally, we used flow cytometry to analyse the presence of intracellular C1q after isolation. Indeed, we observed with intracellular staining that C1q is present in chondrocytes directly *ex vivo* [Fig. 1(D)]. To confirm these results, we subsequently let the chondrocytes adhere for at least one hour at 37°C on chamber | Gene | 5' Forward | | 3' Reverse | | |-----------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------|--| | C1QA<br>C1QB<br>C1QC<br>C1R<br>C1S | GACT<br>GAC<br>GAGO | CAGCAAAGGGCTGGAG<br>TCCGCTTTCTGAGGAC<br>GTC TCT GTG ATT AGGCC<br>GAGAATGGGACATCAT<br>GGTCCTTACTGTGGTA | TACTAGGGTCATGGTCAGCA TGTGTCTTCATCAGCTCAGC | | | Table II Primers mouse Osteoarthritis and Cartilage | | | | | slides followed by the analysis of the presence of C1q using confocal imaging. Also by microscopy we detected intracellular expression of C1q in the chondrocytes [Fig. 1(E)]. Finally, freshly isolated chondrocytes were lysed and protein extracts were prepared for Western blot analysis to determine C1q expression. Also the lysates of the chondrocytes stained positive for C1q [Fig. 1(F)]. Collectively, these data indicate that chondrocytes express C1q protein. C1q mRNA expression is increased in the presence of OA relevant stimuli Next, we aimed to determine whether C1g expression is modulated in an inflammatory milieu. To this end, mRNA expression of the C1g chains, C10A, C10B and C10C, was determined in cells that were cultured with or without inflammatory stimuli that are thought to be relevant for OA, namely IL-1β, TNFα, and LPS and growth factor TGF- $\beta^{32}$ . Stimulation with these mediators resulted in differences in expression of C1QA, C1QB and C1QC, as analysed with Kruskall–Wallis (respectively: P = 0.0282, P = 0.0283 and P < 0.0001). After adjusting for multiple comparisons the only remaining significant difference is IL-1 $\beta$ vs LPS in C1QC expression, probably due to low number of donors (n = 3) [Fig. 2(A)–(C)]. Subsequently, we also wished to determine whether C1q-protein expression is also elevated by inflammatory stimuli. To this end, we stimulated chondrocytes with IL-1β, since this cytokine displayed the strongest effect on mRNA expression, albeit not statistically significant. After 72 h, both the cell lysates and the culture supernatants were analysed. Although we detected C1q protein expression in both lysates and concentrated supernatant, we did not observe a difference between control and IL-1\beta stimulated chondrocytes [Fig. 2(D) and (E)]. Moreover, we noticed high variability in C1q production among donors. Complement and matrix component expression in proinflammatory environment Next, we sought to study the expression pattern of different collagens produced by chondrocytes upon stimulation with proinflammatory cytokines. TGF-β is known to increase the expression of Collagen type 1 in chondrocytes<sup>33</sup>, although in our experiment the increase was only significant compared to IL-18 stimulation condition [Fig. 3(A)]. TGF- $\beta$ also caused a slight nonsignificant upregulation in the expression of collagen type 2 and type 10 [Fig. 3(B) and (C)]. No effect was observed upon TNFα or LPS stimulation. IL-1β caused a trend towards decreased expression in all collagen types, type 1 (95% CI 0.33-0.52) type 2 (95% CI -0.03 to 0.20) and type 10 (95% CI -0.07 to 0.53). Also MMP1 expression was determined for the different stimulations, we see differences between the stimulations, but these are not significant [Fig. 3(D)]. Furthermore, we investigated whether the expression of various complement components could be modulated by the inflammatory cytokines. C1R and C1S expression was analysed since these molecules in combination with C1q make one complete C1 complex, which activates the CP of the complement system. C3 and C5 are further downstream in the complement system and important in the cascade for their ability to be cleaved into pro-inflammatory molecules. Stimulation with IL-1β, TNF and LPS seems to be accompanied by changes in the expression of C1R, C1S and C3 [Fig. 3(E), (F) and (G) respectively], however, probably due to inter-donor variability, these changes are not significant. C5 expression seems to be unaffected by all different stimulations after 24 h of stimulation [Fig. 3(H)]. Overall, the pro-inflammatory stimulation resulted not only in an upregulated expression of the C1q genes also in slightly enhanced expression of C1r and C1s, allowing the formation of the C1-complex. Fig. 2 C1q after stimulation with pro-inflammatory cytokines. (A–C) Fold change expression after correction with *RPL5* of *C1QA*, *C1QB* and *C1QC*. Data represents mean and SEM of three different OA donors measured in duplicate after 24 h stimulation (N=3). Differences in expression were analysed with Kruskall –Wallis, after adjusting for multiple comparison the individual significant adjusted *P*-values were plotted when P < 0.05 (\*). (D) Chondrocytes were stimulated with IL-1 $\beta$ for 72 h, after stimulation the supernatant was collected and concentrated, additionally, the chondrocytes were lysed. Next, C1q was measured by ELISA. C1q measured in chondrocyte lysates by ELISA expressed as AU/mL in four donors. (E) Supernatant was collected and concentrated and C1q was measured and is expressed as the absorbance measured at 415 nm. To compare relative expression levels Kruskall–Wallis test with Dunn's multiple comparisons test was used for statistical analysis and *P*-value's <0.05 (\*) were considered significant. # C1q can bind to chondrocytes After showing that chondrocytes can produce C1g, we wished to assess the functional relevance of such local C1g production. First, we tested whether C1q protein was able to bind to chondrocytes. Chondrocytes were incubated with different concentrations of purified human C1q protein and surface binding was analysed by flow cytometry. We observed a dose-dependent binding of C1q to chondrocytes [Fig. 4(A)]. Next, we investigated whether C1q has a regulatory effect in chondrocytes on the mRNA expression of a set of complement genes (C1QA/B/C, C1R, C1S, C3 and C5), different types of collagen (type 1, 2 and 10), MMP-1, MMP13, and on chondrocyte specific genes SOX9 and ACAN. Chondrocytes were incubated for 24 h with the same concentrations of C1q as used for flow cytometry, after which RNA was isolated and qPCR performed. Treatment with 100 $\mu g/ml$ C1q induced significant decrease in MMP13 expression (95% CI: 0.11-0.60), and a non-significant decrease in COLL2 (95% CI 0.45-0.92) and MMP1 (95% CI 0.30-0.60). In addition, we observed a non-significant increase in C1QB (95% CI: 1.012-2.12). SOX9 and ACAN, two chondrocytes specific genes, were unaffected by the stimulation with C1q [Fig. 4(B)]. With lower concentrations of C1q no differences were observed (data not shown). It has been previously demonstrated that OA cartilage has a more dedifferentiate phenotype<sup>34</sup>. Therefore we analysed the ratio between expression of the genes encoding Collagen type 2 and 10, as an increased Collagen type 10 over Collagen type 2 expression which could be indicative of hypertrophic chondrocyte differentiation. Stimulation of chondrocytes with 100 μg/ml C1q led to a significant increase in Collagen type 10 over Collagen type 2 expression. Overall, the data provide preliminary evidence that stimulation of chondrocytes by C1q affects expression of various genes (decreased MMP13 and ratio change COLL2:-COLL10) by the chondrocytes and could therefore affect the composition of the cartilage. Mouse chondrocytes express all genes required to form the C1 complex Finally, we aimed to demonstrate the presence of C1q transcripts in mouse articular chondrocytes. To this end, mRNA was isolated from articular mouse chondrocytes, from two different litters, and qPCR was performed for mouse *C1QA*, *C1QB*, *C1QC*, *C1S* and *C1R*. For both samples we observed expression and PCR product for all genes analysed. The PCR products were further analysed on agarose confirming the correct size of the bands and single bands (Fig. 5). These data indicate that, like human articular chondrocytes, mouse articular chondrocytes similarly express transcripts for the genes encoding the C1 complex, allowing further studies into the functional impact of C1 expression in experimental murine models. # Discussion The main cell types described to produce C1q are derived from haematopoietic stem cells<sup>8</sup>. Chondrocytes are derived from mesenchymal stem cells and are important in the production of extracellular matrix molecules to build up the cartilage. Wang *et al.* described that the dysregulation of complement system in the synovial joints has a central role in the pathogenesis of OA<sup>23</sup>. Also, in a transcriptomic approach complement genes were differentially expressed in OA knee cartilage<sup>35</sup>. Although in the early 90's, various complement components have been detected in cartilage including C1q mRNA, the presence of C1q at the protein level could at that time not be confirmed *in vitro*. Likewise, the possible function of C1q in cartilage was not addressed<sup>25</sup>. Here, we demonstrate that isolated chondrocytes indeed produce C1q protein. To evaluate which factors can modulate the production of C1q by chondrocytes, we stimulated the chondrocytes with cytokines known to be present in the joint during inflammation<sup>32</sup>. The expression patterns of C1q genes were different compared to the expression of the collagen genes after TGF- $\beta$ stimulation. As expected, the expression of the different types of collagen showed an increase of expression after stimulation of TGF- $\beta$ <sup>36</sup>. In contrast, the expression of the C1q genes was mostly unaffected. Stimulation with IL-1 $\beta$ and TNF- $\alpha$ led to an increase in mRNA expression for the C1q genes compared to unstimulated chondrocytes. However, an increase in C1q secretion at protein level was not observed in our experimental conditions, which could be due to a later translation. The production of C1q was very variable among donors, which may be related to the inflammatory state of the cartilage sample, or Fig. 4 criq effects on chondrocytes. (A) Representative figure for detection of C1q by flow cytometry on the surface of chondrocytes after incubation with an increasing concentration of C1q (n = 3). (B) Chondrocytes were incubated in the presence of an increasing concentration of C1q $(1/10/100 \, \mu g/ml \, C1q)$ for 24 h, after stimulation RNA was isolated and analysed for expression of both complement, matrix and chondrocyte specific genes. Stimulation and isolation was performed on biological triplicate and qPCR was performed with technical duplicate, mean with SEM are shown (n = 9). Only the data from 100 $\mu$ g/ml C1q stimulation is shown, on the right hand side the ratio of COL2:COL10 is presented. The dashed line at y = 1 represents the unstimulated (UNST) level expression. The relative expression was analysed with Kruskall–Wallis test with Dunn's test for correction of multiple testing, the ratio was analysed with Wilcoxon-rank test. *P*-value's <0.05 were considered significant. Fig. 5 days old were collected from two different litters. Both samples are a pool of isolated articular chondrocytes from several pups from the same litter, sample #1 is one pooled litter and sample #2 is a pool from another litter. Agarose gel of PCR products from isolated mRNA analysed for C1QA, C1QB, C1QC, C1S and C1R expression. other unknown factors. Unfortunately, due to limitations in the samples; low numbers and the samples being obtained from left-over tissue, there is not enough information regarding patient demographics, to draw conclusions regarding C1q production and disease state. C1q released by the chondrocytes could deposit on the cartilage or reach the synovium which is damaged by inflammation. However, C1q is a large 460 kDa protein and the size limit of proteins that can move freely in cartilage is estimated to be around 65 kDa<sup>25</sup>. Therefore, it is likely that C1q produced by the chondrocytes plays a local rather than systemic function. Conceivably, C1q would function in an autocrine setting in stimulating the chondrocytes, or alternatively C1q would be involved in local complement activation and/or cartilage biology, involving C1r and C1s directly outside the chondrocyte. We speculate that C1q and complement activation may be involved in the maintenance of a lacuna for the chondrocyte. In such a scenario the released C1q, possibly by the action of the enzymes C1r and C1s, may trigger the degradation of matrix molecules that are (too) close to the cell body of the chondrocytes. Previous studies have demonstrated that the serine protease C1s can degrade collagen type 1 and type 2 when it is activated<sup>37</sup> and that it can play a role in the degenerative cartilage matrix in rheumatoid arthritis<sup>38</sup>. We also observed an increase in RNA expression of C1s and C1r after stimulation. In *ex vivo* chondrocytes we were also able to detect C1s in the lysates by Western blot (data not shown). This could indicate that under pro-inflammatory conditions, complement activation can occur both in the cartilage, as well as on the synovial surface of the cartilage. Together with the production of C1q and C3, it is conceivable that the production of different complement components by chondrocytes has a local function, contributing to cartilage degradation. Next to a direct effect of C1g on complement activity via C1s on cartilage remodelling, C1q could also impact chondrocyte biology by binding C1q receptors. Several molecules have been coined to be C1q receptors<sup>39</sup>, but which of these receptors would be relevant in the context of chondrocytes is unknown. The isolated chondrocytes represented a pure cell population as evidenced by flow cytometry and as evidenced by cell culture. On the coverslips the cell population appears homogeneous. The cells may appear somewhat small as compared to their cultured and passaged counterparts, but this is likely the consequence of the fact that these are freshly isolated and non-passaged cells. We have shown that C1q can bind to the surface of chondrocytes but we currently have no insight into which receptors or ligands C1q is binding to. In a first study with a limited number of patients, we analysed the effect of C1g on the gene expression profile of chondrocytes. After incubation with 100 μg/ml C1q, a significant change in the ratio between collagen type 2 and 10 expression levels was shown, in favour of more collagen type 10, suggesting that exposure to C1q (in high concentration) can contribute to a switch in the relative proportion of collagen expression, and tissue degrading enzyme(s). The concentration of C1q used to stimulate the chondrocytes (100 µg/ml) is roughly the same as the serum concentration of C1q, however if such a concentration is achievable locally in the cartilage is unclear. These data provide evidence that C1q can have functional effects on articular chondrocytes and provide the basis for future, more indepth studies with larger cohorts of patients. In our study we only used cartilage and chondrocytes derived from patients who underwent a total knee replacement due to OA, indicating that the cartilage could already be in inflammatory conditions. Therefore, for further investigations towards the role of complement in the cartilage it would be interesting to compare these results with healthy donors. The observation that also mouse primary chondrocytes express all genes required to make the C1 complex (C1QA, C1QB, C1QC, C1R and C1S) indicates that also experimental murine models can be employed to study the *in vivo* role of C1q in cartilage biology and pathology. In summary, we show that isolated human articular chondrocytes express and secrete C1q protein, C1q is able to bind to chondrocytes and provide first evidence that C1q could induce changes in extracellular matrix molecule expression. Collectively, these data indicate a potential role in locally produced C1q in OA pathogenesis. # **Contributions** RL, RAvs, AIF and LAT designed the study and interpreted the data. RL, RAvS, JCK, NEWL, AMB, SM and CC collected and assembled the data. RJL, RM and AIF provision of study material or patients. RET, AIF and LAT obtained funding. All authors critically revised and approved the manuscript. #### Conflicts of interest The authors report no conflict of interest. # **Funding** The authors wish to acknowledge the support of the IMI JU funded project BeTheCure, contract no 115142-2. L.T. was financially supported by a VIDI-grant from NWO-Zon-MW. R.T. was financially supported by a VICI-grant from NWO-Zon-MW. A. I-F. was financially contributed by The Dutch Arthritis Foundation (LLP-24). ### References - Sommarin Y, Larsson T, Heinegard D. Chondrocyte-matrix interactions. Attachment to proteins isolated from cartilage. Exp Cell Res 1989;184(1):181–92. PubMed PMID: 2792223. - Duan L, Liang Y, Ma B, Zhu W, Wang D. Epigenetic regulation in chondrocyte phenotype maintenance for cell-based cartilage repair. Am J Transl Res 2015;7(11):2127–40. Epub 2016/01/ 26. PubMed PMID: 26807163; PubMed Central PMCID: PMCPMC4697695. - Maldonado M, Nam J. The role of changes in extracellular matrix of cartilage in the presence of inflammation on the pathology of osteoarthritis. Biomed Res Int 2013;2013:284873, https://doi.org/10.1155/2013/284873. Epub 2013/09/27. PubMed PMID: 24069595; PubMed Central PMCID: PMCPMC3771246. - Yang KG, Saris DB, Geuze RE, van Rijen MH, van der Helm YJ, Verbout AJ, et al. Altered in vitro chondrogenic properties of chondrocytes harvested from unaffected cartilage in osteoarthritic joints. Osteoarthr Cartil 2006;14(6):561–70, https:// doi.org/10.1016/j.joca.2005.12.002. Epub 2006/06/01. PubMed PMID: 16735197. - Beurskens FJ, van Schaarenburg RA, Trouw LA. C1q, antibodies and anti-C1q autoantibodies. Mol Immunol 2015, https:// doi.org/10.1016/j.molimm.2015.05.010. PubMed PMID: 26032012. - Jiang H, Cooper B, Robey FA, Gewurz H. DNA binds and activates complement via residues 14-26 of the human C1q A chain. J Biol Chem 1992;267(35):25597—601. PubMed PMID: 1460055. - **7.** Loos M, Martin H, Petry F. The biosynthesis of C1q, the collagen-like and Fc-recognizing molecule of the complement system. Behring Inst Mitt 1989;(84):32–41. - 8. Lubbers R, van Essen MF, van Kooten C, Trouw LA. Production of complement components by cells of the immune system. Clin Exp Immunol 2017;188(2):183–94, https://doi.org/10.1111/cei.12952. Epub 2017/03/02. PubMed PMID: 28249350; PubMed Central PMCID: PMCPMC5383442. - 9. van Schaarenburg RA, Suurmond J, Habets KL, Brouwer MC, Wouters D, Kurreeman FA, *et al.* The production and secretion of complement component C1q by human mast cells. Mol Immunol 2016;78:164—70, https://doi.org/10.1016/j.molimm.2016.09.001. Epub 2016/09/21. PubMed PMID: 27648858. - Castellano G, Trouw LA, Fiore N, Daha MR, Schena FP, van Kooten C. Infiltrating dendritic cells contribute to local synthesis of C1q in murine and human lupus nephritis. Mol Immunol 2010;47(11–12):2129–37, https://doi.org/10.1016/ j.molimm.2010.02.006. PubMed PMID: 20417969. - 11. Castellano G, Woltman AM, Nauta AJ, Roos A, Trouw LA, Seelen MA, *et al.* Maturation of dendritic cells abrogates C1q production in vivo and in vitro. Blood 2004;103(10):3813—20, - https://doi.org/10.1182/blood-2003-09-3046. PubMed PMID: 14726389. - Faust D, Loos M. In vitro modulation of C1q mRNA expression and secretion by interleukin-1, interleukin-6, and interferongamma in resident and stimulated murine peritoneal macrophages. Immunobiology 2002;206(4):368–76. PubMed PMID: 12437068. - Bulla R, Agostinis C, Bossi F, Rizzi L, Debeus A, Tripodo C, et al. Decidual endothelial cells express surface-bound C1q as a molecular bridge between endovascular trophoblast and decidual endothelium. Mol Immunol 2008;45(9):2629–40, https://doi.org/10.1016/j.molimm.2007.12.025. Epub 2008/02/ 26. PubMed PMID: 18295334; PubMed Central PMCID: PMCPMC2632959. - **14.** Lynch NJ, Willis CL, Nolan CC, Roscher S, Fowler MJ, Weihe E, *et al.* Microglial activation and increased synthesis of complement component C1q precedes blood-brain barrier dysfunction in rats. Mol Immunol 2004;40(10):709–16. Epub 2003/12/04. PubMed PMID: 14644096. - Teo BH, Bobryshev YV, Teh BK, Wong SH, Lu J. Complement C1q production by osteoclasts and its regulation of osteoclast development. Biochem J 2012;447(2):229–37, https://doi.org/ 10.1042/bj20120888. Epub 2012/07/21. PubMed PMID: 22812635. - Melin Furst C, Morgelin M, Vadstrup K, Heinegard D, Aspberg A, Blom AM. The C-type lectin of the aggrecan G3 domain activates complement. PLoS One 2013;8(4), e61407, https://doi.org/10.1371/journal.pone.0061407. PubMed PMID: 23596522: PubMed Central PMCID: PMC3626604. - Sjoberg A, Onnerfjord P, Morgelin M, Heinegard D, Blom AM. The extracellular matrix and inflammation: fibromodulin activates the classical pathway of complement by directly binding C1q. J Biol Chem 2005;280(37):32301–8, https://doi.org/10.1074/jbc.M504828200. PubMed PMID: 16046396. - Sjoberg AP, Manderson GA, Morgelin M, Day AJ, Heinegard D, Blom AM. Short leucine-rich glycoproteins of the extracellular matrix display diverse patterns of complement interaction and activation. Mol Immunol 2009;46(5):830-9, https://doi.org/ 10.1016/j.molimm.2008.09.018. PubMed PMID: 18962898; PubMed Central PMCID: PMC2760063. - Happonen KE, Saxne T, Aspberg A, Morgelin M, Heinegard D, Blom AM. Regulation of complement by cartilage oligomeric matrix protein allows for a novel molecular diagnostic principle in rheumatoid arthritis. Arthritis Rheum 2010;62(12): 3574–83, https://doi.org/10.1002/art.27720. PubMed PMID: 20737467; PubMed Central PMCID: PMC4576017. - **20.** Groeneveld TW, Oroszlan M, Owens RT, Faber-Krol MC, Bakker AC, Arlaud GJ, *et al.* Interactions of the extracellular matrix proteoglycans decorin and biglycan with C1q and collectins. J Immunol 2005;175(7):4715–23. PubMed PMID: 16177119. - Liao W, Li Z, Li T, Zhang Q, Zhang H, Wang X. Proteomic analysis of synovial fluid in osteoarthritis using SWATH-mass spectrometry. Mol Med Rep 2018;17(2):2827–36, https:// doi.org/10.3892/mmr.2017.8250. Epub 2017/12/20. PubMed PMID: 29257293; PubMed Central PMCID: PMCPMC5783497. - Ritter SY, Subbaiah R, Bebek G, Crish J, Scanzello CR, Krastins B, et al. Proteomic analysis of synovial fluid from the osteoarthritic knee: comparison with transcriptome analyses of joint tissues. Arthritis Rheum 2013;65(4):981–92, https://doi.org/10.1002/art.37823. Epub 2013/02/13. PubMed PMID: 23400684; PubMed Central PMCID: PMCPMC3618606. - 23. Wang Q. Rozelle AL, Lepus CM, Scanzello CR, Song JJ, Larsen DM, *et al.* Identification of a central role for complement in osteoarthritis. Nat Med 2011;17(12):1674–9, https:// - doi.org/10.1038/nm.2543. PubMed PMID: 22057346; PubMed Central PMCID: PMC3257059. - 24. Melin Fürst C, Åhrman E, Bratteby K, Waldemarson S, Malmström J, Blom AM. Quantitative mass spectrometry to study inflammatory cartilage degradation and resulting interactions with the complement system. J Immunol 2016;197(8):3415–24, https://doi.org/10.4049/jimmunol.1601006. - 25. Bradley K, North J, Saunders D, Schwaeble W, Jeziorska M, Woolley DE, et al. Synthesis of classical pathway complement components by chondrocytes. Immunology 1996;88(4): 648–56. PubMed PMID: 8881771; PubMed Central PMCID: PMC1456645. - Epub 2011/03/04 Lee JI, Sato M, Ushida K, Mochida J. Measurement of diffusion in articular cartilage using fluorescence correlation spectroscopy. BMC Biotechnol 2011;11:19, https://doi.org/10.1186/1472-6750-11-19. PubMed PMID: 21366913; PubMed Central PMCID: PMCPMC3061899. - DiDomenico CD, Kaghazchi A, Bonassar LJ. Measurement of local diffusion and composition in degraded articular cartilage reveals the unique role of surface structure in controlling macromolecular transport. J Biomech 2019;82:38–45, https://doi.org/10.1016/j.jbiomech.2018.10.019. Epub 2018/11/06. PubMed PMID: 30385000. - 28. van Schaarenburg RA, Daha NA, Schonkeren JJ, Nivine Levarht EW, van Gijlswijk-Janssen DJ, Kurreeman FA, *et al.* Identification of a novel non-coding mutation in C1qB in a Dutch child with C1q deficiency associated with recurrent infections. Immunobiology 2015;220(3):422–7, https://doi.org/10.1016/j.imbio.2014.10.005. PubMed PMID: 25454803. - 29. Salvat C, Pigenet A, Humbert L, Berenbaum F, Thirion S. Immature murine articular chondrocytes in primary culture: a new tool for investigating cartilage. Osteoarthr Cartil 2005;13(3):243–9, https://doi.org/10.1016/j.joca.2004.11.008. Epub 2005/02/25. PubMed PMID: 15727891. - 30. Gosset M, Berenbaum F, Thirion S, Jacques C. Primary culture and phenotyping of murine chondrocytes. Nat Protoc 2008;3(8):1253–60, https://doi.org/10.1038/nprot.2008.95. Epub 2008/08/21. PubMed PMID: 18714293. - 31. Cornelis FMF, Monteagudo S, Guns LKA, den Hollander W, Nelissen R, Storms L, *et al.* ANP32A regulates ATM expression and prevents oxidative stress in cartilage, brain, and bone. Sci Transl Med 2018;10(458), https://doi.org/10.1126/scitranslmed.aar8426. Epub 2018/09/14. PubMed PMID: 30209244. - Farahat MN, Yanni G, Poston R, Panayi GS. Cytokine expression in synovial membranes of patients with rheumatoid arthritis and osteoarthritis. Ann Rheum Dis 1993;52(12):870–5. PubMed PMID: 8311538; PubMed Central PMCID: PMC1005218. - **33.** Chin BY, Mohsenin A, Li SX, Choi AM, Choi ME. Stimulation of pro-alpha(1)(I) collagen by TGF-beta(1) in mesangial cells: role of the p38 MAPK pathway. Am J Physiol Renal Physiol 2001;280(3):F495–504. PubMed PMID: 11181412. - 34. He Y, Siebuhr AS, Brandt-Hansen NU, Wang J, Su D, Zheng Q, et al. Type X collagen levels are elevated in serum from human osteoarthritis patients and associated with biomarkers of cartilage degradation and inflammation. BMC Muscoskelet Disord 2014;15:309, https://doi.org/10.1186/1471-2474-15-309. Epub 2014/09/24. PubMed PMID: 25245039; PubMed Central PMCID: PMCPMC4179849. - 35. Fisch KM, Gamini R, Alvarez-Garcia O, Akagi R, Saito M, Muramatsu Y, *et al.* Identification of transcription factors responsible for dysregulated networks in human osteoarthritis - cartilage by global gene expression analysis. Osteoarthr Cartil 2018;26(11):1531–8, https://doi.org/10.1016/j.joca.2018.07.012. Epub 2018/08/07. PubMed PMID: 30081074; PubMed Central PMCID: PMCPMC6245598. - 36. Galera P, Vivien D, Pronost S, Bonaventure J, Redini F, Loyau G, *et al.* Transforming growth factor-beta 1 (TGF-beta 1) upregulation of collagen type II in primary cultures of rabbit articular chondrocytes (RAC) involves increased mRNA levels without affecting mRNA stability and procollagen processing. J Cell Physiol 1992;153(3):596–606, https://doi.org/10.1002/jcp.1041530322. PubMed PMID: 1447320. - **37.** Yamaguchi K, Sakiyama H, Matsumoto M, Moriya H, Sakiyama S. Degradation of type I and II collagen by human - activated C1-s. FEBS Lett 1990;268(1):206-8. PubMed PMID: 2384156. - 38. Nakagawa K, Sakiyama H, Tsuchida T, Yamaguchi K, Toyoguchi T, Masuda R, *et al.* Complement C1s activation in degenerating articular cartilage of rheumatoid arthritis patients: immunohistochemical studies with an active form specific antibody. Ann Rheum Dis 1999;58(3):175–81. PubMed PMID: 10364916; PubMed Central PMCID: PMC1752845. - **39.** Eggleton P, Tenner AJ, Reid KB. C1q receptors. Clin Exp Immunol 2000;120(3):406–12. Epub 2000/06/09. PubMed PMID: 10844516; PubMed Central PMCID: PMCPMC1905565.