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4 | Why are we still using 3D masses for cluster
cosmology?

Based on

Stijn N. B. Debackere, Joop Schaye, Henk Hoekstra, Katrin Heitmann,
Salman Habib

Monthly Notices of the Royal Astronomical Society, Volume 515, Issue 3,
p. 3383-3405 (2022)

The abundance of clusters of galaxies is highly sensitive to the late-time evolution of
the matter distribution, since clusters form at the highest density peaks. However, the 3D
cluster mass cannot be inferred without deprojecting the observations, introducing model-
dependent biases and uncertainties due to the mismatch between the assumed and the true
cluster density profile and the neglected matter along the sightline. Since projected aper-
ture masses can be measured directly in simulations and observationally through weak
lensing, we argue that they are better suited for cluster cosmology. Using the Mira–Titan
suite of gravity-only simulations, we show that aperture masses correlate strongly with 3D
halo masses, albeit with large intrinsic scatter due to the varying matter distribution along
the sightline. Nonetheless, aperture masses can be measured ≈ 2−3 times more precisely
from observations, since they do not require assumptions about the density profile and are
only affected by the shape noise in the weak lensing measurements. We emulate the
cosmology dependence of the aperture mass function directly with a Gaussian process.
Comparing the cosmology sensitivity of the aperture mass function and the 3D halo mass
function for a fixed survey solid angle and redshift interval, we find the aperture mass
sensitivity is higher for Ωm and wa, similar for σ8, ns, and w0, and slightly lower for h.
With a carefully calibrated aperture mass function emulator, cluster cosmology analyses
can use cluster aperture masses directly, reducing the sensitivity to model-dependent mass
calibration biases and uncertainties.
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4.1 Introduction

The next decade of cosmological galaxy surveys such as Euclid1 and the Rubin Obser-
vatory Legacy Survey of Space and Time (LSST) 2 will elucidate the late-time evolution
of the Universe by measuring the large-scale distribution of galaxies out to a redshift of
z ≈ 2. The sheer volume of these surveys will result in the detection of over a billion
galaxies that can be used to trace the underlying dark matter distribution. The main focus
of these surveys is on measuring the matter distribution through the clustering of galax-
ies and through the lensing-induced distortion of galaxy shapes due to the intervening
large-scale structure, the cosmic shear.

Galaxy clusters, located at the most significant peaks of the density field, will be an-
other particularly powerful probe. Due to the hierarchical growth of structure, the abun-
dance of clusters as a function of mass and time depends sensitively on the amount of
matter, Ωm, how clustered it is, σ8, and also on the late-time expansion due to dark energy,
quantified by its equation-of-state parameter w0 and its time derivative wa (e.g. Haiman
et al., 2001; Allen et al., 2011; Pratt et al., 2019). More than 105 galaxy clusters will
be detected in the coming decade (e.g. Sartoris et al., 2016), transforming galaxy cluster
cosmology into a cosmological probe limited only by our understanding of its systematic
uncertainties (e.g. Köhlinger et al., 2015).

Observationally, clusters are identified as highly significant peaks in maps of some
observed signal, O, that traces the total mass distribution, such as the galaxy overdensity,
the weak lensing shear, the X-ray emission, or the Sunyaev-Zel’dovich (SZ) effect signal.
Next, after some quality cuts on the cluster candidates, we are left with a cluster catalogue
for the surveyed volume. To derive cosmological constraints from this catalogue, we need
a theoretical prediction for the cosmology-dependent cluster abundance, and a way to
link the theoretical predictions to the observed clusters. In principle, any halo property
that depends on cosmology can be used, but the halo mass, M, is the most obvious
candidate. This then requires knowledge of the dependence of the halo mass function,
n(M|Ω), on the cosmological parameters, Ω, the mass–observable relation, P (O|M),
and the cluster selection function, S. Any systematic error in these quantities will degrade
the cosmological constraints from cluster cosmology.

To calibrate the mass–observable relation, we need observational measurements of
the halo mass, M, for a subsample of the detected clusters. We will denote the halo mass
inferred from observations as Mobs. There are multiple ways in which halo masses can
be defined, since haloes do not have clear boundaries. Weak lensing observations have
become the de facto standard to calibrate cluster masses as they provide the only way to
directly probe both baryonic and dark matter (for a review, see Hoekstra et al., 2013).
Masses can be obtained from weak lensing observations either by fitting a density profile
to the observed shear and inferring the mass within some radius, or by directly adding up
the surface mass density—which can be obtained from the shear—within some aperture.
Since we are only able to securely identify clusters above some threshold in the observed

1https://www.euclid-ec.org
2https://www.lsst.org/

https://www.euclid-ec.org
https://www.lsst.org/
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signal, Olim, a correct calibration of the mass–observable relation also requires the abun-
dance of clusters to be taken into account. After all, the number of haloes around the
detection limit will depend not only on the uncertainty in the mass–observable relation,
but also on the expected number of haloes at that given mass (see Mantz, 2019 for a clear
discussion of this effect).

A full cluster cosmology analysis then calibrates the cosmology- and redshift-dependent
relations P (O, z|Mobs,Ω,S) and P (Mobs, z|M,Ω,S), by fitting them jointly with the
theoretical halo abundance, n(M, z|Ω,S), to the observed cluster number counts within
bins Oi and zj , N(Oi, zj). The halo abundance possibly depends on the selection func-
tion for quality cuts based on the halo environment, for example to exclude chance align-
ments or mergers. We write out the forward model as

N(Oi, zj |Ω,S) = Ωsky

Oi+1∫
Oi

dO
zj+1∫
zj

dz
dV (z,Ω)

dΩdz

∫
dMdMobs

× P (O, z|Mobs,Ω,S)P (Mobs, z|M,Ω,S)
× n(M, z|Ω,S) ,

(4.1)

where O and z are integrated over their respective bins, and Mobs and M over all possi-
ble values. We convert the halo number density to the number counts taking into account
the cosmology-dependent comoving volume at redshift z, V (z,Ω), probed by a survey
covering a solid angle Ωsky. Correctly modelling the cluster selection is of vital impor-
tance in any attempt to derive cosmological constraints from galaxy clusters. Ideally, we
would detect clusters through an observable that has a straightforward selection function.
Since the selection function depends on the survey under consideration, we will assume
here that the selection has been modelled correctly. This simplifies the derivation of the
main points we want to make.

Currently, cluster analyses infer 3D halo masses from weak lensing observations to
determine the mass–observable relation (see e.g. Bocquet et al., 2020; DES Collaboration
et al., 2020). The appeal of 3D halo masses stems from analytic arguments such as the
(extended) Press-Schechter theory (Press & Schechter, 1974; Bond et al., 1991), that pre-
dict that the 3D halo mass function has a universal shape set only by the significance of the
seed perturbation of a halo in the initial Gaussian density field. In recent years, however,
ever larger suites of cosmological dark matter-only (DMO) simulations have shown that
the assumed universality of the 3D halo mass function does not hold in detail. Simulated
abundances can deviate from the universal prediction by > 10 per cent depending on the
redshift and the exact cosmology (see e.g. Tinker et al., 2008; Bhattacharya et al., 2011;
Despali et al., 2016; Diemer, 2020). Hence, suites of large-volume cosmological simu-
lations run on a grid of different cosmological parameter values are vital to capture the
cosmology dependence of the halo mass function through either analytic fitting functions
(Tinker et al., 2008; Bhattacharya et al., 2011) or emulators (McClintock et al., 2019;
Nishimichi et al., 2019; Bocquet et al., 2020).

Problematically, 3D halo masses cannot be measured directly from observations,
which first need to be deprojected. Generically, deprojection requires the assumption
of a spherically symmetric density profile, which will be affected by baryons and scatter
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introduced by halo triaxiality, substructures, and correlated structures (see e.g. Becker
& Kravtsov, 2011; Oguri & Hamana, 2011; Bahé et al., 2012; Henson et al., 2017; De-
backere et al., 2021). This introduces model-dependent biases and increases the uncer-
tainty in the inferred 3D halo masses, degrading the cosmological constraints from cluster
cosmology. Note that this step is only required to transform the observations to theory
predictions. As we argue in this paper, such a procedure is not necessary.

Since modern theoretical predictions for the halo abundance already rely on large sim-
ulation suites, it is possible to perform the cluster mass calibrations with halo properties
that can be measured directly in both observations and simulations. This has the addi-
tional advantage that dark matter-only simulations can optionally be replaced by hydro-
dynamical simulations in order to account for baryonic effects on the halo mass function
(e.g. Velliscig et al., 2014) or to directly predict a baryonic observable. We focus on
weak lensing observations because they probe the total matter content and are thus less
sensitive to uncertainties in how baryonic matter traces the dark matter. From the weak
lensing shear signal we can directly measure projected aperture masses within apertures
of a fixed angular or physical size, without the need to assume any density profile (see e.g.
Schneider, 1996; Bartelmann & Schneider, 2001). Importantly, these aperture masses can
also be measured directly in simulations.

Aperture masses have been studied before in the context of cluster cosmology with
purely shear-selected samples in order to bypass uncertainties due to the selection based
on some baryonic observable such as the X-ray luminosity, the SZ signal or the galaxy
overdensity citep[e.g.][]reblinsky1999a. Marian et al. (2010) argued that future surveys
would no longer need to convert shear peaks to 3D halo masses, if predictions for the
halo abundance as a function of their aperture mass were available. However, Hennawi &
Spergel (2005) showed that while almost all massive clusters produce significant aperture
mass peaks, there is a large population of significant peaks that cannot be ascribed to a
single cluster but rather is the result of chance superpositions along the line-of-sight due
to the broad lensing kernel. Hence, to decrease the number of false-positive cluster de-
tections, baryonic observables are still required for confirmation. More recently, Hamana
et al. (2015), Shan et al. (2018) and Martinet et al. (2018) have used peaks identified from
weak lensing observations to constrain the matter density and clustering of the Universe.

With the availability of large-volume simulation suites run for many different cosmo-
logical models, it is now possible to calibrate the cosmology dependence of the halo aper-
ture mass function. Importantly, with aperture mass measurements the theoretical model
assumptions separate cleanly from the purely observational data in Eq. (4.1). That is,
Eq. (4.1) splits into an observational scaling relation, P (O, z|Mobs,Ω,S), independent
of the cluster density profile, and a calibration between the observed and the simulated
aperture mass measurement, P (Mobs, z|M,Ω,S). The uncertainty in the observational
scaling relation will depend on how accurately O can be measured in the survey, and how
strongly it correlates with the aperture mass. The theoretical calibration, on the other
hand, will have a fixed uncertainty set by the shape noise of the observations, since the
aperture mass measured from the weak lensing shear is an unbiased measure of the true
aperture mass (Schneider, 1996). Moreover, as shown by Debackere et al. (2021), halo
aperture masses are expected to be less sensitive to baryonic effects, especially when mea-
sured within larger apertures that are able to capture more of the ejected halo baryons. We
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study how baryons modify aperture mass measurements in Debackere et al. (2022).
Here, we investigate the behaviour of the different components that enter the model

for the cluster number counts in Eq. (4.1), that is, the uncertainty in the mass–observable
relation and the halo mass function for halo aperture masses. We will show that the mass–
observable relation can be calibrated more precisely with aperture masses than with the
standard deprojected 3D halo masses. Additionally, we will use an emulator calibrated
on the Mira–Titan suite of large-volume cosmological N-body simulations to show that
the halo aperture mass function is also highly sensitive to variations in the cosmological
parameters, in agreement with Marian et al. (2010). This study serves as a proof-of-
concept that can be applied in future cosmological analyses when carefully calibrated
emulators for the halo aperture mass function are available.

The paper is structured as follows: first, we introduce the large-volume simulation
suite that we use for our analysis in Section 4.2. Then, in Section 4.3, we study the de-
pendence of the aperture mass on both the 3D halo mass and the aperture size, and use the
clean separation between the theoretical and observational uncertainties in aperture mass
measurements to study the behaviour of the mass–observable relation. In Section 4.4, we
build an emulator to investigate the sensitivity of the aperture mass function to changes
in the cosmological parameters, comparing it to the 3D halo mass function. We compare
our analysis with the wider literature, discuss advantages and possible difficulties, and
provide future applications in Section 4.5. Finally, we conclude in Section 4.6.

4.2 Simulations

We use the Mira–Titan suite of cosmological, gravity-only simulations, run with the
HACC N-body code (Hardware/Hybrid Accelerated Cosmology Code, Habib et al. 2016).
This simulation suite is well-suited to our purpose: it contains large-volume simulations
with cosmological parameters sampled using a nested space-filling design that is ideal for
interpolating the simulation predictions. The simulations include dynamical dark energy
and massive neutrinos. The publically available data products of the simulation suite are
described in more detail in Heitmann et al. (2019). So far, Mira–Titan has been used
to construct emulators for the matter power spectrum (Heitmann et al., 2016; Lawrence
et al., 2017) and the 3D halo mass function (Bocquet et al., 2020).

The simulation suite consists of a grid of 111 simulations that vary 8 different cos-
mological parameters. The cosmological parameters are chosen according to a nested
lattice design that enforces space-filling properties at multiple design steps (see Section
3 of Heitmann et al., 2016). This design works well with Gaussian process emulators
and has an important global convergence property that allows systematic improvement of
emulation accuracy as more design points are added. All cosmologies are spatially flat
with Ωk = 0. The models vary the cosmological parameters within the ranges shown in
Table 4.1. The full grid of cosmological parameters is shown in figure 1 of Bocquet et al.
(2020).

The Mira–Titan suite consists of 3 nested tessellations that refine the higher level grids
(M011-M036, M037-M065, and M066-M111, respectively). These models all include
massive neutrinos. To enable accurate predictions for the Standard Model of cosmology
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Table 4.1: Cosmological parameter values for the Mira–Titan suite of large-volume, cos-
mological N-body simulations.

Parameter Min Max
Ωmh

2 0.12 0.155
Ωbh

2 0.0215 0.235
Ωνh

2 0.0 0.01
σ8 0.7 0.9
h 0.55 0.85
ns 0.85 1.05
w0 −1.3 −0.7
wb ≡ (−w0 − wa)

1/4† 0.3 1.3
wa −1.56 1.29

† Heitmann et al. (2016) show that this rescaling improves the prediction accuracy of cosmological models
with w0 + wa ≈ 0 by putting slightly more points near the w0 + wa = 0 boundary.

with massless neutrinos, the simulation suite includes an additional 10 simulations with
mν = 0 with the remaining 7 cosmological parameters sampled on a symmetric Latin
hypercube (M001-M010). All simulations have box sizes of 2.1Gpc (except for M006,
M023, and M046 with 2.091, 2.085, and 1.865Gpc, respectively) and include 32003 par-
ticles with masses mdm = 7.23 × 109 − 1.22 × 1010 M� depending on the cosmology.
Hence, groups and clusters with m > 1013M� are generally resolved with > 1000 par-
ticles. All simulations use a force softening length of ε = 6.6 kpc. For our analysis, we
focus on the 100 simulations with massive neutrinos (M011-M110, for the distribution of
the cosmological parameters, see fig. 1 of Bocquet et al. 2020).

We now briefly describe how dynamical dark energy and massive neutrinos are in-
cluded in the simulations, referring to Upadhye et al. (2014) and Heitmann et al. (2016)
for the full details. Both massive neutrinos and dynamical dark energy are included at
the level of the background evolution, H(z), and the initial conditions. Particularly, the
linear z = 0 transfer function includes dark matter, baryons, and massive neutrinos and
is normalized to the correct σ8. Then, the matter component including dark matter and
baryons is evolved back to the initial redshift assuming a scale-independent growth factor
including all species in the homogeneous background and used to determine the initial
particle positions and velocities. This ensures that the z = 0 linear power spectrum of
the simulation is correct on large scales. For power spectrum calculations, the neutrino
contribution needs to be included by hand. Hence, the simulations do not account for
neutrino clustering, which is no cause for concern, since this effect is much smaller than
the suppression of the halo mass function due to neutrino free-streaming for the neutrino
mass range considered.

The saved simulation data products had to be chosen carefully due to the large vol-
ume of the simulations and the size of the cosmological parameter hypercube. For each
simulation output, the full particle data is downsampled by a factor 100 before saving.
Simulation haloes are identified on the fly, i.e. from the full particle data, using a friends-
of-friends (FoF) algorithm with linking length b = 0.168. Subsequently, spherical over-
density masses, defined as m∆c(z) = 4/3π∆ρcrit(z)r

3
∆c(z), with overdensity ∆ = 200
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are determined around the potential minimum of the FoF halo. For all haloes with> 1000
particles (corresponding to mFoF & 1013 M�), all the particles belonging to the FoF halo
are also saved separately. We will use the downsampled particle catalogues to compute
the projected aperture masses around the identified FoF haloes with spherical overdensity
masses m200c > m200c,lim = 1013.5 M�. In Fig. 4.2 and Section 4.3.1, we show that
the Poisson noise due to the downsampling introduces an uncertainty of > 15 per cent in
the measured aperture masses of haloes with m200c < 1014 M�. Hence, we will mainly
focus on haloes with m200c > 1014 M� in the rest of this paper.

4.3 Aperture mass–observable relation
To quantify the uncertainties in the aperture mass–observable relation, we first need to
measure the halo aperture masses. In Section 4.3.1, we describe how we extract the
halo aperture masses from the Mira–Titan suite. We show how halo aperture masses
depend on the 3D halo mass and the aperture size in Section 4.3.2. Finally, we investigate
the possible theoretical and observational uncertainties in the aperture mass–observable
relation and compare our results to 3D halo masses in Section 4.3.3.

4.3.1 Extraction from the simulations
We will use the term aperture mass, in accordance with the literature, to refer to the
projected mass difference

∆M(< R1|R2, Rm) = πR2
1(Σ̄(≤ R1)− Σ̄(R2 < R ≤ Rm)) (4.2)

=M(≤ R1)−Mbg(≤ R1) ,

where we have introduced the mean enclosed surface mass density, Σ̄, which is defined
as

Σ̄(R2 < R ≤ Rm) =
2

R2
m −R2

2

∫
R2<R<Rm

dRRΣ(R) . (4.3)

The second term in Eq. (4.2) corrects the mass within the aperture R1 for the average
surface mass density within the control annulus bounded by R2 and Rm, which acts as
a local background subtraction, Mbg. Both terms get the same contribution from the
mean cosmological background density along the line-of-sight, which cancels out in the
difference. The background subtraction makes the aperture mass independent of the line-
of-sight integration length, provided it is large compared with the clustering length (as
also noted by Marian et al., 2010). We verify this below.

The power of the aperture mass defined in Eq. (4.2) is that it can be obtained di-
rectly from weak lensing observations, as shown in Eq. (4.26) in Appendix 4.A. More-
over, choosing fixed physical or angular aperture sizes removes the need to assume a
cluster density profile, in contrast to spherical overdensity radii. We will measure aper-
ture masses within three different but fixed apertures of R1 = [0.5, 1.0, 1.5] cMpc, with
R2 = 2.0 cMpc and Rm = 3.0 cMpc. These apertures are similar to the typical aperture
sizes used in weak lensing cluster mass calibrations (e.g. Hoekstra et al., 2015; Apple-
gate et al., 2014). Moreover, they also roughly correspond to the halo radii for haloes
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Figure 4.1: Surface mass density maps for randomly selected haloes in mass bins
log10m200c/M� ∈ [13.5, 14.0, 14.5, 15, 15.5] for simulation M000 at z = 0.43. Each
cutout has size 10 cMpc × 10 cMpc and is plotted on the same colour scale. The
dashed circles indicate the spherical overdensity radius r200c for each halo. With the
coloured lines, we show the inner apertures R1 = [0.5, 1.0, 1.5] cMpc which we use
throughout this work. The red shaded region shows the outer control annulus between
R2 = 2.0 cMpc and Rm = 3.0 cMpc for the background subtraction.

with m200c > 1013 M�. Smaller apertures will give better signal-to-noise ratios (SNRs)
for lower-mass haloes since they are better matched to their sizes (Schneider, 1996). To
compare these results with aperture masses inferred from observations, the distances in
the simulations need to be converted into angular positions, θ, using the angular diameter
distance to the lens for the simulated cosmology.

Since the aperture mass from weak lensing observations is inferred from the shear
signal within the annulus between R1 and Rm, the optimal choice of the aperture sizes
balances the increased signal from decreasingR1 and increasingRm, respectively, against
the increased modelling uncertainty due to contamination from cluster member galaxies
and miscentring errors, and the contribution of cosmic noise in the cluster outskirts (e.g.
Mandelbaum et al., 2010). We stress that the aperture mass in Eq. (4.2) will be com-
puted directly from the simulation data without any assumptions about the weak lensing
observations. Any observational uncertainty in converting the weak lensing signal to the
surface mass density will thus be included in the P (∆Mobs|∆M, z) term in Eq. (4.1),
leaving the aperture mass function unaffected. We discuss such observational uncertain-
ties in Section 4.3.3. In practice, the observed weak lensing aperture mass includes the
contribution of mass along the line-of-sight, weighted by the lensing kernel. However, as
we will show in Fig. 4.3, the total aperture mass is dominated by the correlated structure
within ≈ 30 cMpc of the cluster, which justifies neglecting the lensing kernel weighting
in our analysis.

Given the downsampled particle catalogue, calculating halo aperture masses is rel-
atively straightforward. First, we correct the particle catalogues for the downsampling
(see Section 4.2) by increasing the particle masses by a factor 100. We investigate the
effect of this downsampling on the accuracy of the derived halo masses below. We gen-
erate projected maps of the surface mass density, Σ, along the three principal axes of the
simulation volume on a grid of 21000 × 21000 pixels, corresponding to a pixel size of
(L/21000)2 = (0.1 cMpc)2 (except for the simulations with smaller box sizes). Subse-
quently, we can directly obtain halo aperture masses from the surface mass density maps
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by calculating Eq. (4.2) centred on the identified halo centres.
In Fig. 4.1, we show the surface mass density maps centred on 4 random haloes within

mass bins with bin edges specified by log10m200c/M� ∈ [13.5, 14.0, 14.5, 15.0, 15.5]
for reference simulation M000 at z = 0.43. Clearly, the downsampling of the particle
catalogue results in emptier and noisier mass maps. Every particle in the simulation has
a p = 0.01 chance of being included in the downsampled particle catalogue. As a re-
sult, particle catalogues of downsampled haloes will include a shot-noise contribution of
pN , resulting in a fractional uncertainty on the final 3D halo mass of δm/m =

√
pN

−1,
which is ≈ [20, 10, 6, 3, 2] per cent for haloes located at the mass bin edges. Since the
spherical overdensity halo masses were saved on the fly, the downsampling does not af-
fect the halo mass catalogues. The aperture masses, however, are affected by the particle
downsampling. We show the distribution of the fractional aperture mass uncertainty due
to the finite number of particles for different 3D halo mass bins in Fig. 4.2. We show the
fractional uncertainty, σlog∆M = σ∆M/∆M , for R1 = 1.0 cMpc, since this aperture
size is similar to the virial radius for haloes with 1013.5 < m200c/M� < 1014. We calcu-
late the uncertainty by adding the shot noise contributions to M(< R1) and Mbg(< R1)
in quadrature. Even though the individual contributions to the aperture mass in Eq. (4.2)
can be determined at high accuracy due to the extra particles included along the line-of-
sight, their difference has a large fractional uncertainty. Hence, we will limit our halo
sample to haloes with m200c > 1014 M� whose aperture masses can be determined with
a median fractional uncertainty of . 15 per cent from the available particle data. We note
that even though the median uncertainty of the mass bin 1014.0 < m200c/M� < 1014.25

is . 15 per cent, there are also significant outliers.
It is important to verify that the background subtraction in the aperture mass definition,

Eq. (4.2), actually makes the aperture mass independent of the line-of-sight integration
depth. In Fig. 4.3, we show the calculated aperture masses as a function of the line-
of-sight integration length, L, centred on 10000 random positions (first column) or on all
haloes within different halo mass bins that have x-coordinates that are within ±5 cMpc of
the midpoint of the x-axis of the simulation box (second to fourth columns) for simulation
M000 at z = 0.43. When centring on random positions, the aperture masses are consistent
with zero since the average surface mass densities within R1 and the control annulus are
equal. The scatter in the aperture masses for randomly-positioned apertures, which is
equivalent to measuring the cosmic shear on the scale of the aperture, increases with the
line-of-sight integration depth, since larger modes contribute to the dispersion 〈∆M2(<
R1, < L|R2, Rm)〉 (see e.g. Schneider et al., 1998). This effect is also present when
centring on haloes, but since the cosmic shear introduces a fixed scatter, the effect is
relatively smaller for more massive haloes (Hoekstra, 2001). For haloes, the average
aperture mass generally converges to its final value within ≈ 30 cMpc. However, the
individual halo trajectories along the line-of-sight can increase or decrease significantly
when encountering massive structures within R1 or R2 < R < Rm, respectively. Hence,
we confirm that the aperture mass measurements are converged with respect to the line-
of-sight integration length of L = 2100 cMpc.

The aperture mass measurements in the simulations automatically include the intrin-
sic scatter due to halo triaxiality and substructure, and due to both correlated and uncor-
related large-scale structures. We do not include observational uncertainties since these
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Figure 4.2: Distribution of the uncertainty in the aperture mass, given in Eq. (4.2), for
different 3D halo mass bins due to the factor of 100 downsampling of the saved simula-
tion particle catalogues. We add the Poisson uncertainties of the downsampled number of
simulation particles within R < R1 = 1.0 cMpc and R2 ≤ R < Rm in quadrature for
all haloes with m200c > 1013.5 M� in M000 at z = 0.43. Different coloured lines corre-
spond to different 3D halo mass bins and the dashed lines indicate the median uncertainty.
The downsampling results in a significant uncertainty in the derived aperture masses for
haloes with m200c < 1014.25 M�.

will depend on the survey of interest. One source of observational systematic uncertainty
is the shear map generation, which relies on the accuracy of the shape measurements
of the background source galaxies and the determination of their redshift distribution
(e.g. Von der Linden et al., 2014; Hoekstra et al., 2015). Another source of uncertainty
is the centring of the aperture on the halo. In the simulations, we centre the surface
mass density maps exactly on the potential minimum of the spherical overdensity, but
observationally this centre cannot be identified so unambiguously. However, Hoekstra
et al. (2012) showed that deprojected mass estimates derived from aperture mass mea-
surements within large apertures corresponding to overdensity radii with ∆ < 1000,
are only affected by . 5 per cent for miscentring radii up to 0.5h−1

70 cMpc. For refer-
ence, the distribution of the offset, ∆R, between the SZ signal peak and the location of
the brightest cluster galaxy position shows that the bulk of clusters (≈ 95 per cent) are
well centred with σ∆R . 0.2R500c, which is smaller than 0.5h−1

70 cMpc for all clus-
ters with m500c . 5 × 1015M�, while the remaining clusters show a larger dispersion
σ∆R ≈ 0.7R500c (see e.g. Saro et al., 2015; Bleem et al., 2020). In the same vein as the
results of Hoekstra et al. (2012), aperture masses measured within apertures considerably
larger than the miscentring radius of the cluster should not be significantly affected by
miscentring. Hence, ignoring miscentring does not change the conclusions of our work.
Next, we will show the dependence of halo aperture masses on the 3D halo mass and the



4

Halo aperture mass function 137

10
1

10
2

10
3

L
[c

M
pc

]

02

M(<R1,<L|R2,Rm)

1e
14

[c
M

pc
]

R 1
=

1.
0

R 2
=

2.
0

R m
=

3.
0

z=
0.

43

R
an

do
m

10
1

10
2

10
3

L
[c

M
pc

]

lo
g 1

0〈 m
20

0c
/M

¯
〉 =

14
.1

2

10
1

10
2

10
3

L
[c

M
pc

]

lo
g 1

0〈 m
20

0c
/M

¯
〉 =

14
.4

5

10
1

10
2

10
3

L
[c

M
pc

]

lo
g 1

0〈 m
20

0c
/M

¯
〉 =

14
.7

2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
00

0.
25

0.
50

0.
75

1.
00

Fi
gu

re
4.

3:
C

on
ve

rg
en

ce
of

th
e

ap
er

tu
re

m
as

s,
∆
M

,w
ith

th
e

lin
e-

of
-s

ig
ht

de
pt

h,
L

,c
en

tr
ed

on
ra

nd
om

po
si

tio
ns

(fi
rs

tc
ol

um
n)

,a
nd

ha
lo

es
w

ith
in

in
cr

ea
si

ng
m

2
0
0
c

bi
ns

(s
ec

on
d

to
fo

ur
th

co
lu

m
ns

).
L

ig
ht

gr
ey

lin
es

in
di

ca
te

th
e

in
di

vi
du

al
po

si
tio

ns
/h

al
oe

s,
w

hi
ch

w
er

e
ch

os
en

to
ha

ve
x

-c
oo

rd
in

at
es

w
ith

in
±
5
cM

p
c

of
th

e
ce

nt
re

of
th

e
x

-a
xi

sa
lo

ng
w

hi
ch

w
e

pr
oj

ec
t.

T
he

m
ed

ia
n

an
d

16
th

to
84

th
pe

rc
en

til
e

sc
at

te
r

ar
e

in
di

ca
te

d
w

ith
th

ic
k

bl
ac

k
lin

es
an

d
th

e
sh

ad
ed

re
gi

on
,r

es
pe

ct
iv

el
y.

T
he

m
ed

ia
n

ap
er

tu
re

m
as

s
al

on
g

ra
nd

om
lin

es
-o

f-
si

gh
t

is
ze

ro
,a

s
ex

pe
ct

ed
,w

ith
a

sl
ig

ht
in

cr
ea

se
in

th
e

sc
at

te
r

fo
r

la
rg

er
lin

e-
of

-s
ig

ht
in

te
gr

at
io

n
le

ng
th

s.
L

in
es

-o
f-

si
gh

t
ce

nt
re

d
on

ha
lo

es
ge

ne
ra

lly
co

nv
er

ge
w

ith
in

≈
30

cM
p
c

al
on

g
th

e
lin

e-
of

-s
ig

ht
,w

ith
a

la
rg

e
sc

at
te

rt
ha

ti
nc

re
as

es
sl

ig
ht

ly
w

ith
in

cr
ea

si
ng
L

.T
he

ap
er

tu
re

m
as

s
fo

r
in

di
vi

du
al

ha
lo

es
ca

n
in

cr
ea

se
or

de
cr

ea
se

si
gn

ifi
ca

nt
ly

w
he

n
en

co
un

te
ri

ng
a

m
as

si
ve

st
ru

ct
ur

e
al

on
g

th
e

lin
e-

of
-s

ig
ht

w
ith

in
R

1
or
R

2
<
R
<
R

m
,r

es
pe

ct
iv

el
y.



4

138 Aperture mass–observable relation

aperture.

4.3.2 Aperture mass behaviour
Since halo properties are mostly studied as a function of their 3D mass, we show the
distribution of aperture masses for R1 = 1.0 cMpc, R2 = 2 cMpc, and Rm = 3 cMpc
as a function of the 3D halo mass, m200c, at z = 0.43 in the M011 simulation in the
top panel of Fig. 4.4. The median ∆M–m200c relation, indicated with the solid line, is
slightly shallower than one-to-one: the aperture mass for haloes with r200c & (.)R1 is
smaller (larger) than m200c since the halo mass represents a larger (smaller) fraction of
the total aperture mass. For simulation M011, the halo radius r200c = R1 = 1.0 cMpc for
m200c ≈ 1013.65 M�. Haloes at fixed m200c can have greatly differing aperture masses
due to differences in the matter distribution along the line-of-sight of haloes at fixed 3D
mass (see also Fig. 4.3). For low-mass haloes the scatter around the median relation
increases significantly since mass outside the halo contributes relatively more to the mass
within the aperture.

In the bottom panel of Fig. 4.4, we show the logarithmic scatter around the median
∆M–m200c relation. We calculate the scatter as half the difference between the 84th
and the 16th percentile of log∆M . The scatter increases strongly for low-mass haloes,
partially due to the particle downsampling of the halo catalogues shown in Fig. 4.2, but
also since matter outside the halo contributes more to the aperture mass. The intrin-
sic scatter in the aperture mass at fixed halo mass decreases from σlog∆M ≈ 0.45 for
m200c = 1014 M� to . 0.2 for m200c > 1014.5 M�, which is similar to the scatter in the
weak lensing-inferred 3D halo mass at fixed halo mass due to triaxiality and substructure
(see Fig. 4.7 and Section 4.3.3 for a comparison with the mock weak lensing analysis
from Bahé et al. 2012). The scatter at high halo masses is dominated by differences in the
projected structure along the line-of-sight to the halo, both correlated and uncorrelated,
since the downsampling has a negligible effect on high-mass haloes.

Since different apertures are naturally tuned to detect haloes of different mass and
size, we show the median relation between the aperture mass, ∆M , measured in differ-
ent apertures and the 3D halo mass, m200c, for all cosmologies in the hypercube in the
left panel of Fig. 4.5. Smaller apertures more closely capture the 3D mass of lower-mass
haloes, however, as is clear from Fig. 4.4, there is a large scatter around the median re-
lation due to the differing matter distributions along the line-of-sight to different haloes.
For higher-mass haloes, measuring the mass in different apertures allows the character-
ization of the halo density profile, since the matter belonging to the halo dominates the
total aperture mass out to larger apertures.

In the right-hand panel of Fig. 4.5, we show the redshift evolution of the aperture
mass within a fixed aperture of R1 = 1 cMpc. Since we measure within fixed comov-
ing apertures, the uncorrelated large-scale structure contribution to both M(< R1) and
Mbg(< R1) should be the same on average. Hence, the redshift evolution is dominated
by the local overdensity changes around the halo. At fixed m200c, the virial radius r200c
will increase less rapidly with increasing time than the aperture radius does as the critical
density—and also r200c(z)—approaches a constant in the dark energy-dominated era. As
a result, the aperture mass increases with time, since more matter outside of the halo is
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Figure 4.4: Top panel: The distribution of aperture masses, ∆M(< R1 =
1.0 cMpc|R2 = 2.0 cMpc, Rm = 3.0 cMpc), as a function of the 3D spherical over-
density mass m200c for simulation M011 at z = 0.43. The dashed line indicates the
one-to-one relation, the solid line indicates the median relation, and the dash-dotted lines
the 16th and 84th percentile scatter. The diamond indicates the 3D halo mass for which
r200c = R1. The large scatter in ∆M at fixed m200c is caused by the large variation
in the matter distribution along the line-of-sight. Bottom panel: The logarithmic scat-
ter in the aperture mass distribution at fixed m200c, calculated as half the difference be-
tween the 84th and the 16th percentiles. The scatter decreases from σlog∆M ≈ 0.45 at
m200c = 1014 M� to . 0.2 for m200c > 1014.5 M�.
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Figure 4.6: The median redshift evolution of the scatter in the ∆M–m200c distribution
measured in aperturesR1 ∈ [0.5, 1.0, 1.5] cMpc for all simulations (left to right columns).
Coloured lines and shaded regions indicate the median and the 16th to 84th percentile
scatter for all cosmologies at different redshifts. The R1 = 0.5 cMpc distribution is
indicated with dashed lines and repeated in the other panels. The coloured diamonds show
the median halo mass for which r200c = R1 (these masses are smaller than 1014 M� for
R1 < 1.5 cMpc). At fixed m200c and R1, the scatter increases significantly with time for
haloes whose virial radius, r200c, is not significantly larger than the aperture (low-mass
haloes) or whose number density increases (high-mass haloes). Increasing R1 at fixed
m200c increases the scatter when the virial radius becomes comparable to the aperture
due to the increased sensitivity to matter outside the halo.

included within the same comoving aperture at fixed halo mass. For angular apertures,
there would be an additional change due to the changing angular diameter distance. For
a halo mass defined with respect to the mean matter density, such as m200m, the virial
radius and the comoving aperture radius do not evolve with redshift at fixed halo mass
and, hence, the redshift evolution would be set by the change in the halo density profile.

To study how the scatter in ∆M at fixed m200c changes with cosmology and redshift,
we show the redshift evolution of the median scatter, σlog∆M , of all cosmologies in the
Mira–Titan suite for the different apertures in the panels of Fig. 4.6. The shaded regions
show the 16th to 84th percentile scatter. We indicate the median halo mass for which
r200c = R1 with a coloured diamond. The overall trends are the same as in the bottom
panel of Fig. 4.4, i.e. less scatter for higher-mass haloes. Within the smallest aperture,
R1 = 0.5 cMpc, there is very little redshift evolution: the aperture is significantly smaller
than r200c for all halo masses shown, and the halo matter dominates the aperture mass.
For all apertures, the increase in the scatter with time for the most massive haloes results
mainly from their increasing number density with time. For the most massive haloes,
the scatter only changes by ≈ ±5 per cent for different aperture sizes, as can be seen by
comparing the dashed lines (which are forR1 = 0.5 cMpc in every panel) with the results
for larger apertures in the middle and rightmost panels of Fig. 4.6. For lower-mass haloes,
however, the scatter is more sensitive to the aperture and increases when the halo radius
becomes comparable to the aperture.

So far, we have shown that aperture masses can be measured easily in simulations and
that they correlate strongly with the true, 3D halo mass, albeit with a large intrinsic scatter
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due to their sensitivity to the matter along the line-of-sight to the halo. Paradoxically, this
could give the aperture mass an advantage in the context of cluster cosmology since it
means that the line-of-sight structure contributes to the aperture mass signal, not its noise.
We will investigate the possible strengths and difficulties of aperture mass calibrations for
cluster cosmology next.

4.3.3 Uncertainties
For cluster cosmology, it is crucial that cluster masses inferred from observations can
be calibrated accurately, that is without bias and, ideally, also with small uncertainties.
Due to the exponential sensitivity of the halo abundance to the halo mass, biases and
uncertainties that are not accounted for in the cluster mass measurement can introduce
catastrophic biases in the inferred cosmological parameters. Consequently, minimizing
the uncertainty in the mass–observable relation can dramatically increase the constraining
power of cluster surveys. Previously, we have shown that the intrinsic scatter between
the aperture mass and the 3D halo mass can be large, particularly for low-mass haloes.
We will now consider the strengths and the difficulties of aperture masses for cluster
cosmology.

Taking Eq. (4.1) as our guide, we see that the uncertainty in the mass–observable
relation is due to the uncertainty in the relation between the measured observable and
the measured aperture mass, P (O|Mobs), and the observational uncertainty between the
measured aperture mass and the true halo aperture mass, P (Mobs|M), sometimes re-
ferred to in the literature as the intrinsic uncertainty (e.g. Becker & Kravtsov, 2011).
First, we will look into the intrinsic measurement uncertainty of the halo aperture mass,
comparing it to that of 3D halo masses.

The stringent requirements on the accuracy of the shear measurements for future sur-
veys mean that the finite number of background galaxies used to sample the shear field
and the source redshift distribution set the baseline, minimum uncertainty for any weak
lensing mass measurement (e.g. Köhlinger et al., 2015). The source redshift distribution
determines the critical surface mass density that enables the conversion from measured
weak lensing shear to surface mass density. This uncertainty will affect any weak lensing
mass measurement similarly, so we do not include it here. The uncertainty of aperture
mass measurements is then fully determined by the galaxy shape noise, as shown by
Schneider (1996). In comparison, 3D halo masses inferred from deprojected weak lens-
ing observations are intrinsically highly sensitive to the large variation in the line-of-sight
matter distribution at fixed, true 3D halo mass.

To quantify the intrinsic measurement uncertainties for 3D halo masses of individual
clusters, we look at the literature. Bahé et al. (2012) have estimated the uncertainty of the
P (Mobs|M) scaling relation by generating mock weak lensing observations of clusters
with m200c > 1014 M� at z ≈ 0.2, a shape noise of σgal = 0.2, and with a mean
lensed background galaxy number density n̄gal = 30 arcmin−2 for sources at z = 1.
This set-up assumes perfect knowledge of the source redshift distribution and the critical
surface mass density. They find a large uncertainty of σlogmobs

= 0.45 (0.25) for haloes
with m200c = 1014 (1015)M� when inferring mobs from fitting NFW density profiles
to the observed lensing shear. Importantly, Bahé et al. (2012) only include the local,
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correlated large-scale structure within 10 cMpc of the halo when generating the lensing
signal. However, uncorrelated large-scale structures add to the scatter of the true lensing
signal (e.g. Hoekstra, 2001, 2003). Hence, their results should be considered a lower limit
on the true scatter in the inferred 3D halo masses. Becker & Kravtsov (2011) similarly
find an uncertainty of σlogmobs

≈ 0.3 for a mock sample with m200c > 1014.5 h−1 M�
that does include the cosmic noise due to uncorrelated large-scale structure.

On the other hand, for the same set-up as Bahé et al. (2012), weak lensing aper-
ture masses are only affected by the shape noise due to the finite number of galaxies
used to sample the shear field. More specifically, the uncertainty is given by Eq. (4.22)
in Appendix 4.A. We derive a fixed uncertainty σ∆Mobs

= 1.16 × 1013 M� for R1 =
0.5 cMpc, R2 = 2 cMpc, and Rm = 3 cMpc. For reference, from Fig. 4.5 we see that
∆M(m200c = 1014 M�, R1 = 0.5 cMpc) ≈ 1013.75M�, implying a fractional uncer-
tainty σlog∆Mobs

≈ 0.2, i.e. more than 2 times smaller than the fractional uncertainty
in the 3D mass and without any dependence on an assumed density profile. Importantly,
the fractional uncertainty scales inversely with the halo aperture mass, giving fractional
uncertainties of ≈ 0.1 and 0.05 for ∆M/M� = 1014 and 1014.5, respectively.

In Fig. 4.7, we show the aperture radius dependence of the median fractional obser-
vational uncertainty, σlog∆Mobs

, at fixed halo mass, m200c, calculated from Eq. (4.22),
for a lensing cluster at z = 0.24 and source galaxies at z = 1 with background density
ngal = 30 arcmin−2 and shape noise σgal = 0.2, similar to Bahé et al. (2012). The aper-
ture mass uncertainty in Eq. (4.22) additionally depends on the chosen filter, that is the
aperture radii R1, R2, and Rm. To obtain the fractional uncertainty, we divide σ∆Mobs

from Eq. (4.22) by the aperture mass, ∆M . For R1 = 1 cMpc, we indicate the median
uncertainty in the aperture mass at fixed m200c over all cosmologies (the solid line in
the middle panel of Fig. 4.6) as the shaded region. For comparison, we show the observa-
tional uncertainty in 3D halo masses inferred from the mock weak lensing observations of
Bahé et al. (2012). Over the entire halo mass range, the aperture mass can be determined
at least 2 times more precisely than the 3D halo mass for apertures similar to the halo
radius. Increasing the inner aperture radius, R1, increases the observational uncertainty
since the weak lensing signal is inferred from the smaller number of galaxies within R1

and Rm. Hence, aperture masses can be measured more cleanly from observations than
3D halo masses since the line-of-sight structure contributes to the signal as opposed to the
noise.

The uncertainty in aperture mass calibrations for cluster surveys with baryonic ob-
servables, such as the galaxy overdensity, the SZ signal or the X-ray luminosity, will
also depend on the relation between the observable, O, and the measured aperture mass,
∆Mobs. As mentioned before, this relation depends solely on observational properties
of the clusters and the uncertainty will be highly sensitive to the observable O under
consideration.

A particularly ill-suited scenario for aperture masses would be an observable that is
not sensitive to projection effects, such as the X-ray luminosity or the thermal energy of
the hot gas, YX . These observables depend strongly on the gas density and predominantly
trace the cluster core. Due to the tight correlation with small scatter between the X-ray lu-
minosity and the 3D halo mass, m, the uncertainty in P (O|∆Mobs) can be approximated
by P (m|∆Mobs). As can be seen from the spread in m200c at fixed ∆M in the top panel
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Figure 4.7: The median observational fractional uncertainty in the aperture mass at fixed
halo mass within different apertures for a lensing cluster at z = 0.24 and source galax-
ies at z = 1 with a mean background density of n̄gal = 30 arcmin−2 and shape noise
σgal = 0.2. The thick, coloured lines indicate the median uncertainty over all cosmolo-
gies for m200c and within different apertures. The shaded region shows the variation of
the observational uncertainty for R1 = 1 cMpc due to the median scatter in ∆M at fixed
m200c for all cosmologies, shown in Fig. 4.6. The black points show the scatter in the
3D masses inferred from mock weak lensing observations by Bahé et al. (2012). Smaller
apertures have a lower observational uncertainty due to the larger number of background
galaxies as the masses are measured within R1 < R ≤ Rm. Aperture masses can be
determined more precisely than 3D masses over the full halo mass range.

of Fig. 4.4, this uncertainty is considerable. Such an observable is ideal for 3D halo mass
calibrations. However, the uncertainty between the observable, O, and the true halo mass,
m, will still be limited by the uncertainty floor in P (mobs|m), set by the deprojection of
the lensing profile.

In the best-case scenario for aperture masses, the observable closely traces the total
projected mass with small uncertainty. Andreon & Congdon (2014) show that the rich-
ness is such an observable when measured within the same aperture as the weak lensing
aperture mass. Other studies also find that the stellar mass fraction, when measured suffi-
ciently far away from the brightest cluster galaxy, is approximately constant in groups and
clusters (e.g. Bahcall & Kulier, 2014; Budzynski et al., 2014; Zu & Mandelbaum, 2015;
Wang et al., 2018). For observables related to the stellar mass of clusters, aperture masses
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provide mass calibrations with low uncertainty and without any model dependence which
is ideal for cluster cosmology.

We would also expect the SZ signal to be sensitive to projection effects since it is
independent of redshift, and since its pressure dependence allows it to probe larger scales.
However, the steep scaling of the SZ signal with the 3D halo mass due to its scaling with
the gas temperature and density, means that low-mass haloes will constitute an approxi-
mately constant background that can be corrected for (e.g. Angulo et al., 2012; Le Brun
et al., 2015). Hence, the SZ signal is likely less sensitive to projection effects than the
cluster stellar mass, but more sensitive than cluster X-ray properties.

A full comparison between the performance of aperture and 3D mass calibrations for
different survey observables would require generating mock surveys and mimicking the
aperture mass measurement and the 3D mass inference from mock weak lensing observa-
tions, which is beyond the scope of this work.

All in all, halo aperture masses provide clear advantages for cluster cosmology. The
direct connection between aperture masses measured from simulations and observations
make them practically independent from assumptions about the density profile of clus-
ters. Moreover, the relation between the cluster observable of interest and the true cluster
aperture mass cleanly separates in a purely observational scaling relation and an intrinsic
measurement uncertainty between the observed and the true aperture mass, which can be
calibrated using simulations. Next, we turn our attention to the final ingredient for cluster
cosmology in Eq. (4.1): the aperture mass function.

4.4 Halo aperture mass function
Having introduced the aperture mass and compared it to the 3D halo mass, we now study
the aperture mass function. We show how the aperture mass function depends on the aper-
ture mass in Section 4.4.1. Then, we briefly explain how we fit a Gaussian process emu-
lator to capture the cosmology dependence of the aperture mass function in Section 4.4.2,
leaving the details of the implementation to Appendix 4.B and the verification to Ap-
pendix 4.C. Finally, we discuss the cosmology sensitivity of the aperture mass function in
Section 4.4.3.

4.4.1 Aperture mass function behaviour
We compute the aperture mass function by dividing the number of haloes in mass bins of
log10 ∆M by the simulated volume and the bin width. The number density, n, dependent
on the cosmological parameters, Ωi, can be defined either as a function of the comoving
volume, V ,

nV (∆M, z,Ωi) =
dN(∆M, z,Ωi)

dV (z,Ωi)d log10 ∆M
(4.4)

or as a function of the probed survey volume

nΩ(∆M, z,Ωi) =
dN(∆M, z,Ωi)

dΩ(z,Ωi)dzd log10 ∆M
. (4.5)
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We have introduced the cosmology-dependent differential solid angle, dΩ, and the red-
shift range, dz. For cosmological simulations, nV naturally matches the data since we
can divide the mass-binned number counts directly by the comoving simulation volume.
The growth of structure from the initial density field fixes the cosmology dependence of
the volumetric number density, nV . The cosmology dependence of the observed halo
number density, however, receives an additional geometric contribution since we observe
our past lightcone. We obtain the observed number density from the volumetric number
density as

nΩ(∆M, z,Ωi) = nV (∆M, z,Ωi)
dV (z,Ωi)

dΩdz
, (4.6)

where the geometric conversion depends on the comoving distance and the transverse
comoving distance at redshift z for the assumed cosmology. The conversion scales the
amplitude of the volumetric aperture mass in a cosmology and redshift-dependent way.
The same geometric factor also applies to the simulated 3D halo mass function.

Since the weak lensing aperture mass receives contributions from structure along the
past lightcone weighted by the lensing kernel, technically, the scatter in the aperture mass
at fixed halo mass adds a geometry sensitivity to the volumetric aperture mass function.
However, as we have shown in Fig. 4.3, for higher-mass haloes this scatter becomes less
important compared to the intrinsic scatter due to the differing matter distribution close
(L . 30 cMpc) to the cluster. Hence, neglecting the past lightcone should not signifi-
cantly change our conclusions.

In what follows, we will initially show results for nV as is generally done for the 3D
halo mass function in the literature to aid in the interpretation of our results. However,
only nΩ includes the full cosmology dependence of both the aperture mass function and
the 3D halo mass function. We will use nΩ to investigate the cosmology sensitivity of the
aperture mass function in Section 4.4.3.

In the left-hand panel of Fig. 4.8, we show the median aperture mass function, nV ,
and its 16th to 84th percentile scatter for all cosmologies in the parameter hypercube
and aperture masses measured within different apertures. All aperture masses have been
computed with the same control annulus between R2 = 2 cMpc and Rm = 3 cMpc,
and only haloes with m200c > m200c,lim = 1013.5 M� are included within the sample.
Since larger apertures will result in higher aperture masses for the same halo, increasing
the aperture size shifts the aperture mass function to higher aperture masses. The aperture
mass function decreases towards both high and low aperture masses. The former is caused
by the rarity of high-mass haloes and the latter by the halo mass selection of the sample
and the large scatter in aperture mass at fixed halo mass. When a significant fraction
of the haloes at fixed aperture mass has 3D masses near the selection limit, the number
density starts decreasing. We show this by highlighting the 84th percentile aperture mass
for haloes with 3D masses at the selection limit with a cross. These crosses coincide
almost perfectly with the peak in the aperture mass function. The right-hand panel of
Fig. 4.8 shows that the aperture mass function increases with redshift as more massive
haloes form, just like the traditional halo mass function does. The peak of the aperture
mass function shifts towards higher aperture masses with time due to the increased scatter
at the fixed 3D halo mass limit (see Fig. 4.6).
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Figure 4.9: The change in the median aperture mass function for a fixed comoving vol-
ume, nV , for all cosmologies at fixed aperture size when increasing the mass selection
limit, m200c,lim. The thick, coloured lines show the different mass limits, m200c,lim. The
crosses indicate the 84th percentile aperture mass for haloes with m200c = m200c,lim.
The scatter in the aperture mass for haloes at the mass limit sets the peak of the aperture
mass function.

In Fig. 4.9, we show how the aperture mass function changes when increasing the
3D mass limit, m200c,lim/M�, from 1013.5 to 1014.5. The number density for the largest
aperture mass haloes is not strongly affected since the scatter in the aperture mass at the
mass limit decreases with increasing mass limit. For all mass limits, the cross indicates
the 84th percentile aperture mass for haloes with 3D masses at the selection limit. Since
the ∆M–m200c relation is sublinear, the median aperture mass at m200c,lim, and, there-
fore, also the peak mass increase less strongly than the 3D halo mass when increasing
m200c,lim. The number density for aperture masses beyond the peak is still affected by
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Figure 4.10: The median fractional variance in the aperture mass function for different
apertures for all cosmologies at z = 0.43 (solid, coloured lines). All haloes are selected
to have m200c > 1013.5 M�. The reference annulus for all aperture mass measurements
spans the region between R2 = 2 cMpc and Rm = 3 cMpc. The shaded regions show
the 16th to 84th percentile scatter and the dashed lines show the median shot-noise ex-
pectation. The crosses indicate the peak of the aperture mass function. The aperture mass
function variance generally exceeds the shot-noise.

the mass limit, albeit less so. Hence, for aperture mass cosmological analyses, it will be
important to select clusters using observables that either have small scatter with respect
to the aperture mass, or whose scatter is well-understood.

We stress that the haloes in Fig. 4.9 are selected solely based on their 3D halo mass.
However, low-mass haloes that scatter to much higher aperture masses than the median
relation for their halo mass, are either part of the correlated structure or chance alignments
with a massive cluster. In realistic observational scenarios, such haloes would not be part
of the cluster sample, as they would blend in with the larger cluster. However, this also
requires such haloes to be excluded from the theoretical aperture mass function calcula-
tion. The same problem applies to the 3D mass function; end-to-end pipelines are needed
to model such effects.

Finally, we investigate the sample variance of the aperture mass function, which we
will need to accurately calibrate the emulator. Since large-scale modes can locally and co-
herently boost or suppress the number counts, the variance of the aperture mass function
needs to be estimated by resampling the data over sufficiently large volumes that include
the inherent correlation structure. Crocce et al. (2010) and Smith & Marian (2011) have
shown that the 3D halo mass function variance is dominated by Poisson noise at high
halo masses, and that a jackknife-type resampling can recover the true variance accu-
rately. For this reason, we use bootstrap resampling to divide the projected mass maps
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into (n, n) subregions. We then compute the aperture mass function variance for 10, 000
halo samples generated by including n2 = 25 randomly chosen, possibly repeating, sub-
areas. This way, we can estimate the sample variance of the aperture mass function for
cluster samples obtained from an equal simulation volume.

We show the bootstrapped fractional aperture mass variance in Fig. 4.10. We also
include the Poisson expectation based on the number of haloes at fixed aperture mass.
We find that the sample variance of the aperture mass function exceeds the Poisson ex-
pectation by up to a factor of ≈ 1.5, except for the lowest- and highest-aperture mass
haloes. We will use the bootstrapped variance estimates for the individual simulations
when fitting the aperture mass function emulator in the following Section.

4.4.2 Emulating the aperture mass function

We construct an emulator to infer the general cosmology dependence of the aperture mass
function from the available grid of cosmological parameters. Usually, emulators fit some
compressed form of the true underlying data, such as the cosmology dependence of ei-
ther the parameters of a theoretical fitting function (e.g. McClintock et al., 2019) or the
weights of the principal components of either the data or some functional approximation
(e.g. Bocquet et al., 2020). However, all these methods assume that those compressed
models accurately capture the underlying halo mass function behaviour for all masses.
While this assumption can be checked as long as haloes are abundant, it might not hold
in the exponentially declining tail which contains important cosmological information,
potentially resulting in confident but inaccurate predictions.

We therefore fit a Gaussian process directly to the simulated data at each redshift in-
dependently, only assuming Gaussian correlations in the latent function and a discrete
likelihood for the observed number counts. Previously, fitting a Gaussian process di-
rectly to large datasets with non-Gaussian likelihoods was not feasible: there was no well-
understood and unified way to both account for general, non-Gaussian likelihoods, and
deal with the computationally intensive inversion of the covariance matrix in the model
optimization. However, since the work of Titsias (2009) and Hensman et al. (2014), this
is no longer an issue. We gain a subtle but important advantage by modelling the num-
ber counts directly with a Gaussian process: the high-mass tail of cosmological models
with no observed clusters can be fit consistently with the correct likelihood and without
assuming any functional form for the aperture mass function.

We provide a detailed description of our emulator implementation and the perfor-
mance in Appendices 4.B and 4.C, respectively, but detail the main insights here. Briefly,
we will fit the normalized aperture mass function

f(xi = (∆M,Ωi)
T ) = log n(∆M,Ωi)− log〈n(∆M,Ωi)〉Ω , (4.7)

to reduce the dynamic range and the impact of the peak in the aperture mass function
on the emulator calibration. We have checked that training the emulator on nV and nΩ,
defined in Eqs. (4.4) and (4.5), respectively, gives consistent performance. Then, we
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assume a Gaussian process prior for the mean and the variance of f

E[f(xi)] = µ (4.8)
Var[f(xi), f(xj)] = k(xi,xj) , (4.9)

where k(xi,xj) is the covariance function between inputs xi and xj . We will be using
the radial basis function (or squared exponential) kernel for k:

k(x,x′) = σ2
d∏
i=0

exp

(
− ((x)i − (x′)i)

2

2`2i

)
, (4.10)

where i runs over the d = 9 dimensions of x and each dimension has its own covariance
lengthscale `i, resulting in hyperparameters θ = (µ, σ2, `). The hyperparameters, θ,
can be optimized to accurately capture the cosmology dependence of the aperture mass
function, assuming the likelihood of the simulated number counts, (xi, Ni), given the
model, f(xi).

We leave the details of optimizing this Gaussian process to Appendix 4.B, but the
scalable, variational inference method developed by Titsias (2009) and Hensman et al.
(2014) allows us to fit directly to the large, simulated dataset, assuming a discrete likeli-
hood that naturally matches the simulated number counts, meaning that we do not need
to assume any functional form for the aperture mass function.

We find that the Gaussian process emulator is able to predict most of the simulated
aperture mass functions to within ±2 per cent in the high-abundance regime and to within
the shot-noise for high-aperture masses (see Fig. 4.15 in Appendix 4.C). The emulator
also generalizes well in a leave-one-out-test as it is generally able to predict most sim-
ulations within ±5 per cent when not including them in the emulator calibration (see
Fig. 4.16 in Appendix 4.C).

At this point, we are satisfied with the emulator performance in capturing the underly-
ing cosmology dependence of the aperture mass function. However, we want to reiterate
that our goal has not been to calibrate the emulator to the level of accuracy required for
future surveys. Such an emulator needs to be calibrated specifically to the survey specifi-
cations such as the chosen angular aperture size, the probed redshift range, the selection
function of the observable, and needs to compute the aperture masses from the full past
lightcone. We require the emulator only to be able to investigate how varying individual
cosmological parameters affects the aperture mass function.

4.4.3 Cosmology dependence of the aperture mass function

We can use the calibrated emulator to investigate the cosmological sensitivity of the aper-
ture mass function. Previously, Marian et al. (2009, 2010) showed that the aperture mass
function for a filter that optimizes the cluster SNR, closely follows the cosmology de-
pendence of the 3D mass function, suggesting a similar cosmology sensitivity. However,
their chosen filter required assuming a typical density profile for clusters, which we have
been careful to avoid.
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Fig. 4.11 shows the sensitivity of the volumetric aperture mass function to changes
in individual cosmological parameters (different panels) and the aperture (different line
thickness) at fixed redshift. We reiterate that the full cosmology dependence of the ob-
served aperture mass function also depends on the geometry through the volume of the
past lightcone, as Eq. (4.6) shows. We adopt a fiducial Planck Collaboration et al. (2020,
hereafter Planck20) cosmology with

Ω ≡ {Ωm,Ωb,Ων , σ8, h, ns, w0, wa}
= {0.315, 0.049, 0.0014, 0.811, 0.674, 0.965,−1, 0} , (4.11)

with Ων corresponding to Mν = 0.06 eV, and separately vary each of the cosmological
parameters by ±1 and 5 per cent (different colours). For wa, we assume fixed values
±0.01 and ±0.05, since the fiducial value is 0. In agreement with the 3D halo mass
function, to which we explicitly compare in Fig. 4.13, the shape of the aperture mass
function at fixed redshift is most sensitive to changes in σ8 and Ωm, with a ±1 per cent
change in σ8 (Ωm) resulting in > 10 per cent (up to 5 per cent) changes in the aperture
mass function. Besides Ωm and σ8, the aperture mass function is also sensitive to both
the dimensionless Hubble parameter, h, and the scalar spectral index of the linear power
spectrum, ns. The equation-of-state parameters, w0 and wa, mainly affect the abundance
of high-aperture mass haloes. Increasing the aperture size shifts the aperture mass func-
tion to larger aperture masses. However, apart from this approximate shift for different
aperture sizes, the amplitude of the aperture mass function also changes noticeably for Ωb

and Ων .
In Fig. 4.12, we show the cosmology sensitivity of the aperture mass function for

masses measured within R1 = 1 cMpc at different redshifts. At all redshifts, the aperture
mass function is most sensitive to changes in σ8, Ωm, and h. For most cosmological
parameter changes, the abundance changes more strongly at higher redshifts. Noticeably,
the dark energy equation-of-state parameters affect the halo abundance more significantly
at higher redshifts. The peak of the aperture mass function, which is indicated with a
cross, shifts to higher aperture masses with decreasing redshift.

The dominant cosmology dependence of the aperture mass function can be understood
from the 3D halo mass function, since

n(∆M, z|Ω) =

∫ ∞

0

dm200c n(m200c, z|Ω)P (∆M, z|m200c,Ω) . (4.12)

The large scatter in aperture mass at fixed 3D halo mass does cause differences in the
detailed mass dependence. In Fig. 4.13, we compare the cosmology sensitivity of the
3D halo mass function (dash-dotted lines) and aperture mass function (solid lines) for
the median aperture mass at m200c for all cosmologies in the hypercube, 〈∆M |m200c〉Ω.
The individual cosmological parameters vary by ±5 per cent around the Planck20 best-
fit parameters (coloured lines in the different panels). For the 3D halo mass function, the
peak height of haloes determines their abundance, with more significant peaks being less
abundant. Increasing σ8 while fixing the remaining cosmological parameters boosts the
average variance on all scales equally, which decreases the peak height at all halo masses
and results in an increased abundance, as can be seen in the top-right panel of Fig. 4.13.
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In the exponentially declining tail, the constant decrease in the peak height increases the
abundance more dramatically. The aperture mass function follows these trends.

When changing the other cosmological parameters, it is important to remember that
we fix σ8, implying that the initial normalization of the matter power spectrum, As, does
change. Fixing σ8 instead of As reduces the impact of changing the other cosmological
parameters on the mass function. Increasing Ωm in a flat universe will result in deeper
dark matter potential wells, a faster growth of structure, and a delayed onset of dark energy
domination. The peak height decreases for all haloes, resulting in higher abundances.
The top-left panel of Fig. 4.13 shows that the abundance of low-aperture mass haloes
changes less than the 3D halo mass function for low halo masses due to the increasing
incompleteness at fixed, low aperture mass (see Fig. 4.9). At high aperture masses the
large scatter in aperture mass at fixed m200c results in a larger sensitivity of the aperture
mass function compared to the 3D halo mass function due to the contribution of abundant
low-mass haloes.

Increasing h at fixed Ωm increases the density which results in faster structure for-
mation and makes haloes at fixed m200c more compact, decreasing their peak height and
increasing their abundance. The aperture mass function is significantly more sensitive to
changes in h than the 3D halo mass function. Increasing the scalar spectral index, ns, at
fixed σ8 shifts the power from large to small scales, resulting in more low-mass and fewer
high-mass haloes for both the 3D and the aperture mass function. Finally, increasing the
magnitude of the equation-of-state parameter of dark energy, w0, dampens the growth of
the most massive haloes, reducing their abundance. Again, the aperture mass function is
more sensitive to these changes than the 3D halo mass function.

Finally, in Fig. 4.14, we compare the volumetric mass functions, defined in Eq. (4.4)
(thin lines), to the observed mass functions including the cosmology-dependent volume
of the past lightcone, defined in Eq. (4.5) (thick lines), for both the 3D halo mass function
(dash-dotted lines) and the aperture mass function (solid lines). Changing the background
evolution of the Universe modifies the number of observed haloes per fixed solid angle,
dΩ, and redshift interval, dz, due to the change in the probed comoving volume. The
background evolution does not depend on σ8, ns, and Ωb (since Ωm is fixed).

The background evolution is most sensitive to changes in the Hubble parameter. In-
creasing (decreasing) h reduces (increases) the distance to redshift z. As a result, a fixed
survey area at redshift z will probe a smaller (larger) comoving volume. Hence, we would
observe fewer (more) haloes for a fixed volumetric number density. The bottom-left panel
of Fig. 4.14 shows that the decrease in the probed volume is larger than the increase in
the volumetric number density due to the increased matter density. Changing h results in
the largest difference between the observed and the volumetric mass functions, making
the 3D halo mass function more sensitive to changes in h, and the aperture mass function
less sensitive.

Increasing the matter density, Ωm, similarly reduces the probed volume for a fixed
survey area at fixed redshift. This suppresses the observed number density, nΩ, compared
to the volumetric number density, nV , for both the 3D halo mass function and the aperture
mass function. The aperture mass function is still more sensitive to changes in Ωm than
the 3D halo mass function. The comoving volume for a fixed area on the sky increases
(decreases) significantly when increasing (decreasing) the magnitude of w0, resulting in
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more (fewer) observed haloes. This geometric effect is stronger than the decrease (in-
crease) in the volumetric number density due to the less (more) efficient structure forma-
tion. Increasing (decreasing) wa decreases (increases) the magnitude of w(z) for z > 0,
which in turn lowers (raises) the observed number density compared to the volumetric
number density. The aperture mass function becomes less sensitive to changes in w0 and
wa. However, compared to the 3D halo mass function, the total sensitivity to changes in
wa remains higher and the sensitivity to w0 becomes similar.

Providing a detailed comparison between the performance of aperture masses and
3D halo masses in a cluster cosmology analysis is more complicated than investigating
the percentage differences in the mass functions given a difference in the cosmological
parameters. Eq. (4.1) shows that the number counts depend on the integral over the mass
function taking into account the uncertainty in the mass–observable relation. Even though
we have shown that the intrinsic measurement uncertainty in aperture mass measurements
is much lower than that in 3D halo mass inference, the total uncertainty in the mass–
observable relation still depends on the scatter between the survey selection observable
and the measured aperture or 3D mass. For surveys that do not select clusters based on
their weak lensing shear signal, the scatter in the observable at fixed aperture mass can still
result in a significant total uncertainty in the aperture mass–observable relation. Hence,
a comparison between 3D and aperture mass calibrations in a full cosmological analysis
also needs to take into account the survey observable.

In conclusion, the sensitivity of the aperture mass function to small changes in the
cosmological parameters opens the possibility of calibrating cluster masses with weak
lensing aperture masses, bypassing the modelling uncertainty introduced when deproject-
ing the observations.

4.5 Discussion

We have provided arguments for calibrating cluster masses with weak lensing aperture
masses. As long as we do not have predictions for the halo abundance directly as a func-
tion of the survey observable, such as the galaxy overdensity, the X-ray luminosity, or the
SZ signal, cluster cosmology needs to follow a two step process. Assuming that the selec-
tion function has been accounted for, the mass–observable relation needs to be calibrated,
and the cosmology dependence of the mass function needs to be understood. Eq. (4.1)
shows that the mass calibration requires both the calibration between the observable and
the mass inferred from observations, and the calibration between the inferred mass and
the theoretical mass used in the mass function.

To more closely match weak lensing observations, it makes sense to calibrate cluster
masses with the projected aperture mass, which can also be measured in simulations. The
mass calibration then separates cleanly into a purely observational relation between the
measured aperture mass and the observable, and a calibration between the theoretical and
the measured aperture mass. This clean separation does not hold for 3D cluster masses,
which can only be inferred by deprojecting the observations under the assumption of a
density profile. Any mismatch between the assumed and the true cluster density profile
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biases the inferred 3D masses. The large variation in the matter distribution along the
lines-of-sight to different clusters adds further uncertainty.

We showed that aperture masses correlate strongly with the 3D mass, albeit with large
scatter due to the matter along the line-of-sight. We found that the aperture masses can
be measured much more precisely than 3D masses, since the precision is only limited by
the shape noise of the background galaxies. Next, we calibrated an emulator to reproduce
the cosmology dependence of the aperture mass function, finding that it is also highly
sensitive to variations in the cosmological parameters. Now we will discuss some of
the difficulties that arise in cluster cosmology, and how they affect the aperture mass
specifically. We will also position our contribution within the wider literature.

4.5.1 Impact of the selection function
One vital ingredient of a cluster cosmology analysis that we did not discuss in this paper
is the selection function of the cluster sample. The completeness, i.e. the fraction of all
clusters that is detected, and the purity, i.e. the fraction of detections that are real clusters,
of the cluster sample should be as high as possible (e.g. Allen et al., 2011; Aguena &
Lima, 2018). We have studied the aperture mass function in the idealized setting of perfect
purity since we have centred directly on the known clusters in the simulations. Our halo
sample becomes increasingly incomplete for aperture mass bins that contain a significant
fraction of haloes with 3D masses near our selection limit, as can be seen from Fig. 4.9.
Future aperture mass function emulators should thus ensure that they can reliably measure
aperture masses for haloes with masses significantly below the expected detection limit
of the survey, which we were unable to do due to the downsampling inherent to the Mira–
Titan particle catalogues (although this is not a problem in principle for simulations).

Since haloes with masses below the mean expected mass at the observable selection
limit can scatter above the signal threshold, the completeness of the cluster sample near
the selection limit depends on the scatter of the mass–observable relation (e.g. Mantz,
2019). The main benefit of aperture masses is the ease with which they can be measured
both in simulations and in observations, which significantly decreases the intrinsic mea-
surement uncertainty in the mass calibration, P (Mobs|M), compared to 3D masses, as
we showed in Section 4.3.3. However, this gain can be lost if the observable used to select
clusters has a significantly larger scatter at fixed aperture mass compared to its scatter at
fixed 3D mass. Hence, aperture masses could greatly increase the performance of cluster
surveys based on observables that correlate with the aperture mass with small uncertainty.
This will be the case for observables that are more sensitive to projection effects, such as
the SZ signal (e.g. Hallman et al., 2007), galaxy overdensities (e.g. van Haarlem et al.,
1997; Erickson et al., 2011), and, naturally, the shear signal.

The purity of the halo sample will depend sensitively on the cluster detection method,
with shear-selected samples only reaching a maximum purity of ≈ 85 per cent since
chance line-of-sight alignments can generate a significant signal due to the broadness
of the lensing kernel (e.g. Hennawi & Spergel, 2005). The purity of other detection meth-
ods that are also susceptible to such projection effects, such as the SZ signal or the galaxy
overdensity, will need to be modelled in simulations. Baryonic observables that predom-
inantly trace the inner cluster density profile, such as the X-ray luminosity, on the other
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hand, should reach higher purity (e.g. Voit et al., 2001). However, samples selected from
these observables are necessarily more sensitive to the halo density profile, introducing
possible detection biases near the selection limit (e.g. Chon & Böhringer, 2017).

We highlight one final important point about the synergy between observed and simu-
lated aperture mass measurements. Since the detection bias for observables such as the SZ
signal and the galaxy overdensity is in large part due to projection effects (e.g. Shirasaki
et al., 2016; Zhang & Annis, 2022), this bias is naturally included in aperture masses
measured in simulations. Hence, emulators calibrated on a cluster sample generated by
mimicking the survey selection in the simulations will naturally include the survey de-
tection bias while providing aperture mass measurements that are directly comparable to
those measured observationally.

4.5.2 Impact of systematic uncertainties
In a realistic cosmological analysis, different observational systematic effects need to be
taken into account. Any weak lensing mass measurement will be sensitive to the system-
atic errors in the shape measurements, the redshift distribution of the sources, contamina-
tion of the lensing signal due to uncertainty in the photometric redshift determination of
cluster galaxies, and miscentring of the cluster (e.g. Von der Linden et al., 2014; Hoekstra
et al., 2015).

The main advantage of aperture masses over 3D masses is that no density profile needs
to be assumed in the analysis, eliminating the impact of this modelling uncertainty. The
aperture mass within R1 is actually measured from the lensing signal of galaxies out-
side R1, significantly reducing the impact of sources of systematic error near the cluster
centre, such as miscentring and contamination (e.g. Mandelbaum et al., 2010). The op-
timal choice of R1 balances the reduced contamination of the lensing signal by cluster
galaxies when increasing R1 against the increase in the statistical uncertainty due to the
reduced number of background galaxies. Since the bulk of the haloes have miscentring
radii< 0.2R500c (e.g. Saro et al., 2015; Bleem et al., 2020), apertures can be chosen large
enough such that the mass within the aperture should only be slightly affected, while
limiting the increased statistical uncertainty.

Another advantage stems from the fact that aperture masses can always be computed
unambiguously, even for triaxial and merging systems. As long as the choice of aperture
in the mass function and the observations is consistent, the mass measurement should
yield similar results. Moreover, since emulators can be calibrated for different aperture
sizes, the consistency of the inferred cosmology for an analysis using different apertures
can pinpoint possible biases in the cosmological analysis.

A limitation of our preliminary study is the fact that we did not construct convergence
maps from the full past lightcone. The lensing efficiency of matter structures at redshift zl
for source galaxies at a fixed redshift zs, ε(zl, zs) = DlDls/Ds, is very broad. This means
that matter over a significant range of redshifts can contribute to the lensing signal of a
given background galaxy. A full line-of-sight in simulation M000 with L = 2100 cMpc
at z = 0.5 corresponds to a redshift range z ≈ [0.2, 0.85]. Hence, projecting the mass
along the simulation volume at fixed z does not take into account the time evolution of
the included structures or the change in the angular diameter distance across the length
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of the box. As such, aperture mass functions should really be calibrated on simulation
lightcone outputs, not on single snapshots. This makes the analysis more complex since
the resulting lensing maps need to be reconstructed for different source redshifts, zs.

Finally, since we have used gravity-only simulations, we have not included the impact
of baryonic physics on the aperture mass function. For 3D halo mass functions, it is well
established that the mass of haloes with m200m,dmo . 1014.5 M� decreases significantly
due to galaxy formation physics processes (e.g. Velliscig et al., 2014). We expect baryonic
physics to also impact the cluster aperture mass measurements, albeit less significantly
due to the projected nature of the measurement (e.g. Debackere et al., 2021). We study
the impact of baryonic physics on the aperture mass measurements in a companion paper
Debackere et al. (2022).

4.5.3 Comparison to previous work
The abundance of clusters is a powerful probe of the cosmological evolution of the Uni-
verse, so an active effort is underway to minimize the impact of mass calibration uncer-
tainties. For example, Grandis et al. (2021) directly calibrate the mass–observable rela-
tion, P (O|M), using simulations. They generate lensing profiles from hydrodynamical
simulations which they fit with NFW density profiles with a fixed concentration and as-
suming a miscentring distribution. They then calibrate the resulting relation between the
best-fit NFW mass and the true mass of the matched cluster in DMO simulations. This
method then converts a weak lensing-inferred 3D halo mass into the 3D halo mass of
the matching DMO halo, allowing the use of 3D halo mass function emulators calibrated
on DMO simulations. This method is still explicitly limited by the scatter between the
inferred and the true 3D halo mass due to the assumed density profile.

Cromer et al. (2021) improve the accuracy of weak lensing-inferred 3D halo masses
by fitting the lensing shear with an emulated cluster density profile that includes a phe-
nomenological contribution due to baryons. Their model results in more accurate cluster
mass estimates, but, again, relies on the ultimately inaccurate assumption that the complex
cluster density profile can be modelled accurately with simplified, spherically symmetric
profiles.

Marian et al. (2009, 2010) carry out analyses that are the most similar to ours. They
generate lensing maps for different slabs in DMO simulations to which they apply a hi-
erarchical peak finder that extracts the aperture mass within a filter designed to optimally
detect the cluster signal. They show that the resulting peak abundance function has a
similar cosmological sensitivity as the 3D mass function. Similarly to us, they find that
the peak aperture masses show a large scatter at fixed halo mass. However, at the time
of their work, large suites of cosmological simulations and emulators were not yet avail-
able. Hence, they resorted to constructing an analytic framework to extract cosmological
information from weak lensing peak counts.

Another option is to neglect the cluster selection entirely and use the distribution of
shear peaks as a function of their signal-to-noise ratio to constrain the cosmology (see
e.g. Wang et al., 2009; Dietrich & Hartlap, 2010; Kratochvil et al., 2010). However,
since the evolution of clusters with time contains a wealth of cosmological information,
stronger cosmological constraints can be obtained by including redshift information for
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the observed peaks, as suggested by Hennawi & Spergel (2005). The main difficulty with
these shear-selected analyses is that a significant fraction of the high significance peaks
arises from chance line-of-sight alignments due the broadness of the lensing kernel (e.g.
Hennawi & Spergel, 2005; Yang et al., 2011). In recent studies, Hamana et al. (2015),
Shan et al. (2018) and Martinet et al. (2018) have used peaks identified from weak lensing
observations to constrain the matter density and clustering of the Universe.

We locate our work in between peak abundance studies and cluster analyses based on
3D cluster masses: our method corresponds to an idealized survey that selects clusters
based on a secondary observable that perfectly correlates with the 3D halo mass, while
the cluster masses are determined through aperture masses which would in practice be
derived from weak lensing observations. Hence, our work is very similar to a standard
cluster cosmology analysis, as worked out in detail by Mantz et al. (2010a,b), but now
using the aperture mass to calibrate the cluster masses. In such an analysis, one assumes
a functional form for the mass–observable relation, which gets calibrated simultaneously
with the cosmology-dependent aperture mass function by forward modelling the observed
cluster abundance as a function of the observable signal, taking into account the selection
function of the observable for a given survey. Importantly, any cosmology dependence in
the mass–observable relation needs to be taken into account implying that the cosmology
dependence of both P (∆Mobs|∆M,Ω, z) and P (O|∆Mobs,Ω, z) need to be calibrated
from mock observations in realistic cosmological and, preferably, hydrodynamical simu-
lations (e.g. Dietrich et al., 2019).

4.6 Conclusions

We have argued that cluster cosmology analyses can decrease their sensitivity to mod-
elling assumptions by using weak lensing-like excess aperture mass measurements to
calibrate cluster masses. As long as predictions for the cosmology-dependent abundance
of clusters as a function of their observed signal are not available, cluster cosmology nec-
essarily relies on an accurately determined and well-understood mass–observable relation
and a theoretical prediction for the cosmology dependence of the mass function. Only
suites of large-volume simulations with varying cosmological parameters can predict the
mass function at the accuracy required for future surveys. If we are using simulations,
however, we might as well predict the aperture mass function instead of (or along with)
the 3D halo mass function.

Aperture masses are a natural choice for cluster mass calibrations since they can be
measured accurately both in observations and in simulations, with an uncertainty deter-
mined solely by the background galaxy shape noise in the weak lensing observations. In
contrast, 3D halo masses can only be inferred by deprojecting observations assuming a
density profile. The mismatch between the assumed density profile and the true, triaxial
halo density profile, including substructure and correlated matter, and the neglected mat-
ter along the line-of-sight, introduce a model-dependent bias and scatter in the inferred
mass.

We used the Mira–Titan suite of large-volume, DMO simulations to measure the ex-
cess projected mass of clusters within fixed aperture sizes ofR1 = 0.5, 1.0, 1.5 cMpc with
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a background subtraction calculated in an outer annulus between 2 < R/cMpc < 3. We
studied the behaviour of these aperture masses and the corresponding aperture mass func-
tion. We showed that the aperture mass correlates strongly with the 3D halo mass, with
aperture masses being larger (smaller) than the halo virial mass when measured within
apertures larger (smaller) than the virial radius (Fig. 4.5). The aperture mass exhibits
large scatter at fixed halo mass when the halo virial radius is not significantly larger than
the aperture due to the contribution of matter outside the halo (Fig. 4.6). Advantageously,
the uncertainty in the measurement of the aperture mass is between 2 to 3 times smaller
than that of the inferred 3D mass (Fig. 4.7). This is because the measurement uncertainty
depends only on the background galaxy shape noise in the weak lensing observations, and
since line-of-sight structures contribute to the aperture mass signal whereas they introduce
noise in the deprojection for 3D masses.

We did not investigate the scatter between the survey observable and the aperture
mass since the Mira–Titan suite does not include hydrodynamics to model the complex
baryonic processes related to galaxy formation. However, we argued that observables
such as the SZ signal, the galaxy overdensity, and the shear should correlate strongly
with aperture masses with small uncertainty, since they are also sensitive to line-of-sight
matter structures beyond the halo. X-ray luminosities, on the other hand, due to their steep
scaling with the 3D halo mass, may show large scatter at fixed aperture mass, similarly
to the 3D halo mass. The uncertainty between the observable and the measured aperture
mass will ultimately determine the scatter in the mass–observable relation, given the small
intrinsic scatter of the measured aperture mass with respect to the true aperture mass.
Investigating the uncertainty between the observable and the measured aperture mass in
hydrodynamical simulations is a fruitful direction for future research.

We used the Mira–Titan hypercube of DMO simulations to calibrate a Gaussian pro-
cess emulator to directly emulate the cosmology dependence of the aperture mass function
given the simulated number counts and their likelihood, i.e. without assuming an under-
lying, dimensionality-reducing model for the simulation data. This is possible thanks to
advances in Gaussian process modelling, allowing for the efficient optimization of large
datasets and non-Gaussian likelihoods. We argued that this gives an advantage over usual
emulators since the high-mass tail of the emulator will only depend on the simulation data
and the assumed likelihood, not on the assumed mass dependence for the assumed data
model. We showed that the emulator can accurately reproduce most of the simulations to
within 2 per cent or within the bootstrapped variance at high-aperture masses (Fig. 4.15).

Isolating the influence of structure formation on the halo abundance, we found that,
compared to the 3D halo mass function, the aperture mass function is similarly sensitive
to changes in σ8 and ns, and more sensitive to changes in Ωm, h, w0 and wa (Fig. 4.13).
Even ±1 per cent changes in Ωm, σ8, and h result in > 10 per cent changes in the ex-
pected halo number density at fixed redshift (Fig. 4.11). Including the cosmology depen-
dence of the volume probed by the past lightcone, we found that, compared to the 3D
halo mass function, the aperture mass function is more sensitive to changes in Ωm and
wa, similarly sensitive to changes in σ8 and w0 and slightly less sensitive to changes in h
(Fig 4.14). We stress that a detailed comparison between the performance of the aperture
mass function compared to the 3D halo mass function also needs to take into account
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the survey observable. Importantly, since emulators can easily be calibrated for multi-
ple apertures, the consistency of the inferred cosmology for an analysis using different
apertures can provide useful insights into possible biases in the cosmological analysis.

In the future, it will be possible to emulate cluster surveys using lightcones output
from hydrodynamical simulations, mimicking the observable measurement and selection
directly while skipping the mass calibration step (given that one can trust the simulation
predictions at the accuracy required for future surveys, or marginalize over the simulation
uncertainty). To validate the fidelity of such simulations, aperture masses provide the best
choice to test the simulated mass–observable relations. Since no such simulations are
currently available, however, we argue that our approach provides a valuable intermediate
step. Emulators of the aperture mass function, which is closer to the data than the 3D
halo mass function, can already be trained, minimizing the impact of uncertain modelling
assumptions on cluster cosmology analyses.
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4.A Weak lensing measurements of the aperture mass
In this appendix we show how aperture mass measurements from weak lensing observa-
tions relate directly to aperture masses measured from simulations. Overdensities in the
mass distribution modify the light propagation from background galaxies depending on
the projected distance from the overdensity, distorting the galaxy shapes. By measuring
the average shape distortion of a large sample of background galaxies within some annu-
lar region, we can derive the total mass contained within that annulus without making any
assumptions about the mass distribution.

In general, weak lensing-derived aperture masses are filtered measurements of the
surface mass density centred on a position θ0, with a filter function U(θ − θ0). We
follow the notation of Bartelmann & Schneider (2001) and write

Map(θ0) =

∫
d2θU(θ − θ0)κ(θ) . (4.13)

We have introduced the convergence

κ(θ) =
Σ(θ)

Σc
, (4.14)

where the critical surface mass density Σc, which sets the magnitude of the lensing, is a
physical constant given by

Σc =
c2

4πG

1

βDl
, (4.15)

which depends on the angular diameter distance to the lens,Dl, and the lensing efficiency,
β = max(0, Dls/Ds), for a source at angular diameter distance Ds from the observer and
Dls from the lens. There is no lensing signal (β = 0) when the source is in front of the
lens, i.e. Dls < 0.

For a radial, compensated filter obeying the relation∫
dθ θU(θ) = 0 , (4.16)

Eq. (4.13) can be rewritten in terms of the tangential shear as

Map(θ0) =

∫
d2θQ(|θ − θ0|)γT(θ|θ0) , (4.17)

where the tangential shear is defined as

γT(θ) =
Σ̄(≤ θ)− Σ(θ)

Σc
, (4.18)

and the new filter function Q(θ) is related to the surface mass density filter U(θ) as

Q(θ) =
2

θ2

∫ θ

0

dθ′ θ′U(θ′)− U(θ) . (4.19)
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Choosing filters U(θ) that are constant within some small inner aperture θ1 will result in
Q(θ) = 0 for θ < θ1. Similarly, compensated filters with U(θ) = 0 outside θm give
Q(θ) = 0 for θ > θm. Hence, aperture masses can be measured from the tangential shear
within some finite region θ1 < θ < θm for carefully chosen filters U . The region can
be chosen with θ1 large enough to avoid the contamination from the densely populated
cluster core and, importantly, to ensure measurements within the weak lensing regime.
Generally, gravitational lensing does not measure the tangential shear directly, but is in-
stead sensitive to the reduced shear

gT(θ) =
γT(θ)

1− κ(θ)
. (4.20)

However, if θ1 is chosen large enough, then κ(θ) � 1 and the weak lensing assumption
gT ≈ γT holds.

Since galaxy ellipticities are an unbiased estimator of the local shear field in the weak
lensing regime, the aperture mass can be estimated directly by summing over the observed
galaxy ellipticities (Schneider, 1996). Assuming the mean number density of lensed back-
ground galaxies, n̄gal, we get

Map(θ0) =
1

n̄gal

∑
i

Q(|θi − θ0|)γT(θi) . (4.21)

The uncertainty in this aperture mass measurement depends only on the shape noise due
to the finite number of galaxies sampling the shear field. For an average uncertainty σgal
in the shear measurement γT of an individual galaxy, and a background galaxy number
density n̄gal, the uncertainty in Map is

σ2
Map(θ0)

=
σ2
gal

n̄gal

∑
i

Q2(|θi − θ0|) . (4.22)

The aperture masses that we have used in this paper are directly related to the ζc-
statistic, introduced by Clowe et al. (1998), which can be measured from the tangential
shear as

ζc(θ1) = 2

∫ θ2

θ1

d ln θ〈γT〉+
2

1− θ22/θ
2
m

∫ θm

θ2

d ln θ〈γT〉 . (4.23)

We have introduced the tangentially averaged tangential shear, 〈γT〉, defined as

〈γT〉(θ) =
1

2π

∮
dφγT(θ, φ) . (4.24)

Eq. (4.23) implies a filter function

Qζc(θ) =


1
πθ2 for θ1 < θ ≤ θ2
1
πθ2

θ2m
θ2m−θ22

for θ2 < θ ≤ θm

0 elsewhere .

(4.25)

We can readily obtain ∆M from ζc as

∆M(< θ1|θ2, θm) = Σcζc(< θ1)πθ
2
1 . (4.26)
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4.B Scalable Gaussian processes for non-Gaussian
likelihoods

We start by introducing our notation. For each of the 100 cosmologies, Ωi, simulated in
Mira–Titan, we have calculated the aperture mass function n(∆M,Ωi) on a log-spaced
grid of 50 points with log10 ∆M/M� ∈ [13.5, 15.5] for redshifts z ∈ {0.1, 0.24, 0.43,
0.66, 1.0, 1.6, 2.0}. For a set of input locations and observations {(xi, Ni)|i = 1, . . . , n},
with n = 100 × 50 (100 cosmologies with 50 mass bins each), we group the 1 × d-
dimensional input vectors xTi containing the cosmological parameters and the mass bin,
into the rows of the n × d matrix X, i.e. Xi = xTi , and the measured number counts
for each redshift zj into the n-dimensional vector Nj . We will drop the subscript j in
what follows, since the procedure will be the same for each redshift with only the input
measurements differing.

Given the large dynamic range and the peaked nature of the aperture mass function,
we do not model the number counts directly. Instead, we predict the number density
normalized to the mean value over all cosmologies in the grid

f(xi) = log n(xi)− log〈n(∆Ml)〉Ω , (4.27)

with xTi = (ΩT
k ,∆Ml), a vector containing the aperture mass for different cosmolo-

gies. We stress that a single cosmology, Ωk, has 50 mass bins, ∆Ml, and we normalize
the aperture mass function with the mean over all cosmologies for each mass bin. This
normalization reduces the dynamic range of the latent function f(xi) to values approxi-
mately between -1 and 1. We can easily recover the predicted number counts from f(xi)
by converting it to n(xi) using Eq. (4.27), and multiplying by the volume element and the
bin-spacing in ∆M . As long as the mean number density 〈n(Ml)〉Ω > 0 in Eq. (4.27), the
high-mass tail of cosmological models with no observed clusters can be fit consistently
with the correct likelihood and without assuming any functional form for the aperture
mass function.

To fit this model to the simulated mass functions, we need to assume the likelihood of
the simulated data. Since the number counts are discrete observations with exponential
cosmology sensitivity in the low-number count, high-mass tail, we cannot assume a Gaus-
sian likelihood that does not accurately describe low number counts. We cannot assume a
Poisson likelihood either, since, as shown in Fig. 4.10, the dispersion of the aperture mass
function exceeds the Poisson value. Hence, we assume a negative binomial likelihood
for the data Ni given the model f(xi). The probability density function of the negative
binomial distribution can be written in terms of the mean, µ, and the variance, αµ, where
α > 1 captures the overdispersion compared to the Poisson distribution. In our case, we
write the likelihood of the simulated number counts, Ni, given the model, f(xi), as

p(Ni|f(xi)) = NB(Ni|N(xi), αi) , (4.28)

whereN(xi) is the number of haloes inferred from f(xi), and αi is calculated as the ratio
between the bootstrapped variance and the observed number of haloes in the mass bin.
Standard Gaussian processes cannot be solved analytically for data with non-Gaussian
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likelihoods, so we will use the approximate, variational inference Gaussian process
method from Hensman et al. (2014) and implemented in GPyTorch3 (Gardner et al.,
2021).

The Gaussian process assumption models the latent function in Eq. (4.27) as (follow-
ing the notation of Rasmussen & Williams, 2006)

f(x) ∼ GP(µ, k(x,x′|θ)) , (4.29)

which is shorthand for

E[f(x)] = µ , (4.30)
Var[f(x), f(x′)] = k(x,x′|θ) , (4.31)

and means that the values of f are fully determined by the mean, µ, and the covariance
function k(x,x′|θ) between different inputs x and x′. We will be using the radial basis
function (or squared exponential) kernel for k:

k(x,x′|θ) = σ2
d∏
i=0

exp

(
− ((x)i − (x′)i)

2

2`2i

)
, (4.32)

where i runs over the d = 9 dimensions of x and each dimension has its own covariance
lengthscale `i, resulting in hyperparameter θ = (µ, σ2, `).

The power of Gaussian process regression stems from the conditioning property of
Gaussian distributions. In what follows, we assume µ = 0 for simplicity. Given the
assumed joint Gaussian distribution between function values at X and X∗, p(f , f∗), which
we can write as

p(f , f∗) = p

([
f
f∗

])
= N

([
0
0

]
,

[
KXX KXX∗

KX∗X KX∗X∗

])
, (4.33)

the conditional distribution p(f∗|f) is a new Gaussian distribution given by

p(f∗|f , θ) = N
(
KX∗XK

−1
XXf ,KX∗X∗ − KX∗XK

−1
XXKXX∗

)
. (4.34)

Here we have introduced the n × n covariance matrix KXX, with (KXX)ij = k(xi,xj)
and k given by Eq. (4.32), containing the covariance between different input points in X.
Importantly, the probability distribution of f∗ for an arbitrary input location X∗ depends
solely on the finite set of measured inputs X. Clearly, the accuracy of the prediction f(x∗)
depends on the distance to the nearest measured input x in X and the lengthscale hyper-
parameter `, with the function values f∗ regressing to the mean 0 and prior uncertainty
k(x∗,x∗) for Kx∗X → 0T . We can use p(f∗|f , θ) to predict N(X∗).

The optimal hyperparameters, θ, for the simulated data, N, are found by maximizing

p(θ|N) =
p(θ)p(N|θ)
p(N)

. (4.35)

3https://github.com/cornellius-gp/gpytorch

https://github.com/cornellius-gp/gpytorch
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where we introduced the marginal likelihood

p(N|θ) =
∫
p(N|f)p(f |θ)df , (4.36)

which cannot be solved analytically in the case of a negative binomial likelihood.
This standard Gaussian process encounters two major difficulties. First, the K−1

XX-
term in Eq. (4.34) becomes computationally expensive for datasets with large n. Second,
non-Gaussian likelihoods require approximations to optimize Eq. (4.35), since no closed-
form analytical solution exists. Both of these problems have been solved by the sparse
method using inducing variables and the variational free energy as introduced by Titsias
(2009) and applied to non-Gaussian likelihoods by Hensman et al. (2014) and formalized
by Matthews et al. (2016). We will briefly introduce the necessary ingredients for this
method.

The idea behind the method of Titsias (2009) is to introduce both an extra set of
m� n inducing (or pseudo) inputs Z of the Gaussian process such that f(Z) ≡ u and an
approximate distribution over these function values, qψ(u). The inducing point locations
Z and the parameters ψ of the approximate distribution family will be chosen in such a
way that they optimally capture the true posterior probability of the Gaussian process, i.e.
qψ(f) ' p(f |N). Assuming a Gaussian distribution for q(u) with

qψ(u) = N (m,S) , (4.37)

we get ψ = (m,S) and we calculate the full approximate distribution as

qψ(f ,u) = p(f |u)qψ(u) . (4.38)

The optimization of (Z,m,S) now needs to ensure that

p(f |N) '
∫
p(f |u)q(u)du

m p(f |u) = N (KXZK
−1
ZZu,DXX)

= N (KXZK
−1
ZZm,DXX + KXZK

−1
ZZSK

−1
ZZKZX) , (4.39)

with DXX = KXX − KXZK
−1
ZZKZX, due to the conditioning property of Eq. (4.34) (see

Chapter 4.3 of Matthews, 2017 for detailed explanations). Evaluating this expression
only requires the inverted m ×m matrix K−1

ZZ , significantly reducing the computational
cost of making model predictions.

To determine the optimal values (Z,m,S), we minimize the difference between
the approximate distribution qψ(f ,u) and the model posterior p(f ,u|N) through the
Kullback-Leibler (KL) divergence

KL[q(f ,u)||p(f ,u|N)] = −
∫
q(f ,u) log

(
p(f ,u|N)

q(f ,u)

)
dfdu . (4.40)

Defining this equation as K, we use Bayes’ theorem to rewrite

p(f ,u|N) =
p(N|f)p(f |u)p(u)

p(N|θ)
, (4.41)
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making use of the fact that the observations are only conditionally dependent on their
corresponding function values f . Also filling in Eq. (4.38), we then find

K =−
∫
p(f |u)q(u) log

(
p(N|f)p(u)
p(N|θ)q(u)

)
dfdu

=−
∫
q(f) log p(N|f)df +

∫
p(f |u)q(u) log p(N|θ)dfdu

+

∫
p(f |u)q(u) log

(
q(u)

p(u)

)
dfdu

K = log p(N|θ)− Eq(f) [log p(N|f)] +KL[q(u)||p(u)] . (4.42)

We can rearrange terms in this expression and use the fact that the KL divergence is
strictly positive to arrive at the variational evidence lower bound (ELBO), which provides
a lower bound on the marginal likelihood—also called the model evidence—as the name
suggests

log p(N|θ) ≥ LELBO = Eq(f) [log p(N|f)]−KL[q(u)||p(u)] . (4.43)

Equality for this equation holds exactly when Eq. (4.40) equals zero, which is the case
when q(f ,u) = p(f ,u|N). Assuming no covariance between fi and Nj 6=i, the likelihood
factors and we have

LELBO =

n∑
i=1

Eq(fi) [log p(Ni|fi)]−KL[q(u)||p(u)] , (4.44)

where the first term consists of a sum of one dimensional integrals which can be computed
easily using Gauss-Hermite quadrature, and the second term is the KL divergence between
two multivariate Gaussian distributions, since p(u) = N (0,KZZ) due to the Gaussian
process assumption. Optimizing the ELBO is equivalent to maximizing the marginal log-
likelihood in Eq. (4.36).

We use the ApproximateGP4 implementation of GPyTorch to model and opti-
mize f(xi) with a custom implementation of the negative binomial likelihood between
N(xi) and the measurements number counts from the simulations, Ni.

4.C Emulator performance
The approximate Gaussian process does not sample the simulation inputs, but instead
optimizes the inducing point locations to accurately reproduce the posterior of the full
Gaussian process, i.e. Eq. (4.40). Hence, we will not trivially reproduce the simu-
lation aperture mass function. In our set-up, we first normalize the input parameters,
X, so that all parameters lie between 0 and 1. We use 500 inducing points in the
ApproximateGP variational distribution and minimize the marginal likelihood, ap-
proximated by the gpytorch.mlls.VariationalELBO, with the Adam optimizer

4https://docs.gpytorch.ai/en/latest/examples/04_Variational_and_
Approximate_GPs/Non_Gaussian_Likelihoods.html

https://docs.gpytorch.ai/en/latest/examples/04_Variational_and_Approximate_GPs/Non_Gaussian_Likelihoods.html
https://docs.gpytorch.ai/en/latest/examples/04_Variational_and_Approximate_GPs/Non_Gaussian_Likelihoods.html
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with a learning rate of 0.01 and mini-batches of 512 observations each. These settings re-
sulted in the fastest loss function minimization in a coarse, manual search for the optimal
parameter settings. We resample the initial hyperparameters 5 times from their uniform
priors to avoid local minima in the optimization. The emulator parameters are specified
by the inducing point locations, u, from Eq. (4.37) in Appendix 4.B, the Gaussian pro-
cess mean, µ, from Eq. (4.30), and the kernel lengthscales and normalization, ` and σ,
respectively, from Eq. (4.32). We choose uniform priors u ∼ U(0, 1), µ ∼ U(−1, 1),
` ∼ U(0.05, 2.0), and σ2 ∼ U(0.05, 2.0).

In the top row of Fig. 4.15, we show the resulting absolute deviation between the em-
ulated latent function, Eq. (4.27), and the normalized number density from the simulation
for different apertures and all cosmologies. The first three columns correspond to the
different aperture sizes at z = 0.43, and the final column shows the median and 16th to
84th percentile scatter for the emulator at different redshifts. For low aperture masses, the
emulator error rarely exceeds the 5 per cent difference level, and the bulk of the simula-
tions have residuals within ±2 per cent for the high abundance aperture mass regime. The
median deviation is biased slightly low for R1 = 1.0 cMpc, but it is within ±2 per cent
for all aperture sizes and all but the most massive haloes. The bulk of the simulations
lack haloes at the highest aperture masses resulting in the noticeable downturn. While the
fractional deviation becomes large, it is still within the variance of the simulations, which
is shown as the shaded region.

To quantify the quality of the fit in the high-mass tail, we show the equivalent Gaus-
sian significance of the deviation between the simulated data and the emulator. We
compute the significance by calculating the difference between the log-likelihood of the
measured number counts in the simulation given the predicted aperture mass function of
the emulator, lnL(Ntrue|Npred), and the log-likelihood of the emulated number counts,
lnL(Npred|Npred), and converting this probability ratio into the equivalent Gaussian con-
fidence interval nσ around the mean expectation, µ, given by lnP (µ + nσ) − lnP (µ).
We show the significance of the deviation between the emulator and the simulation data
in the bottom row of Fig. 4.15. Individual simulations behave erratically for low aperture
masses, rapidly oscillating between large and small significance, but rarely exceeding 3σ.
The median significance of all cosmologies, on the other hand, is consistently ≈ 1σ. For
the high-aperture mass tail, with large fractional deviations between the emulator and the
simulations, the significance of the deviation . 1σ, indicating that the emulator captures
the trends in the data to within the shot-noise.

Finally, we also perform a leave-one-out test on all simulations that are not at the edge
of the parameter space for any of the cosmological parameters. In Fig. 4.16, we show how
accurately the emulator predicts the aperture mass function for all left-out simulations.
We colour the lines for simulations with cosmological parameters that are within the first
or the last decile of the hypercube with different shades of blue and red, respectively,
with darker shades indicating more significant outliers. The emulator can predict the
outcome of most simulations to within ≈ 5 per cent up to the tail of the mass function.
The most significant deviations are found for simulations that are close to the edge of the
cosmological parameter space in one or more dimensions. The accuracy achieved by the
emulator in the leave-one-out test indicates that the emulator generalizes well beyond the
trained simulation inputs.
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Bhattacharya S., Heitmann K., White M., Lukić Z., Wagner C., Habib S., 2011, Astrophys. J., 732,

122 → p. 129
Bleem L. E., et al., 2020, Astrophys. J. Suppl. Ser., 247, 25 → p. 136, 160
Bocquet S., Heitmann K., Habib S., Lawrence E., Uram T., Frontiere N., Pope A., Finkel H., 2020,

Astrophys. J., 901, 5 → p. 129, 131, 132, 150
Bond J. R., Cole S., Efstathiou G., Kaiser N., 1991, Astrophys. J., 379, 440 → p. 129
Budzynski J. M., Koposov S. E., McCarthy I. G., Belokurov V., 2014, Mon. Not. R. Astron. Soc.,

437, 1362 → p. 144
Chon G., Böhringer H., 2017, Astron. Astrophys., 606, L4 → p. 160
Clowe D., Luppino G. A., Kaiser N., Henry J. P., Gioia I. M., 1998, Astrophys. J., 497, L61 → p.

166
Crocce M., Fosalba P., Castander F. J., Gaztañaga E., 2010, Monthly Notices of the Royal Astro-

nomical Society, 403, 1353 → p. 149
Cromer D., Battaglia N., Miyatake H., Simet M., 2021, arXiv:2104.06925 [astro-ph] → p. 161
DES Collaboration et al., 2020, Phys. Rev. D, 102, 023509 → p. 129
Debackere S. N. B., Schaye J., Hoekstra H., 2021, Monthly Notices of the Royal Astronomical

Society, 505, 593 → p. 130, 161
Debackere S. N. B., Hoekstra H., Schaye J., 2022, Monthly Notices of the Royal Astronomical

Society, p. stac2077 → p. 131, 161
Despali G., Giocoli C., Angulo R. E., Tormen G., Sheth R. K., Baso G., Moscardini L., 2016, Mon.

Not. R. Astron. Soc., 456, 2486 → p. 129
Diemer B., 2020, ApJ, 903, 87 → p. 129
Dietrich J. P., Hartlap J., 2010, Mon. Not. R. Astron. Soc., 402, 1049 → p. 161
Dietrich J. P., et al., 2019, Mon. Not. R. Astron. Soc., 483, 2871 → p. 162
Erickson B. M. S., Cunha C. E., Evrard A. E., 2011, Phys. Rev. D, 84, 103506 → p. 159
Gardner J. R., Pleiss G., Bindel D., Weinberger K. Q., Wilson A. G., 2021, arXiv:1809.11165 [cs,

stat] → p. 168
Grandis S., Bocquet S., Mohr J. J., Klein M., Dolag K., 2021, Monthly Notices of the Royal Astro-

nomical Society, 507, 5671 → p. 161
Habib S., et al., 2016, New Astronomy, 42, 49 → p. 131
Haiman Z., Mohr J. J., Holder G. P., 2001, Astrophys. J., 553, 545 → p. 128
Hallman E. J., O’Shea B. W., Burns J. O., Norman M. L., Harkness R., Wagner R., 2007, ApJ, 671,

27 → p. 159

http://dx.doi.org/10.1103/PhysRevD.98.123529
http://dx.doi.org/10.1146/annurev-astro-081710-102514
http://dx.doi.org/10.1051/0004-6361/201423616
http://dx.doi.org/10.1111/j.1365-2966.2012.21830.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21830.x
http://dx.doi.org/10.1093/mnras/stt2129
http://dx.doi.org/10.1093/mnras/stu107
http://dx.doi.org/10.1111/j.1365-2966.2011.20364.x
http://dx.doi.org/10.1016/S0370-1573(00)00082-X
http://dx.doi.org/10.1088/0004-637X/740/1/25
http://dx.doi.org/10.1088/0004-637X/732/2/122
http://dx.doi.org/10.3847/1538-4365/ab6993
http://dx.doi.org/10.3847/1538-4357/abac5c
http://dx.doi.org/10.1086/170520
http://dx.doi.org/10.1093/mnras/stt1965
http://dx.doi.org/10.1051/0004-6361/201731854
http://dx.doi.org/10.1086/311285
http://dx.doi.org/10.1111/j.1365-2966.2009.16194.x
http://dx.doi.org/10.1111/j.1365-2966.2009.16194.x
http://dx.doi.org/10.1103/PhysRevD.102.023509
http://dx.doi.org/10.1093/mnras/stab1326
http://dx.doi.org/10.1093/mnras/stab1326
http://dx.doi.org/10.1093/mnras/stac2077
http://dx.doi.org/10.1093/mnras/stac2077
http://dx.doi.org/10.1093/mnras/stv2842
http://dx.doi.org/10.1093/mnras/stv2842
http://dx.doi.org/10.3847/1538-4357/abbf52
http://dx.doi.org/10.1111/j.1365-2966.2009.15948.x
http://dx.doi.org/10.1093/mnras/sty3088
http://dx.doi.org/10.1103/PhysRevD.84.103506
http://dx.doi.org/10.1093/mnras/stab2414
http://dx.doi.org/10.1093/mnras/stab2414
http://dx.doi.org/10.1016/j.newast.2015.06.003
http://dx.doi.org/10.1086/320939
http://dx.doi.org/10.1086/522912


4

Halo aperture mass function 175

Hamana T., Sakurai J., Koike M., Miller L., 2015, Publications of the Astronomical Society of
Japan, 67, 34 → p. 130, 162

Heitmann K., et al., 2016, Astrophys. J., 820, 108 → p. 131, 132
Heitmann K., et al., 2019, ApJS, 244, 17 → p. 131
Hennawi J. F., Spergel D. N., 2005, Astrophys. J., 624, 59 → p. 130, 159, 162
Hensman J., Matthews A., Ghahramani Z., 2014, arXiv:1411.2005 [stat] → p. 150, 151, 168, 169
Henson M. A., Barnes D. J., Kay S. T., McCarthy I. G., Schaye J., 2017, Mon. Not. R. Astron. Soc.,

465, 3361 → p. 130
Hoekstra H., 2001, Astron. Astrophys., 370, 743 → p. 135, 143
Hoekstra H., 2003, Mon. Not. R. Astron. Soc., 339, 1155 → p. 143
Hoekstra H., Mahdavi A., Babul A., Bildfell C., 2012, Monthly Notices of the Royal Astronomical

Society, 427, 1298 → p. 136
Hoekstra H., Bartelmann M., Dahle H., Israel H., Limousin M., Meneghetti M., 2013, Space Sci.

Rev., 177, 75 → p. 128
Hoekstra H., Herbonnet R., Muzzin A., Babul A., Mahdavi A., Viola M., Cacciato M., 2015,

Monthly Notices of the Royal Astronomical Society, 449, 685 → p. 133, 136, 160
Köhlinger F., Hoekstra H., Eriksen M., 2015, Mon. Not. R. Astron. Soc., 453, 3107 → p. 128, 142
Kratochvil J. M., Haiman Z., May M., 2010, Physical Review D, 81, 043519 → p. 161
Lawrence E., et al., 2017, Astrophys. J., 847, 50 → p. 131
Le Brun A. M. C., McCarthy I. G., Melin J. B., 2015, Mon. Not. R. Astron. Soc., 451, 3868 → p.

145
Mandelbaum R., Seljak U., Baldauf T., Smith R. E., 2010, Monthly Notices of the Royal Astro-

nomical Society, 405, 2078 → p. 134, 160
Mantz A. B., 2019, Mon. Not. R. Astron. Soc., 485, 4863 → p. 129, 159
Mantz A., Allen S. W., Ebeling H., Rapetti D., Drlica-Wagner A., 2010a, Monthly Notices of the

Royal Astronomical Society, 406, 1773 → p. 162
Mantz A., Allen S. W., Rapetti D., Ebeling H., 2010b, Mon. Not. R. Astron. Soc., 406, 1759 → p.

162
Marian L., Smith R. E., Bernstein G. M., 2009, Astrophys. J., 698, 33 → p. 151, 161
Marian L., Smith R. E., Bernstein G. M., 2010, Astrophys. J., 709, 286 → p. 130, 131, 133, 151,

161
Martinet N., et al., 2018, Monthly Notices of the Royal Astronomical Society, 474, 712 → p. 130,

162
Matthews A. G. d. G., 2017, Thesis, University of Cambridge, doi:10.17863/CAM.25348 → p. 169
Matthews A. G. d. G., Hensman J., Turner R., Ghahramani Z., 2016, in Proceedings of the 19th

International Conference on Artificial Intelligence and Statistics. PMLR, pp 231–239 → p. 169
McClintock T., et al., 2019, Astrophys. J., 872, 53 → p. 129, 150
Nishimichi T., et al., 2019, Astrophys. J., 884, 29 → p. 129
Oguri M., Hamana T., 2011, Mon. Not. R. Astron. Soc., 414, 1851 → p. 130
Planck Collaboration et al., 2020, Astron. Astrophys., 641, A6 → p. 152, 153, 154, 155, 157
Pratt G. W., Arnaud M., Biviano A., Eckert D., Ettori S., Nagai D., Okabe N., Reiprich T. H., 2019,

Space Science Reviews, 215, 25 → p. 128
Press W. H., Schechter P., 1974, Astrophys. J., 187, 425 → p. 129
Rasmussen C. E., Williams C. K. I., 2006, Gaussian Processes for Machine Learning. Adaptive

Computation and Machine Learning, MIT Press, Cambridge, Mass → p. 168
Reblinsky K., Bartelmann M., 1999, Astron. Astrophys., 345, 1 → p.
Saro A., et al., 2015, Monthly Notices of the Royal Astronomical Society, 454, 2305 → p. 136,

160
Sartoris B., et al., 2016, Mon. Not. R. Astron. Soc., 459, 1764 → p. 128

http://dx.doi.org/10.1093/pasj/psv034
http://dx.doi.org/10.1093/pasj/psv034
http://dx.doi.org/10.3847/0004-637X/820/2/108
http://dx.doi.org/10.3847/1538-4365/ab3724
http://dx.doi.org/10.1086/428749
http://dx.doi.org/10.1093/mnras/stw2899
http://dx.doi.org/10.1051/0004-6361:20010293
http://dx.doi.org/10.1046/j.1365-8711.2003.06264.x
http://dx.doi.org/10.1111/j.1365-2966.2012.22072.x
http://dx.doi.org/10.1111/j.1365-2966.2012.22072.x
http://dx.doi.org/10.1007/s11214-013-9978-5
http://dx.doi.org/10.1007/s11214-013-9978-5
http://dx.doi.org/10.1093/mnras/stv275
http://dx.doi.org/10.1093/mnras/stv1852
http://dx.doi.org/10.1103/PhysRevD.81.043519
http://dx.doi.org/10.3847/1538-4357/aa86a9
http://dx.doi.org/10.1093/mnras/stv1172
http://dx.doi.org/10.1111/j.1365-2966.2010.16619.x
http://dx.doi.org/10.1111/j.1365-2966.2010.16619.x
http://dx.doi.org/10.1093/mnras/stz320
http://dx.doi.org/10.1111/j.1365-2966.2010.16993.x
http://dx.doi.org/10.1111/j.1365-2966.2010.16993.x
http://dx.doi.org/10.1111/j.1365-2966.2010.16992.x
http://dx.doi.org/10.1088/0004-637X/698/1/L33
http://dx.doi.org/10.1088/0004-637X/709/1/286
http://dx.doi.org/10.1093/mnras/stx2793
http://dx.doi.org/10.17863/CAM.25348
http://dx.doi.org/10.3847/1538-4357/aaf568
http://dx.doi.org/10.3847/1538-4357/ab3719
http://dx.doi.org/10.1111/j.1365-2966.2011.18481.x
http://dx.doi.org/10.1051/0004-6361/201833910
http://dx.doi.org/10.1007/s11214-019-0591-0
http://dx.doi.org/10.1086/152650
http://dx.doi.org/10.1093/mnras/stv2141
http://dx.doi.org/10.1093/mnras/stw630


4

176 BIBLIOGRAPHY

Schneider P., 1996, Mon. Not. R. Astron. Soc., 283, 837 → p. 130, 134, 142, 166
Schneider P., Van Waerbeke L., Jain B., Kruse G., 1998, Mon. Not. R. Astron. Soc., 296, 873 → p.

135
Shan H., et al., 2018, Monthly Notices of the Royal Astronomical Society, 474, 1116 → p. 130,

162
Shirasaki M., Nagai D., Lau E. T., 2016, Monthly Notices of the Royal Astronomical Society, 460,

3913 → p. 160
Smith R. E., Marian L., 2011, Monthly Notices of the Royal Astronomical Society, 418, 729 → p.

149
Tinker J., Kravtsov A. V., Klypin A., Abazajian K., Warren M., Yepes G., Gottlöber S., Holz D. E.,

2008, Astrophys. J., 688, 709 → p. 129
Titsias M., 2009, in Proceedings of the Twelth International Conference on Artificial Intelligence

and Statistics. PMLR, pp 567–574 → p. 150, 151, 169
Upadhye A., Biswas R., Pope A., Heitmann K., Habib S., Finkel H., Frontiere N., 2014, Phys. Rev.

D, 89, 103515 → p. 132
Velliscig M., van Daalen M. P., Schaye J., McCarthy I. G., Cacciato M., Le Brun A. M., Vecchia

C. D., 2014, Mon. Not. R. Astron. Soc., 442, 2641 → p. 130, 161
Voit G. M., Evrard A. E., Bryan G. L., 2001, ApJ, 548, L123 → p. 160
Von der Linden A., et al., 2014, Mon. Not. R. Astron. Soc., 439, 2 → p. 136, 160
Wang S., Haiman Z., May M., 2009, The Astrophysical Journal, 691, 547 → p. 161
Wang C., et al., 2018, Monthly Notices of the Royal Astronomical Society, 475, 4020 → p. 144
Yang X., Kratochvil J. M., Wang S., Lim E. A., Haiman Z., May M., 2011, Phys. Rev. D, 84,

043529 → p. 162
Zhang Y., Annis J., 2022, Monthly Notices of the Royal Astronomical Society: Letters, 511, L30

→ p. 160
Zu Y., Mandelbaum R., 2015, Mon. Not. R. Astron. Soc., 454, 1161 → p. 144
van Haarlem M. P., Frenk C. S., White S. D. M., 1997, Monthly Notices of the Royal Astronomical

Society, 287, 817 → p. 159

http://dx.doi.org/10.1093/mnras/283.3.837
http://dx.doi.org/10.1046/j.1365-8711.1998.01422.x
http://dx.doi.org/10.1093/mnras/stx2837
http://dx.doi.org/10.1093/mnras/stw1263
http://dx.doi.org/10.1111/j.1365-2966.2011.19525.x
http://dx.doi.org/10.1086/591439
http://dx.doi.org/10.1103/PhysRevD.89.103515
http://dx.doi.org/10.1103/PhysRevD.89.103515
http://dx.doi.org/10.1093/mnras/stu1044
http://dx.doi.org/10.1086/319102
http://dx.doi.org/10.1093/mnras/stt1945
http://dx.doi.org/10.1088/0004-637X/691/1/547
http://dx.doi.org/10.1093/mnras/sty073
http://dx.doi.org/10.1103/PhysRevD.84.043529
http://dx.doi.org/10.1093/mnrasl/slac002
http://dx.doi.org/10.1093/mnras/stv2062
http://dx.doi.org/10.1093/mnras/287.4.817
http://dx.doi.org/10.1093/mnras/287.4.817

